
Chalmers Publication Library

Copyright Notice

©2010 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

This document was downloaded from Chalmers Publication Library (http://publications.lib.chalmers.se/), where it

is available in accordance with the IEEE PSPB Operations Manual, amended 19 Nov. 2010, Sec. 8.1.9

(http://www.ieee.org/documents/opsmanual.pdf)

(Article begins on next page)

http://publications.lib.chalmers.se/
http://www.ieee.org/documents/opsmanual.pdf

Complexity Analysis of Power Amplifier Behavioral Models

Ali Soltani Tehrani, Haiying Cao†, Thomas Eriksson, Christian Fager†

Department of Signals and Systems, Communication Systems group
†Department of Microtechnology and Nanoscience, Microwave Electronics Laboratory

Chalmers University of Technology, Gothenburg, Sweden

Abstract— In this paper efficient computer implementa-
tions of some of the most commonly used Volterra series
based power amplifier behavioral models are proposed. The
desired efficiency is in regard to algorithm complexity and
floating point operations. Finally a comparative overview
of the different behavioral models with respect to their
complexity is presented.

Index Terms— Behavioral modeling, complexity, FLOPs,
power amplifier, Volterra series.

I. INTRODUCTION

Power amplifiers are one of the main sources of distor-
tion in a wireless communication system. Digital predis-
tortion is widely employed to compensate for the effects
of this distortion, and requires behavioral modeling of
the power amplifier. From general polynomial theory it
is well known that any nonlinear function can be approx-
imated to an arbitrary resolution with a polynomial - the
Weierstrass’s approximation theory. This has given rise to
many different power amplifier behavioral models based
on polynomials. Some of the most famous are presented
in [1] and evaluated in [2].

From this theory, the Volterra series with infinite order
can perfectly reconstruct any nonlinear function - therefore
completely accurate. In practical applications however,
the Volterra series has to be truncated because the com-
putational complexity grows exponentially. In literature
often behavioral models are only evaluated based on the
accuracy of the modeling. The accuracy however, will
be dependent on how the model is truncated and since
the truncation is different between behavioral models,
making a fair comparison is difficult. In [2] the number
of coefficients has been used as an evaluation measure
for comparison, but since it does not take into account
the complexity of evaluating the coefficients themselves,
it is not an appropriate measure. In order to make a fair
comparison between behavioral models, the number of
floating point operations is proposed in this paper.

When dealing with complexity it is important to obtain
the most efficient algorithm for each model to ensure a fair
comparison. The number of multiplications and additions
for each algorithm needs to be computed and minimized
when possible.

In the next section a short description on complexity is
given, some behavioral models are discussed, and a mea-
sure is proposed for complexity. The results are analyzed
in section III.

II. COMPLEXITY

Behavioral models generally have different types of
complexity. One type can be called identification complex-
ity, which is the amount of computational effort needed
to identify the behavioral models parameters. However, it
may be of less interest because even if it initially takes a
long time, it will only be done once and can be adapted
afterwards.

A second type is called running complexity - also
known as evaluation complexity, and is the complexity of
evaluating the model equations for each communication
symbol. This can be of more practical importance since a
more complex model will require more hardware. In this
work, the behavioral models are classified with respect to
running complexity.

This section gives a short description of the different
behavioral models analyzed in this work. A more complete
description can be found in [1]. Moreover an efficient
computer algorithm is proposed for each behavioral model
and the number of multiplications and additions is derived.
In order to normalize the comparison, it is assumed that
the input is a vector [x(n)x(n−1) · · ·x(n−M)] where M
is the memory depth and that the algorithms have access
to the different memory depths at no cost (in terms of
complexity).

A. Behavioral model complexity

In this section power amplifier behavioral models that
are based on polynomials and mainly the Volterra series
are presented.

1) Volterra: The classical complex triangular-form
baseband equivalent Volterra series with nonlinear order
O = (P − 1)/2 and memory depth of M can be written
as [3]:

y(n) = y1(n) + y3(n) + y5(n) + · · · + yP (n), (1)

where

yp(n) =
∑M

m1=0

∑M
m2=m1

· · ·∑M
m p+1

2
=m p−1

2∑M
m p+3

2
=0 · · ·

∑M
mp=mp−1

hp(m1, · · · , mp)

x(n − m1)x(n − m2) · · ·x(n − m p+1
2

)

x∗(n − m p+3
2

) · · ·x∗(n − mp). (2)

The algorithm for evaluating (2) can be implemented in
two steps:

1) Construct the basis functions (permutations of x(n)).
2) Filter the basis with the kernels and sum all the

resulting outputs (h ∗ X).
The second step is common among the different behavioral
models, i.e. all outputs are multiplied and summed with the
kernels. The first step is where the algorithms generally
differ.

