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Abstract We consider a stochastic mathematical program with equilibrium constraints
(SMPEC), and show that, under certain assumptions, global optima and stationary so-
lutions are robust with respect to changes in the underlying probability distribution.
In particular, the discretization scheme sample average approximation (SAA), which is
convergent for both global optima and stationary solutions, can be combined with the
robustness results to motivate the use of SMPECs in practice. We then study two new
and natural extensions of the SMPEC model. First, we establish the robustness of global
optima and stationary solutions to an SMPEC model where the upper-level objective is
the risk measure known as conditional value-at-risk (CVaR). Second, we analyze a multi-
objective SMPEC model, establishing the robustness of weakly Pareto optimal and weakly
Pareto stationary solutions. In the accompanying paper (Cromvik and Patriksson, On
the Robustness of Global Optima and Stationary Solutions to Stochastic Mathematical
Programs with Equilibrium Constraints, part 2: Applications, Journal of Optimization
Theory and Applications, 2010, to appear) we present applications of these results to
robust traffic network design and to robust intensity modulated radiation therapy.

Keywords: Stochastic mathematical program with equilibrium constraints, Solution sta-
bility and robustness, Sample average approximation, Weak Pareto optimality
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1 Introduction

A physical system is often subjected to uncertainties, such as uncertain material pa-
rameters in a structural problem and stochastic market in an application to economics.
Although it may be sufficient to consider a representative (e.g. mean) value of the un-
certain parameters in order to produce a simulation of the system, the solution to an
optimization problem that is based on its response can be very sensitive; using mean
values of uncertain parameters can then give suboptimal solutions.

There are two main approaches to incorporating uncertainty into optimization models.
In stochastic programming (see e.g. [1, 2]), the objective function is an expected value,
sometimes in combination with a risk measure. In such models, either all the decisions
are made before any realization of the uncertain data, or the model contains a recourse
opportunity so that some decisions can be made at a second stage. In robust optimization,
an optimal solution is required to be feasible for all realizations of the uncertain data.
The probability distributions utilized in stochastic programming are here replaced by
the requirements that parameter values are confined to special bounded sets. Robust
optimization provides a guarantee that an optimal solution is safe, but it is a pessimistic
approach, since it considers the worst-case scenario. It is tractable for certain convex
problems (see [3]); however, it has also been utilized for nonconvex problems through a
linearization of the constraints ( [4]).

We are interested in several applications which all can be modeled as a mathematical
program with equilibrium constraints (MPEC). The stochastic extension of MPEC is a
stochastic mathematical program with equilibrium constraints (SMPEC) ( [5]); the focus
of this paper is to analyze the stability of optimal and stationary solutions to SMPEC
when the underlying probability distribution is itself uncertain. This is motivated by
practical applications such as the optimization of treatment plans in radiation therapy,
where the biological response to radiation depends on parameters of which the probability
distribution is uncertain; see our further discussions on this topic in [6].

We show that the SMPEC model is robust under certain conditions; we also show
how to discretize a continuous distribution using sample average approximation (SAA)
and that such an approximation will converge. Not surprisingly, similar conditions are
required for robustness as for convergence of SAA.

The quantitative stability of solutions to stochastic programs due to changes in the
probability distribution has been studied previously in [7] for general stochastic programs,
for convex programs in [8], and for multistage programs in [9]; their focus is on the Lips-
chitz continuity of global optimal objective values. In contrast, our approach is qualitative
in nature and provides stability results on optimal as well as stationary solutions. The
subjects of optimality conditions and numerical methods for SMPECs have been studied
previously, for example, in [10–12].

The remainder of this paper is organized as follows. In Section 2, we introduce the
SMPEC model. In Section 3, we derive conditions under which global optima and sta-
tionary solutions are stable with respect to perturbations in the probability distribution.
In Section 4, we present an extension of the SMPEC to include the risk measure CVaR,
and establish the robustness of its global optima and stationary solutions. In Section 5,
we present a discretization scheme, and show that it converges when the discretization
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is refined. Combining stability with a convergent discretization scheme provides a mo-
tivation for the use of SMPEC in practice. In Section 6, we extend the stability result
to SMPECs with multiple objectives. Finally, in Section 7, we provide a summary and
future research opportunities.

2 Stochastic Mathematical Programs with Equilib-

rium Constraints

2.1 Mathematical Programs with Equilibrium Constraints

Consider a mathematical program with an equilibrium constraint in the form of a varia-
tional inequality,

(MPEC) min
(x,y)

f(x, y),

s.t. x ∈ X,

− F (x, y) ∈ NC(y),

where f : R
n × R

m → R, y ∈ R
m, C ⊆ R

m is a polyhedron, F (x, ·) : C → R
m is smooth,

and NC : R
m

⇉ R
m is the standard normal cone mapping

NC(y) :=

{

{

z ∈ R
m|zT(w − y) ≤ 0, w ∈ C

}

, if y ∈ C,

∅, otherwise.

