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1 ABSTRACT

A method to design simple linear controllers for mildly nonlinear systems is pre-
sented. In order to design the desired controller, the behavior of the nonlinear
system is approximated with a set of linear systems which are derived through lin-
earizations. Classical local linearization is carried out around stationary points.
However, in order to obtain a better approximation of the nonlinear system selected
non-stationary points are taken into account as well. This set of linear models are
considered as an uncertainty description for a nominal plant. Quantitative Feedback
Theory (QFT) may be used to guarantee that the specifications is fulfilled for all
linear models in such an uncertainty set. Traditionally QFT design is carried out in
a Nichols diagram by loop shaping of the nominal linear plant. This task is highly
dependent on the experience of the designer and is difficult for unstable systems. In
order to facilitate this task, an optimization algorithm based on Genetic algorithm
is used to automatically synthesize a fixed structure controller. To illustrate and
evaluate, the method is applied to a Wiener system and two nonlinear Bioreactor
benchmark problems. In result of this type of design we succeeded to improve the
robustness and transient behavior of the nonlinear systems. Furthermore, differ-
ent criteria can be chosen as the objective function for to optimization to fulfill
a given set of criterion.Simulation and phase-plane analysis are used to select the
non-stationary points.

Keywords: Nonlinear, QFT, loop shaping, linearization, non-stationary point,
genetic algorithm.
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2 INTRODUCTION

2.1 Motivation

For most control problem there are several solutions, and every one of them might
be interesting from a specific perspective. In the process industry ease of imple-
mentation is without doubt one of the most important aspects of automatic control.
Provided the performance is acceptable, fixed structure and linear controllers, such
as PID controllers, are therefore advantageous even though the process itself may be
nonlinear. In line with this, the aim of the work presented here is a semi-automized
method for determination of fixed structure low order linear controllers for mildly
nonlinear single input single output (SISO) processes.

Depending on the character of a nonlinear process there are many methods for de-
signing nonlinear controllers, such as Feedback linearization, Sliding control, Adap-
tive control and Model predictive control (c.f. [11]). However, in many control
systems there is little support for these methods and operators are untrained in
their use. As a consequence, most mildly nonlinear plants are controlled by linear
controllers, mainly PID controllers, which are either tuned experimentally or syn-
thesized for a specific operating point. Because of the nonlinearities the system will
have deteriorating properties and may become unstable when operated too far away
from the design point. The idea here is to find a controller parameterization that
gives a robust system in the sense that it has an acceptable performance in a large
operating region.

Since there is an abundance of efficient methods for synthesis of linear controllers
from linear models, the use of a linear process model is in many cases motivated. In
general these linear models are derived from Taylor expansion of nonlinear system at
stationary points. Then, the controller designed for these linear systems is applied
to nonlinear system in small regions around stationary points. In practice in many
cases it is required that the feedback system works in a wider operating window
than only a small region around stationary points. Finding suitable linear models
for a nonlinear system which can be used in a wider operating window is still an
open research area. One way is to use a linear model and treat the nonlinearities as
model uncertainties. Schweickhardt and Allgöver [14, 15, 16] use this to define the
best linear model as the one with the smallest gain of the uncertainty. In [15] they
pursue by determining the linear controller such that the Small gain theorem can be
used to guarantee stability. The drawbacks are difficulties in the computation of the
nonlinearity measure (uncertainty gain), that the process needs to be stable, and that
the use of the Small gain theorem introduces conservatism in the resulting solution.
Basically, the problem of conservatism and its connection to the nonlinearity measure
originates from the fact that the gain is considered for signals that the controllers
might neither use nor apply. To some degree this can be taken into account by
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2.1 Motivation 3

bounding the input amplitude [16].

Olesen et al. also used the idea of treating the nonlinearities as uncertainties and
disturbances to show that only a few linear controllers are needed in gain scheduling
control of the temperature in an exothermic tank reactor. They use model lin-
earizations to generate a set of transfer functions that can be interpreted as a model
uncertainty description. This is then followed by a controller design using Quantita-
tive Feedback Theory (QFT) to guarantee robustness specifications for all transfer
functions in the set. By adding non-stationary linearization points the robustness
and operating window for each controller could be made significantly larger. The
use of off-equilibrium linearization has also been shown to improve performance of
gain scheduling control when the controller parameters are interpolated [10].

QFT was originally developed for linear systems with uncertainties (c.f. [9]), but
there are also extensions to nonlinear systems with uncertainties, which are based
on finding so-called equivalent linear models for the nonlinear system (see [1] and [2]
and references therein). The main idea in the first nonlinear QFT technique was to
replace the nonlinear system by a set of LTI systems for a set of acceptable outputs.
However, this requires the knowledge of what specific input signal that generates
the desired output, which currently limits its use. Prof. Horowitz also developed
another method for nonlinear QFT, based on the replacement of nonlinearities by
an equivalent disturbances set and a simple set of equivalent LTI systems [2].

Basically, standard linear QFT design is based on loop shaping the nominal loop
transfer function such that for each frequency considered it does not violate fre-
quency dependent Horowitz Sidi (HS) bounds. A drawback of standard QFT for
linear systems is that the manual loop-shaping in the Nichols chart highly depends
on the experience of the designer. During the last decade solutions to how to auto-
mate this step have therefore been proposed. Basically, they rely on optimization
where the bounds constrain the search space. The optimization problem, however,
is generally non-convex. Chait et al. convexifies the HS-bounds and solve the prob-
lem using linear programming. However, the use is limited because the method
requires that the closed loop poles are known beforehand. Another approach is
to use a global optimization routine. Nataraj et al. propose an interval analysis,
and Chen et al. use genetic algorithm. In both of them the high frequency gain
of controller considered as the objective function to be minimized. To improve the
accuracy for a given numerical effort Fransson et al. [5] use a combination of a global
(DIRECT method) and a local optimization routine. They also used different op-
timization criteria as the objective functions for different frequencies. It should be
noted that optimized control of uncertain linear systems can also be determined
using the structured singular value for the constraints, as in [6] and [17]. However,
for SISO systems with less than 8 parameters to optimize the use of HS-bounds can
in general be recommended [17].



4 Chapter 2 Introduction

2.2 Scope

The method presented here for nonlinear processes is based on the manual method
used by Olesen et al., combined with an optimization using genetic algorithm, which
has the advantage that no initial guess is required - a valuable property from an
automation point of view. Based on systematically selected simulations of the non-
linear system new linearization points are added to the set of transfer functions
until performance and robustness are no longer improved. This method is then
applied to a Wiener system studied by [15] and the problem is solved for two dif-
ferent optimization criterion. It has been shown that by choosing an appropriate
cost function for different objectives, the result can be improved. The method is
also applied to a nonlinear benchmark problem, an unstable bioreactor [13]. Some
solutions have been proposed for this problem such as [4], though it appears as if
no linear controller for the process has been evaluated earlier. The PID controller
derived with the method presented here performs well over the operating window
and also compare well to the sliding mode controller by Mehmed et al. We also
applied our method to a fourth order nonlinear CSTR benchmark problem. In this
problem non-stationary points are selected automatically using simulation of open
loop system for small steps as the references and the results are compared to H∞
solution given in [15]. The main goal in this work is to present a simple method
for designing linear controllers for nonlinear system. The main differences between
the presented method and gain scheduling are i) In this work by using optimization
algorithm we tried to facilitate the controller design procedure and ii) to exploit a
robust controller design method, we tried to increase the robustness of controller. In
result of this type of design the number of required controllers is decreased compare
to gain scheduling.