In order to obtain efficient algorithms it is necessary to
avoid redundant calculations. It can be easily verified that
when the first order nonlinearity (O = 1 ⇒ P = 1) is only
considered, all behavioral models have similar basis func-
tions which are just [x(n)x(n−1) · · · x(n−M)]. Therefore,
for comparison sake all models will be compared from the
second order nonlinearity, i.e. setting O = 2 ⇒ P = 3.
Starting from this order, the Volterra model becomes:

y3(n) =
∑M

m1=0

∑M
m2=m1

∑M
m3=0 h3(m1, m2, m3)

x(n − m1)x(n − m2)x∗(n − m3). (3)

The first step is to construct the basis which are the
permutations of x(n − m1)x(n − m2)x∗(n − m3) for the
respective m1,m2, and m3. Before looking at the number
of multiplications, it is worth to note that if one considers
the basis function x(n)x(n−1)x∗(n−2) as an example, it
can easily be observed that x(n−1)x(n−2)x∗(n−3) can
be constructed as a delayed version of the previous basis -
with zero complexity. This can be utilized for every basis
function to achieve a more efficient algorithm. Therefore
only the permutations that consist of x(n) or x∗(n) terms
need to be considered.

In order to construct an efficient algorithm, some terms
that will be used often are preconstructed. These consist
of the permutations of

x(n) × x∗(n), x(n) × x∗(n − 1),
, · · · , x(n) × x∗(n − M). (4)

The total number of coefficients is given in [2] and is equal
to f(M,O) where:

f(M, O) =
(

M + O

O

)(
M + O − 1

O − 1

)
. (5)

Of these, the terms that don’t consist of x(n) or x∗(n) can
be removed according to the previous discussion. These
terms can be written as

F (M, O) = f(M, O) − f(M − 1, O), (6)

where F (M, O) is the number terms that have at least
one of x(n) or x∗(n). These terms are in the form of
x(n)x(n−m2)x∗(n−m3) or x(n−m1)x(n−m2)x∗(n).
Since the permutations of (4) have been precalculated,
this means that each of these basis require only one
multiplication. Notice that some terms are conjugates of
(4). Therefore it can be seen that the total number of
multiplications needed for this nonlinear order is equal to
F (M, 2)×1 excluding the initial permutations constructed.

The next step is to calculate the number of multipli-
cations for O = 3 ⇒ P = 5. The basis functions
for this order are the permutations of: x(n − m1)x(n −
m2)x(n − m3)x∗(n − m4)x∗(n − m5). In this formula-
tion one can notice that some multiplications have been
already calculated. Reformatting the multiplications as
x(n − m1)x(n − m2)x∗(n − m4) it can be seen that this
has already been calculated in the previous nonlinear order,
and the innovations are only x(n−m3)×x∗(n−m5) which
are the precalculated (4). Therefore, for each basis function
- F (M, 3) - one multiplication has to be done. Following
the same procedure one can see that the total number of
multiplications can be written as N(M,O) where:

N(M, O) = (M + 1) +
O∑

o=2

F (M, o), (7)

the first part is the initial construction requirement and the
second part is for the different nonlinear orders starting
from order two.

The second step is to multiply the kernels with the
according basis functions, and sum all the outputs. This
requires one multiplication and roughly one summation
per coefficient. One can see that the cost of constructing
the basis functions is comparable with the filtering step for
the Volterra series-based behavioral model.

2) Memory polynomial: The memory polynomial
model is a commonly used power amplifier behavioral
model and is also referred to as the Parallel-Hammerstein
model [2]. This behavioral model is expressed as:

y(n) =
P∑

p=1

M∑
m=0

hp,mx(n − m)|x(n − m)|p−1. (8)

Following the same two step procedure, first the basis
functions are created. An efficient method of accomplish-
ing this is by first pre-constructing |x(n)|2 and |x(n)|. For
the odd order powers x|n|2 can be used by multiplying
it with x(n) and for even order terms |x(n). All other
x(n − m)|x(n − m)|p−1 basis can be constructed by
delaying x(n)|x(n)|p−1 and hence complexity free. This
means that for the first step only 1+P multiplications are
needed for all combinations. The second step is the same as
the Volterra series, one multiplication and one summation
per coefficient. It can be noticed that the basis functions
in the memory polynomial model are easier to construct

than the Volterra series and the main source of complexity
is from the filtering.