The vector x ∈ R
n represents the design (or primary) variables and y ∈ R

m is the response
(or secondary) variables. The nonempty, closed and convex set X ⊆ R

n specifies the set
of feasible designs. Note that there are no joint upper-level constraints in this setting,
which is natural when considering the stability of optimal solutions (cf. [13–15]).

The variational inequality, −F (x, y) ∈ NC(y), can represent an equilibrium in a general
form. For example, with C = R

m, the variational inequality is equivalent to the system
of equations

F (x, y) = 0m,

and with C = R
m
+ , the variational inequality is equivalent to the complementarity con-

straint
0m ≤ y ⊥ F (x, y) ≥ 0m,

where a ⊥ b means that aTb = 0. Since complementarity constraints are examples of
equilibrium constraints, it indicates that MPECs are usually very nonlinear and irregular.
In fact, MPECs lack standard constraint qualifications ( [16]), which can highly influence
the performance of nonlinear optimization algorithms for solving MPECs. For recent
work on the numerical solution of MPECs, we refer to [17, 18].

If F (x, y) = ∇yφ(x, y) for a C1 function φ(x, ·), then the variational inequality

∇φ(x, y)T(ȳ − y) ≥ 0, ∀ȳ ∈ C,

represents the optimality conditions for the parametric optimization problem

min
y∈C

φ(x, y),
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and the MPEC becomes what is traditionally known as a bilevel optimization problem
( [19]).

The generality of the variational inequality suggests that a number of optimization
problems can be put into the form of (MPEC) (see [20–22]). For example, the Stackelberg
game [23], which is a leader-follower game and an extension of the Nash game [24], can be
formulated as an MPEC. The accompanying paper [6] numerically analyzes applications
to the design of traffic networks and optimal treatment plans in intensity-modulated
radiation therapy (IMRT).

2.2 Stochastic Mathematical Program with Equilibrium Con-

straints

Next, we consider the stochastic extension of (MPEC). Let (Ω, Θ, P ) be a complete prob-
ability space and consider the problem

(SMPECΩ) min
(x,y(·))

Eω[f(x, y(ω), ω)] :=

∫

Ω

f(x, y(ω), ω) P (dω),

s.t. x ∈ X,

− F (x, y, ω) ∈ NC(y), P -a.s.,

where y : Ω → R
m is a random element of the probability space (Ω, Θ, P ). We also

introduce S : R
n×Ω ⇉ R

m, which defines the set of solutions to the lower-level parametric
variational inequality problem,

S(x, ω) := { y ∈ R
m | −F (x, y, ω) ∈ NC(y) }.

In view of stochastic programming with recourse, SMPEC is considered as a here-and-now
type of problem, where decision x should be taken before any realizations of uncertain
data.

When the solution to the lower-level problem is nonunique for a fixed x and ω, the model
should be interpreted as y being chosen such that the objective function is minimized given
x and ω.

This formulation of SMPEC follows the original one of Patriksson and Wynter [5] and
of Evgrafov and Patriksson [25]. Alternative formulations are found in [10, 11, 26].

2.3 Existence of Optimal Solutions

The following assumption will be in force throughout this paper:

Assumption A

(A1) The mapping S(x, ·) is measurable for every x.

(A2) The set X is closed and the mapping x 7→ S(x, ω) is closed for almost every ω ∈ Ω.

(A3) The function f is continuous in (x, y), measurable in ω, uniformly weakly coercive
with respect to x over the set X, and bounded from below by a (Θ, P)-integrable
function.
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(A4) The set S(x0, ω) is nonempty for some x0 ∈ X and almost every ω ∈ Ω.

The following result on the existence of optimal solutions is due to Evgrafov and
Patriksson [25].

Theorem 2.1 (Existence of Optimal Solutions) Let Assumption (A) hold. Then, problem
(SMPECΩ) has at least one optimal solution.

3 Solution Stability

We are interested in the stability of optimal solutions to (SMPECΩ) with respect to
changes in the probability distribution. Such results have value both from a computational
and a theoretical viewpoint. If the problem is stable, then it can be approximated by
using discrete probability measures, resulting in a finite-dimensional problem. From a
theoretical point of view, we deduct that the problem is robust. We analyze the stability
of globally optimal solutions (Theorem 3.1) as well as of stationary solutions (Theorem
3.2).

3.1 Stability of Globally Optimal Solutions

We first analyze the stability of globally optimal solutions. This is foremost motivated
by simplicity. For global optima, we can relate the perturbations of the probability dis-
tribution to changes in the objective value. For stationary solutions, this becomes more
problematic.

The result of stability of globally optimal solutions is particularly interesting for convex
problems, where we can find global optima in practice.

