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ABSTRACT

Measurement of co-seismic strong-motion displacements at
sub-second temporal resolution is of great importance for
earthquake studies. We have investigated the usage of high-
rate sampled Global Navigation Satellite System (GNSS)
data to measure seismic motion by implementing an indus-
trial robot simulating the displacements close to an earth-
quake epicenter. The robot arm is tracked by GNSS sig-
nals. Two baselines—400 m and 60 km—from the robot
to reference stations are used to process the observed GPS
data. Both methods give similar (within 0.5 mm) Root Mean
Square (RMS) differences between the estimated and the
commanded coordinates. The RMS differences are 3.5 mm
in the east component, 5.6 mm in the north component, and
8.1 mm in the vertical component.

Index Terms— Seismic strong motion, GNSS, GPS

1. INTRODUCTION

Seismic strong motion is the surface displacements that oc-
curs in the vicinity of earthquake epicenters. The detection
of the near-field deformation is important for determining pa-
rameters of the seismic source and for providing engineers
with information in order to improve earthquake resistance
for buildings and other structures. Usually strong-motion ob-
servations in seismology are based on accelerometers, and
displacements can be derived from double time-integrated ac-
celerograms [1]. Glitches in the sensor (mostly due to the
rotation of the instrument out of the set orientation, leading
to cross-talk between the channels), however may occur dur-
ing the most intense period of the shaking. As the result,
the derived displacements deviate from the truth. Due to the
fact that the antenna position would be much less suscepti-
ble to rotation components in the shaking (except for rota-
tions around a horizontal axis if the antenna is on a tower),
and displacements are dominated by low-frequency signals,
they can be observed at a few Hz by GNSS observations.
If the installation of the GNSS antenna is sufficiently stable,

displacements of earthquakes can be recorded and estimated
with rather small uncertainty and without losing time reso-
lution. The use of 1-Hz GPS data to estimate the seismic
displacement has been successfully demonstrated in several
studies [2], [3]. They found that the vertical component was
too noisy for a significant reduction of variance when syn-
thetic waveforms were fitted to and subtracted from the sig-
nal. Therefore, it is interesting to investigate the usage of
high-rate sampled GNSS data.
In this study, a GNSS receiver with a high-rate sampling

of 20 Hz was used with an industrial robot which was installed
to simulate displacements of an earthquake (see Figure 1).
The recording from the Michoacan, earthquake in Mexico,
was chosen as the reference data. The earthquake happened
at 13:18 UTC, September 19th, 1985, N17.910 W101.909.
The accelerometer data in 3-components (east, north, and
vertical) at 200 smp/s was provided by the COSMOS Vir-
tual Data Centre [4] Caleta de Campos, Mexico, N18.073,
W102.55 at 15 km distance from the epicenter. The Moment
Magnitude (Mw) was 8.0 (USGS National Earthquake Infor-
mation Center [5]). We describe the GPS data acquisition and
analysis in Sections 2 and 3, respectively. In Section 4, we
present the results followed by the conclusions in Section 5.

2. GPS DATA ACQUISITION

Currently there are more than 30 GPS satellites orbiting the
earth at an altitude close to 20,200 km. All GPS satellites are
distributed evenly into 6 nearly circular orbital planes with
an inclination angle of 55o and with a 12 h orbital period.
GPS signals are transmitted at two frequencies, L1 at 1575.42
MHz and L2 at 1227.60 MHz. The timing of radio signals
propagating between the satellites and the ground-based GPS
receivers is the fundamental observable. With carrier phase
observations, high-accuracy positioning can be obtained [6].
The antenna in this study has the capability to receive both
the GPS carrier frequencies (L1 and L2), and the frequen-
cies from the GLObalnaja NAvigatsionnaja Sputnikovaja Sis-
tema (GLONASS). A choke ring assembly was equipped to
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Fig. 1. The installation of a GPS antenna mounted on an in-
dustrial robot simulating the displacement of the earthquake.