3) Generalized memory polynomial: This model is sim-
ilar to the memory polynomial model, with the inclusion
of delayed versions and combining them together [4]. A
simple lagged term-only representation is shown:

y(n) =
P−1∑
p=0

M∑
m=0

hp,m,0x[n − m]|x(n − m)|p

+
P−1∑
p=1

M∑
m=0

G∑
g=1

ap,m,gx[n − m]|x(n − m − g)|p

+bp,m,gx[n − m]|x(n − m + g)|p. (9)

With this representation more cross-terms can be ex-
ploited. One can observe as in the case for memory
polynomial model we are able to reconstruct the basis
functions from an initial calculation via delays. In this
model an extra G multiplications is needed since x(n −
m)|x(n−m−1)|p−1 and other similar terms which are not
just delayed versions also have to be constructed. When
|x(n)|2 and |x(n)| are pre-constructed, for the first step
2P + 2(P − 1)G + 2P min(G, M) multiplications are
needed. The second step is similar to the previous models.

4) Volterra with Dynamic Deviation Reduction: This
behavioral model is a different representation of the
Volterra series by reformatting it in terms of dynamics [5].
The cross-terms are organized in terms of the number of
dynamics and this gives an extra degree of freedom to trun-
cate the Volterra series. A simple baseband representation
of this model can be formulated as:

y(n) =
∑P

p=1 hp,0 x(n)|x(n)|p−1︸ ︷︷ ︸
zero order dynamic

+
∑P

p=1

∑M
m1=1 hp,m1 x(n − m1)|x(n)|p−1︸ ︷︷ ︸

1st order dynamics path 1

+
P∑

p=3

M∑
m2=1

hp,m2 x∗(n − m2)x2(n)|x(n)|p−3︸ ︷︷ ︸
1st order dynamics path 2

(10)

where p is odd and 1st order dynamics are shown.
In order to construct the basis functions for this behav-

ioral model, first |x(n)|2 and x(n)2 are constructed. The
first line of this model is a static nonlinear model and
requires (P − 1)/2 multiplications. In the second line we
notice that there is no possibility of reusing terms from
the first line. For path one in the first order dynamics
(P − 1)/2 × M multiplications are needed and for path
two ((P − 3)/2 + 1) × M . The first path only needs real
by complex number multiplications while the second line
has complex by complex number multiplications as well.

5) Kautz-Volterra: By filtering the input sequence and
changing the poles from 0 to an arbitrary complex number
and then applying the Volterra series, the Kautz-Volterra

behavioral model is proposed in [6]. In this respect it is
simple to derive the complexity to be the same as the
Volterra series with the addition of the filter - which is
one additional multiplication and summation.

B. Complexity measure

Complexity of algorithms is often measured in orders
denoted by the Landau symbol O(.), but can also be
expressed in FLOPs (floating point operations) which is
used in this work. While this measure may not be ideal,
it should be suffice to judge between different behavioral
models since it evaluates the number of additions and
multiplications. Since in the previous sections the number
of multiplication and additions were reported, here the
conversion into FLOPs is shown in Table I.

TABLE I
NUMBER OF FLOPS FOR DIFFERENT OPERATIONS

Operation Number of FLOPs
Conjugate 0

Real addition 1

Real multiplication 1

Complex addition 2

Complex multiplication 6

|.|2 3

Complex-real multiplication 2

Square-root 6 ∼ 8

Other measures such as time of execution, size of
hardware, number of transistor gates and etc. are not
considered in this work.

III. RESULTS

All results are obtained by increasing the nonlinear order
(with O > 1) and memory depth , setting G = 3 in the
generalized memory polynomial and D = 2 in the Volterra
with dynamic deviation reduction. In Fig. 1 the average
number of FLOPs per kernel (coefficient) is shown.

In some of the models, there may be several ways
to generate the same number of coefficients that result
in different number of FLOPs. For example a memory
polynomial model with M = 4 and O = 3 results in 15
coefficients and 125 FLOPs while the same model with
M = 2 and O = 5 has 15 coefficients and 127 FLOPs. In
this figure, the configuration that yields the lowest amount
of FLOPs is consistently used. This does not take into
consideration how accurate each configuration can model
the power amplifier, and is not the focus of this work.