Let {Pk} be a sequence of probability measures defined on B(Ω). Consider the associ-
ated sequence of optimization problems,

(SMPECΩ)k min
(x,y(·))

Eω[f(x, y(ω), ω)] :=

∫

Ω

f(x, y(ω), ω) Pk(dω),

s.t. x ∈ X,

− F (x, y, ω) ∈ NC(y), Pk-a.s.

The problem differs from (SMPECΩ) only in the choice of probability distribution. Let
val(P ) denote the optimal value of problem P . The following result shows the stability
of globally optimal solutions. The corresponding result in the context of topology opti-
mization in structural mechanics can be found in [15] and for network design under traffic
equilibrium in [27, 28]. The proof presented here is similar.

Theorem 3.1 (Global Stability of Optimal Solutions to (SMPECΩ)) Let Assumption (A)
hold, suppose that the mapping F (x, ·, ω) is strictly monotone in y for each x ∈ X and
ω ∈ Ω, and that the sequence {Pk} of probability measures weakly converges to P . Also,
suppose that, for each k, (xk, yk(·)) solves (SMPECΩ)k. Then, each limit point (there is
at least one) of the sequence {(xk, yk(·))} is an optimal solution to (SMPECΩ).
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Proof. Consider an optimal solution (x∗, y∗(·)) to (SMPECΩ). Since F is strictly
monotone in y, y is continuous in x and ω. By (A3), any sequence of feasible de-
signs and responses is bounded and hence has a limit point. The optimal solution to
(SMPECΩ) is moreover feasible in (SMPECΩ)k for all k. It follows that val (SMPECΩ) ≥
lim supk→∞ val (SMPECΩ)k.

Next, let {(xk, yk(·))} be a sequence of optimal solutions to (SMPECΩ)k. By (A3), this
sequence is bounded. Denote any limit point (x̄, ȳ(·)). It is feasible for almost every ω in
(SMPECΩ). Using the lower semicontinuity of f and Fatou’s lemma, we get

val (SMPECΩ) ≤

∫

Ω

f(x̄, ȳ(ω), ω)p(ω) dω

≤

∫

Ω

lim inf
k→∞

f(xk, yk(ω), ω)p(ω) dω

≤ lim inf
k→∞

∫

Ω

f(xk, yk(ω), ω)pk(ω) dω

= lim inf
k→∞

val (SMPECΩ)k.

By combining the two inequalities, we get the result.

3.2 Stability of Stationary Solutions

Due to the nonconvex nature of MPECs, it is not reasonable in general to expect algo-
rithms to find globally optimal solutions. This fact limits the practical use of Theorem
3.1, and raises the question of stability of stationary solutions. The proof of stability for
globally optimal solutions was based on analyzing the convergence of the optimal value.
For stationary solutions, we need to analyze the conditions of (local) optimality which
relates to stationarity.

Optimality conditions for (SMPECΩ) are nontrivial to formulate due to the presence of
the variational inequality. Under certain conditions, the response variable y can be treated
as an implicit variable; this reduces the complexity of formulating optimality conditions
for the SMPEC. This technique is used by Outrata [21] for the MPEC, which has inspired
the proof approach below.

The following assumption will be utilized in addition to Assumption A.

Assumption B

(B1) The function f is Lipschitz continuous in (x, y).

(B2) The mapping F (·, ·, ω) is continuously differentiable and F (x, ·, ω) is uniformly
strongly monotone on C for each x ∈ X and ω ∈ Ω, i.e.,

(F (x, y1, ω) − F (x, y2, ω))T(y1 − y2) ≥ c‖y1 − y2‖
2, ∀y1, y2 ∈ C,

where c > 0 is independent of x and ω.

(B3) X = {x ∈ R
n | gi(x) ≤ 0, i = 1, ..., p} and each function gi is continuously

differentiable;
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(B4) The Mangasarian–Fromovitz constraint qualification (MFCQ) holds for all x ∈ X.

If Assumptions (B1) and (B2) hold, then (see [29]) there exists a locally Lipschitz
continuous, single-valued solution map (x, ω) 7→ σ(x, ω) with

y = σ(x, ω), σ(x, ω) ∈ S(x, ω).

With this property, we can rewrite (SMPECΩ) as the one-level problem,

(SNLPΩ) min
x

Eω[f(x, σ(x, ω), ω)] :=

∫

Ω

f(x, σ(x, ω), ω) P (dω),

s.t. x ∈ X,

and correspondingly (SNLPΩ)k is obtained from (SMPECΩ) by replacing P with Pk.
Before stating the optimality conditions, we introduce two definitions from nonsmooth

analysis.

Definition 3.1 The Clarke directional derivative of a function f : R
n → R at x in the

direction h is defined by

f 0(x; h) := lim sup
t↓0

z→x

f(z + th) − f(z)

t
.

Since f is Lipschitz continuous [Assumption (B1)], f 0(·, h) is upper semicontinuous
( [30, Proposition 2.1.1]).