the antenna to reduce multipath effects [7]. The robot was
programmed to move along a trajectory specified by 254 po-
sitions. To be easier to design the movement of the robot,
we have subtracted out a ramp. In reality there is a large off-
set between the beginning and the end of the series where
the quiet end is parallel to the time axis. The movement was
divided into 0.2 s long intervals, of which the robot moved
to the next position during 0.1 s and rested for the remain-
ing 0.1 s. After completing the whole trajectory (51 s), the
robot was static for 309 s before performing a new 6 minute
cycle, resulting in 10 cycles per hour. To be able to acquire
sufficient number of data points, to track the movement of
the robot, the sampling rate of the GPS receiver was set to
20 Hz. Data with the same sampling rate from two other sites
in the International GNSS Service (IGS) network [8] were
used as reference. One is the ONSA station which is approxi-
mately at a 400 m distance from the robot antenna. The other
station, SPT0 is about 60 km away. Thus a short baseline
(robot-ONSA) and a long baseline (robot-SPT0) are available
for signal processing. In total, 30 cycles (3 h of observations
starting at 12:00 local time, March 11th, 2009) were carried
out.

3. GPS DATA ANALYSIS

The acquired data were processed using an in-house Matlab-
based GNSS software package to estimate the state variables,
namely the east, north, and vertical displacements of the an-
tenna. The main approach is parameter elimination where
”single differences” of the carrier phase measurements are
used as observables, and modeled as:

φ = R− I+ Z+ λN+ cτs − cτr + ε (1)

where R is the true range between a receiver and a satellite,
I is the ionospheric delay, Z is the delay from the neutral at-
mosphere, N is the ambiguity that is an unknown number of
complete cycles between the satellite and the receiver, τs and
τr are the satellite and the receiver clock term respectively,
and ε is the observation noise. A single difference of the car-
rier phase measurement between two receivers observing the
same satellite can be formed as

�φ = �R−�I+ �Z+ λ�N+ c�τr + �ε (2)

We note that the single difference is free from the satellite
clock error (τs). In addition, the single difference of the car-
rier phase measurements (L1 or L2) has lower noise than the
corresponding combined observations (L3), but with iono-
spheric irregularity residing in the phase difference. In this
work, we mainly chose L1 observations as the fundamental
measurements due to relatively great influence on L2 from
reflections of the mechanical structure.

3.1. Short baseline

Because of the short baseline (400 m), the ionospheric influ-
ence on the signal from a satellite is nearly identical, and can
be effectively eliminated by the single difference technique.
The differential neutral atmospheric delay can also be ignored
for the horizontal part. However, a compensation for the ver-
tical part has to be made due to the altitude difference between
the antennas. Using satellite data from broadcast ephemerides
the doppler shift can be calculated. In addition, a correction
was made for the two receiver antennas differences in phase
pattern using the IGS models [9]. A reliable ambiguity fixing
can be made after elimination of the main systematic effects,
i.e. the atmosphere and the satellite orbit errors. Finally, the
ambiguity fixed data were put into a discrete Kalman filter-
ing algorithm for the estimation of the coordinates. The es-
timates were smoothed backwards in time using the Rauch-
Tung-Striebel algorithm [10].

3.2. Long baseline

Unlike the short baseline, the atmospheric delays will be sig-
nificantly different between two stations separated by 60 km.
Instead of eliminating those delays, we can actually estimate
the linear trend of the combination of all uncertainties for each
satellite, i.e. ionosphere, neutral atmosphere, tide effects and
ambiguity. For each epoch (0.05 s) we processed the GPS
data with two additional parameters (the linear trend and the
variance of the trend) of the combined uncertainties for each
satellite. We run a solution forward in time, and one solu-
tion backwards in time, independent of each other, and then
combine the results [11].
The elevation-dependent unmodelled error, i.e. multipath

reflection [12], due to the surrounding environment of the
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Fig. 2. Results derived from the long baseline processing. (a)
The commanded robot coordinates, (b) the mean deviations,
and (c) the mean RMS differences between the estimated and
the commanded coordinates based on 30 cycles.

