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Abstract 
 
In this paper we present a systematic approach for taking into account the resulting CO2 
emissions reductions from investments in process integration measures in industry when 
optimizing those investments under economic uncertainty. The fact that many of the 
uncertainties affecting investment decisions are related to future CO2 emissions targets 
and policies implies that a method for optimizing not only economic criteria, but also 
greenhouse gas reductions, will provide better information to base the decisions on, and 
possibly also result in a more robust solution. In the proposed approach we apply a 
model for optimization of decisions on energy efficiency investments under uncertainty 
and regard the decision problem as a multiobjective programming problem. The method 
is applied to a case of energy efficiency investments at a chemical pulp mill. The case 
study is used to illustrate that the proposed method provides a good framework for 
decision-making about energy efficiency measures when considerations regarding 
greenhouse gas reductions influence the decisions. We show that by setting up the 
problem as a multiobjective programming model and at the same time incorporating 
uncertainties, the trade-off between economic and environmental criteria is clearly 
illustrated. 
 
Keywords:  process integration, CO2 emissions reductions, optimization under 

uncertainty, multiobjective optimization. 
 

1. Introduction 
Investment decisions in industry are often based on a number of conflicting objectives, 
although economy is usually the main focus. The increased climate concern in society 
makes, however, the CO2 emissions associated with industrial investments a more 
important issue. For strategic investments especially, economy and emissions reductions 
depend on the future energy market. Electricity and fuel prices, marginal electricity 
production and marginal wood fuel usage, and emissions charges and taxes are all 
examples of energy market parameters that are highly uncertain, but directly influence 
the profitability and the CO2-reducing potential of the investments. 

The aim of this paper is to present a systematic approach for analysis of the trade-
off between economy and CO2 emissions when investments are optimized under 
uncertainty. A methodology for identification of robust investments in energy efficiency 
under uncertainty [1–3] is here further developed to include multiple objectives and is 
then applied in a case study. The purpose is to illustrate how the previously published 
single-objective model can be extended to include both an economic and an 
environmental objective. Many uncertainties affecting investment decisions are related 
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to future CO2 emissions targets and policies, which implies that a method for 
optimization of both economic and environmental criteria will provide better 
information for decision-makers in industry to base the decisions on.  
 Most strategies for improvement of the energy efficiency of an industrial plant will 
lead to reductions of CO2 emissions if a wide systems perspective is employed. By 
reducing the use of fossil fuels, emissions are decreased on-site. Biomass is generally 
assumed to be CO2-neutral; nevertheless, the reduction of wood fuel use will also lead 
to CO2 emissions reductions, but in this case off-site, since reduced usage enables 
substitution of fossil fuels elsewhere. Also decreased imports or increased exports of 
electricity will affect the net CO2 emissions.  

The pulp and paper industry, from which the case study of this project is taken, is 
the fourth largest industrial energy user in the world [4], which makes it important in 
the progress to mitigate climate change. Cost-effective energy savings and potential 
CO2 reductions have been identified in the pulp and paper sector in several studies [5–
7]. The cost of CO2 reduction is, however, dependent on, for example, the electricity 
prices and the marginal electricity production, which are uncertain parameters. 
Furthermore, the trade-off between cost-effectiveness and CO2 reductions is unclear. By 
applying the methodology proposed by Svensson et al. [1], the uncertainties are directly 
incorporated in the optimization, and the trade-off between CO2 reductions and 
profitability can easily be analyzed.

2. Related work 
The benefits of applying multiobjective optimization in process integration studies have 
been illustrated in a number of papers (see e.g. [8]). Multiobjective optimization has 
been used in combination with pinch analysis for the thermo-economic optimization of 
wood gasification systems [9-10] and solid oxide fuel cell systems [11], and for the 
trade-off between energy and capital costs in site-wide applications [12]. An extension 
to the traditional pinch technology to include several targets, called the Multi Objective 
Pinch Analysis (MOPA), has also been proposed [13]. 

Multiobjective optimization has also been used in other process integration studies, 
for example, in a methodology for pollution prevention where economic and 
environmental performance were optimized [14]. It has been used to find the optimal 
integrated design of a natural gas combined cycle plant with CO2 capture, minimizing 
CO2 emissions and electricity cost [15], and to find the optimal retrofit of a methanol 
process, maximizing income and minimizing depreciation [16]. There are also examples 
of process integration studies where not only two, but several conflicting criteria such as 
investment costs, fuel consumption, safety, and water recovery are taken into account 
[17]. 