Definition 3.2 The generalized gradient of f at x is defined as the set

∂f(x) := {ξ ∈ R
n | (ξ, h) ≤ f 0(x; h)}.

If f is continuously differentiable at x then ∂f(x) = {∇f(x)}. If Assumptions (B3)
and (B4) hold, a vector x∗ ∈ X is a Clarke stationary solution (see [30, Theorem 6.1.1],
see [31, Theorem 6.1.8]) to (SNLPΩ) if, for some vector µ ∈ R

p
+ with µigi(x

∗) = 0 for all
i, we have

0n ∈ ∂Eω[f(x∗, σ(x∗, ω), ω)]) + ∇g(x∗)µ,

where µ is the vector of Lagrange multipliers. Analogously, a vector x∗ ∈ X is a weakly
Clarke stationary solution if,

0n ∈ Eω[∂f(x∗, σ(x∗, ω), ω)]) + ∇g(x∗)µ.

Theorem 3.2 (Stability of Stationary Solutions to (SNLPΩ)) Let Assumption (A) and (B)
hold, suppose that the sequence {Pk} of probability measures weakly converges to P and
is upper bounded by a measurable function, and that, for each k, (xk, yk(·)) is a Clarke
stationary solution to (SNLPΩ)k. Then, each limit point (there is at least one) of the
sequence {(xk, yk(·))} is a weakly Clarke stationary solution to (SNLPΩ).
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Proof. By the assumptions, F (x, ·, ω) is uniformly strongly monotone, and therefore the
solution map S(x, ω) is single-valued and Lipschitz continuous (cf. [29]). This enables
us to use the one-level problems (SNLPΩ) and (SNLPΩ)k. Since σ and f are Lipschitz
continuous, there exists a random variable k(ω) ≥ 0 such that E[k(ω)] < ∞ and such
that, for all x1, x2 ∈ X,

|f(x1, σ(x1, ω), ω)− f(x2, σ(x2, ω), ω)| ≤ k(ω)‖x1 − x2‖. (1)

Let xk be a Clarke stationary solution to (SNLPΩ)k and consider a sequence {xk} of
such stationary solutions. Since f is inf-compact [see Assumption (A3)], this sequence is
bounded. Denote a limit point by x∗. Define

Ek
ω[f(x)] :=

∫

Ω

f(x, σ(x, ω), ω) Pk(dω).

The point xk is stationary if

0n ∈ ∂Ek
ω[f(xk)] + ∇g(xk)µk (2)

and
0p ≤ µk ⊥ g(xk) ≤ 0p.

Fix a direction h ∈ R
n. Then, we have

(Ek
ω[f ])0(x; h) = lim sup

t↓0

z→x

Ek
ω[f(z + th)] − Ek

ω[f(z)]

t

= lim sup
t↓0

z→x

∫

Ω
f(z+th, σ(z+th, ω), ω) Pk(dω)−

∫

Ω
f(z, σ(z, ω), ω) Pk(dω)

t

= lim sup
t↓0

z→x

∫

Ω

(f(z + th, σ(z + th, ω), ω) − f(z, σ(z, ω), ω))

t
Pk(dω)

≤

∫

Ω

f 0(x, σ(x, ω), ω; h) Pk(dω) = Ek
ω

[

f 0(x, σ(x, ω), ω; h)
]

,

where the last inequality follows by Equation (1), with x1 = z and x2 = z + th, and the
Lebesgue dominated convergence theorem. Furthermore, we have that

lim sup
k→∞

Ek
ω[f 0(xk; h)] = lim sup

k→∞

∫

Ω

f 0(xk, σ(xk, ω), ω; h) Pk(dω)

≤

∫

Ω

lim sup
k→∞

f 0(xk, σ(xk, ω), ω; h) Pk(dω)

≤

∫

Ω

f 0(x∗, σ(x∗, ω), ω; h) P (dω)

=Eω[f 0(x∗; h)], (3)

where we use the Lebesgue dominated convergence theorem in the second equality and
the upper semicontinuity of f 0 in the second inequality. Hence,

lim sup
k→∞

∂Ek
ω[f(xk)] ⊂ Eω[∂f(x∗)].
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Next, we argue that
lim sup

k→∞

∇g(xk)µk = ∇g(x∗)µ∗.

Suppose that this is not true, but ‖µk‖ → ∞. We can then define λk := µk/‖µk‖, and
assume that λk → λ∗ for some λ∗ such that

λ∗ ≥ 0p, ‖λ∗‖ = 1.