2.3 Thesis organization

The organization of this thesis is as follows:

Chapter 3: This chapter is devoted to a theoretical background on Quantitative
Feedback Theory and Genetic algorithm.

Chapter 4: In this chapter, the automated controller synthesis using the Genetic
algorithm for both linear and nonlinear systems is described. Two examples are
presented to show the efficiency of the algorithm for linear systems. Then, a method
to automatically design simple linear controllers for mildly nonlinear systems is
presented. The method is successfully applied to a linear system followed by a
static nonlinearity. It is also shown how different optimization criterion can improve
our design.

Chapter 5: In this chapter the proposed method is applied to an unstable bioreactor
benchmark problem. It is shown that linearization around the non-stationary points,
in addition to stationary points improves the robustness.
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Chapter 6: In order to further evaluate the method, a fourth order CSTR bench-
mark problem is selected. Non-stationary points are added to the uncertainty set
through the simulation of the open loop system. The results are compared to an
H∞ design for the best linear model according to [15].



3 BACKGROUND

3.1 Quantitative Feedback Theory as a tool of de-
sign and analysis

QFT is a method for design and analysis of feedback control of uncertain systems,
originally developed by I. Horowitz [9].

The philosophy behind QFT is that we do not need feedback in the control design
unless the uncertainties in the plant parameters or disturbance uncertainties are
more than the acceptable performance uncertainties. In other words, if the amount
of these uncertainties is less than the acceptable amount of performance uncertainties
we do not need feedback and an open loop control is sufficient. The amount of
required feedback depends on the interaction of three sets P = {uncertainties in
the system}, D = {uncertainties due to the disturbance} and A = {the acceptable
uncertainties in the performance of system}. The concepts of controllabilty and
observability which play an important role in Modern control are inherently in the
design procedure. Hence, there is no need for explicit test of controllabilty and
observability. QFT can cope both parametric and unstructured uncertainties as
well. An uncertain plant with parametric uncertainty can be defined as

P (s) ∈ {P (s, q) q ∈ Rn (3.1)

where q are then uncertain parameters. A plant with unstructured multiplicative
uncertainty is written

P (s) = Pnom(s)(1 + M(s)), |M(s)| ≤ m(s) ≤ 1 (3.2)

where M(s) is an asymptotically stable transfer function. Uncertainties and spec-
ifications should be translated into the frequency domain, and one arbitrary plant
transfer function Pnom is considered as the nominal one. Instead of simultaneous
design for all the loop transfer functions defined by the uncertainties, the design
can then be carried out only for the nominal loop transfer function, Lnom(jω) =
Pnom(jω)G(jω), where G(jω) is the controller. This nominal loop transfer func-
tion is a frequency dependent function and should satisfy frequency dependent con-
straints for each frequency. In QFT for a single input single output system (SISO)
we will use a two degree of freedom (DOF) controller (see Fig. 3.1), in one DOF
controller the system response transfer function T (s) and the sensitivity function
S(s) always depend on each other because T (s) + S(s) = 1, which results in limita-
tion in the design procedure. If we add a prefilter F (s) to the system the equation
changes to S = 1 − (T/F ) where F is a free function. For a system which we can
measure the output (Y ) and input (R) there is no need for the controller to have
more than two degree of freedoms. In QFT the design process is carried out for
transfer functions and therefor, there is no need to use a state space description.

6



3.1 Quantitative Feedback Theory as a tool of design and analysis 7

In other words, for instance for a single input single output (SISO) system we have
access only to one of the states so there is no need to deal with the state space
and large matrices. Another feature of QFT is the use of the nominal loop transfer
function Lnom(jω) instead of the nominal sensitivity function Snom(jω) = 1

1+Lnom(jω)

(in contrast to H∞). As the Bode, one of the father features in feedback amplifier
theory mentioned in [8], cost of feedback is mostly paid for bandwidth. The band-
width of Lnom is determined by the interaction of the two sets of A and P , which
were described before. The main reason for choosing Lnom over Snom in QFT is that
in the frequency range [ωc, ωG]where ωc and ωG are cross over frequency of Lnom and
G respectively, the sensitivity function Snom is very insensitive. The effect of noise
N at the plant input U in the high frequency range where |Lnom| ¿ 1 is

TN =
−U

N
=

G

1 + Lnom

≈ G =
Lnom

Pnom

The large noise amplification over the high frequency range ([ωc, ωG]) can saturate
the system and as mentioned before the sensitivity function is insensitive in this
important frequency range. In QFT design for a single input single output system,
the first step is to define the plant uncertainties P (jω) and T (jω) = L(jω)

1+L(jω)
toler-

ances quantitatively. Then we can easily find the resulting bounds on the nominal
loop transfer function Lnom. As can be seen, the bounds on T (jω) cause bounds on
the Lnom in the Nichols diagram. Finally, in QFT design the loop transfer function
should be shaped such that it satisfies frequency dependent boundaries (B(jω)) so
called Horowitz-Sidi bounds. In QFT design, the trade off between cost of feedback
(bandwidth), its benefits and the order of compensator is clear to the designer. Un-
der the assumption that the set {P (ω)} is a connected set in the complex plane and
the plant P (s) is a strictly proper transfer function with a fixed excess of poles over
zeros the stability is guaranteed for all P (s) ∈ {Pi(s)}. The formal proof for the
foregoing claim is given in [8].

Figure 3.1. Two degree of freedom controller.

In general the design procedure in QFT includes two parts:

• Design the feedback compensator G(s).

• Design the prefilter F (s).
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Now, we explain how these two task are carried out in practice.

3.1.1 Design the feedback compensator G(s)

The purpose of designing a feedback compensator G(s) is to reduce the closed loop
uncertainties such that they lie within the permissible envelope of the specifications.
This task is carried out through the following steps:

• Define the uncertainties in the process by a set of transfer functions Pi(s).
These uncertainties can be either parametric or multiplicative. One of the
plant transfer functions is selected to be the nominal one. Then we calculate
the so called templates for selected frequencies. pi(jωk), j = 1, ..n, ωk = ω1, ...ωN

The template or value set shows the plant uncertainties at each specific fre-
quency. The selection of these frequencies should be carried out with special
care, because a large number of frequencies result in a large number of tem-
plates and causing calculation difficulties.

• Formulate closed loop specifications, such as servo specification and sensitiv-
ity specifications. These specifications should be given in frequency domain.
Specifications in time domain is therefore translated to frequency domain using
The QFT toolbox (Qsyn) for example.