There are also other applications of multiobjective optimization which are not 
concerning process integration, but well energy and industry. One example is the 
optimization of operation strategies of cogeneration systems, minimizing costs and 
emissions [18]. A number of studies applying a multiobjective approach concern the 
efficient and sustainable use of energy in industry, but are aimed at the whole industrial 
sector in a specific region [19, 20]. In addition to the mathematical programming 
methodologies using multiple objectives, there are also other methods for multi-criteria 
decision problems such as the Analytic Hierarchy Process (AHP) which, for example, 
has been used to evaluate power plant technologies with regard to seven criteria [21]. 

Heinrich et al. [22] combined multiobjective and stochastic optimization in a model 
for policy-making in the electricity supply industry under demand growth uncertainty. 
The multiobjective approach applied to a stochastic optimization problem is similar to 
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what is done in our study. The applications and the sources of uncertainty are, however, 
rather different. 

Finally, there are several recent studies that show the importance of incorporating 
uncertainties into the optimization of energy investments. Some examples are studies 
that investigate the influence of uncertainties and timing for investments in power 
generation [23, 24], or the difference between market and policy uncertainty, also with 
application to the electricity sector [25]. Other studies concern investments in integrated 
gasification and combined cycle plants within an emissions trading scheme [26], or the 
choice between investment in combined heat and power or heat-only production for an 
industrial firm [27]. The reader is referred to a previous article by the authors of this 
paper for a more detailed survey of the related work in this area [1]. 

3. Methodology 
This study has been conducted using a methodology for optimization of investments in 
energy efficiency under uncertainty [1]. The proposed methodology enables the 
optimization of investments with respect to their net present value and with respect to 
their corresponding CO2 emissions reductions. Uncertainties regarding the future energy 
market, such as uncertain energy prices or marginal electricity production, are explicitly 
incorporated in a mixed-integer linear programming (MILP) model for optimization 
under uncertainty (a stochastic programming model).  

The general assumptions, which apply to both the economic optimization and the 
emissions reductions, are that decisions are made ‘here-and-now’, before uncertainties 
are resolved and any price changes or energy market changes occur. Uncertain 
parameters, such as energy prices and policies, and CO2 emissions from marginal use of 
biomass or electricity, are modelled using a scenario-based approach. For a more 
detailed description of the optimization model for the single-objective case, including 
all constraints, see [3]. For literature on multiobjective optimization in engineering 
problems, see e.g. [28, 29].  

The economic objective is to find the combination of investments resulting in the 
highest expected net present value (NPV). The objective is thus: 
 

, (1) 

 
where 
 
S = set of all scenarios s, 
ps = probability for scenario s to occur, 
ωs = uncertain price parameters for scenario s, 
Ω = solution space, i.e. the set of all feasible solutions x, 
x = (x0, xs) = all decision variables, representing e.g. investment and operating 
decisions, 
x0 = decision variables associated with the initial investment (not dependent on s), 
xs = decision variables corresponding to scenario s, 
C0 (x0) = initial investment cost function, 
Ct (x0, xs, ωs) = function for the net cash flow (revenues minus costs) in year t, 
T = economic lifetime of investments, 
rC = discount rate used for cash flows. 
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The initial investment, C0, is required to be the same for all scenarios since the first 
investment decision is taken before the outcome of the uncertain parameters is known. 
The net cash flow of the final year, CT, is adjusted for the value remaining after the 
economic lifetime (the residual value).  

The CO2 objective is to maximize the expected net CO2 emissions reductions. 
Using the same notation as for the economic objective, the CO2 objective is expressed 
by: 
 

, (2) 

 
where 
 
πs = uncertain CO2 emissions parameters for scenario s, 
Et (x0, xs, πs) = function for the net CO2 emissions reductions in year t, 
rE = discount rate used for CO2 emissions. 
 