Let I(x) := {i | gi(x) = 0} be the set of active constraint indices at x. By the definition
of MFCQ, to each xk, there exists a vector d ∈ R

n such that

∇gi(x
k)Td < 0, i ∈ I(xk),

gi(x
k) < 0, i /∈ I(xk), (4)

For i ∈ I(x∗) we must have λk
i → 0. Fix a d ∈ R

n such that a condition like (4) holds at
x∗. Then, by (2), we have

0 ≤ lim sup
k→∞

(

dT∇g(xk)µk

‖µk‖
+

(Ek
ω[f ])0(xk; d)

‖µk‖

)

= lim sup
k→∞

dT ∇g(xk)λk

=
∑

i∈I(x∗)

λ∗
i∇gi(x

∗)Td.

From the last expression and (4), we get

0 ≤
∑

i∈I(x∗)

λ∗
i∇gi(x

∗)Td ≤ −
∑

i∈I(x∗)

λ∗
i ,

and since λ∗ ≥ 0p, this implies that λ∗ = 0. This contradicts the assumption ‖λ∗‖ = 1,
and so µ∗ must be bounded.

To sum up, we have

0 ∈ lim sup
k→∞

(

∂Ek
ω[f(xk)] + ∇g(xk)µk

)

⊂ Eω[∂f(x∗)] + ∇g(x∗)µ∗

and we can therefore conclude that x∗ is a weakly Clarke stationary solution to (SNLPΩ).

If f is regular (see Assumption (C2)), then (see [30, Theorem 2.7.2]) we have

E[∂f(x)] = ∂E[f(x)],

in the above theorem, and we may then make the stronger conclusion that the sequence
{xk} of Clarke stationary solutions to (SNLPΩ)k converges to a Clarke stationary solution
to (SNLPΩ).

4 Risk Objective Function

In this section, we assume that the objective function f(x, y(ω), ω) measures a loss. The
value-at-risk (VaR) at probability level β is denoted by β-VaR(x); it is the value for which
the probability that f do not exceed this value is β, i.e.,

β-VaR(x) = min{ γ | P (f(x, y(ω), ω) ≤ γ) ≥ β }.
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Furthermore, the conditional value-at-risk, denoted β-CVaR(x), is the conditional expec-
tation of loss, given that the loss is greater than β-VaR, i.e.,

β-CVaR(x) =
1

1 − β

∫

f(x,y(ω),ω)≥β-Var

f(x, y(ω), ω) P (dω).

The parameter β determines the level of risk. If β = 1, CVaR equals the expected value;
if β = 0, CVaR equals the maximal value of f ; the CVaR formalism therefore introduces
the possibility to include interesting compromises between these two extremes.

Rockafellar and Uryasev [32] provide an alternative expression for β-CVaR which uti-
lizes the following function:

Gβ(x, y, γ) = γ +
1

1 − β

∫

Ω

[f(x, y(ω), ω)− γ]+ P (dω),

where, for s ∈ R, [s]+ := max{0, s}. The conditional value-at-risk is equal to the minimum
value of Gβ over γ ∈ R, i.e.,

β-CVaR(x) = min
γ∈R

Gβ(x, y, γ).

The value-at-risk is a minimizer of Gβ, and the problem of minimizing β-CVaR over (x, y)
is equivalent to minimizing Gβ over (x, y, γ) ( [32]). Note also that Gβ is convex in γ, so
CVaR preserves convexity.

Consider now the SMPEC where the expected value in the objective function is replaced
by the alternative expression for β-CVaR:

(SRPECΩ) min
(x,y(·),γ)

γ +
1

1 − β

∫

Ω

[f(x, y(ω), ω)− γ]+ P (dω),

s.t. x ∈ X,

− F (x, y, ω) ∈ NC(y), P -a.s.

We will next show that the robustness results for global optima (Theorem 3.1) and for sta-
tionary solutions (Theorem 3.2) can be extended to the SRPEC. Following the procedure
in Section 3, let {Pk} be a sequence of probability measures defined on B(Ω) and consider
the associated sequence of optimization problems (SRPECΩ)k which are obtained from
(SRPECΩ) by replacing P with Pk.

Theorem 4.1 (Global Stability of Optimal Solutions to (SRPECΩ)) Let Assumption (A)
hold, suppose that the mapping F (x, ·, ω) is strictly monotone in y for each x ∈ X and
ω ∈ Ω, and that the sequence {Pk} of probability measures weakly converges to P . Also
suppose that, for each k, (xk, yk(·), γk) solves (SRPECΩ)k. Then, each limit point (there
is at least one) of the sequence {(xk, yk(·), γ)} is an optimal solution to (SRPECΩ).

Proof. The proof follows essentially from that of Theorem 3.1. Two critical steps need
to be motivated. The first is the continuity of the objective function. The function in
the integral is continuous with respect to x and y, since it is a decomposition of f and
[·]+, and since F is strictly monotone. Also, the objective function Gβ is continuous with
respect to γ.

11



The second step is that the objective function is weakly coercive with respect to
(x, y, γ). This holds by Assumption (A3) and the fact that, if |γ| → ∞, Gβ → ∞.