• Use the templates and specifications to calculate the corresponding Horowitz-
Sidi bounds for the specifications. Here we show the procedure for a simple
case of servo specification.

a(ω) ≤
∣∣∣∣
F (jω)G(jω)P (jω)

1 + G(jω)P (jω)

∣∣∣∣ ≤ b(ω) (3.3)

As there are no uncertainties in F (s) the specification above indicates that the
complex number G(jωk) at the frequency wk must be determined such that

maxi

∣∣∣ G(jωk)Pi(jωk)
1+G(jωk)Pi(jωk)

∣∣∣
mini

∣∣∣ G(jωk)Pi(jωk)
1+G(jωk)Pi(jωk)

∣∣∣
≤ b(ωk)

a(ωk)
(3.4)

The above equation is called the tolerance specification at the frequency ωk.
For some large values of G(jω) the above equation can be satisfied and for
some value smaller than a specific value it might not be satisfied. Hence,
there exists borders Bi(jω) in the complex plane between the permissible and
impermissible values of Lnom, and those are called Horowitz-Sidi tolerance
Bounds. In a quite similar approach we can define the Horowitz-Sidi bounds
in respect to other specifications such as sensitivity function specification or
input disturbance rejection. It is worth to mention again that if the equation:

maxi |Pi(jωk)|
mini |Pi(jωk)| ≤

b(ωk)

a(ωk)
∀ωk (3.5)

is satisfied for all frequency there is no need for feedback.
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• Given the nominal plant and the Horowitz-Sidi bounds, exploit loop shaping
techniques to shape the nominal loop transfer function such that it satisfies
all the Horowitz-Sidi bounds. The design is carried out in frequency domain
in Nichols diagram. This task requires a designer with enough experience in
this area. Hence, a computer program that can do this task automatically can
play a quite constructive role in finding a good design. When a loop transfer
function that do not violate these H-S bounds is found, we can move on to the
next phase.

• Check the stability of the closed loop system for all plants with Nyquist crite-
rion.

3.1.2 Design of prefilter F (s)

If the system response is not within the acceptable servo specification envelope, a
prefilter F (s) is needed prior to the loop.

Over the last two decades Quantitative feedback theory is applied to many real
engineering problems, such as process control systems, idle speed control for an
automotive fuel injection engine, flight control, hydraulic actuator, etc.

3.2 Background on Genetic Algorithm

There exist many optimization and computational methods which are inspired by the
biological evolution. Genetic algorithm (GA) is one of the most popular algorithms
which belong to these evolutionary methods. It is a stochastic optimization method
which is inspired by biological evolution based on Darwin’s theorem. At first we
begin by giving some common definitions which are used in the Genetic algorithm,
then we explain how the Genetic algorithm works and explain about its features.

• Fitness function is the function we want to minimize. In standard optimization
algorithm, it is called the objective function, cost function or lost function.

• An individual is any point or a vector with the equal length as the number of
optimization variables that the fitness function is calculated for. The value of
fitness function for each individual is called score.

• The population is a matrix which consists of individuals. For instance if the
population size is 50 and there are 4 optimization variables in the fitness
function, the population is represented by a 50-by-4 matrix. At each iteration
a series of computations is performed on the current population to produce a
new population which is called new generation.

• In a population, diversity shows the average distance between individuals. If a
population has individuals with a large average distance, it is a high diversity
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population and the population with a low average distance among individuals
is a low diversity population. Diversity is an important factor in the Genetic
algorithm because populations with high diversity makes it possible for the
algorithm to cover a larger region of space.

• In the current population the genetic algorithm selects the individuals with
better fitness values to produce the next generation, which is called the children
or the offspring.

In an optimization problem that is solved using GA, the optimization variables are
encoded in a string called chromosomes. Each chromosome consists of a number
of genes that determine the characteristic of encoding scheme. The Algorithm is
initialized with a set of random individuals called initial population. Individuals
with a better fitness values from one population are taken to form new populations.
These new solutions are called offspring. In each iteration, the individuals with
better fitness survive and are used to reproduce the next generation. This iteration
continues until a specific condition, e.g the maximum number of iterations, or a
tolerance for acceptable fitness, is satisfied. Here we briefly introduce the different
components of the Genetic algorithm and discuss about the interaction of these
components with each other.

• Encoding Scheme.

• Fitness assignment.

• Crossover.

• Mutation.

Encoding Scheme: the representation of individual genes in a chromosome can
be chosen in several different ways. One choice is binary encoding where genes take
the values of 0 or 1. Another method is real number encoding, where genes take
any value in the sector [0, R]. These chromosomes contain information about the
solution of the problem.

Fitness assignment: The evaluation of an individual leads to a fitness assignment,
which conveys information on the performance of the individuals. The simplest
possible fitness assignment consists of simply assigning the value obtained from the
evaluation without any transformations. This value is known as the raw fitness.

Crossover: Crossover is one of the most important operations in GA. In this stage
crossover selects genes from parent chromosomes and creates a new offspring. In
other words it allows partial solutions from different regions of the search space
to be assembled into a complete solution of the problem.One easy way to do this
operation is to choose randomly some crossover points. Then everything before
this point copy from a first parent and the rest copy from another parent and the
combination makes a new offspring.
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crossover Child

Figure 3.2. Crossover operation.

Mutation: Mutation is another important operator in GA. This operation takes
place after the crossover. The main goal of mutation is to prevent all solutions from
ending up at local minima. It randomly changes the genes of individual parents.
For example in the case of binary encoding we can switch a few randomly chosen
bits from 1 to 0 and vice versa.

Mutation Child

Figure 3.3. Mutation operation.

In addition to the two types of crossover and mutation offspring, there is another
type which is called elite children. Elite offsprings have the best fitness values among
all individuals in the current generation. These individuals automatically are passed
to the next generation.

Elite Child

Figure 3.4. Elite child.

In genetic algorithm, there are several stopping criteria for the algorithm such as
number of specific iteration or specific tolerance value. It is good to note that
the operation of genetic algorithm is completely different from a random search.
For instance the mutation, which provide new offsprings that GA can work with is
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random but selection of better individual is not random. For more comprehensive
discussion about this issue the readers are referred to the references and study of
schema theorem.

Genetic algorithm is a powerful global optimization method which can handle both
constrained and non-constrained optimization problem. The constraints can be in
the form of linear equality or inequality. It also cope with nonlinear equality and
inequality constraints with bounds on the optimization variables. The Matlab tool-
box for genetic algorithm is used in our work. This toolbox uses the Augmented
lagrangian Genetic algorithm to solve nonlinear constraint problems. The optimiza-
tion problem can be written as below

min
θ

J(θ)

subject to:

nci(θ) ≤ 0 ∀i
nceqi(θ) = 0 ∀i

A · θ ≤ b

Aeq · θ = beq

lb ≤ θ ≤ ub

where nci(θ) are the nonlinear inequality constraints, nceqi(θ) are nonlinear equal-
ity constraints, Aθ and Aeqθ represent the linear inequality and equality constraints
respectively.lb and ub are lower and upper bounds on the optimization variables re-
spectively. As we discussed earlier, the augmented lagrangian genetic algorithm can
handle an optimization problem with nonlinear and linear constraints with bounds
on the optimization variables. The algorithm deals with the linear constraints and
bounds separately from nonlinear constraints. In order to solve such a problem, a
subproblem is formulated using the Lagrangian and the penalty parameters. The
subproblem is shown below:

Ψ(θ, λ, s, ρ) = J(θ)−
n∑

i=1

λisi log(si−nci(θ))+
nt∑

i=n+1

λinci(θ)+
ρ

2

nt∑
i=n+1

nci(θ)
2, (3.6)

where λ is a vector of nonnegative Lagrange multiplier estimates, s is the nonnega-
tive shift vector and ρ is the penalty parameter. The algorithm starts with an initial
value of ρ called the initial penalty. The genetic algorithm starts minimizing a se-
quence of this type of subproblems. If the desired accuracy is reached the Lagrangian
multipliers are updated. Otherwise, the algorithm imposes a larger penalty param-
eter into the problem. (in genetic algorithm toolbox it is called PenaltyFactor).
These steps are continued until the stopping criteria is satisfied.