Discounting of CO2 emissions is not conventional; neither is it necessary in traditional 
CO2 emissions calculations. Here, however, the multiobjective problem formulation, in 
combination with the assumption that investments can be made at different points in 
time, makes some kind of discounting essential. Because discounting of emissions is 
unconventional, both discounting and no discounting are possible model settings 
through the choice of the rE value. Tests have shown, however, that by choosing no 
discounting (rE = 0), the optimization will give meaningless results. To understand this, 
consider first that cash flows are always discounted. With no discounting for emissions, 
a cheap way of improving the CO2 emissions objective is to make the investments in 
CO2 reductions as late as possible. The cost will then be low in present value, but the 
reductions are valued the same as if they were made today. This would imply that it is 
always better to postpone the investments in CO2 reductions – that it is better to earn 
money now, and save the climate later. This has, unfortunately, been the philosophy of 
industry, and is exactly the reason we have landed up in the difficult situation of global 
warming. These kinds of results, where emission abatements are constantly postponed, 
are not our intention, nor is it what is asked for by those decision-makers in industry 
who are willing to use this kind of sophisticated methodology. 

The recommendation is therefore to apply emissions discounting. Such a choice is 
in agreement with the political intention that calls for emissions reductions already 
today. If reductions are achieved today, the accumulated reduction of CO2 in the 
atmosphere will be substantially larger in the future than if the emissions reductions are 
achieved 30 years from now. By choosing the same value for the emissions discount 
rate as for the cash flow discount rate, the time preference discussed above will be 
cancelled out. More specifically, for a given emission-reduction investment project, the 
cost per kg of CO2 avoided during the project lifetime will be the same – in present 
value – independently of when the investment project is initiated. Present value here 
refers to the value of the project discounted to today’s units, as opposed to the value of 
the project at the time the project is initiated. 

The optimization model enables the use of two different methods to solve the 
multiobjective optimization problem, the weighted-sum approach and the ε-constraint 
method. In this study, we have used the ε-constraint method, since our objective 
functions are incommensurable and of different magnitudes, which makes it difficult to 
determine the weights of the weighted-sum approach to obtain an even spread of 
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solutions on the Pareto front. Furthermore, for non-convex function sets, as for 
example, for mixed-integer models as the one in this study, it is not always possible to 
find all solutions in the Pareto-optimal set using the weighted-sum approach [30]. 

4. The case study 
The optimization model consists of a model of the pulp mill and an energy market 
scenario model.  

The studied mill is a computer model of a typical Scandinavian chemical market 
pulp mill [31]. In energy-efficient mills of this kind, the by-products from the wood raw 
material are used as fuel and this is enough to cover the steam demand of the process. 
Hence, increased energy efficiency at the mill will not affect the on-site emissions of 
CO2. It will, however, give an opportunity to export energy in the form of wood fuel, 
electricity, or heat, which then will lead to decreased emissions off-site. For input data 
and assumptions regarding the mill and the opportunities for energy efficiency, the 
reader is referred primarily to the previous paper by Svensson et al. [2].  

The studied mill is assumed to be faced with a planned production increase [32]. 
The production increase will lead to an increase of black liquor flow to the recovery 
boiler, which is, in many cases, one of the bottlenecks in the process. The traditional 
approach to increase the production in such cases is therefore to upgrade the recovery 
boiler. Such an investment is substantial, but renders the possibility of also increasing 
the electricity production at the mill. An alternative approach, to avoid upgrading the 
recovery boiler, is to extract lignin from the black liquor before it enters the recovery 
boiler [32]. The lignin can then be exported for use as a wood fuel, and the load on the 
recovery boiler is decreased. One consequence of that is, however, that the steam 
production cannot be increased to cover the increased steam demand of the process. 
Thus, for lignin extraction to remain an interesting option, substantial steam savings are 
needed.  

In addition to the steam savings carried out in order to avoid a recovery boiler 
upgrade, even further steam savings can be made. This will render an energy surplus at 
the mill. A number of different options for steam savings can be identified by using 
process integration techniques and methods such as pinch analysis [33, 34]. In addition, 
the amount of available excess heat can be determined. Axelsson et al. [35] has 
identified the potential for energy savings at the studied mill. An obtained steam surplus 
enables either a further increase of the lignin extraction or an increase of the electricity 
production. 

There is also potential to use low-pressure steam or excess heat of lower quality, 
such as hot water, for district heating deliveries. The potential naturally depends on 
whether there is a district heating system near the mill and what the alternative heat 
production is in that system. We assume here the presence of a small district heating 
system nearby since Jönsson et al. [36] showed a larger potential for profitable excess 
heat cooperation between mills and energy companies in small district heating systems 
(see [37] for data on and a description of that system). 

The scenario model is constructed on the basis of five scenario blocks which are 
described below.  
 

