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Abstract

An abstraction method for Extended Finite Automata (EFA), i.e.,
finite automata extended with variables, using Transition Projection
is presented in this work. A DES modeled by EFA is abstracted into
subsystems that embody internal interacting dependencies. Synthe-
sis and verification of subsystems are achieved through their model
abstractions rather than their global model. Sufficient conditions are
presented to guarantee that supervisors, result in maximally permis-
sive and nonblocking control. Two examples demonstrates the compu-
tational effectiveness of our approach.
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1 Introduction

Supervisory control theory (SCT), established by Ramadge and Wonham
[1, 2], is a formal framework for the modeling and control of discrete-event
systems (DES). Application domains include manufacturing systems, vehic-
ular traffic, robotics, computer, and communication networks. Problems
that SCT can address include dynamic allocation of resources, the pre-
vention of system blocking, etc. and, within these constraints, maximally
permissive system behavior. Although SCT can systematically synthesize
supervisory controllers that are able to prevent a DES from executing un-
desirable behavior, industrial acceptance is scarce. A number of issues that
hinder industrial use have been identified by various researchers [3, 4, 5].
Two main issues are the lack of a compact representation of large models
and computational complexity.

In the former case, Sköldstam et al. [6] introduce a modeling formalism,
called Extended Finite Automata (EFA), which are the ordinary automaton
extended with discrete variables, guard expressions and action functions.
The guards and action functions are attached to the transitions, which ad-
mits local design techniques of systems consisting of different parts. EFAs
have been used in several research works and successfully applied to a range
of examples such as [7, 8, 9, 10, 11]. Beside a number of methods for syn-
thesizing EFAs [12, 13, 14], the EFA framework has been implemented in
Supremica [15, 16], a verification and supervisory control tool, where pow-
erful algorithms exist for analysis of DES [12, 17, 13, 18].

Even though EFAs eased the modeling experience by providing a com-
pact modeling, SCT analysis is performed on their underlying automta mod-
els and therefore, the fundamental obstruction to the development of SCT,
i.e. the computational complexity of synthesizing maximally permissive and
nonblocking supervisors, still remains. Indeed, the nonblocking supervisory
control problem for DES is NP-hard [19, 20]. It is well known that the
exponential complexity of supervisor design arises from synchronizing sub-
systems into a global system model. Researchers are, therefore, seeking
effective control methods for various subclasses of DES that enjoy special
structure. Such structure will admit modularity [21, 22, 23, 24, 25] and
model abstraction [26, 27, 28, 29] to circumvent computing global dynamic
models.

The most effective model abstraction operator in SCT is the causal re-
porter map having the observer property [30, 27, 31, 32]. While [30] treated
hierarchical control using general causal reporter maps, Feng and Wonham
[33, 34, 35, 36], construct model abstractions only with natural observers,
i.e., natural projections [37, 38] with the observer property. In this method,
if two components share only a small number of common events, their ab-
stractions tend to be small, and either verifying the nonconflicting property
(if it holds) or designing a coordinator to achieve it may require only modest

3



effort. Natural projection is a language-theoretic operation which needs the
language of a system to be known or can be obtained by its generators, for
instance, automaton. But, this is not the case for DES modeled by EFAs
since the transitions are conditional, i.e., augmented with guards and actions
and therefore, the language of the components can both be larger than or
smaller than the language of the synchronized system. Hence, one cannot
enjoy the compositional computation of natural projections.

In this paper, we tackle this by applying the projection on the transitions
of a system modeled by EFAs rather than their underlying languages. To
this end, we substitute the natural projection with transition projection to
be able to abstract the system without knowing its language. We presents a
sufficient condition for optimal nonblocking controller with partial observa-
tion in EFA by preserving the information needed for reliable representation
of the nonblocking and controllability property.

This paper is organized as follows: Section 2 briefly describes Extended
Finite Automata that is the modeling formalism used to model our problems.
In Section 3, we introduce a model abstraction using Transition Projection,
that is the projection on transition system, followed by Sections 4 and 5
in which its properties are explained. Two practical examples has been
modeled and abstracted in Section 6. Finally, in Section 7 we conclude our
work.

2 Preliminaries

2.1 Languages and Automata

The behavior of DES [38, 37] are described in term of event sequences and
regular languages [2]. A regular language is a subset of strings that can
be recognized by a finite automaton (FA) G = (Q,Σ, 7→, Q0, Qm). Q is
the finite state set. Σ is a non-empty finite event set called alphabet. 7→⊆
Q×Σ×Q is the state transition function mapping elements of Q× Σ into
singletons of Q. The element Q0 ⊆ Q is the set of initial states and Qm ⊆ Q
is the set of marker states.

The transition relation in G is written in infix notation p
σ
7→ q. Let Σ∗ be

the set of all finite strings over Σ, including the empty string ε. Then, these
notations can be extended to strings in Σ∗ in the natural way by letting
p

ε
7→ p for all p ∈ Q and p

sσ
7→ q if p

s
7→ r and r

σ
7→ q for some r ∈ Q. Let

p
σ
7→ denotes that there exists a state q such that p

σ
7→ q. and p 7→ q denotes

there exists a string s ∈ Σ∗ such that p
s
7→ q Automaton G is deterministic

if Q0 is a singleton q0 and p
σ
7→ q and p

σ
7→ q́ always implies q = q́.

In practice, some uncontrollable events in alphabet can never, or need
not be disabled while some controllable can be inhibited by the supervisor.
Hence, the event set Σ is partitioned into two disjoint subsets, controllable
events Σc and uncontrollable events Σu, such that Σ = Σc∪̇Σu. Note that,
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by definition, the symbol ε does not belong to either of Σ,Σc, or Σu. If
it is to be included, the event sets Σε = Σ ∪ {ε},Σε,c = Σc ∪ {ε}, and
Σε,u = Σu ∪ {ε} are used instead. An important property of an automaton
is nonblocking. The automaton G is nonblocking if any state reachable from
the initial state q0 ∈ Q0 can also reach a marker state via some string, i.e.,
(∀q ∈ Q)q0 7→ q ⇒ q 7→ p for some p ∈ Qm.

Given two event sets Σ and Σℓ ⊆ Σ, the natural projection is the function
P : Σ∗ → (Σ− Σℓ)

∗ such that P (ε) = ε and

P (σ) =

{

ε, σ ∈ Σℓ

σ, σ ∈ Σ− Σℓ

P (sσ) = P (s)P (σ), s ∈ Σ∗, σ ∈ Σ

The effect of P on a string s ∈ Σ∗ is just to erase the events in s that belongs
to Σℓ, but keep the events in Σ − Σℓ unchanged. The inverse image of the
natural projection P is a function P−1 : Pwr(Σ∗) → Pwr((Σ−Σℓ)

∗) where
Pwr is the power set.

2.2 Extended Finite Automata

Finite automaton can be extended with a set of variables to an Extended
Finite Automata (EFA) whose transitions are augmented with Boolean con-
ditions and actions on these variables to enjoy a compact and symbolic
description of DES.

Let V = {v1, . . . , vn} be the set of n typed variables andDi be the domain
(type) of vi. Let η denotes a tuple of variable evaluations η : (η1, . . . , ηn) →
D that assigning to each variable vi ∈ V its current value Di. G is the set
of Boolean conditions over V in which each condition g is a propositional
logic formulæ whose propositional symbols are of the form v̄ ∈ D̄ where
v̄ = (v1, · · · , vn) is a n-tuple of pairwise distinct variables in V and D̄ is a
subset of the domains D = D1 × · · · ×Dn. Let an arithmetic expression ϕ
be formed according to the grammar

ϕ ::= ω | w | (ϕ) | ϕ+ ϕ | ϕ− ϕ | ϕ ∗ ϕ | ϕ/ϕ | ϕ%ϕ,

where w ∈ V, and ω ∈
⋃n

i=1 Di. Then g is formed according to the grammar

g ::= ϕ < ϕ | ϕ ≤ ϕ | ϕ > ϕ | ϕ ≥ ϕ | ϕ = ϕ |

(g) | g ∧ g | g ∨ g | T | F,

where T and F represent boolean logic true and false, respectively, and all
nonzero values are considered as T. Given two guards g and h, we say that
g is a subguard of h, denoted g � h, if g ∧ h = g, and we say both g and h
have the same evaluation for η, denoted g = h, if η |= g ⇔ η |= h where |= is
the satisfaction relation [39]. Let A be the set of actions where each action
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a ∈ A is an n-tuple of functions (a1, . . . , an), updating the current variables
evaluation η to the new evaluation a(η). Every action function ai : Di → Di

is formed as vi := ϕ. The symbol ξ is used to indicating that no variable is
updated; and in vector form Ξ = {ξ, . . . , ξ}. If ai = ξ, we say that ai is a
don’t care updating of the variable vi, namely, a(η(vi)) = η(vi).

Definition 1 (Extended Finite Automaton).
An extended finite automaton over a set of variables V is a 8-tuple

E = (L,D,Σ, T, L0,D0, Lm,Dm),

where

• L is a finite set of discrete locations,

• D = D1 × · · · ×Dn is the domain of variables,

• Σ is a nonempty finite set of events (alphabets),

• T ⊆ L× Σ× G ×A× L is the conditional transition relation,

• L0 ⊆ L is the set of initial locations,

• D0 = D0
1 × · · · ×D0

n is the set of variables initial value,

• Lm ⊆ L is the set of marked (desire) locations,

• Dm ⊆ D is the set of marked value of the variables.