To establish robustness for stationary solutions, we again utilize the reformulation of
SMPEC into one-level problems. We consider the following problem:

(SRNLPΩ) min
(x,γ)

γ +
1

1 − β

∫

Ω

[f(x, σ(x, ω), ω) − γ]+ P (dω),

s.t. x ∈ X.

Correspondingly, (SRNLPΩ)k is obtained from (SRNLPΩ) by replacing P with Pk.

Theorem 4.2 (Stability of Stationary Solutions to (SRNLPΩ)) Let Assumption (A) and
(B) hold, suppose that the sequence {Pk} of probability measures weakly converges to P
and is upper bounded by a measurable function and that, for each k, (xk, yk(·), γk) is a
Clarke stationary solution to (SRNLPΩ)k. Then, each limit point (there is at least one)
of the sequence {(xk, yk(·), γ)} is a weakly Clarke stationary solution to (SRNLPΩ).

Proof. The proof follows from that of Theorem 3.2, the proof of Theorem 4.1, and the
fact that Gβ is Lipschitz continuous.

5 Convergence of a Discretization Scheme

In this section, we discuss the numerical solution of (SMPECΩ). The objective function
is a multidimensional integral which must be approximately computed in the general
case. If it is discretized, it is natural to analyze the convergence of a discretization
scheme. Having established both the stability of optimal solutions and the convergence
of a numerical scheme puts us closer to the practical use of an SMPEC model.

One approach used extensively to numerically solve stochastic programs is a Monte
Carlo technique known as sample average approximation (SAA) (see e.g. [33]). The idea
is to draw N iid samples ω1, . . . , ωN and solve a deterministic problem for increasing
values of N . We use the reformulation of (SMPEC)Ω into (SNLPΩ) and consider the
problem

(SNLP)N min
x

f̂N :=
1

N

N
∑

k=1

f(x, σ(x, ωk), ωk),

s.t. x ∈ X.

To establish convergence as N → ∞, the following additional conditions are required.

Assumption C

(C1) The set X is bounded and convex.

(C2) The function f(·, σ(·, ω), ω) is regular (i.e., f is directionally differentiable and the
directional derivative coincides with the Clarke directional derivative) at x for almost
every ω ∈ Ω.
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Condition (C2) is fulfilled if e.g. f(·, σ(·, ω), ω) is convex or continuously differentiable
( [30]).

The convergence proofs for both globally optimal solutions and stationary solutions
are based on the law of large numbers. The main difference in the assumptions needed is
the requirement of a regular function for the convergence of stationary solutions.

Theorem 5.1 (Convergence of Optimal Solutions to (SNLPΩ)) Let Assumptions (A), (B1)–
(B2), (C1) hold. For each N , let (xN , yN(·)) be an optimal solution to (SNLP)N . Then,
each limit point (there is at least one) of the sequence {xN} is an optimal solution to
(SNLPΩ).

Proof. The feasible set is compact by Assumptions (A2) and (C1); by Assumptions
(B1)–(B2), for almost every ω ∈ Ω the objective function f(·, ·, ω) is continuous. By
Assumption (B2), it is also bounded from above by a (Θ, P )-integrable function and the
sample is iid. Then, by [33, Proposition 7], f̂N converges to f w.p.1 uniformly on X. In
turn, by [33, Proposition 5], this implies that val((SNLP)N) → val((SNLP)Ω) as N → ∞.

Theorem 5.2 (Convergence of Stationary Solutions to (SNLPΩ)) Let Assumptions (A),
(B), (C) hold. For each N , let (xN , yN(·)) be a stationary solution to (SNLP)N . Then,
each limit point (there is at least one) of the sequence {xN} is a stationary solution to
(SNLPΩ).

Proof. By Assumptions (A3) and (B2), the objective function is of Carathéodory type;
by Assumption (C1), the set is compact and convex. By (C2), the function is also regular.
Then, by [34, Theorem 7], the sequence of stationary solutions {xN} converges w.p.1 to
a stationary solution of (SNLPΩ).

Since (SNLPΩ) is a reformulation of (SMPECΩ), the above theorems state that we
also have convergence to global optima and stationary solutions for the corresponding
discretized problem

(SMPEC)N min
x

f̂N :=
1

N

N
∑

k=1

f(x, yk, ωk),

s.t. x ∈ X,

− F (x, yk, ωk) ∈ NC(yk), k = 1, . . . , N.

To summarize, the results from Theorems 5.1 and 5.2 show that it is a valid approach to
compute a solution to the SMPEC model through a sequence of deterministic problems.
Theorems 5.1 and 5.2 are also immediate to extend to the CVaR model of Section 4.

Analogous discretization schemes for engineering applications are studied in Evgrafov
and Patriksson [14, 15].
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6 Stochastic Multiple Objective Mathematical Pro-

grams with Equilibrium Constraints

With q objectives fi : X → R, i = 1, . . . , q, the standard multiobjective optimization
problem is

min
x∈X

(f1(x), . . . , fq(x)).