1A A ‘business as usual’ evolution of society (before 2015). Nordic market 
marginal price setting. Data from Sweden, the first quarter of 2006. 

1B A ‘business as usual’ evolution of society (after 2015). Replaces block 1A after 
year 2015. European market marginal price setting. No increase in CO2 
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emissions charges such as the price of CO2 emission permits – corresponding 
to a decrease of the CO2 emissions cap – or a CO2 tax. 

2A A ‘moderate change’ evolution of society (before 2020). The CO2 emissions 
charge is increased compared to block 1A/B. The green power certificates are 
assumed to drop in price because of the higher CO2 charge, which also 
promotes green electricity production. CO2 capture and storage (CCS) is 
assumed not to be available for marginal electricity production. 

2B A ‘moderate change’ evolution of society (after 2020). Replaces block 2A after 
year 2020. CCS is assumed to be available for marginal electricity production. 

3 A ‘sustainable’ evolution of society. The CO2 emissions charge is further 
increased compared to blocks 2A/B. The green power certificates are, 
consequently, further reduced in price. 

 
The parameter sets are generated using a tool for creating energy market scenarios [38]. 
The lignin price and district heating price are calculated based on the output from the 
scenario-generating tool [2]. The resulting data for the scenario building blocks are 
presented in Table 1. 

 
Table 1: Parameter sets for the five scenario building blocks. 
 Scenario block 
Energy market parameters 1A 1B 2A 2B 3 
Electricity price [€/MWhelec.] 38.6 57.3 63.0 60.8 61.9 
Green electricity certificates [€/MWhelec.] 21.7 16.0 10.6 10.6 5.3 
Lignin price [€/MWhfuel] 19.5 22.9 26.9 26.9 31.0 
District heating price [€/MWhheat]  21.3 25.3 29.5 29.5 33.7 
CO2 emissions from marginal use of electricity [kg/MWhelec.] 723a 723a 723a 136b 136b 
CO2 emissions from marginal use of wood fuel [kg/MWhfuel] 329c 329c 329c 329c 329c 
a Operating margin: Coal-fired steam turbine plants. 
b Build margin: Coal power plants with CO2 capture and storage (CCS). 
c Marginal use of wood fuel: Co-fired in CFB (Continuous Fluidized Bed) plants. 
 
In the above scenario blocks, the build margin for electricity production is always coal-
fired power plants, either with or without CCS (CO2 Capture and Storage). The reason 
why natural gas combined cycles (NGCC) is not included here is that all of the building 
blocks are generated on the basis of an assumption of high oil prices, and hence also 
high natural gas prices. Under such conditions, coal with CCS will be more cost-
effective than NGCC for producing electricity. It should also be noticed that we only 
include building blocks where the marginal use of wood fuel is co-firing in CFB 
(Continuous Fluidized Bed) plants. To obtain a scenario block with a different marginal 
wood fuel user, green transportation certificates have to be introduced. 

The assumptions for oil prices and green transportation certificates might, of 
course, be discussed. However, the purpose here is to illustrate how a methodology 
combining stochastic and multiobjective optimization can be used as a decision-making 
tool for investment planning of energy efficiency investment. We therefore chose here 
not to include developments with low oil prices or developments with green 
transportation certificates and the uncertainties that are studied are thus only related to 
the future CO2 emissions charges. It is, however, important to realize that the 
assumptions on marginal electricity production and marginal wood fuel use will have 
significant impact on the results. 

We will assume a strategic view on investments, since that is the case for which 
uncertainties have the strongest influence on the results [2]. This is achieved by 
choosing a relatively low discount rate, rC = 9% (rE = rC, according to the discussion in 
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Section 3) and a rather long economic lifetime, T = 30 years. This corresponds to an 
annuity factor of 0.1 year-1, identified as reasonable for strategic decisions within the 
industrial cooperation research programme FRAM [31]. The economic lifetime and 
discount rate can and should be varied in a sensitivity analysis to see the results of 
different investment plan perspectives (see [2]). Here, this kind of analysis has been 
omitted to keep focus on the multiobjective, stochastic optimization methodology. 

The five building blocks, 1A/B, 2A/B, and 3, are thus combined into five different 
development paths or scenarios that range over 30 years (see Figure 1). The paths, 
which were first suggested by Ådahl and Harvey [39], describe different developments 
regarding the attention to climate issues for the future. 

Figure 1: Development paths for energy market parameters. 