The initial variable evaluation is denoted by a tuple η0 = (η01 , . . . , η
0
n) as-

signing each variable to its initial value η0i : vi → D0
i . The notation ℓ

σ
→g/a ℓ́

is used as shorthand for (ℓ, σ, g, a, ℓ́) ∈ T . If the condition, also called
guard, of the conditional transition ℓ

σ
→g/a ℓ́, is a tautology, e.g. g = T or

g = (v < 1) ∨ (v > 1), then we simply write ℓ
σ
→a ℓ́.

It is assumed that all actions are written as constant functions vi := a(vi)
where the new value of vi only depends on its previous value. Any transition
can be decomposed into multiple transitions of this form. For instance, the
transition ℓ

σ
→x:=y+1 ℓ́ where D(y) = {0, 1} can be decomposed into multiple

transitions ℓ
σ
→y=0/x:=1 ℓ́ and ℓ

σ
→y=1/x:=2 ℓ́.

Each EFA can be unfolded to its underlying FA whose states and tran-
sitions are defined as follows:

Definition 2 (FA Semantics of an EFA).
Let E = (L,D,Σ, T, L0,D0, Lm,Dm) be an EFA over the set of variables V.
The FA G(E) is the tuple (QE,ΣE , 7→E , Q

0
E , Q

m
E ) where

• QE = L×D,
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• 7→E⊆ Q× Σ×Q is defined by the following rule:

ℓ
σ
→g/a ℓ́ ∧ η |= g

〈ℓ, η〉
σ
7→ 〈ℓ́, a(η)〉

,

• Q0
E = L0 ×D0,

• Qm
E = Lm ×Dm.

States of G(E) are the set of reachable states of E and each state consists of
a location ℓ together with a tuple η of variable evaluations. Note that in the
definition of transition relation 7→, if the proposition above the horizontal
line holds, then the proposition under the line holds as well (also known
as Structured Operational Semantics), namely, whenever the guard g of
the conditional transition ℓ

σ
→g/a ℓ́ holds for the variables evaluation η,

i.e. η |= g, then there is a transition in G(E) from state 〈ℓ, η〉 to state
〈ℓ́, a(η)〉. Note that, the DFA generated directly from EFA by constructing
the state set as L×D is not guaranteed to be the canonical recognizer and
therefore further reduction needs to be done by using the standard algorithm
of minimization [40]. In the sequel, we assume that the DFA obtained by the
above transformation is a canonical recognizer of the language represented
by the input EFA model.

Since we are interested in the deterministic systems, we only focus on
deterministic EFAs and, for the sake of brevity, we simply write EFAs for
deterministic EFAs.

Definition 3 (Deterministic EFA).
An EFA E is deterministic if G(E) is deterministic, namely, the set of initial
states of G(E) is a singleton 〈ℓ0, η0〉, where ℓ0 ∈ L0 and η0 is initial variable
evaluation, and for all transitions 〈ℓ, η〉

σ
7→ 〈ℓ́, ή〉 and 〈ℓ, η〉

σ
7→ 〈ℓ̀, ὴ〉 always

implies 〈ℓ́, ή〉 = 〈ℓ̀, ὴ〉.

The isomorphism for two deterministic EFAs is defined as follows.

Definition 4 (Isomorphic EFAs).
Let Ek = (Lk,D,Σk, Tk, ℓ

0
k, η

0, Lm
k ,Dm

k ) be two EFAs over the set of vari-
ables Vk (k = 1, 2). E1 and E2 are isomorphic up to renaming of the locations
and variables if the following holds:

(i) Σ1 = Σ2,

(ii) There exists two bijective functions
F : L1 → L2 and V : V1 → V2 such that
(∀vi ∈ V1)η

0
2(V (vi)) = η01(vi), F (ℓ01) = ℓ02, and

ℓ1
s
→1,g/a ℓ́1 ⇔ F (ℓ1)

s
→2,V (g)/V (a)F (ℓ́1).
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Proposition 1. Let Ek be two EFAs over the set of variables Vk(k = 1, 2).
If E1 and E2 are isomorphic then G(E1) and G(E2) are isomorphic.

Proof. Let G(Ek) be the tuples (Qk,Σk, 7→k, q
0
k, Q

m
k ) for k = 1, 2. Assume

a function U : L1 × D → L2 × D such that U(〈ℓ01, η
0
1〉) = 〈ℓ02, η

0
2〉 and

〈ℓ1, η1〉
s
7→1 〈ℓ́1, ή1〉 ⇔ U(〈ℓ1, η1〉)

s
7→2 U(〈ℓ́1, ή1〉). To justify the statement,

we must show that Σ1 = Σ2 and U is a bijective function that is every state
in G(E1) consists of a location in L1 together with a variables evaluation
in D are mapped to exactly one state in G(E2) consists of a location in L2

and evaluation in D. By the hypothesis assumption since E1 and E2 are
isomorphic, we can immediately see that Σ1 = Σ2. Also, by the assumption
there exists two bijective functions F : L1 → L2 and V : V1 → V2 mapping
the locations and variables. The function V is by assumption bijective which
implies the evaluation of variables on both sides are the same up to renaming
the variables, that is η01 = η02 , η1 = η2 and ή1 = ή2. F is also bijective and
therefore, every location in L1 is paired with exactly one location in L2. We
can conclude that every state in G(E1) which consists of a location in L1

and a tuple of variable valuation η in D are mapped by U to exactly one
state in G(E2). Hence, U is a bijective function and G(E1) and G(E2) are
isomorphic up to renaming the locations and variables.

Definition 5 (Sub-EFA).
Let Ek = (Lk,D,Σ, Tk, L

0,D0,Dm
k , Lm

k ), k = 1, 2, be two EFAs over the set
of shared variables V with the same set of events,variables domain, initial
locations, and initial variables value. Then E1 is a sub-EFA of E2 written
E1 ⊆ E2, if L1 ⊆ L2, T1 ⊆ T2,D

m
1 ⊆ Dm

2 , and Lm
1 ⊆ Lm

2 .

Since the transitions in EFAs are conditional, it is not possible to de-
scribe the static behavior of the system by following its transitions before
evaluating its guards and actions. Therefore, we introduce a notion of dy-
namic execution fragment that is a series of conditional transitions ending
with a location.

Definition 6 (Finite Dynamic Execution Fragment).
Let E = (L,D,Σ, T, L0,D0, Lm,Dm) be an EFA over set of variables V. A
finite dynamic execution fragment ̺ in E is a series of transitions

̺ = ℓ0
σ1→g1/a1 ℓ1

σ2→g2/a2 · · ·
σi+1

→ gi+1/ai+1
ℓi+1, (0 6 i < n),

in T where n > 0 and the variables evaluation ηi+1 = a(ηi).

The integer n is the length of the ̺ and ̺ = ℓ0 for some ℓ0 ∈ L is a
legal finite dynamic execution fragment of length n = 0. Note that, in finite
dynamic execution fragments, we do not explicitly list the selfloops of the
empty string ε as they are trivially contained in any EFA. From now on, for
the sake of simplicity, the term dynamic execution fragment will be used to
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denote a finite dynamic execution fragment. The first and last location of ̺
is denoted by first(̺) and last(̺), respectively, str(̺) denotes σ1σ2 . . . σi+1,
and Loc(̺) denotes the set of locations ℓj (∀j ∈ n), that can be reached
by following the transitions in ̺. We call ̺ an initial dynamic execution
fragment if first(̺) ∈ L0 and η0 = η0, and a marked dynamic execution
fragment if last(̺) ∈ Lm and ηn ∈ Dm. Finally, ̺ is accepted by E if for

every transition ℓi
σi+1

→ gi+1/ai+1
ℓi+1 ∈ ̺ we have ηi |= gi+1.

Additionally, for two dynamic execution fragments ̺, ´̺ in E, ̺ is a prece-
dence of ´̺, written ̺ ⊑ ´̺, if last(̺) = first(´̺), and ̺ = ´̺ if str(̺) = str(´̺)

and for all ℓi
σi+1

→ gi+1/ai+1
ℓi+1 ∈ ̺ there exist ℓ́i

σi+1

→ ǵi+1/ái+1
ℓ́i+1 ∈ ´̺ such

that ηi |= gi+1 ⇔ ήi |= ǵi+1, and ai+1(ηi) = ái+1(ήi).
EFAs similar to ordinary automata are composed by extended full syn-

chronous composition (EFSC). By the definition of EFSC, it is assumed
that the variables are shared by all EFAs with the same initial values. In
the composition of two EFAs, a shared event is enabled if and only if it is
enabled by each of the composed EFAs.

Definition 7 (EFSC).
Let E = (Lk,D,Σk, Tk, ℓ

0
k, η

0, Lm
k ,Dm

k ), k = 1, 2, be two EFAs over the set
of shared variables V. The Full Synchronous Composition of E1 and E2 is

E1‖E2 = (L,D,Σ, T, ℓ0, η0, Lm,Dm)

where

• L = L1 × L2,

• Σ = Σ1 ∪ Σ2,

• T is defined by the rules:

*
ℓ1

σ
→1,g1/a1 ℓ́1 ∧ ℓ2

σ
→2,g2/a2 ℓ́2 ∧ σ ∈ (Σ1 ∩ Σ2)

〈ℓ1, ℓ2〉
σ
→g/a 〈ℓ́1, ℓ́2〉

such that

(i) g = g1 ∧ g2,

(ii) For i = 1, . . . , n:

ai =















a1i if a1i = a2i
a1i if a2i = ξ
a2i if a1i = ξ
ηi otherwise;

*
ℓ1

σ
→1,g1/a1 ℓ́1 ∧ ℓ2 = ℓ́2 ∧ σ ∈ (Σ1 − Σ2)

〈ℓ1, ℓ2〉
σ
→g1/a1 〈ℓ́1, ℓ́2〉

;

*
ℓ2

σ
→2,g2/a2 ℓ́2 ∧ ℓ1 = ℓ́1 ∧ σ ∈ (Σ2 − Σ1)

〈ℓ1, ℓ2〉
σ
→g2/a2 〈ℓ́1, ℓ́2〉

.