4 AUTOMATED CONTROLLER SYNTHE-
SIS USING GENETIC ALGORITHM

4.1 Controller Synthesis for Linear Systems

As we mentioned in the previous chapter, one difficulty in designing a controller
using QFT is the manual loop-shaping. To overcome this difficulty, we can use an
optimization algorithm to find a controller that not only satisfies the specifications
but is also optimized with respect to a desired criterion.In practice, QFT loop-
shaping is carried out in a Nichols diagram for a finite number of frequencies, Ω =
{ωk}. If we assume that the controller has a fixed structure

G(s) =
θmsm + θm−1s

m−1 + ... + θ0

sn + θm+nsn−1 + ... + θm+1

(4.1)

where θ is the parameter vector to be determined by optimization. The Horowitz-
Sidi bounds at each frequency ωi are denoted Bi(∠L0(jωi, θ), ωi). These bounds
have different shapes and may be single-valued or multiple valued, depending on
the specifications. In general though, they are non-convex.

The objective here is to synthesize a controller such that:

• The Horowitz-Sidi bounds at each frequency ωi are not violated.

• The nominal loop-transfer function is stable.

• The controller has low complexity.

• The controller is optimized with respect to the desired criterion.

In most QFT literature, the aim is to minimize the high frequency gain of the
controller. In this work we follow that tradition. However, for one of the examples
in this chapter, it has been shown that for different targets we can use different
criteria to optimize the results. For instance the cost function J(θ) can be the high
frequency gain of the controller or low frequency disturbance rejection, as in [5], or
any other criteria.

In the next step, The Horowitz-Sidi bounds are translated to nonlinear constraint
inequalities as below:

ubi(θ) = Bi(∠L0(jωi, θ), ωi)− |L0(jωi, θ)| ≤ 0 (4.2)

lbi(θ) = |L0(jωi, θ)| −Bi(∠L0(jωi, θ), ωi) ≤ 0 (4.3)

where ubi and lbi are upper and lower single-valued bound constraints. Multiple
valued bounds are split into one upper and one lower bound. There are in general

13



14 Chapter 4 AUTOMATED CONTROLLER SYNTHESIS USING GENETIC ALGORITHM

no analytical functions for these bounds and in this work we derive them numerically
using the QSYN toolbox for Matlab [7]. The nominal closed loop transfer function
stability imposes one more constraint to the problem: the roots λ of 1 + L0 = 0
should be in the LHP. Hence, the problem can now be formulated as

min
θ

J(θ)

subject to:

ubi(θ) ≤ 0 ∀i
lbi(θ) ≤ 0 ∀i

Re[λ(1 + L0)] ≤ 0

This problem is classified in the global optimization category with nonlinear con-
straints, a class that classical gradient based optimization methods are generally not
suited for. However, Genetic algorithm, which is a powerful evolutionary method
with the ability to handle the nonlinear constraints, is a good candidate to solve
this problem.

Advantages of this method are:

• There is no need for an initial guess.

• There is no need to determine optimization variable search space in advance,
though it is still possible to do so.

• The structure of the controller can be determined by the designer to fit the
target control system.

• It is possible to use the solution which is derived from the Genetic algorithm
in a classical local optimization method to improve the solution. [5]

In order to illustrate the efficiency of this automated synthesis, a manual design
example from the QSYN-manual is compared with the solution derived by optimiza-
tion. In the Qsyn manual, two different controllers are presented for the following
example. We also use the same controller structure with unknown coefficients and
try to find these variables using our optimization algorithm.

Example 1 An uncertain plant, with parametric uncertainty is given:

P (s) = K.
s + a

1 + 2ζs/ωn + s2/w2
n

(4.4)

where K ∈ [2, 5], a ∈ [1, 3], ζ ∈ [0.1, 0.6] and ωn ∈ [4, 8].

The design specifications are:

MT ≤ 0.1 (4.5)

Ts ≤ 10s (4.6)

‖S(jω)‖ =
1

|1 + G(jω)P (jω)| ≤ 6dB (4.7)
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where MT is the maximum overshoot of the closed loop step response, Ts is the
settling time and S(jω) is the sensitivity function. In the first case, the structure of
G(s) is

G(s) =
θ3s

3 + θ2s
2 + θ1s + θ0

s4 + θ3
6 + θ5s2 + θ4

(4.8)

i.e. the same as the controller presented in the manual. First, the design spec-
ifications (4.5) and (4.6) are translated to the frequency domain. In QSYN this
task is carried out through an approximation of the closed loop system by a low
order system, from which the correspondence between time and frequency domain
is found.

The objective function to be minimized is the high frequency gain of controller,
i.e. J(θ) = θ3. The optimization variables are the coefficients of G(s), i.e. θ =
[θ0, θ1, ...θ6]

>. The numerical values for Horowitz-Sidi bounds are calculated using
Qsyn and are fed to the genetic algorithm toolbox In the Genetic algorithm toolbox
we set the population size to 60 while the initial population is left blank, i.e. no
initial guess is made and the initial range is considered [0; 1]. If we have a rough
idea about the minimal point for a function in advance, we can set initial range such
that the minimum point lies somewhere within the initial range. For instance, for
an optimization problem, we know that the minimal point is around [0, 0] the best
choice for initial range is [−1; 1]. However, the genetic algorithm is still capable
to find the minimum points for the cases that the initial range is not optimal.The
other parameters in the toolbox set as the default. The optimization time highly
depends on the number of optimization variables and population size, for this specific
example with 6 variables and initial population size of 60, it is around 30 min.

As can be seen from Fig. 4.1 and 4.2, the automatically synthesized controller sat-
isfies all specifications, that is, the nominal loop transfer function for the selected
frequencies is outside the sensitivity HS bounds and above the bounds for the servo
specifications.The nominal loop transfer function L0(jω) is stable and the high fre-
quency gain of the controller in the automated design is less than the solution given
in the manual.

Next, we solve the problem again but choosing the controller structure as:

G(s) =
θ4s

4 + θ3s
3 + θ2s

2 + θ1s + θ0

s5 + θ8s4 + θ7s3 + θ5s2 + θ5

(4.9)

and the result is illustrated in Fig. 4.3. Again we can observe that the solution
which is derived using genetic algorithm satisfies all specifications and minimize
the high frequency gain of the controller.The foregoing examples showed how the
Genetic algorithm can be used to solve the loop-shaping problem for an uncertain
linear system. In Fig. 4.4 and 4.5 the Matlab toolbox for the Genetic algorithm
and some characteristics of the solution and features of toolbox for the mentioned
example are shown.
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Figure 4.1. QFT solution for manual loop-shaping. The closed curve in the
middle are sensitivity H-S bounds and the hat shape bounds are tolerance bounds.
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Figure 4.4. Matlab Toolbox GUI for Genetic Algorithm
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4.2 Controller Synthesis for Nonlinear Systems

So far, we have shown how the genetic algorithm can be used to automate the
loop-shaping in the Nichols diagram for LTI systems. Next step is to transform
the nonlinear system into a LTI problem inorder to solve it with GA. The ultimate
goal is to present a controller that not only works in a small region around the
equilibrium points but also is robust to rather large deviations from equilibria.