5. Results and discussion 
To illustrate the influence of making different assumptions regarding the probabilities 
for the scenarios, three different probability distributions are used (see Table 2). They 
represent different views on the future development of the energy market. It has 
previously been shown that the probability distribution can be varied quite substantially 
in this case without altering the economic optimum solution [2, 3]. Hence, no detailed 
analysis of the impact of varying the probability distribution is provided here. 
 
Table 2: The three probability distributions used here. 
 A B C 
BAU 0.30 0.20 0.10 
M1 0.25 0.20 0.15 
M2 0.20 0.20 0.20 
S1 0.15 0.20 0.25 
S2 0.10 0.20 0.30 
 
All three probability distributions result in the same optimal solution when only the 
NPV is maximized. This solution is characterized by lignin being extracted by exactly 
the amount necessary to avoid upgrading the recovery boiler. The remaining steam 
surplus is used for increased electricity production. Lower temperature excess heat is 
used for district heating. 
 

2015      2020     2025     2030     2035    2040    Time 

Development 
path M1 

Development 
path S2 

Development 
path M2 

Development 
path BAU 

Development 
path S1 

A moderate climate concern in the distant 
future. 

A development towards sustainability in the 
near future. 

A moderate climate concern in the near 
future. 

A ’business as usual’ development, with 
minor attention to climate issues. 

A development towards sustainability in the 
distant future. 

1B 1A 

1B 1A 2B 

2B 1A 3 

2B 

2A 3 

2A 

2A 
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The trade-off between economic and environmental criteria is visualized in a Pareto 
graph (see Figure 2). This graph makes it clear how an increase of the CO2 emissions 
reduction will affect the NPV. The Pareto graph shows the same kind of characteristics 
for cases ‘A’, ‘B’, and ‘C’. As expected, an improvement of the CO2 objective can be 
achieved at a lower loss in NPV at a lower CO2 decrease level, since the most cost-
effective CO2-reducing measures are carried out first. Two extreme cases – one with 
probability one for BAU and zero for the rest, and one with probability one for S2 and 
zero for the rest – are also included in the graph for comparison. 

 
Figure 2: Pareto graph illustrating the trade-off between economic and environmental criteria (NPV and 
discounted CO2 emissions) for two probability distributions. Because of the binary variables in the model, 
the Pareto curve between the computed points is not guaranteed to be continuous. Since the curve 
characteristics are unknown, only the computed points are indicated. 
 
Figure 2 also illustrates a difference between the probability distributions. For 
distribution ‘C’, which represents higher probabilities for the sustainability scenarios, it 
is possible to achieve a higher NPV compared to ‘A’ and ‘B’ for the same CO2 emission 
reduction. This is an expected consequence of the higher energy prices in the 
sustainable development paths.  

The difference between ‘A’, ‘B’, and ‘C’ is, however, also explained by the system 
consequences of energy efficiency improvements in the three cases. Consider, for 
example, the difference in marginal electricity production for the different scenario 
building blocks presented in Table 1. Electricity generated at the mill will, in the case of 
blocks 1A/B and 2A, substitute electricity produced at a coal power plant, yielding 
substantial reductions in CO2 emissions. For blocks 2B and 3, on the other hand, the 
electricity will substitute electricity produced at a coal power plant with CCS, yielding 
less than 20% of the reduction compared to the case with no CCS. 

Thus, there is a need of comparing the CO2 emissions to some kind of target value, 
since the maximum achievable reduction might vary between scenarios even when the 
same energy efficiency measures are taken. According to Eq. (2), the CO2 target is here 
defined as the maximum achievable emissions reductions independently of the cost-
effectiveness of the measures. Hence, measures that are not considered to be of interest 
to include in the model, for example, because of a too high investment cost will, 
however, not be included in the target calculation either. The same measures are of 
course available for all scenarios, and thus the comparison between different scenarios 
should still be valid. 
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One way of illustrating the level of reductions compared to the target is shown in 
Figure 3 and we call this a target graph. It should be especially useful to illustrate the 
results in a target graph if the CO2 targets are very different between the scenarios or if 
the probability distributions do not yield the same economic optimum. Here, the target 
levels are very similar or even exactly the same for some paths. Paths M2, S1, and S2 
have the same target level, which is entirely due to the marginal electricity production 
and the marginal wood fuel use being the same for these paths at each point in time. 
Also paths BAU and M1 have a similar target level compared to the other paths, which 
is explained by the target solution being, for all paths, as will be shown below, 
characterized by high lignin extraction rates. The CO2 emissions associated with lignin 
extraction are equal for all scenario blocks.  