9



• L0 = L0
1 × L0

2,

• Lm = Lm
1 × Lm

2 .

Note that if the action functions of E1 and E2 tries to update a shared
variable to different values, the variable is, by default, not updated. In
situation where two values are conflicting, is usually a consequence of bad
modeling. In this work, in order to avoid conflicting variables, we assume
that for any two conditional transitions in the system with the same label,
say ℓ1

σ
→g/a ℓ2 and ℓ́1

σ
→ǵ/á ℓ́2, if a, á 6= Ξ always implies a(η) = á(ή). In gen-

eral, this assumption may restrict the modeling using EFA. But, in practice
the common events in ordinary finite automata are used for communication
(synchronous composition) in contrast to EFAs were communication is nor-
mally performed by variables. Therefore, without loss of generality, a DES
modeled by finite automata, in which shared events are used for instance to
specify mutual exclusion, can now be modeled by EFAs using guards and
actions on transitions labeled by distinct events.

2.3 Supervisory Control of EFA

SCT is a formal framework for the modeling and control of DES consist of
plant and specification. In the context of SCT, the behavior of a system is
usually represented by its language, i.e., the sets of strings that the system
may generate. Conventionally, automata has been used as the modeling for-
malism to generate the language. In this, the control problems are modeled
by EFAs, while the SCT analysis is performed on their corresponding DFA
models. There are different methods of computing a supervisor as mentioned
earlier and in this work, we use the symbolic algorithm presented in [14] to
efficiently synthesize a supervisor. The algorithm iteratively strengthens the
guards on conditional transitions to avoid forbidden or blocking states.

Given a DES control problem, we consider that plant is modeled by an
EFA P and specification by EFA Sp. The specification can be represented,
without loss of generality, with a set of forbidden locations which can be
obtained by a refined plant R model with the same behaviors as P such
that the executions not allowed in Sp end up in certain forbidden locations
in R. See [14] for more elaboration on refinement.

From now on, we assume that the plant model is given as the refined EFA
R and the specification is given as the set of forbidden locations Lf ⊂ LR.
Let denote the set of safe locations by Ls = L − Lf and recall the set of
reachable states QR in G(R). A state q = 〈ℓ, η〉 ∈ QR is a forbidden state
iff ℓ ∈ Lf , otherwise, q is a safe state. In the sequel, Rs denotes the EFA

obtained from R by assigning F to the guard g of every transition ℓ
σ
→g/a ℓ́

for which ℓ́ ∈ Lf , i.e., ℓ́ is a forbidden location. Rs is constructed such that
Rs ⊆ R and is called the safe sub-EFA of R.
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Definition 8 (Nonblocking, Safety, Controllability).
[14] Let R be an EFA, Lf its set of forbidden locations, and Rs its safe
subautomaton. A reachable state q ∈ QR is: (a) nonblocking if there exists a
state p ∈ Qm

R such that q
s
7→ p for some string s ∈ Σ∗; (b) safe if q ∈ QRs and

(c) (R,Lf ,Σu)-controllable (or simply controllable when clear from context)
if q is safe and ∀σ ∈ ΣR(q)∩Σu where SgR(q) denote the set of active events,
we have QR(q, σ) ⊆ QRs . The EFA R is, respectively, nonblocking, safe, and
controllable if every reachable state of is, respectively, nonblocking, safe, and
controllable.

A supervisor S for R can be seen as a function S : T → G which maps
each transition to a supervision guard such that S(ℓ

σ
→g/a ℓ́) � g if σ ∈ Σc,

and S(ℓ
σ
→g/a ℓ́) = g if σ ∈ Σu. Let RS denote the sub-EFA obtained from

R by replacing its guards by those provided by S. Then, S is said to be
nonblocking if RS is nonblocking and safe if RS is safe. In case RS is blocking
or uncontrollable, a search will be performed to find a safe and nonblocking
supervisor S such that RS ⊆ Rs. Let S(R,Lf ) denotes the set of nonblocking
and safe supervisor candidates of R, then S↑ := supS(R,Lf ), is the most
permissive nonblocking and safe supervisor than any other supervisor in
S(R,Lf ) when the latter is nonempty. The RS↑

is called the supremal
controllable and nonblocking sub-EFA of Rs.

RS↑

is calculated by the Supervisory Synthesis for EFA (SSEFA)[14] us-
ing fixed-point iteration method. Given a refined EFA R and a set Lf ⊂ L
of forbidden location, SSEFA(R,Lf ) computes stronger, maximally permis-
sive, guards for the transitions of R in N steps such that the obtained EFA
is nonblocking, safe and controllable. The iteration is terminated in N steps
when no guards is modified, namely, for all locations ℓ ∈ L and current
variable evaluation η we have gN+1 = gN . To compute the stronger guards
for the controllable transitions, the algorithm uses two guards associated
to every location ℓ: a nonblocking guard, denoted Nℓ, and a bad location
guard, denoted Bℓ. In the jth iteration, a state 〈ℓ, η〉 is flagged nonblocking
if η |= N j

ℓ and undesirable (blocking, forbidden or uncontrollable) if η |= Bj
ℓ .

Theorem 1 (Supremal Controllable and Nonblocking EFA).
Given an EFA R = (L,D,Σ, T, L0,D0, Lm,Dm) and a set Lf ⊂ L of for-
bidden location, if SSEFA(R) is nonblocking and controllable, then it is the
supremal controllable and nonblocking sub-EFA of R.

Proof. See [14].

If R is deterministic, then SSEFA(R,Lf ) is also deterministic. In this
paper, any nondeterministic EFA is the result of an abstraction of an deter-
ministic model and we will use transformations ensuring that a meaningful
supervisor can also be constructed.
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3 EFA Projection

Traditionally, brute-force computation is used for the verification and coor-
dination [37, 27]. This we wish to avoid since the nonblocking supervisory
control problem in the SCT [27] is NP-hard [19, 20]. We may find efficient
solutions only for various subclasses of discrete-event systems (DES) that en-
joy special structures. Such structures will admit modularity [21, 41, 42, 43]
and model abstraction [26, 28, 29, 27] to obviate computing global dynamic
models. Abstraction introduces hierarchy into system structure, as it re-
ports only the events shared with other subsystems and conceals the rest.
The fewer the reported events, the greater state reduction will be achieved.
Natural projection [44] with observer property is a language-theoretic oper-
ation which cannot be used for EFAs where the language of the components
cannot be used before evaluating the guards and the actions. In order to
use the model abstraction using projection, we substitute the natural pro-
jection with transition projection to be able to abstract the system without
knowing its language. In this section a DES is assumed to consist of a group
of simple plant EFA components subject to a conjunction of modular con-
trol specifications. Before introducing the transition projection we need the
following notions.

For an event σ, let Act(σ) ⊆ A and Con(σ) ⊆ G be the sets of actions
and conditions, respectively, retrieved from all transitions labeled with σ.
Note that, by the assumption, the set Act(σ) is a singleton aσ.

Definition 9 (Local Event).
For an EFA Ei, i ∈ n, over the set of shared variables V, an event σ ∈ Σi is
local to Ei if for all j ∈ n we have

(i) σ ∈ Σi −
⋃

Σj(j 6= i),

(ii) (∀g ∈ Con(σ)) g = T,

(iii) (∀g ∈ Gj)η |= g ⇔ aσ(η) |= g.

The set of local events is denoted Σℓ.

Here, condition (i) guarantees that the event σ only appears in Ei and
not in any other EFAs Ej(j 6= i), (ii) ensures that guards on any transition
labeled by σ is always evaluates to true; hence σ can cause the transition to
occur at any time, and (iii) guarantees that the execution of action aσ has no
effect on any guards evaluation. Any transition labeled with a local events
is called a local transition and similarly any dynamic execution fragment is
local if its transitions are all local.

For a system described by a language L ⊆ Σ∗ and a natural projec-
tion P with the observer property, the model abstraction of the system is
the induced system representing language P (L). The observer concept is
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equivalent [27] to observation equivalence introduced by Milner [45]. The
equivalence kernel of a natural observer is a bisimulation relation and the
abstraction is the bisimulation quotient of the original system modeled by
automata [27, 46, 39]. The natural projection, as a special form of reporter
map, allows compositional definition and computation.

For the same system modeled by a group of EFA components, the lan-
guage of individual component is not defined without considering the global
behavior of the system, i.e. the synchronous composition of all components.
Therefore, we substitute the natural projection with a function, called tran-
sition projection, that directly projects the transitions in EFAs.

For an EFA E over the set of variables V and the set of events Σ, the
transition projection P̄ for the conditional transition relation T and the set
Σℓ ⊆ Σ is defined as follows:

P̄ : T × Σℓ → T

where for every transition

P̄ [ℓ
σ
→g/a ℓ́, ε] = ℓ

σ
→g/a ℓ́

P̄ [ℓ
σ
→g/a ℓ́, γ] =

{

ℓ
σ
→g/a ℓ́, σ 6= γ

ℓ
ε
→g/a ℓ́, σ = γ

The transition projection P̄ replace the label of transitions labeled by events
in Σℓ with ε symbol. In effect, an EFA is allowed to make a transition
spontaneously, without receiving an input event and the actions of such
transitions has no effect on global behavior. Extending T to its power set
Pwr(T ), we get P̄ : Pwr(T ) × Σℓ → Pwr(T ) such that for any τ ∈ Σℓ,
N ⊆ T : P̄ (N, τ) = {P̄ (ℓ

σ
→g/a ℓ́, τ)|ℓ

σ
→g/a ℓ́ ∈ N}. If we further extend Σℓ

to its power set Pwr(Σℓ), P̄ becomes P̄ : Pwr(T ) × Pwr(Σℓ) → Pwr(T )
such that for A ∈ Σℓ, N ⊆ T : P̄ (N,A) =

⋃

{P̄ (N, τ)|τ ∈ A}. If the action
of P̄ on T is understood then P̄ [T,Σℓ] may be written P̄Σℓ

T and if P̄ is
defined P̄ T .