Quantitative feedback theory is a useful method for design and analysis of uncertain
linear systems. There are also methods to design QFT controller for nonlinear
systems. However, a so-called equivalent linear model needs to be found then. To
find this equivalent linear model is required a good knowledge about which input
signal will yield the desired output. For an unstable system this is not a trivial task
(cf. the issues in finding the best linear model [15]). Different methods of finding
this equivalent linear model are discussed in [1]. In general the methods can be
divided into a global and a local approach. Because of difficulties dealing with the
global approach, the local approach is our interest here in this work.

For a nonlinear system:

ẋ = f(x, u) (4.10)

y = h(x, u) (4.11)

local linearization around (x̄, ū) gives:

∆ẋ = A(x̄, ū)∆x + B(x̄, ū)∆u

+ R(x̄, ū) (4.12)
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where

A =
∂f

∂x
(x̄, ū) (4.13)

B =
∂f

∂u
(x̄, ū) (4.14)

and ∆x and ∆u are the deviations from x̄ and ū respectively.

In classic linearization this task is carried out only for stationary points which are
derived from:

f(x̄, ū) = 0 (4.15)

ȳ = h(x̄, ū) (4.16)

which implies R(x̄, ū) = 0. Linearization around non-stationary points introduces a
constant R(x̄, ū) and due to this term, properties such as stability are meaningless,
because these points are reached only during transients. Equation (4.12) approxi-
mates the possibe transient dynamics of the nonlinear system when the trajectory
is close to (x̄, ū). In [10], it is shown with a phase plane analysis for a second order
system, that the linearization around these non-stationary points approximates the
flow of a nonlinear system well. Under the assumption that R(x̄, ū) is small enough,
R can also be considered as a process disturbance. The nonlinear system is then
approximated by a family of LTI systems and a set of process disturbances.

Another method of linearization is dynamic linearization around some nominal tra-
jectory, but the problem with this method is that the resulting system is a linear
time variant system (LTV), which is not suitable for QFT analysis. The advantages
of using a combination of linearization around stationary and non-stationary points
over the other methods are:

• We have a better approximation of the nonlinear system compared to the clas-
sic method. If for a moment we forget about the nonlinear system and assume
we have an uncertain linear model instead, then we have a more comprehensive
description of the uncertainties in the system.

• If the non-stationary points are selected appropriately the resulting system
might have a wider region of attraction for the trajectories of the system.

• The resulting system is a LTI sysem.

In this work the design is carried out according to the following steps:

1. Define the specifications and the cost function to be minimized.

2. Determine equilibria and linearize around them to get the initial set {P0i(jωk)}.
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3. Determine the relevant non-stationary points in the desired operating window,
linearize around them and add the new templates {Pi(jωk)}.

4. Translate the specifications into Horowitz-Sidi bounds in the Nichols chart.

5. Decide the structure of the controller.

6. Run the optimization algorithm using GA.

7. Simulate the system with initial conditions in the desired operating window.

8. If the response becomes unstable, go back to the step 3 and repeat the algo-
rithm again.

In this, we add work not only non-stationary points to the linearization points set,
but we also try to find an effective way for selecting the best non-stationary points.
For a second order system, this task can be carried out by using phase-plane anal-
ysis. It means that the stationary points are calculated first. Then the operating
window in the state space is determined. In the next step we start to deviate from
the stationary curve and select the non-stationary points in the desired operating
window close to the stationary points curve. we continue this task iteratively until
improvement ceases. It means that by adding non-stationary points to the lineariza-
tion points set, the uncertainties in the plant increases in such a way that makes
it impossible for genetic algorithm to find a feasible solution. In chapter 5, this
method is applied to a second order unstable benchmark problem and the result
shows how linearization around these non-stationary points improved the robust-
ness of our controller. This method is not limited to only second order systems.
For cases when the plant has an order larger than two, instead of using phase-plane
analysis, the simulations are used to select the relevant non-stationary points. For
stable systems one possible way to pick the non-stationary points is to simulate the
open loop system for small steps in the input. In other words, if the input signal
u ∈ [u, u] then we can simulate the open loop for different input in the allowable
interval and save the trajectories which are evolved in the desired operating window.
Then we can use points on these trajectories as the non-stationary points. The pro-
posed method is applied to a fourth order CSTR benchmark problem (see Chapter
6.). The method is not restricted to stable systems. For an unstable system with
the order greater than two, at first a stabilizable controller can be designed for the
main operating window. Then, we can follow the same procedure as the stable case.

Example 2

In [15], an example which compares the capability of two controllers in rejecting
disturbances is presented. One of the controllers is designed for the best linear model
and another one is designed for a linear model derived through classic linearization.
Here, we applied the proposed method, based on QFT, on the same nonlinear system
and compared the results with the two previous ones.
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The nonlinear model is a simple Wiener system. The Wiener system is given by the
series connection of the linear system P (s) = 1

(s+1)3
followed by a static nonlinearity

f(x) = x + x3. The control signal is limited to be u ∈ [−2, 2].

First, the nonlinear system is linearized around stationary and relevant non-stationary
points. The effect of linearizing at different points is only in the DC gain of the
system. It can be interpreted that we can replace the nonlinear system with an un-
certain linear system with uncertainty only in the DC gain. Then, in the next step
the servo and disturbance rejection specifications are translated to the frequency
domain. Finally, Genetic algorithm is used to synthesize a PID controller for this
system such that the high frequency gain of the controller is minimized.

The two controllers presented in [15], are the controller designed for the best linear
model

u = (0.2 +
0.12

s
)e (4.17)

and the controller derived from local linearization:

u = (1 +
0.6

s
)e (4.18)

The controller designed using QFT and linearization at stationary and non-stationary
points is

u = (
0.397s2 + 0.562s + 0.334

s
)e (4.19)

In this example the nonlinear system is a third order system, Hence we cannot use
phase plane analysis to decide the selection of non-stationary points. One possible
way is to use simulation. Basically, we start with designing a controller only for
the desired operating point. Then we define the desired operating window and
perturb the system with different step signals as the output disturbances. For the
trajectories that stay in the operating window, we can collect the data and add
points from trajectories to the set of non-stationary points. As can be seen in
Fig. 4.7 and 4.8 adding non-stationary linearization points improves the robustness
and performance considerably. The derived PID controller also compares well to the
controller based on the best linear model [15].

In [12] different optimization criteria for tuning the PID controllers are presented.
To improve the performance in the foregoing example we can minimize ouput dis-
turbance rejection criterion instead of the high frequency gain of the controller. i.e,

JLF = ‖S(s)‖∞ (4.20)

(4.21)

where S(s) is the sensitivity function.

The foregoing criterion is a measure of the system’s ability to handle LF output
disturbances. The controller derived for this criterion is:

u = (
0.588s2 + 0.614s + 0.336

s
)e (4.22)
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Figure 4.6. Closed loop responses to a step with unit height as output dis-
turbance. The solid curve (blue) corresponds to the QFT controller, the dashed
curve (red) is the response corresponding to the best linear model, and the dashed-
dot curve (green) is the closed loop response with the controller based on local
linearization.
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Figure 4.7. Closed loop responses to a step with unit height as output distur-
bance. The solid curve (blue) corresponds to the QFT controller, the dashed-dot
curve (red) is the response corresponding to the best linear model, and the dashed
curve (green) is the closed loop response with the controller based on local lin-
earization.
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Figure 4.8. Closed loop responses to the step with height two as the output
disturbance. The solid curve (blue) corresponds to the QFT controller, the dashed
curve (red) is the response corresponding to the best linear model and the dashed-
dot curve (green) is the closed loop response with the controller based on local
linearization.