GPS antennas is one significant error source. It can be mit-
igated by attaching anti-reflection material to the GPS an-
tenna [13] or by setting a higher elevation cutoff angle for the
data analysis. In this work, data below 15o were eliminated.
For higher elevation cutoff angles it might be good to include
more measurements in the data analysis. To investigate the
influence of the number of measurements on the results, in
addition to using only L1 measurements in the data analy-
sis we also use both L1 and L2 measurements as independent
measurements (but give the L2 measurements slightly smaller
weights because of their higher noise). We also use both GPS
and GLONASS data.

4. RESULTS AND DISCUSSION

Figure 2 shows the results in the estimated coordinates ob-
tained from the GPS data derived from the long baseline pro-
cessing (the short baseline processing gives almost identical
patterns and results). As shown in Figure 2, the estimated
values from the GPS data are highly correlated to the com-

Fig. 3. Mean RMS differences in estimated coordinates and
commanded robot positions for each scan. The results are
derived from (a) the short baseline processing and (b) the long
baseline processing.

manded robot positions for all three components (east, north,
and vertical). In Figure 2b, we note that the estimated hor-
izontal components have smaller deviations than the vertical
part. The Root Mean Square (RMS) differences between the
estimated and the commanded coordinates are shown in Fig-
ure 2c. The short baseline processing gives similar (RMS dif-
ferences within 0.5 mm) results. The RMS differences are
3.5 mm in the east component, 5.6 mm in the north compo-
nent, and 8.1 mm in the vertical component. We also investi-
gated the stability of the data processing by studying the RMS
differences for each scan between the estimated and the com-
manded coordinates (see Figure 3). As shown in Figure 3,
RMS differences in the east component (for both baselines)
behave more stable than the other two components where the
vertical part has the highest variability.
In Figure 4, mean RMS differences and variabilities for

the RMS values caused by different inputs to the data analysis
are illustrated. Using both GPS L1 and L2 reduced the RMS
differences by approximately 4% for the horizontal compo-
nents, and 2% for the vertical components. These percent-
ages of improvement became 8% and 4% when including the
GLONASS L1 data in the analysis. The use of the GLONASS
L2 data did not have any influence. However, these results
are based on the fact that a significant part of the GPS L2 and
GLONASS observations were missing due to receiver prob-
lems. When sampling with 20 Hz, the receiver was too busy
to write all data in its internal memory, and stream data to a
PC at the same time. Hence, further studies using more ob-
servations are recommended.
It should be mentioned here that due to the mechanical in-

stability in the mount of the robot, the movement of the robot
probably would not follow the commended positions exactly.
Then the current RMS differences might not reflect the true
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Fig. 4. The mean RMS differences obtained by only using
GPS L1 measurements (squares), GPS L1 and L2 measure-
ments (circles), GPS L1 and L2 plus GLONASS L1 measure-
ments (diamonds), and GPS L1, L2 plus GLONASS L1, L2
measurements (stars). The results are derived from the long
baseline processing and 30 cycles. Errorbars denote the stan-
dard deviation around the average.

deviations of GNSS estimates, and some contribution is ex-
pected from the robot positions. Independent data from ad-
ditional position sensors and motion detectors such as a laser
tracker or an Inertial Measurement Unit (IMU) can be used
to track the 3D coordinates of the robot movement with high
accuracy (less than tenths of a millimeter). We have included
the IMU in our newest measurement, and the data process-
ing is ongoing. Eventually, by implementing the calibrated
robot positions from the sensor measurement, the errors in
the GNSS estimates can be correctly identified.

5. CONCLUSIONS

We have shown that GNSS data can monitor rapid motion
over time scales of seconds with a repeatability at the mil-
limeter level. We also have shown that atmospheric delays
affecting the GPS data can be absorbed either by the single
difference technique (short baseline processing), or were es-
timated with other irregularities, i.e. ambiguities and tide ef-
fects together (long baseline processing). Therefore, accurate
modeling of individual errors in the GPS observations is not
necessary. Both baselines give smaller RMS differences from
the commanded robot positions for the estimated horizontal
components. The larger differences obtained in the vertical
component are due to the geometry. Using more measure-
ments (GPS L1, L2, and GLONASS L1) may improve the
results slightly. However, the current results need to be fur-
ther investigated by implementing extra sensors to monitor
the movement of the robot, in order to determine its contribu-
tion to the observed deviations.
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