Given any EFA, Algorithm 1, denoted by P̂ , computes the projection for
the conditional transitions of E, eliminates the resulting ε-transitions, and
returns the Projected EFA Ẽ. The elimination of ε-transitions in Algorithm
1 is very close to the algorithms of eliminating ε-transitions and subset
construction for DFA in [40]. The algorithm uses the notation Sε(ℓ) to find
the ε-closure of ℓ, i.e., the set of ε-locations by finding every location that
can be reached from ℓ along any path whose transitions are all labeled ε.
Formally, Sε(ℓ) is defined recursively as follows:

1. ℓ ∈ Sε(ℓ)

2. (∀ℓ́ ∈ Sε(ℓ)) ℓ́
ε
→g/a ℓ̀ ⇒ ℓ̀ ∈ Sε(ℓ).

13



Algorithm 1 EFA Projection (P̂ )

Input: An EFA E = (L,D,Σ, T, ℓ0, η0, Lm,Dm) and subset of events Σℓ ⊆
Σ

1: T̃ := ∅
2: L̃ := ∅
3: Σ̃ := Σ− {ε}
4: P̄ : T × Σℓ → T
5: T = P̄ [T,Σℓ]
6: S := Sε(ℓ

0)
7: L̃ = L̃ ∪ {S}
8: do

9: X = ∅
10: foreach Ś ∈ S do

11: foreach σ ∈ Σ̃ do

12: S̀ := {Sε(ℓ́)|(∀ℓ ∈ Ś)(ℓ, σ, g, aσ , ℓ́) ∈ T}
13: if S̀ 6= ∅ then

14: L̃ = L̃ ∪ {S̀}
15: X = X ∪ {S̀}
16: gσ := F

17: (∀ℓ́ ∈ Ś)(∀ℓ̀ ∈ S̀)(ℓ́, σ, g, aσ , ℓ̀) ∈ T ⇒
gσ = gσ ∨ g

18: if gσ = F then gσ = T end if

19: T̃ = T̃ ∪ {(Ś, σ, gσ , aσ, S̀)}
20: end if

21: end for

22: end for

23: S = X
24: until S = ∅
25: L̃m := {S ∈ L̃|S ∩ Lm 6= ∅}
26: L̃0 := {S ∈ L̃|S ∩ ℓ0 6= ∅}
Output: An EFA Ẽ = (L̃,D, Σ̃, T̃ , L̃0,D0, L̃m,Dm)

Sε can be extended to set of locations by letting Sε(S) =
⋃

ℓ∈S Sε(ℓ) for
some set of locations S.

Example 1. Consider EFA TU , TUε, and ˜TU in Fig. 1. Assume the set
of local events Σℓ with {!test} ∈ Σℓ. Then TUε is the result of transition
projection P̄ : T × Σℓ → T by projecting the local transition labeled with
{!test} and ˜TU is the projected EFA ˜TU by eliminating ε-transition in TUε.

Turning to supervisory control problem, consider a system consisting of
two EFA components, E1 and E2, over event sets Σi(i = 1, 2). To obtain a
reduction of the system, we could first compute the systems global behavior
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ℓ0

ℓ1

!test

return

eliminate

g : b2 > 0

a : b2 := b2 − 1

g : b2 < 8

a : b2 := b2 + 1

(a) TU

ℓ0

ℓ1

ε

return

eliminate

g : b2 > 0

a : b2 := b2 − 1

g : b2 < 8

a : b2 := b2 + 1

(b) TUε

ℓ0

return

eliminate

g : b2 > 0

a : b2 := b2 − 1

g : b2 < 8

a : b2 := b2 + 1

(c) T̃ U

Figure 1: TUε is the result of projecting transition labeled !test and ˜TU is
the projected EFA by eliminating ε-transition.

E1‖E2 and then its transition projection. When, however, the local events of
the two components are all defined the result is obtained more economically
from reductions of the components, according to the following proposition.
This result is central to our method.

Proposition 2.

Let Ek = (Lk,D,Σk, Tk, ℓ
0
k, η

0, Lm
k ,Dm

k ), k = 1, 2, be two EFAs over the set
of shared variables V. Consider T as the set of transition relation for E1‖E2

and Σℓ ⊆ Σ := Σ1 ∪ Σ2. Define P̄ : T × Σℓ → T and Qi : Ti × (Σi ∩ Σℓ) →
Ti(i = 1, 2). If Σℓ is the set of local events then

P̂ [E1‖E2,Σℓ] = Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ].

The proof is lengthy but straightforward and needs the following lemmas.

Lemma 1. Let E = (L,D,Σ, T, L0,D0, Lm,Dm) be an EFA with the set
of variables V, Σℓ ⊆ Σ be the subset of local events, and let Π(ℓ) := {̺ ∈
E | ̺ is local and first(̺) = ℓ} be a set of local dynamic execution fragments
starting from ℓ ∈ L. Define the transition projection P̄ : T × Σℓ → T
and consider a set Sε(ℓ) of ε-closure that can be reached from ℓ. Then
⋃

̺∈Π(ℓ) Loc(P̄ ̺) = Sε(ℓ).

Proof. For any local transition ℓ
σ
→g/a ℓ́ where σ ∈ Σℓ we have P̄ [ℓ

σ
→g/a

ℓ́] = ℓ
ε
→a ℓ́. Thus, for all ̺ = ℓ0

σ1→a1 · · ·
σi+1

→ ai+1
ℓi+1 ∈ Π(ℓ)(0 6 i < n)

we have P̄ ̺ = P̄ [ℓ0
σ1→a1 · · ·

σi+1
→ ai+1

ℓi+1,Σℓ] = ℓ0
ε
→a1 · · ·

ε
→ai+1

ℓi+1, and
str(P̄ ̺) = ε. Therefore, Sε(ℓ) =

⋃

̺∈Π(ℓ) Loc(P̄ ̺).

Returning to the proof of Proposition 2,

Proof of Proposition 2. It needs to be shown that both conditional tran-
sition relations of P̂ [E1‖E2,Σℓ] and Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ] are
the same (up to isomorphism). It can be proved by induction on size of
a dynamic execution fragment ρ. Let the intermediate ε-EFAs result of
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P̂ [E1‖E2,Σℓ], Q̂1[E1,Σ1∩Σℓ], and Q̂2[E2,Σ2∩Σℓ] in Algorithm 1 be Ē, Ē1,
and Ē2, respectively, and let 〈ℓ10, ℓ

2
0〉, ℓ

1
0, and ℓ20 be the initial locations of

P̂ [E1‖E2,Σℓ], Q̂1[E1,Σ1 ∩ Σℓ], and Q̂2[E2,Σ2 ∩ Σℓ], respectively.

BASIS: Let |ρ| = 0, i.e. ρ is the initial location. Based on EFSC,
for the initial locations we have 〈ℓ10, ℓ

2
0〉 = ℓ10 × ℓ20. We need to show

that both sets of ε-locations that can be reached from the initial loca-
tion of Ē and the initial location of Ē1 and Ē2 are the same, namely
Sε(〈ℓ

1
0, ℓ

2
0〉) = S1

ε (ℓ
1
0) × S2

ε (ℓ
2
0), so they construct the same set of ini-

tial locations after eliminating the ε-transitions by Algorithm 1 in
P̂ [E1‖E2,Σℓ], Q̂1[E1,Σ1 ∩ Σℓ], and Q̂2[E2,Σ2 ∩ Σℓ], respectively. Let
Π(〈ℓ10, ℓ

2
0〉),Π

1(ℓ10), and Π2(ℓ20) be the sets of local dynamic execution
fragments from the initial locations of E1‖E2, E1, and E2, respectively.
Then we have, Π(〈ℓ10, ℓ

2
0〉) = Π1(ℓ10)‖Π

2(ℓ20) and by Lemma 1, we get
⋃

̺∈Π(〈ℓ1
0
,ℓ2
0
〉) Loc(P̄ ̺) =

⋃

̺1∈Π1(ℓ1
0
) Loc(P̄ ̺1) ×

⋃

̺2∈Π2(ℓ2
0
) Loc(P̄ ̺2).

Therefore, we can conclude that Sε(〈ℓ
1
0, ℓ

2
0〉) = S1

ε (ℓ
1
0)× S2

ε (ℓ
2
0).