Criterion H∞norm
JHF = KD 1.17

JLF = ‖S(s)‖∞ 1.11
Best linear Model 1.14

Table 4.1. H∞ norm for different optimization criterion.

Fig. 4.9 and 4.10 illustrate the output and control activity for different controllers
to the output disturbance. As can be seen, with this new criterion, we could further
improve the performance of the system.

One might ask if it is fair to compare a PI controller with a PID controller design.
To answer this question, we should note that the idea here is not to compare our
PID design with the PI design in [15]. With this comparison we would like to show
that, the outcome from the presented method is as satisfactory as the result from
the method given in [15].

To show the importance of the optimization criterion in our design, the Wiener
system is simulated for a process disturbance instead of the output disturbance this
time. Another controller is also designed to reject the LF process disturbance. The
following criterion is used in the optimization algorithm:

JLF = ‖S(s)P (s)‖∞ (4.23)
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Figure 4.9. The dashed curve (red) is the closed loop response to the step
with height two as the output disturbance for the best linear model, the dashed-
dot curve (blue) is the response for the QFT designed controller with the high
frequency gain of the controller as the cost function to be minimized, the solid
curve (green) is the output for the QFT controller with LF output disturbance
rejection as the objective function and eventually the dotted curve(purple) is the
controller for the local linear model.

where S(s) is the sensitivity function and P (s) is the plant transfer function. The
derived controller is then

u = (
0.684s2 + 0.584s + 0.526

s
)e (4.24)

Fig. 4.11 and 4.12 show that the designed controller for the LF output disturbance
rejection might not have the same behavior for other purposes. In other word, we
observe that although the designed controller for the best linear model shows a good
behavior in rejecting the output disturbance but its response is deteriorated when
a process disturbance is applied to the system. The presented method in this work
not only improve robustness but can be easily optimized with our algorithm with
respect to different desired criterion. Hence, robustness, simplicity and flexibility
are of the characteristics of the proposed algorithm.
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Figure 4.10. The dashed curve (red) is the control signal for the controller
designed for the best linear model, The solid curve (green) is the control signal
for the PID controller design to minimize the effect of LF output disturbance and
the dashed-dot curve (blue) is the control signal for the PID controller with the
high frequency gain of the controller as the cost function
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Figure 4.11. Closed loop responses to a step with height one as the process
disturbance. The solid curve (purple) corresponds to the QFT controller, the
dashed curve (red) is the response corresponding to the best linear model, and
the dashed-dot curve (blue) is the closed loop response with the controller based
on local linearization.
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Figure 4.12. The solid curve (purple) is the control signal corresponds to the
QFT controller which is designed with respect to process disturbance rejection
criterion, the dashed curve (red) is the control signal corresponding to the best
linear model, and the dashed-dot curve (blue) is the control signal for the con-
troller which has the minimum high frequency gain.



5 BENCHMARK PROBLEM 1

5.1 MODELING

In order to further evaluate the performance and characteristics of our method, we
have selected a Bioreactor Benchmark problem as the plant to be controlled due
to its interesting characteristic [13]. Although this process is rather simple and
has only two state variables, it is difficult to control due to strong nonlinearity.
The bioreactor is a continuous flow stirred tank reactor (CSTR) with water and
cells (e.g., yeast or bacteria) which consumes nutrients (’substrate’) and produce
products (both desired and undesired) and more cells. The stated control problem
is tracking a desired amount of cell mass.

Figure 5.1. Bioreactor with ρ as input and x1 as output

The state space equations of the plant are:

Ẋ1 = −X1ρ + X1(1−X2)e
X2/γ (5.1)

Ẋ2 = −X2ρ + X1(1−X2)e
X2/γ 1 + ρ

1 + ρ−X2

(5.2)

where X1 is dimensionless cell mass and X2 is nutrient conversion, defined as (SF −
S)/SF , where SF is the concentration of nutrient in the feed to the reactor and S is
the concentration (of nutrient) in the reactor. The constraints on the state variables
are:

Ω : 0 ≤ X1, X2 ≤ 1

27
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ρ is the control signal, which is the flow rate through the reactor (0 ≤ ρ ≤ 2). To
have a better understanding of these equations we will explain each term below:

The first term (−X1ρ) in (5.1) is the amount of cells leaving the tank and the second

term X1(1−X2)e
X2
ρ represents cell growth in the tank. The rate is proportional to

the current amount of cell and depends nonlinearly on the amount of X2. In (5.2),
the first term (−X2) is the amount of nutrient leaving the tank and the second term

X1(1−X2)e
X2/γ 1 + β

1 + β −X2

is the rate by which the nutrient is metabolized. The constants β and γ determine
the rate of cell growth and nutrient consumption. From the equations we may also
deduce that cell growth in moderate nutrient concentrations is faster than at very
high or low conversion.

This system is a challenging benchmark because it is highly nonlinear and for some
values of ρ limit cycle is unavoidable, see Fig. 5.2. The system is also unstable, as
can be seen in the phase portrait in Fig. 5.3. It can be noted that the system has one
stable and one unstable eigenvalue in this area so the equilibrium points are saddle
points. The system response is very sensitive to parameter variation. It means that
a small error in the model can cause a large change in the control problem.

x ’ = − 1 x + y (1 − x) exp(x/.48) (1 + .02)/(1 + .02 − x)
y ’ = − 1 y + y (1 − x) exp(x/.48)                        
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Figure 5.2. Limit cycle for ρ = 1
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x ’ = − 1.26257 x + y (1 − x) exp(x/.48) (1 + .02)/(1 + .02 − x)
y ’ = − 1.26257 y + y (1 − x) exp(x/.48)                        
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Figure 5.3. saddle point equilibrium for ρ = 1.26

5.2 CONTROL DESIGN

According to our design procedure we begin by linearizing the system around its
stationary curve. To obtain stationary points we need to solve (5.1) and (5.2) at a
steady state, which gives

Ẋ1 = 0 ⇒ ρss = (1−X2)
X2/ρ (5.3)

Ẋ2 = 0 ⇒ X2 = 0 or X2 = x1
1 + β

1 + β −X2

(5.4)

From the plot in Fig. 5.4, we observe that in a steady state we cannot achieve any
value larger than 1+β

4
= 0.255 for cell mass. As mentioned, the main goal is to track

a desired cell mass (X1). We limit our design to 0 ≤ X1 ≤ 0.255 and 0 ≤ X2 ≤ 0.51
(This counts as our operating window). The nonlinear plant is linearized around
stationary points in this window and one of the linearized plant model is selected
as the nominal one.