The minimum number of FLOPs per coefficient is when
the basis functions have zero complexity and only the
second step of the algorithm has to be evaluated. This
is one complex multiplication and one complex addition
resulting in 8 FLOPs per coefficient. From Fig.1 it can be
seen that the memory polynomial model is very close to

10 20 30 40 50 75 100 200 300
7

8

9

10

11

12

13

14

15

16

Number of coefficients

F
LO

P
s

pe
r

ke
rn

el

Volterra
Memory Polynomial
Kautz−Volterra
Generalized Memory Polynomial
Volterra with Dynamic Deviation Reduction

Fig. 1. FLOPs per kernel for different behavioral models.

this minimum and is the easiest model to construct. The
generalized memory polynomial also yields similar results
when the number of coefficients increase, but costs slightly
higher than the memory polynomial model.

Because Volterra with dynamic deviation reduction has
limited basis reusability, it is the most complex model
per coefficient initially. This limitation is because there
is little possibility of delaying one basis function to gen-
erate another since all basis functions contain the term
x(n). As the number of coefficients increase with a fixed
number of dynamics, the reusability improves and this
model becomes slightly better than the Volterra and Kautz-
Volterra models. Regarding the latter two models, it can
be observed that as the memory increases the amount of
reusability of the basis functions also increase, hence the
negative slope that can be seen in Fig. 1. However, when
the nonlinear order increases, the reusability is not possible
in the same way, resulting in the positive slope.

In Fig. 2 the rate of the increase in complexity is
shown. The horizontal axis represents the memory depth
+ nonlinear order and the vertical axis is the total number
of FLOPs.

From this figure, it can be noticed that the total complex-
ity for the Kautz-Volterra model is the highest. Comparing
to Fig. 1 where Volterra with dynamic deviation reduction
was more complex it can be concluded that the higher
complexity is due to the exponential growth in parameters
for the Kautz-Volterra and Volterra models.

IV. CONCLUSION

Efficient computer algorithms for hardware implemen-
tation of some of the most used polynomial based power
amplifier behavioral models have been derived. The imple-
mentation was divided into two steps, the first to construct
the basis functions and the second to filter the resulting
basis functions with the kernels. The second step was

50

75

100

200

300

500

750

1000

2000

5000

Nonlinear order, Memory depth →

F
LO

P
s

Volterra
Memory Polynomial
Kautz−Volterra
Generalized Memory Polynomial
Volterra with Dynamic Deviation Reduction

Fig. 2. Total number of FLOPs vs nonlinear order + memory
depth for different behavioral models.

similar for the different algorithms, but in the first step
some complexity reductions were possible and proposed.

It was shown that the memory polynomial model is
the cheapest model to construct while the Volterra and
Kautz-Volterra models are the most expensive. Also the
Volterra with dynamic deviation model showed more initial
complexity per coefficient than the Volterra model due to
having more complex basis functions and less reusability.

ACKNOWLEDGMENT

This research has been carried out in the GigaHertz Cen-
tre in a joint research project financed by the Swedish Gov-
ernmental Agency of Innovation Systems (VINNOVA),
Chalmers University of Technology, Ericsson AB, Infineon
Technologies, and NXP Semiconductors.

REFERENCES

[1] J. C. Pedro and S. A. Maas, “A comparative overview of microwave
and wireless power-amplifier behavioral modeling approaches,” IEEE
Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1150–1163, 2005.

[2] M. Isaksson, D. Wisell, and D. Ronnow, “A comparative analysis of
behavioral models for RF power amplifiers,” IEEE Trans. Microw.
Theory Tech., vol. 54, no. 1, pp. 348–359, 2006.

[3] V. Mathews and G. L. Sicuranza, Polynomial Signal Processing, ser.
Wiley Series in Telecommunications and Signal Processing. New
York: Wiley, 2000.

[4] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A
generalized memory polynomial model for digital predistortion of
RF power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10,
pp. 3852–3860, 2006.

[5] A. Zhu, J. C. Pedro, and T. J. Brazil, “Dynamic deviation reduction-
based Volterra behavioral modeling of RF power amplifiers,” IEEE
Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4323–4332, 2006.

[6] M. Isaksson and D. Ronnow, “A Kautz-Volterra behavioral model
for RF power amplifiers,” in Proc. IEEE MTT-S Int. Micro. Symp.
Dig., 2006, pp. 485–488.