INDUCTION: Let ρ constructed by ρ́ and ρ̀ such that ρ́ ⊑ ρ̀, be
of length n + 1, and assume the statement for length n, i.e. ρ́. By
inductive hypothesis, both sets of locations that can be reached by
following ρ́ from the initial location of P̂ [E1‖E2,Σℓ] and the initial
location of Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ] are the same. Let this
set be {ℓ1, . . . , ℓk}. Then, we compute all the locations that can
be reached by ρ̀ starting from any of ℓk. Let the set of these lo-
cations be S := {ℓ1, . . . , ℓm} ⊆ L1 × L2. We know that any loca-
tion ℓm ∈ S is constructed by the locations ℓ1m ∈ L1 and ℓ2m ∈ L2

such that ℓm = ℓ1m × ℓ2m. Let these two sets be denoted S1 :=
{ℓ11, . . . , ℓ

1
m} ⊆ L1 and S2 := {ℓ21, . . . , ℓ

2
m} ⊆ L2, respectively. Now,

it is enough to show that the set of ε-locations for all ℓm in Ē is
the same as the set of ε-locations for ℓ1m × ℓ2m in Ē1 and Ē, re-
spectively, namely

⋃

ℓi∈S
Sε(ℓi) =

⋃

ℓ1i∈S
2 S1

ε (ℓ
1
i ) ×

⋃

ℓ2i∈S
2 S2

ε (ℓ
2
i ). Let

⋃

ℓi∈S
Π(ℓi),

⋃

ℓ1i∈S
1 Π1(ℓ1i ), and

⋃

ℓ2i∈S
2 Π2(ℓ2i ) be the sets of local dy-

namic execution fragments in E1‖E2, E1, and E2 for all ℓi ∈ S, ℓ1i ∈ S1,
and ℓ2i ∈ S2, respectively. For every ℓi, ℓ

1
i , and ℓ2i we have Π(ℓi) =

Π1(ℓ1i ) ‖ Π
2(ℓ2i ) and by Lemma 1,

⋃

̺∈Π(ℓi)
Loc(P̄ ̺) =

⋃

̺1∈Π1(ℓ1i )
Loc(P̄ ̺1)×

⋃

̺2∈Π2(ℓ2i )
Loc(P̄ ̺2). Therefore, we can conclude that Sε(ℓi) = S1

ε (ℓ
1
i )×

S2
ε (ℓ

2
i ).

We have now proved that both P̂ [E1‖E2,Σℓ] and Q̂1[E1,Σ1∩Σℓ]‖Q̂2[E2,Σ2∩
Σℓ] transition relations are the same up to renaming the locations and vari-
ables.
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ℓ0

ℓ1

!o1

pb12

tb22

g : b1 < 16

a : b1 := b1 + 1

g : b2 > 0

a : b2 := b1 − 1

(a) M2

ℓ0

ℓ1

pb12

tb22

tb22

g : b1 < 16

a : b1 := b1 + 1

g : b2 > 0

g : b2 > 0

a : b2 := b1 − 1

a : b2 := b1 − 1

(b) M̃2

Figure 2: M̃2 is the projection of M2 but not an E-observer.

4 Nonblocking Observer

Consider a DES described by EFA E. Given a set of local events, we can
define the transition projection P̄ : T × Σℓ → T and then the EFA pro-
jection P̂ (E,Σℓ). Crucial to successful model abstraction using transition
projection is that the projected system contains necessary and sufficient in-
formation needed for reliable representation of the nonblocking property.
In other word, the EFA projection P̂ may remove critical information and
be inconsistence with the original DES with respect to controllability and
nonblocking. For instance, the projection of a blocking DES could be non-
blocking, so a nonblocking supervisor designed from the EFA projection
could result in a blocking supervisor for the original DES. To avoid this
pitfall, one must carefully select the local events of a DES.

A ”good” selection of local events for the transition projection P̄ is when-
ever a projected EFA reaches a location by P̄ ̺s and then to a marker location
by P̄ ̺t, the original system, must be able to reach a marker location from
̺ś, via some ̺t́ such that P̄ ̺s = P̄ ̺ś and P̄ ̺t́ = P̄ ̺t.

Definition 10 (E-observer).
Assume a nonblocking EFA E and let Σℓ ⊆ Σ be the subset of events. The
transition projection P̄ : T × Σℓ → T is an E-observer, if for all initial dy-
namic execution fragments ̺s and ̺ś and for all marked dynamic execution
fragment ̺t in E such that ̺s ⊑ ̺t and P̄ ̺s = P̄ ̺ś, there exist a marked
dynamic execution fragment ̺t́ in E such that ̺ś ⊑ ̺t́ and P̄ ̺t́ = P̄ ̺t.

Note that if Σℓ is equal to Σ or ∅, P̄ is automatically an L-observer.

Example 2. Consider EFAs M2 and M̃2 in Fig. 2. Assume the set of local
events Σℓ with {!o1} ∈ Σℓ. The shaded circle is the marked location. Define

the transition projection P̄ : T ×Σℓ → T and let ̺s = ℓ0
tb22
→ b2>0/b2:=b1−1 ℓ1,

̺t = ℓ1
pb12
→ b1<16/b1:=b1+1 ℓ0, and ̺ś = ℓ0

tb22
→ b2>0/b2:=b1−1 ℓ1

pb12
→ b1<16/b1:=b1+1

ℓ0 with ̺s ⊑ ̺t and P̄ ̺s = P̄ ̺ś. We cannot find any dynamic execution
fragment, say ̺t́ in M1 such that ̺ś ⊑ ̺t́ and P̄ ̺t = P̄ ̺t́. Thus P̄ is not an
E-observer.
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P̄1̺ ∈ E1 ̺ ∈ E1‖E2 P̄2̺ ∈ E2

Q̄1P̄1̺ ∈ Ẽ1 P̄ ̺ ∈ ˜E1‖E2 Q̄2P̄2̺ ∈ Ẽ2

Z̺̄ ∈ E1 × E2

P̄1[.,Σ2 − Σ1] P̄2[.,Σ1 − Σ2]

P̄ [.,Σℓ]

R̄1 := Q̄1 ◦ P̄1 R̄2 := Q̄2 ◦ P̄2

Z̄

Q̄1[.,Σ1 ∩ Σℓ]

P̄2

Q̄2[.,Σ2 ∩ Σℓ]

P̄1

Figure 3: Commutative diagram of transition projections for a dynamic
execution fragment ̺ ∈ (E1‖E2) with respect to the set of local events
Σℓ ⊆ Σ1 ∪ Σ2. Here, Z̄ is defined Z̄[., (Σ1 ∪ Σ2)− (Σ1 ∩ Σ2)].

Proposition 3.

Let Ek = (Lk,D,Σk, Tk, ℓ
0
k, η

0, Lm
k ,Dm

k ), k = 1, 2 be two nonblocking EFAs
over the set of shared variables V. Consider T as the set of transition relation
for E1‖E2. Define the transition projections P̄ : T × Σℓ → T and Q̄i :
Ti × (Σi ∩ Σℓ) → Ti (i = 1, 2) where Σℓ ⊆ Σ1 ∪ Σ2. If Σℓ is the set of
local events and for both i = 1, 2, Q̄i is an Ei-observer for Ei, then P̄ is an
E-observer for E1‖E2.

The proof needs the following Lemma.

Lemma 2. Define the transition projection P̄i and Q̄i as in the notation of
Proposition 3 for i = 1, 2. For any two EFAs E1 and E2 with Σ1 ∩ Σ2 6= ∅
we have E1‖E2 6= ∅ ⇔ Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ] 6= ∅.

Proof.
(⇒) Since E1‖E2 6= ∅, there exists some dynamic execution fragment
̺ ∈ E1‖E2 and P̄i̺ ∈ Ei(i = 1, 2). Applying the transition projection
Q̄i on both side, we get Q̄iPi̺ ∈ Q̂i[Ei,Σi∩Σℓ]. Based on Proposition
2, Q̄iPi̺ = P̄ ̺(i = 1, 2). Hence, it implies P̄ ̺ ∈ Q̂1[E1,Σ1 ∩ Σℓ] and
P̄ ̺ ∈ Q̂2[E2,Σ2 ∩ Σℓ]. Therefore, P̄ ̺ ∈ Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩
Σℓ] 6= ∅.

(⇐) Since Q̂1[E1,Σ1∩Σℓ]‖Q̂2[E2,Σ2∩Σℓ] 6= ∅, we can select a dynamic
execution fragment ´̺ ∈ Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ]. Then, there
must be two dynamic execution fragments ̺1 ∈ E1 and ̺2 ∈ E2 such
that Q̄1̺1 = ´̺ = Q̄2̺2. From ̺1 and ̺2 we can construct a set of
dynamic execution fragments Π := { `̺ ∈ E1‖E2 | P̄1 `̺ = ̺1∧P̄2 `̺ = ̺2}.
Evidently, taking any dynamic execution fragment `̺ ∈ Π we can see
that P̂1 `̺ = ̺1, P̂2 `̺ = ̺2, and `̺ ∈ E1‖E2 so E1‖E2 6= ∅.
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Returning to the proof of Proposition 3, we bring in the corresponding
transition projections defined in Fig. 3.

Proof of Proposition 3. Let P̄i : T × (Σj−Σi) → T (j 6= i) and R̄i := Q̄i ◦ P̄i

for i, j = 1, 2. Let ̺s, ̺ś, ̺t ∈ E1‖E2 be the dynamic execution fragments in
notation of Definition 10. To justify the statement, we must find a marked
dynamic execution fragment ̺t́ ∈ E1‖E2 such that P̄ ̺t = P̄ ̺t́ and ̺ś ⊑ ̺t́.