 
Figure 3: A target graph. 
 
The target graph shows that the economically optimal solution for probability 
distributions ‘A’–‘C’ corresponds to a CO2 emissions reduction that is close to the 
target. This implies a robustness of the economic solution, since uncertainties in this 
case primarily are related to uncertainties in the CO2 emissions charges. If the economic 
optimum was dominated by electricity production, the difference between the target and 
the economic optimum would be more significant. One such solution that is dominated 
by electricity production is the (deterministic) one that maximizes the NPV in the BAU 
scenario. The resulting CO2 emissions reduction in that case is also included in Figure 3 
for an illustrative comparison. 

The investments characterizing the different solutions are shown in Figure 4. With 
an increased demand for CO2 emissions reductions, one of the first distinct changes is 
that investments in electricity production are increased. In fact, this corresponds to an 
increased investment in steam savings to be used for electricity production in the 
condensing turbine. Eventually, the investments will then shift away from electricity 
production towards higher lignin extraction capacity. 

Where Figure 4 shows no distinct changes in initial investments, the increase in 
CO2 emissions reductions are achieved through either a changed allocation of 
investments within the categories or through investments made at a later stage. The 
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detailed investment plan (not only Figure 4) reveals that increased CO2 emissions 
reductions are in fact achieved through a combination of later investments in lignin 
extraction and a shift in the supply of district heating. Later investments are primarily 
carried out in scenarios when faced with a change to building block 3. These 
investments are mainly made to increase the lignin extraction capacity, but also involve 
changes connected to district heating. These investments are not cost-effective in the 
other scenario building blocks. 

 
Figure 4: Changes in initial investment (excluding the investments in steam savings) as a function of 
increasing requirements on the CO2 emissions reductions. Alternatives ‘A’, ‘B’, and ‘C’ refer to the 
probability distributions in Table 2. 
 
The CO2 objective is, according to Eq. (2), the expected value of the discounted CO2 
emissions over all future scenarios. Thus, improvement of the objective may be 
achieved by increasing the CO2 emissions reduction for one scenario only, keeping the 
emissions for the other scenarios constant. To ensure that improvements are made for 
all scenarios, the optimization problem can, using the ε-constraint method, be 
reformulated with one CO2 objective for each path. The number of solutions required to 
obtain a fairly dense representation of the Pareto front increases, however, exponentially 
with the number of objectives. Moreover, with more than two objectives, there is no 
simple way of presenting the Pareto-optimal solutions graphically, but there exists 
interactive tools for browsing the Pareto front (see for example [40]).  

6. Conclusions 
In this paper, we present a multiobjective approach for the optimization of investments 
in energy efficiency under energy market uncertainty. The proposed approach is based 
on a previously presented methodology for optimizing such investments under 
uncertainty with respect only to an economic objective [1]. We show that the 
multiobjective approach will increase the knowledge of the trade-off between economic 
and environmental considerations in the decision-making regarding such investments. 
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Uncertainties can be incorporated in the optimization model also in the multiobjective 
model formulation. 

The multiobjective approach enables the use of Pareto graphs for illustrating the 
trade-off between the economic and the CO2 objective. A Pareto graph clearly illustrates 
the relationship between the two criteria. 

We also propose the use of target graphs, where the CO2 emissions for one solution 
are plotted, for each scenario, together with the best possible emissions reductions for 
that scenario. This kind of graph will provide an aid in the decision-making process, 
since due to differing marginal electricity production and wood fuel use, the CO2 
emissions reductions will vary between the scenarios even when the same energy 
efficiency measures are taken. 

For the case study presented here, the target graph shows that the CO2 emissions 
reductions corresponding to an economically optimal solution for reasonable probability 
distributions is quite close to what is maximally achievable. This indicates a robustness 
of this economic optimum solution, confirming the results of previous work [2, 3]. 

Finally, the investments characterizing the Pareto-optimal solutions can be 
illustrated in graphs showing the initial investment as a function of CO2 emissions 
reductions. This kind of graph will provide basic information regarding the investments 
to roughly explain the characteristics of the Pareto graph. Details about the investment 
plans can then be achieved through a closer look at the solution data for the interesting 
solutions. 
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