Let f denote the q-vector of functions fi, i = 1, . . . , q. We recall the definitions of
Pareto and weakly Pareto optimal solutions.

Definition 6.1 A vector x̄ ∈ X is called Pareto optimal if there is no x ∈ X such that
f(x) ≤ f(x̄) and fi(x) < fi(x̄) for at least one i = 1, . . . , q. A feasible solution x̂ is called
weakly Pareto optimal if there is no x ∈ X such that f(x) < f(x̂).

The study of a multiple objective SMPEC problem appears to be new; Ye and Zhu [35],
and Murdukhovich [36,37] have studied multiobjective optimization versions of the MPEC
problem. We define the multiple objective version of the SMPEC, the SMOPEC, for q
objectives as

(SMOPECΩ) min
(x,y(·))

(Eω[f1(x, y(ω), ω)], . . . , Eω[fq(x, y(ω), ω)]) ,

s.t. x ∈ X,

− F (x, y, ω) ∈ NC(y), P-a.s.

We analyze the stability of weakly Pareto optimal solutions (Theorem 6.1) and of weakly
Pareto stationary solutions (Theorem 6.3) below.

6.1 Stability of Weakly Pareto-Optimal Solutions to a Convex

Problem

Let {Pk} be a sequence of probability measures defined on B(Ω) and consider the associ-
ated sequence of optimization problems (SMOPECΩ)k, which are obtained from (SMOPECΩ)
by replacing P with Pk.

Theorem 6.1 (Stability of Weakly Pareto-Optimal Solutions to (SMOPECΩ)) Let Assump-
tion (A) hold, suppose that the mapping F (x, ·, ω) is strictly monotone for each x ∈ X and
ω ∈ Ω, that (SMOPECΩ) is a convex problem, and that the sequence {Pk} of probability
measures weakly converges to P . Also, suppose that for each k, (xk, yk(·)) is a weakly
Pareto-optimal solution to (SMOPECΩ)k. Then, each limit point (there is at least one)
of the sequence {(xk, yk(·))} is a weakly Pareto optimal solution to (SMOPECΩ).

Proof. Consider a weakly Pareto optimal solution (x∗, y∗(·)) to (SMOPECΩ). By con-
vexity, there exists a vector λ ∈ R

q
+ with λi > 0 for a least one i = 1, . . . , q, such that the

solution solves the following single-objective problem [38, Prop 3.10]:

(S) min
(x,y(·))

q
∑

i=1

∫

Ω

λifi(x, y(ω), ω) P (dω),

s.t. x ∈ X,

− F (x, y, ω) ∈ NC(y), P -a.s.
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Fix the vector λ and consider a sequence of single-objective problems (S)k which are
obtained from (S) by replacing P with Pk.

Denote by (xk, yk(·)) an optimal solution to (S)k. Since (SMOPECΩ) is a convex
problem, so is (SMOPECΩ)k for all k. By convexity, (xk, yk(·)) is a weakly Pareto optimal
solution to (SMOPECΩ)k [38, Prop 3.9]. Now, apply Theorem 3.1 with the objective
function f replaced by

f(x, y(ω)) :=

q
∑

i=1

λifi(x, y(ω)

to get the result.

6.2 Stability of Weakly Pareto-Stationary Solutions

To establish stability without the assumption of convexity, we follow the development
of Section 3.2 and reformulate (SMOPECΩ) and (SMOPECΩ)k as one-level problems
by treating y as a function of x and ω: y = σ(x, ω). This is possible if, in addition
to the assumptions in Theorem 6.1, Assumptions (B1) and (B2) hold. We denote the
reformulations by (SMONLPΩ) and (SMONLPΩ)k, respectively:

(SMONLPΩ) min
x

(Eω[f1(x, σ(x, ω), ω)], . . . , Eω[fq(x, σ(x, ω), ω)]),

s.t. x ∈ X,

and
(SMONLPΩ)k min

x
(Ek

ω[f1(x, σ(x, ω), ω)], . . . , Ek
ω[fq(x, σ(x, ω), ω)]),

s.t. x ∈ X.

The following theorem is a KKT characterization of weak Pareto optimality for multiob-
jective problems due to Minami [39] and Li [40].

Theorem 6.2 Consider the problem

min
x

(f1(x), . . . , fq(x)),

s.t. gj(x) ≤ 0, j = 1, . . . , p,

where, for each i = 1, . . . , q, fi is locally Lipschitz continuous, and where for each j =
1, . . . , p, gj ∈ C1. Let the MFCQ constraint qualification [Assumption (B4)] hold for
all feasible solutions. Then, x∗ is a weakly Pareto optimal solution if there exist real
numbers λi ≥ 0 for all i, with λi > 0 for at least one i, and a vector µ ∈ R

p with
0p ≥ g(x∗) ⊥ µ ≥ 0p, such that

0n ∈

q
∑

i=1

λi∂fi(x
∗) +

p
∑

j=1

µj∇gj(x
∗).