We have P̄ ̺s, P̄ ̺ś, P̄ ̺t ∈ P̂ [E1‖E2,Σℓ]. Consequently, for i = 1, 2, R̄iP̄ ̺t ∈
R̂iP̂ [E1‖E2,Σℓ] = Q̂i[P̂i[E1‖E2,Σj − Σi],Σi ∩ Σℓ] ⊆ Q̂i[Ei,Σi ∩ Σℓ] and
P̄i(̺s), P̄i(̺ś) ∈ Ei. Because ̺s ⊑ ̺t, We can apply R̄iP̄ on both sides, to get
R̄iP̄ ̺s ⊑ R̄iP̄ ̺t. Now that R̄iP̄ ̺t ∈ Q̂i[Ei,Σi ∩ Σℓ], Q̄iP̄i̺s = Q̄iP̄i̺ś, and
P̄i̺s, P̄i̺ś ∈ Ei, we can conclude by the hypothesis of the proposition that
Q̄i is an Ei-observer, so there exist a marked ̺t́i in Ei such that P̄i̺ś ⊑ ̺t́i
and Q̄i̺t́i = R̄iP̄ ̺t. Apply P̄j(j = 1, 2; j 6= i) on both sides of equation
to get P̄j [Q̄i̺t́i ] = P̄j [R̄iP̄ ̺t]. Since Σℓ ⊆ (Σ1 − Σ2) ∪ (Σ2 − Σ1) therefore,
P̄jQ̄i̺t́i = P̄j̺t́i and P̄jR̄iP̄ ̺t = Z̺̄t. Hence, P̄2Q̄1̺t́1 = Z̺̄t = P̄1Q̄2̺t́2 ⇒
P̄2̺t́1 = P̄1̺t́2 . Suppose a set of marked dynamic execution fragments Π :=
{̺w ∈ E1‖E2 | P̄1̺w = ̺t́1 ∧ P̄2̺w = ̺t́2}. Recall that ̺t́i ∈ Ei then

by Lemma 2, Π 6= ∅. Apply P̄ to ̺w we can see P̄ ̺w ∈ P̂ [E1‖E2,Σℓ] =
Q̂1[E1,Σ1 ∩Σℓ]‖Q̂2[E2,Σ2 ∩Σℓ]. We have P̄i̺ś ⊑ ̺t́i so taking any dynamic
execution fragment from Π, say ̺w ∈ Π, we see immediately ̺ś ⊑ ̺w and
P̄i̺w = ̺t́i . We know Q̄i̺t́i = R̄iP̄ ̺t. Consequently, P̄ ̺w = P̄ ̺t which we
can conclude that P̄ is an E-observer for E1‖E2.

As we establish a ”reliable interface” for EFAs by introducingE-observer,
the interaction between two complex system may be examined through their
projections rather than their global behavior. If P̄ has the observer prop-
erty, we can check if two EFAs E1 and E2 are synchronously nonconflicting
by checking whether their projections P̂ [E1,Σ1 ∩Σℓ] and P̂ [E2,Σ2 ∩Σℓ] are
synchronously nonconflicting. Since the EFA models of P̂ [Ei,Σi ∩ Σℓ] are
smaller than those of Ei, we may save significant computational effort, in
accordance with the following.

Theorem 2 (Synchronously Nonconflicting Criterion). Let Ek(k = 1, 2), be
two EFAs with the set of shared variables V and let Σℓ be the set of local
events. If Q̄i : Ti × (Σi ∩Σℓ) → Ti are Ei-observer (i = 1, 2), then E1‖E2 is
nonblocking if and only if Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ] is nonblocking.

Proof. Define the transition projections P̄i : T × (Σj − Σi) → T (j 6= i), Z̄ :
T × (Σ1 ∩Σ2) → T , and R̄i := Q̄i ◦ P̄i(i, j = 1, 2) for the EFA projections in
the commutative diagram illustrated by Fig. 3.

(If) Let ̺s be a initial dynamic execution path in E1‖E2. We must
show that there exists a marked dynamic execution path ̺t such that
̺s ⊑ ̺t. Apply P̄i to ̺s, we get P̄i̺s ∈ Ei(i = 1, 2). Moreover,
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P̄ (̺s) ∈ P̂ [E1‖E2,Σℓ]. Because of assumption that Σℓ is the set of
local events and Proposition 1, P̄ ̺s ∈ Q̂1[E1,Σ1∩Σℓ]‖Q̂2[E2,Σ2∩Σℓ].
Then there must exists a marked execution fragment ´̺t such that
P̄ ̺s ⊑ ´̺t, and therefore R̄iP̄ ̺s and R̄i ´̺t are in Q̂i[Ei,Σi∩Σℓ](i = 1, 2).
From Fig. 3, we see that R̄i ◦ P̄ = Q̄i ◦ P̄i(i = 1, 2). Consequently,
both Q̄iP̄i̺s and R̄i ´̺t are in Q̂i[Ei,Σi ∩Σℓ](i = 1, 2). Since P̄i̺s ∈ Ei

and Q̄i is an Ei-observer, there exists a marked dynamic execution
fragment ̺wi

∈ Ei such that P̄i̺s ⊑ ̺wi
and Q̄i̺wi

= R̄i ´̺t. Applying
P̄j(j = 1, 2; j 6= i) to both sides of this equation, we get P̄jQ̄i̺wi

=
P̄jR̄i ´̺t = Z̄ ´̺t. This implies that P̄2̺w1

= Z̄ ´̺t = P̄1̺w2
. Therefore,

Π := {̺w ∈ E1‖E2 | P̄1̺w = ̺ẃ1
∧ P̄2̺w = ̺ẃ2

} is nonempty by
Lemma 2. Taking any marked dynamic execution fragment form the
set Π, say ̺w ∈ Π, we have P̄i̺w = ̺wi

(i = 1, 2). Since ̺wi
∈ Ei, we

have P̄i̺w ∈ Ei(i = 1, 2). Consequently, ̺w ∈ E1‖E2, and as required
̺w is marked and ̺s ⊑ ̺w.

(Only if) According to assumption E1‖E2 is nonblocking, therefore
for any initial dynamic execution fragment ̺s there exists a marked
dynamic execution fragment ̺t such that ̺s ⊑ ̺t. Apply P̄ to both ̺s
and ̺t,we get P̄ ̺s and P̄ ̺t in P̂ [E1‖E2,Σℓ] and by Proposition 2 in
Q̂1[E1,Σ1∩Σℓ]‖Q̂2[E2,Σ2∩Σℓ]. Since P̄ is E-observer there must exist
a marked execution fragment ´̺t ∈ P̂ [E1‖E2,Σℓ] such that P̄ ̺s ⊑ ´̺t
and P̄ ´̺t = P̄ ̺t. By Proposition 2, ´̺t ∈ Q̂1[E1,Σ1∩Σℓ]‖Q̂2[E2,Σ2∩Σℓ].
Therefore, for any dynamic execution fragment P̄ ̺s ∈ Q̂1[E1,Σ1 ∩
Σℓ]‖Q̂2[E2,Σ2∩Σℓ] there exists a marked dynamic execution fragment
´̺t such that P̄ ̺s ⊑ ´̺t hence Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ] is also
nonblocking.

In case the two EFAs E1 and E2 are synchronously conflicting, a third
EFA E, called a coordinator, must be introduced to resolve the conflict. We
can now, instead of computing the coordinator directly from the two EFAs
themselves, we perform this computation through their abstractions.

Proposition 4. Let Ek(k = 1, 2), be two EFAs with the set of shared vari-
ables V and let Σℓ be the set of local events. In notation of Theorem 2,
if for i = 1, 2, Q̄i is an Ei-observer and there is an EFA E such that
Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ]‖E is nonblocking then E1‖E2‖E is also
nonblocking.

The coordinator E alphabet depends only upon the event set (Σ1∪Σ2)−
Σℓ which contains the shared events of Σ1 and Σ2 and defines the required
E-observer. As long as E can resolved the conflict between Q̂1[E1,Σ1 ∩Σℓ]
and Q̂2[E2,Σ2 ∩ Σℓ], it can resolve the conflict between E1 and E2.

20



Proof. Let É := Q̂1[E1,Σ1 ∩Σℓ]‖Q̂2[E2,Σ2 ∩Σℓ]‖E which is by assumption
nonblocking. Consequently, E1‖E2‖É = (E1‖Q̂1[E1,Σ1∩Σℓ])‖(E2‖Q̂2[E2,Σ2∩
Σℓ])‖E = E1‖E2‖É. The proposition is now reduced to showing that
E1‖E2‖É is nonblocking. We first show that E1 and E2 are each syn-
chronously nonconflicting with É. For i = 1, 2, since Q̂i(Ei,Σi∩Σℓ)‖É = É
is nonblocking, we can claim that Qi(Ei,Σi ∩ Σℓ) and É are synchronously
nonconflicting, i.e., Q̂i(Ei,Σi ∩ Σℓ)‖É is nonblocking. According to the as-
sumption that Q̄i is an Ei-observer, Theorem 2 ensures that Ei and É are
synchronously nonconflicting, i.e., Ei‖É is nonblocking. Let Ji := Ei‖É ⊆
E1‖E2(i = 1, 2). By Proposition 3, P̄ is also a Ji-observer. Because syn-
chronous product is associative and commutative, E1‖E2É = (E1‖É)‖(E2‖É) =
J1‖J2. Next we show that J1 and J2 are also synchronously nonconflicting.
By Proposition 2, P̂ [Ji,Σℓ] = P̂ [Ei‖É,Σℓ] = Q̂i[Ei,Σi ∩ Σℓ]‖É(i = 1, 2).
Hence, P̂ [J1,Σℓ]‖P̂ [J2,Σℓ] = Q̂1[E1,Σ1 ∩Σℓ]‖Q̂2[Ei,Σ2 ∩Σℓ]‖É = É and is
nonblocking. Therefore, P̂ [J1,Σℓ] and P̂ [J2,Σℓ] are nonconflicting. Since P̄
is J1 and J2-observer, we can conclude that J1 and J2 are synchronously non-
conflicting, namely, J1‖J2 is nonblocking. Using the definition of Ji(i = 1, 2)
in the above equation, we get E1‖E2‖É is nonblocking.