As the QFT design should be carried out in frequency domain, all the servo specifi-
cations are translated from time domain into frequency domain. An output distur-
bance rejection constraint is also applied to the system in the form of a constraint
on the sensitivity function: ‖S‖ ≤ 3. The Matlab toolbox Qsyn [7] is used to cal-
culate the corresponding Horowitz-Sidi bounds for these specifications. In Fig. 5.5
the nominal plant together with the Horowitz-Sidi bounds is portrayed for different
frequencies. Clearly, the nominal plant is unstable and violates all the Horowitz-Sidi
bounds. We also observe that the gain uncertainty of the template, especially for
frequencies smaller than the bandwidth frequency, is larger than the tolerance spec-
ification (see Fig. 5.6). This means that the problem cannot be solved in open-loop
with feedforward. Feedback control is needed to reduce the uncertainty within the
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Figure 5.4. Stationary points for the benchmark bioreactor
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acceptable envelope. The idea here is to automatically design a PID controller in
such a way that the closed loop system becomes stable and fulfill the specifications
for all frequencies. Preferably it should also be robust to initial error or deviations
from a steady state. The controller has the the following (ideal) transfer function:

G(s) =
KDs2 + KP s + KI

s
(5.5)

The optimization variables are θ = [KD, KP , KI ]
>, and the objective function we

minimize is KD (high frequency gain of controller) subject to the following specifi-
cations:

• Servo specification

a(ω) ≤
∣∣∣∣
F (jω)G(jω)P (jω)

1 + G(jω)P (jω)

∣∣∣∣ ≤ b(ω) (5.6)

• Sensitivity specification
∣∣∣∣

1

1 + G(jω)P (jω)

∣∣∣∣ ≤ 3 (5.7)

Fig. 5.5 shows the nominal loop transfer function after design of the PID controller.
From the plot we can see that the system becomes stable and the nominal loop
transfer function satisfies the specifications for all frequencies. However, we cannot
claim that it has the desired performance on the original nonlinear system unless we
test our design through simulation. When we simulate the system from an initial
condition in a region close enough to the stationary points, the system response is
satisfactory but for larger perturbations from equilibrium points in initial condition
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Figure 5.7. The blue curve is nominal loop transfer function after designing the
controller

the system becomes unstable. These new non-stationary points are then added to
the set of linearization points iteratively. This imposes tougher boundaries on the
nominal loop transfer function L0(jωk) in the Nichols chart (see Fig. 5.7). We
should note that by selecting these new non-stationary points we aimed to make
our design more robust. The results shows the improvement in robustness but
one should have in mind that there is limitation for selecting these non-stationary
points. One possible limitation is that if we pick these non-stationary points too far
from the equilibrium curve (or operating points) the uncertainty in the plant will
increase such that might make it impossible for the optimization algorithm to find
a feasible solution. One good way to overcome this problem might be to start with
a reasonable size of operating window in the state-space and try to design for that
and then iteratively enlarge the window. The problem is then solved with genetic
algorithm once more. We did not consider any initial guess for the optimization
algorithm and the population size is set to 50. After five iteration the algorithm
found the solution. This process took almost 20 min. The simulation results for
this new controller, the former one and a sliding mode solution [4]is presented in
the next section. In Fig. 5.8 the gain extent of the closed loop system together
with the uncertainty in the template is portrayed. We see that after designing the
feedback the uncertainty is reduced to an acceptable level. We also conclude that
there appears to be no need to design a prefilter F (s).
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Figure 5.8. The blue curve is nominal plant, the small circles show the uncer-
tainty in the template, and the red envelope is the servo specification.

5.3 Simulation results

Simulations were carried out in Simulink for different initial values and different
square waves as reference signal. First of all the two controllers, one derived from lin-
earization around only stationary points and another one from linearization around
both stationary and non-stationary points, are simulated for two different initial
values. For an initial condition close enough to the stationary curve both con-
trollers work, but as can be seen in Fig. 5.9 for an initial condition x1(0) = 0.15
and x2(0) = 0.3 the controller designed for stationary points only results in large
overshoots. In Fig.14 we perturbed the system harder by giving an initial condition
x1(0) = 0.09 and x2(0) = 0.4 . For this rather large deviation from the stationary
curve the first controller gives an unstable response but the second one is more ro-
bust and shows a satisfactory response. In [4] a sliding mode controller is designed
for this system. In Fig. 5.11 and 5.12 that sliding mode controller is compared to
the PID controller designed with the QFT method. The minimum and maximum
values of the square wave are close to the maximum values that the system can
reach. The systems are simulated for two different initial values that cause large
initial errors in the control. As can be seen in Fig. 5.11 and 5.12 the PID controller
response has an acceptable response though a significant overshoot. However, from
an implementation point of view the PID controller is clearly preferable.
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Figure 5.9. Red dashed line is reference signal, blue curve is for controller
designed using non-stationary points and the green response is the response from
controller designed for stationary points only.
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Figure 5.10. Red dashed is reference signal, blue curve is for the controller de-
signed with QFT for non-stationary points and the green response is the response
for the controller designed for stationary points only.
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Figure 5.11. Red dashed line is the reference signal, blue is for the PID con-
troller and the green one is for the sliding mode controller response. x1(0) =
0.15, x2(0) = 0.2
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Figure 5.12. Red dash line is the reference signal, the blue one is the QFT
controller and the green one is the sliding mode controller response. x1(0) =
0.05, x2(0) = 0.3
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6.1 MODELING

The example which is considered in this chapter is a fourth order continuous stirred
tank reactor (CSTR). In this process the desired product is cyclopentenol (substance
B) which is produced from cyclopentadiene (Substance A). In addition to the desired
product two other undesired products, dicyclopentadience (D) and cyclopentanediol
(C), are produced as shown below.

A
K1−→ B

K2−→ C (6.1)

2A
K3−→ D (6.2)

The state space equations of the systems are

q,A,B,C,D

Q

q,A

.

Figure 6.1. Bioreactor with q as input and cB as output

ċA =
q

VR

(cA0 − cA)−K1cA −K3c
2
A (6.3)

ċB = − q

VR

cB + K1cA −K2cB (6.4)

Ṫ =
q

VR

(T0 − T ) +
KW AR

ρCpVR

(Tc − T )− 1

ρCp

(K1cA∆HR,AB

+ K2cB∆HR,BC + K3c
2
A∆HR,AD) (6.5)

Ṫc =
1

mcCpc

(Q̇ + KW AR(T − Tc)) (6.6)

36
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Model Parameters Main operating point
K01,2 = (1.287± 0.04) · 1012h−1 cA|s = 1.235mol/l

K03 = (9.043± 0.27) · 1091/(molAh) cB|s = 0.9mol/l
EA1,2/R = 9758.3K ±∆ T|s = 134.14◦C
EA3/R = 8560.0K ±∆ Tc|s = 128.95◦C

∆HAB
R = 4.2± 2.36kJ/molA q = 188.3h−1

∆HBC
R = −11.0± 1.92kJ/molB Q̇|s = −4495.7kJ/h

∆HAD
R = −41.85± 1.41kJ/molA ca0|s mol/l

ρ = 0.9342kg/l Cp = 3.01kJ/kgK
Cpk = 2kJ/kgK AR = 0.215m2

VR = 10.01 mk = 5.0kg
T0 = 130◦C KW = 4032

Table 6.1. H∞ norm for different optimization criterion.

where K1,K2 and K3 are the reaction rate coefficient given by

Ki = Ki0e
Ei/(T/◦C+273.15), i = 1, 2, 3

cA and cB are the concentrations of the substances A and B respectively. T is
the temperature of the bioreactor and Tc is the temperature in the cooling jacket.
Q̇ is the heat flow which is removed from the coolant and finally q is the feed
flow to the reactor containing substance A with the concentration cA0. The values
for the constant parameters and the main steady state operating point are given
in Table 6.1. Generally, this control problem is treated as a MIMO system with
concentration of substance B and temperature in the reactor (T ) as the outputs,
and inflow q and heat flow Q̇ as the control input [3]. However, we consider Q̇
constant (steady state value) and try to track the desired set point concentration
cB using q only. Hence, the problem is translated to a single input single output
problem with q as the input an cB as the output. The desired operating window is
considered in a suboptimal region relatively close to the maximum yield , i.e;

0.8 ≤ cB ≤ 1

The stationary curve for the two states ( cA and cB) is illustrated in Fig. 6.2. (Q,T
and Tc are kept at their steady state values). Although this process shows input
multiplicity for some values of cA and cB but there is no need to be concern about
that in our desired operating window.