A solution which fulfills these conditions is called a weakly Pareto-stationary solution.
Next, we establish the stability of weakly Pareto-stationary solutions.
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Theorem 6.3 (Stability of Weakly Pareto-Stationary Solutions to (SMONLPΩ)) Let As-
sumptions (A), (B), (C2) hold, suppose that the sequence {Pk} of probability measures
weakly converges to P , and that, for each k, (xk, yk(·)) is a weakly Pareto stationary so-
lution to (SMONLPΩ)k. Then, each limit point (there is at least one) of the sequence
{(xk, yk(·))} is a weakly Pareto stationary solution to (SMONLPΩ).

Proof. Consider a weakly Pareto-stationary solution x∗ to (SMONLPΩ). By Theorem
6.2, there exist real numbers λi ≥ 0 for all i, with λi > 0 for at least one i, such that the
conditions in Theorem 6.2 hold. Fix this value of λ, and consider a sequence {(xk, yk(·))}
which is Clarke stationary to (S)k, that is,

0n ∈ ∂

(

q
∑

i=1

λifi

)

(xk) +

p
∑

i=1

µi∇gi(x
k).

By the properties of the generalized gradient [30, Section 2.3, Corollary 2], we have that

∂

(

q
∑

i=1

λifi

)

(xk) ⊂

q
∑

i=1

λi∂fi(x
k),

for any scalars λi, i = 1, . . . , q, so (xk, yk(·)) is also a weakly Pareto stationary solution
to (SMONLPΩ)k. Now, apply Theorem 3.2 to the single-objective problem (S)k with the
objective function f replaced by

f(x, y(ω)) :=

q
∑

i=1

λifi(x, y(ω),

to get the result.

7 Summary, Conclusions and Future Research

Our first and main contribution in this paper is that we established that the SMPEC model
is robust under the assumptions that the solution to the lower-level equilibrium problem
is unique and that we have sufficient regularity conditions on the objective function and
constraints. We showed that global optima as well as stationary solutions are stable
with respect to changes in the probability distribution. If the SMPEC framework is
used to model the problem of finding a design which should be good on average for
various scenarios, then the optimal solution to SMPEC gives a design which is stable to
changing conditions. The result on the robustness also gives credibility to using stochastic
programming in general, since one of the criticisms on stochastic programming is that the
probability distribution is often unknown or only partially known.

Our second contribution is that we have formulated, and established the robustness
of solutions to, two natural extensions of the SMPEC model: first, a model where the
objective is the CVaR risk measure; second, a multiobjective SMPEC model.

We also presented a discretization scheme sample average approximation (SAA), which
is convergent and can be used to solve the SMPEC model. The result on the convergence
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of the SAA scheme is not new, but was included to demonstrate that the results on
robustness can be combined with a method for numerically solving the SMPEC model.

The accompanying paper [6] numerically analyzes applications of the SMPEC formal-
ism to the design of traffic networks and optimal treatment plans in intensity-modulated
radiation therapy (IMRT).
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[21] Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth approach to optimization problems
with equilibrium constraints, Nonconvex Optimization and its Applications, vol. 28.
Kluwer Academic Publishers, Dordrecht (1998)

[22] Bendsøe, M.P., Sigmund, O.: Topology Optimization. Springer-Verlag, Berlin (2003)

[23] Stackelberg, H.V.: The Theory of Market Economy. Oxford University Press, Oxford
(1952)

[24] Nash, J.F.: Non-cooperative games. Ann. of Math. 54(2), 286–295 (1951)

[25] Evgrafov, A., Patriksson, M.: On the existence of solutions to stochastic mathemat-
ical programs with equilibrium constraints. J. Optim. Theory Appl. 121(1), 65–76
(2004)

[26] Lin, G.H., Chen, X., Fukushima, M.: Solving stochastic mathematical programs with
equilibrium constraints via approximation and smoothing implicit programming with
penalization. Math. Program. 116(1–2, Ser. B), 343–368 (2009)

18



[27] Patriksson, M.: On the applicability and solution of bilevel optimization models
in transportation science: A study on the existence, stability and computation of
optimal solutions to stochastic mathematical programs with equilibrium constraints.
Transp. Res. 42B(10), 843–860 (2008)

[28] Patriksson, M.: Robust bi-level optimization models in transportation science. Phi-
los. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366(1872), 1989–2004 (2008)

[29] Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5(1),
43–62 (1980)

[30] Clarke, F.H.: Optimization and Nonsmooth Analysis. Canadian Mathematical Soci-
ety Series of Monographs and Advanced Texts. John Wiley & Sons Inc., New York
(1983)

[31] Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. CMS
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