5 Optimal Nonblocking and Controllable

Supervisor

An optimal supervisor with full observation usually disables the nearest con-
trollable events preceding or upstream to a prohibited uncontrollable event
(say, σ). If, however, some of these controllable events are unobservable, a
decentralized supervisor must disable controllable events further back, and
so is more restrictive. For this restriction to be relaxed, the local event set
must be selected properly enough to contain all the upstream controllable
events nearest to σ. Such a decentralized supervisor will prevent the occur-
rence of an uncontrollable event while allowing maximal freedom of system
behavior. A projection with such a local event set is called output control
consistent (OCC).

Definition 11 (OCC).
Let E = (L,D,Σ, T, L0,D0, Lm,Dm) be an EFA over the set of variables V
and let Σℓ,Σu ⊆ Σ be the local and uncontrollable event sets. The transition
projection P̄ : T × Σℓ → T is output control consistent (OCC) for the EFA
E, if for every finite dynamic execution fragment ̺ of the form

̺ = ℓ0
σ1→g1/a1 · · ·

σi+1
→ gi+1/ai+1

ℓi+1 or

̺ = ℓ
σ
→g/a ℓ0

σ1→g1/a1 · · ·
σi+1
→ gi+1/ai+1

ℓi+1, 0 6 i < n

which satisfies the conditions that n > 1, σ ∈ Σ− Σℓ, σj ∈ Σℓ(j ∈ n-1) and
σn ∈ Σ− Σℓ, we have the property that σn ∈ Σu ⇒ (∀j ∈ n)σj ∈ Σu.
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ℓ0

ℓ1

in

!pb11

g : b1 < 16

a : b1 := b1 + 1

(a) M1

ℓ0

!pb11

g : b1 < 16

a : b1 := b1 + 1

(b) M̃1

Figure 4: M̃1 is the projection of M1 but the transition projection is not
OCC for M1.

In the definition, when σn is not local and uncontrollable, its immedi-
ately preceding local events must all be uncontrollable, namely, its nearest
controllable event must not be unobservable.

Example 3. Consider EFAs M1 and M̃1 in Fig. 4. Assume the set of local
and uncontrollable events Σℓ,Σu ⊆ Σ and let {in} ∈ Σℓ and {!pb11} ∈ Σu.
Define the transition projection P̄ : T × Σℓ → T . Then, by definition of

OCC, event {in} must be uncontrollable in ̺ = ℓ0
in
→ ℓ1

pb11
→ b1<16/b1:=b1+1 ℓ0

because {!pb11} is uncontrollable which is not in this case. Thus P̄ is not
OCC for M1.

We can now state a practical and concise sufficient condition for Optimal
Nonblocking and Controllable Supervisor (ONCS).

Theorem 3 (ONCS).
Let R be a nonblocking EFA plant over the set of variables V, along with local
and uncontrollable event sets Σℓ,Σu ⊆ Σ, respectively. Define the transition
projection P̄ : T × Σℓ → T and let EFA R̃ = P̂ [R,Σℓ]. Suppose the set of
forbidden locations is Lf ⊂ L̃. If the transition projection P̄ is an R-observer
and OCC for R, then

supS(R,Lf) = supS(R̃, Lf)‖R

Proof. It needs to be shown that the fixed points of the algorithm executions
of supS(R,Lf) and supS(R̃, Lf), SSEFA(R,Lf )

N and SSEFA(R̃, Lf )
N , are

the same. This can be proved by induction on the step iterator j.

(⊆)BASE: j = 0. By definition SSEFA(R̃, Lf )
N ⊆ L×D = SSEFA(R,Lf )

0.
INDUCTION: Assuming that the property holds for j it needs to
be shown that it also holds for j+1. Let p = 〈ℓ, η〉 ∈ SSEFA(R̃, Lf )

N .
By the inductive assumption it holds that p ∈ SSEFA(R,Lf )

j . As-
sume that p /∈ SSEFA(R,Lf )

j+1. This implies that either p is (α)
uncontrollable or (β) blocking and removed by the algorithm. (α)
Then there exists v ∈ Σu such that p

v
7→R q /∈ SSEFA(R,Lf )

j for

some q := 〈ℓ́, ή〉 ∈ L × D. Assume v ∈ Σu ∩ (Σ − Σℓ). Then v is
not local so the same transition exists in R̃. Therefore, p

v
7→R̃ q /∈
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SSEFA(R,Lf )
j ⊇ SSEFA(R̃, Lf )

N . But then p /∈ SSEFA(R̃, Lf )
N

which is in contradiction. Now, assume v ∈ Σu ∩ Σℓ. Then for all se-
quences of consecutive transitions of the form p

σ17→R · · ·
σk7→R q (k ≥ 1) in

SSEFA(R̃, Lf )
j which satisfies the conditions v = σ1, . . . , σi ∈ Σℓ(i ∈

k-1) and σk ∈ Σ − Σℓ, if we have σk ∈ Σu then by the assump-
tion that P̄ is OCC for R we can immediately see (∀i ∈ k)σi ∈

Σu. Consequently, p
σk7→R̃ r /∈ SSEFA(R,Lf )

j ⊇ SSEFA(R̃, Lf )
N

and p /∈ SSEFA(R̃, Lf )
N which is in contradiction. Otherwise, if we

have σk ∈ Σc then the same transition p
σk7→R q /∈ SSEFA(R,Lf )

j ex-

ists in R̃ and similarly p
σk7→R̃ q /∈ SSEFA(R,Lf )

j ⊇ SSEFA(R̃, Lf )
N

which implies p /∈ SSEFA(R̃, Lf )
N which is in contradiction. (β) Then

p
s
7→SSEFA(R,Lf )j q implies q /∈ Lm ×Dm for all states q ∈ L×D and

s ∈ Σ∗. If s ∈ (Σ − Σℓ)
∗ then also p /∈ SSEFA(R̃, Lf )

N which is a
contradiction. It may be the case that s ∈ Σ∗

ℓ , Because P̄ is a R-

observer and we know p
t́
7→SSEFA(R̃,Lf )N

r for some r ∈ Lm ×Dm and

t́ ∈ Σ∗
ℓ , then there is a string t ∈ Σ∗ such that q

t
7→SSEFA(R,Lf )j l

for some l ∈ Lm × Dm. Hence, p
st
7→SSEFA(R,Lf )j l and therefore,

p ∈ SSEFA(R,Lf )
j . This contradicts the initial assumption.

(⊇)BASE: j = 0. By definition SSEFA(R,Lf )
N ⊆ L×D = SSEFA(R̃, Lf )

0.
INDUCTION: Assuming that the property holds for j it needs to
be shown that it also holds for j+1. Let p = 〈ℓ, η〉 ∈ SSEFA(R,Lf )

N .
By the inductive assumption it holds that p ∈ SSEFA(R̃, Lf )

j . As-
sume that p /∈ SSEFA(R̃, Lf )

j+1. This implies that either p is (α)
uncontrollable or (β) blocking and removed by the algorithm.

(α) Then there exists v ∈ Σu∩(Σ−Σℓ) such that p
v
7→R̃ q /∈ SSEFA(R̃, Lf )

j

for some q := 〈ℓ́, ή〉 ∈ L × D. Let a sequence of consecutive transi-

tions in SSEFA(R,Lf )
N be the form p

σ17→R · · ·
σk7→R q (k ≥ 1) such

that σi ∈ Σℓ(i ∈ k-1) and v = σk ∈ Σu ∩ (Σ − Σℓ). Then immedi-
ately by definition 11 we have, σi ∈ Σu. Hence, there is a transition
p

σ17→R r ∈ SSEFA(R,Lf )
N that implies also p /∈ SSEFA(R,Lf )

N which
is a contradiction.

(β) Then p
s
7→SSEFA(R̃,Lf )j

q implies q /∈ Lm × Dm for all states q ∈

L × D and s ∈ (Σ − Σℓ)
∗. Let a sequence of consecutive transitions

in SSEFA(R,Lf )
N be the form p

σ17→R · · · σk−1 7→Rl
s
7→R q (k ≥ 1)

where σi ∈ Σℓ(i ∈ k-1) and s ∈ (Σ − Σℓ)
∗. Then there is a sequence

of transitions in SSEFA(R,Lf )
N , say p

ś
7→SSEFA(R,Lf )N

r with ś =
σ1 . . . σi, such that r ∈ Lm × Dm for some r ∈ L × D. Because
P̄ is a R-observer, then there is a p

u
7→SSEFA(R̃,Lf )j

l such that l ∈

Lm ×Dm and u ∈ (Σ−Σℓ)
∗. Hence, p

su
7→SSEFA(R̃,Lf )j

l and therefore,
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p ∈ SSEFA(R̃, Lf )
j . This contradicts the initial assumption that p /∈

SSEFA(R̃, Lf )
j .

We can extend Theorem 3 to Proposition 5 to accommodate systems
composed from two components.

Proposition 5. Let E1 and E2 be two nonblocking EFAs over the set of
shared variables V, along with local and uncontrollable event sets Σℓ,Σu ⊆
Σ := Σ1 ∪ Σ2, respectively, and let R := E1‖E2. Define the transition
projections P̄ : TR × Σℓ → TR,Q̄i : Ti × (Σi ∩ Σℓ) → Ti (i = 1, 2) and let
EFA R̃ = P̂ [E1‖E2,Σℓ]. Suppose the set of forbidden locations is Lf ⊂ L̃R.
If for i = 1, 2, Q̄i is an Ei-observer and OCC for Ei then

supS(E1‖E2, Lf) = supS(P̂ [E1‖E2,Σℓ], Lf)‖E1‖E2

Proof.
(⊇) Let E := SSEFA(E1‖E2, Lf ) and Ẽ := SSEFA(P̂ [E1‖E2,Σℓ], Lf ).