6.2 Controller design

In [15] the nonlinear system is approximated by a best linear model. With sim-
ulation of the open loop system, they have shown that their best linear model is
superior to the locally linearized model in approximating the behaviour of the non-
linear system. Finally, in their work they have designed an H∞ controller (C(s))



38 Chapter 6 BENCHMARK PROBLEM 2

1 1.5 2 2.5 3 3.5
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

c
A

c B

Figure 6.2. Stationary points

which is followed by a PI controller to track the desired set points for concentration
of substance B. The control signal is limited to 88.3 ≤ q ≤ 288.3 and the controller
is as below:

C(s) =
1.040 · 103s3 + 1.020 · 106s2 + 4.274 · 107s + 3.563 · 108

s4 + 1.024 · 103s3 + 8.289 · 104s2 + 9.958 · 105s + 2.683 · 106
(6.7)

u = (1 +
25

s
)C(s)e (6.8)

where e is the control error and u is the controller output.

In our work we tried to find a lower order controller which shows similar behavior
as their H∞ controller designed for the Best linear model. A similar method that is
shown in the two previous chapter is used to design a simple linear controller. The
design procedure can be summarized by the following steps:

• First the nonlinear system is linearized around its stationary points for cB ∈
[0.8, 1].

• To add non-stationary points to the uncertainty set, the open loop system is
simulated for small steps within q ∈ [88, 288] (see Fig. 6.3). The trajecto-
ries of the responses are saved and used as the non-stationary points in the
linearization.

• The servo and sensitivity specifications are translated into the frequency do-
main and HS-bounds are generated for the Nichols diagram. The sensitivity



6.2 Controller design 39

0 0.2 0.4 0.6 0.8 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Time (h)

P
la

nt
 o

ut
pu

t (
m

ol
/l)

Figure 6.3. Step responses of open loop system for different step sizes.

function should be ‖S(s)‖ ≤ 2.5 and for the servo specification a settling time
Ts = 2h and maximum overshoot |MT | ≤ 10 percent are specified. As can be
seen in Fig. 6.4 and 6.5 The results of adding these non-stationary points to
the set produces a bit tougher Horowitz-Sidi bounds in the Nichols diagram
(c.f.Fig. 6.4 and 6.5.
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Figure 6.4. Horowiz-Sidi Bounds for templates derived from only stationary
points

• Genetic algorithm is used to do loop-shaping automatically for a fixed structure
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Figure 6.5. Horowiz-Sidi Bounds for templates derived from stationary and
non-stationary points

fourth order controller.

G(s) =
θ(1)s2 + θ(2)s + θ(3)

s(s3 + θ(4)s2 + θ(5)s + θ(6))
, (6.9)

where x is the optimization variable which is determined by the optimization
algorithm. The objective function of optimization algorithm is J = θ(1) which
is the high frequency gain of the controller.

The designed controller has the transfer function as below:

G(s) =
3358.454s2 + 63076.673s + 87689.366

s(s3 + 14.323s2 + 21.262s + 28.202)
(6.10)

The simulation results for the controller designed using QFT and the controller
designed based on H∞ are illustrated in Fig. 6.6 and 6.7. It can be seen that the
controllers have a very similar response. From the implementation point of view,
using a fourth order controller is an advantageous over using a fifth order controller.
Here we used the high frequency gain of the controller as the objective function
to be minimized as for the Wiener problem. Furthermore, it is possible to use
different criteria for different objectives. This possibility increases the flexibility of
the method and in contrast to the Best linear model method we do not need to do
complex calculations to find the best linear model. In summary, we can mention
the features of this method in general and compared to other methods.

• Control of nonlinear plant using linear controller.
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• Using our automated controller synthesis makes the design procedure very
simple.

• Selection of non-stationary points carried out through simulation automati-
cally.

• The designer has control over the structure and order of the controller. In
result of this advantage, we succeed to design a controller with lower order
than the H∞ controller in [15].

• By linearizing around a set of stationary and non-stationary points, we im-
proved the approximation of the nonlinear system. Hence, there is no need to
calculate the best linear model with complicated calculation.

• Contrary to the proposed method in [15], our method is neither limited to
stable plants nor to plants with time-delay.
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Figure 6.6. The dashed curves (green) are the closed loop step responses of the
H∞ controller which is followed with a PI controller and the solid curves (blue)
are the closed loop responses for the controller designed using QFT.

The loop transfer function for both cases of H∞ and QFT controllers are shown in
the Nichols diagram. It is interesting to see that the H∞ controller has a suprisingly
similar loop transfer function to the QFT controller. We note that the phase of the
QFT controller is slightly better than the phase for the H∞ controller.
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Figure 6.7. The dashed curves (green) are the control activity signals of the H∞
controller which is followed with a PI controller and the solid curves (blue) are
the control signals for the controller designed based on QFT.
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Figure 6.8. The blue curve is loop transfer function for the nominal plant and
designed controller based on QFT. The red curve is the loop transfer function for
the designed controller based on best linear model.



7 Conclusion

7.1 Conclusion

In this work a method based on linear QFT is used to design simple linear con-
trollers for mildly nonlinear systems. The design is based on local linearization of
the nonlinear system. In addition to the classical linearization around only equilib-
rium points, non-equilibrium points are taken into account as well. One nominal
loop transfer function is considered as the nominal plant and the rest are treated
as an uncertainty description for the nominal one. In order to facilitate the manual
loop shaping in the Nichols diagram, the loop-shaping problem is translated to an
optimization problem with Horowitz-Sidi bounds as the optimization constraints.
It has been shown by choosing an appropriate cost function for different control
target, the result is improved. To solve the optimization problem with non-convex
and nonlinear constraints, genetic algorithm is used. The efficiency of this algo-
rithm has been shown in some examples. The linearization around non-stationary
points improved both transient response and robustness of our design. This fact is
shown through an example which is a second order unstable bioreactor benchmark
problem. The method is also successfully applied to a fourth order CSTR bench-
mark problem. In this problem the selection of non-stationary points is carried out
through simulations of the open loop system for small step sizes as references.

7.2 Future Work

In this work genetic algorithm is used to find the coefficients of a fixed structure
controller transfer function. It is possible to include the controller order selection in
the optimization algorithm. One important aspect in the presented method is the
selection of non-stationary points. In this work, this selection is carried out through
phase plane analysis for second order systems, simulation of open loop system for
stable plants, and simulation of closed loop system for unstable plant. (A controller
which stabilizes the main operating window is used in the simulation). If this task
is carried out on basis of solid theory it may result in a very powerful and useful
method to feedback design of nonlinear systems.
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