Then, Ẽ ⊆ P̂ [E1‖E2,Σℓ] = Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ]. Because
Qi is an Ei-observer (i = 1, 2), by Proposition 3 Ẽ is nonblocking.
Moreover, Ẽ is controllable with respect to P̂ [E1‖E2,Σℓ] and there-
fore, Ẽ‖E1‖E2 is controllable with respect to P̂ [E1‖E2,Σℓ]‖E1‖E2 =
E1‖E2. Because Ẽ ⊆ P̂ [E1‖E2,Σℓ], we know Ẽ‖E1‖E2 ⊆ P̂ [E1‖E2,Σℓ]‖E1‖E2.
Since we already know that Ẽ‖E1‖E2 is controllable with respect to
E1‖E2, Ẽ ⊆ E.

(⊆) While the condition that the Q̄i are Ei-observers (i = 1, 2) im-
plies that P̄ is an E-observer, the condition that Q̄i are OCC for
Ei(i = 1, 2) does not imply that P̄ is OCC for E1‖E2 so the result of
Theorem 3 is not applicable. Turning to induction on the fixed points
of SSEFA(E1‖E2, Lf )

N and SSEFA(P̂ [E1‖E2,Σℓ], Lf )
N , for the un-

controllability part, we see it follows the same arguments as in Theo-
rem 3:(⊆):(α) for the transitions p

vi7→R̃ qi /∈ SSEFA(P̂ [E1‖E2,Σℓ], Lf )
j

where vi ∈ Σc(i = 1, 2), v1,v2 are local to E1 and E2, respectively,
and for some state q1, q2 ∈ L1 × L2 therefore, is left out. For the
case v ∈ Σu and v is shared in E1 and E2, we have p

v
7→R̃ q /∈

SSEFA(P̂ [E1‖E2,Σℓ], Lf )
j for some state q ∈ L1×L2. Since v is not lo-

cal so the same transition exists inR thus p
v
7→R̃ q /∈ SSEFA(E1‖E2, Lf )

j ⊇

SSEFA(P̂ [E1‖E2,Σℓ], Lf )
N then p /∈ SSEFA(P̂ [E1‖E2,Σℓ], Lf )

N which
is in contradiction

By an argument similar to that for Theorem 3 we can further extend the
Proposition 5 for n number of EFAs as follows.
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!o2

eliminate1

eliminate2

Figure 5: The manufacturing workcell control flow.

Corollary 1. Let R := E1‖E2‖ · · · ‖En be the plant consist of n ≥ 2 non-
blocking components. Assume the set of local and uncontrollable events
Σℓ,Σu ⊆ Σ :=

⋃n
i=1 Σi, respectively. Define the P̄ : T × Σℓ → T, Q̄i :

Ti × (Σi ∩ Σℓ) → Ti. Let R̃ := P̂ [R,Σℓ] and the set of forbidden location be
Lf ⊂ L̃. If for i ∈ n, Qi is an Ei-observer and OCC for Ei, then

supS(R,Lf) = supS(R̃, Lf)‖R

Proof. The proof is similar to that of Proposition 5 by considering E2 as
E2‖ · · · ‖En.

This property was pointed out by [21, 38] and later in more general form
by [35], and Corollary 1 extends it to systems modeled by EFAs.

6 Example

6.1 Manufacturing Wokrcell

Consider a manufacturing workcell, borrowed from [14], consisting of three
machines M1, M2, and M3, working on parts stored in two buffers B1 and
B2 of size 16 and 8, respectively. Parts are supplied through an input
buffer IN (of infinite size) and stored after being processed in two output
buffers OUT1 and OUT2 (of infinite size). M1 supplies B1 with parts taken
from the input buffer IN; M2 takes a part from B2 and after processing
puts it either in OUT1 or in B1; and M3 takes a part from B1 and after
processing puts it either in OUT2 or in B2. To increase the practical usage
and complexity of the cell, two inspection unites TU1 and TU2 is added to
randomly inspecting parts from B1 and B2. Parts which are qualified will
be returned to the buffer otherwise will be eliminated. Fig. 5 shows the
workcell control flow and Fig. 6 illustrates the EFA models of the system.

In Fig. 6, the events with exclamation mark are the uncontrollable events
and shaded circles are the marked locations. The domain of the variable
b1 and b2 is D1 = {1, 2, . . . , 16} and D2 = {1, 2, . . . , 8}, respectively, which

25



ℓ0

ℓ1

in

!pb11

(a) M1

ℓ0

ℓ1

!o1

pb12

tb22

(b) M2

ℓ0

ℓ1

!o2

pb23

tb13

(c) M3

ℓ0

ℓ1

!test1

return1

eliminate1

g : b1 > 0

a : b1 := b1 − 1

g : b1 < 16

a : b1 := b1 + 1

(d) TU1

ℓ0

ℓ1

!test2

return2

eliminate2

g : b2 > 0

a : b2 := b2 − 1

g : b2 < 8

a : b2 := b2 + 1

(e) TU2

ℓ0

!pb11

pb12

pb23

g : b2 < 8

a : b2 := b2 + 1

g : b1 < 16

a : b1 := b1 + 1
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ℓ0
tb22

tb13

g : b1 > 0

a : b1 := b1 − 1
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a : b2 := b2 − 1

(g) Sp2

Figure 6: EFAs of the manufacturing workcell

ℓ0

g : b1 > 0

a : b1 := b1 − 1

g : b1 < 16

a : b1 := b1 + 1

return2

eliminate2

(a) T̃U1

ℓ0

g : b2 > 0

a : b2 := b2 − 1

g : b2 < 8

a : b2 := b2 + 1

return2

eliminate2

(b) T̃U2

Figure 7: Abstracted EFA models of TU1 and TU2 by using algorithm 1
and the set of local events Σℓ = {!test1, !test2}.

indicates the number of parts in the two buffers and their maximum capacity.
B1 and B2 initially contain no part, i.e. D0 = {(0, 0)}, and all values are
marked Dm = D1 ×D2. The workcell specifications are as follows. SPEC1:
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Figure 8: The robot workcell.

Table 1: Optimal nonblocking supervisory synthesis results of the manufac-
turing workcell example

Reachable States Supervisor States

Original Models 4896 4752
Abstracted Models 1224 1188

buffers B1 and B2 must not overflow, i.e., a machine must not try to put
a part in a buffer when it is full, i.e., when b1 = 16 or b2 = 8. SPEC2:
buffers B1 and B2 must not underflow, i.e., a machine must not try to take
a part from a buffer when it is empty, i.e., when b1 = 0 or b2 = 0. The
EFAs Sp1 and Sp2 of SPEC1 and SPEC2 are depicted in Fig. 6(f) and (g),
respectively.

To apply the model abstraction using transition projection as mentioned
earlier, first we find the local events in the system by checking the conditions
in Definition 9 for all the events. The first candidates for the set of local
events are {in, !test1, !test2, !o1, !o2}. Then, by Definition 10, the events
{!o1} and {!o2} cannot fulfill the E-observer conditions and therefore, are
eliminated from the list. Next, by checking the OCC conditions as in Defini-
tion 11, the event {in} is found to be inconsistent thus is removed. Finally,
the list Σℓ = {!test1, !test2} together with EFAs TU1 and TU2 are used
as the input parameters of Algorithm 1 in order to compute the projected
EFAs. The prjected EFAs of TU1 and TU2 by Algorithm 1 are represented
in Fig. 7(a) and (b), respectively. The optimal nonblocking and controllable
guards added by the algorithm SSEFA is the same as the example in [14].
Table 1 shows the result of optimal nonblocking supervisory synthesis for
both original and abstracted models.
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Table 2: Optimal nonblocking supervisory synthesis results of the robotic
workcell example

Reachable States Supervisor States

Original Models 4.023620354× 109 1.758696194× 109

Abstracted Models 5.235889× 106 2.961409× 106

6.2 Robotic Workcell

The abstraction method described above has been implemented as a tool-
box in Sequence Planner [47] software and applied efficiently on sequences
of operations [8] for a robot cell at Chalmers Robot and Automation Lab
modeled by EFAs. The cell consists of five ABB robots, two fixtures, an
AGV, and a conveyor. The desired behavior of the cell is the following:
Two parts are loaded by the operator and transported to the robot station
by the conveyor. Two robots pick and place the parts on fixture and as-
semble the parts. After that, the assembled parts are unloaded by the third
robot and delivered to a second station for further manipulation. In that
station, two other robots pop-rivet the remaining points. Then, the finished
product is unloaded by the third robot and transported from the worksta-
tion by an AGV, see Fig. 8. A set of local events for all operations are
created and checked to be observer and OCC. Then, operation models are
projected by Algorithm 1 and a non-blocking supervisor is synthesized by
Supremica tool. Table 2 shows the result supervisors for both original and
abstracted models. Note that, the significant abstraction that is achieved
in tis example is because of the special structure of operation models. For
more details regarding operation model and the example refer to [8, 48].

7 Conclusion

In this paper we have extended previous work on model abstraction by
natural projection with observer property to include EFA modeling formal-
ism. Transition projection is introduced to substitute natural projection for
EFAs by projecting the dynamic transitions without knowing its underlying
language. We independently compute the projection of the low-level compo-
nents without regard to their mutual conflict. Subsequently, to reduce com-
putational complexity, we compute the high-level coordinators based only
on abstracted models of the low-level components. Effective and consistent
model abstraction is accomplished through transition projections with the
observer and OCC properties.
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