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Abstract

Driving simulators are used for several different purposes. Ranging from enter-
tainment, to research of automotive technologies, or even study of driver behav-
iors, a driving simulator is a very useful tool.

The goal of a driving simulator is defined as the reproduction of vehicle dy-
namics such as accelerations and rotations. This is an intricate task because the
motion hardware displacements are subjected to limitations. Therefore, vehicle
signals cannot be sent directly to the motion platform and a motion cueing strat-
egy is required.

Motion cueing algorithms are used to translate the vehicle motion into valid
simulator displacements. Standard motion cueing methods do not possess any
kind of constraint awareness. This renders these methods somewhat conservative
regarding the computation of motion commands.

This thesis work purposes a new motion cueing algorithm based on model
predictive control (MPC) strategy. By applying MPC, workspace limitations are
respected due to its capability of dealing with multivariable, constrained optimiza-
tion problems.

We focused on the development and implementation of the new motion cueing
strategy, on the Chalmers Driving Simulator. The human sensorial system was
used as the internal model of the controller. The goal is now to reproduce the
perceived signals in the vehicle on the motion simulator, rather than accelerations
and rotations.

The developed controller was tested against the conventional motion cueing
approaches installed in the Chalmers Driving Simulator. Tests showed that not
only the perceived signals are better replicated by our controller, but the platform
workspace is exploited in an optimal fashion.
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Introduction

Driving simulators are often used for vehicle systems development, Human Ma-
chine Interface (HMI) studies and, as a tool for driving training in a safe controlled
environment. They are virtual tools that give to the user the sensation of driving a
real vehicle by associating generation of inertial cues, with visual and audio cues
[25].

The information originating from the vehicle model that is simulated can not
be directly applied to the platform in the form of motion commands. Since the
motion platform has limited workspace, its boundaries would be quickly reached
and the simulation of future motion cues would be prevented.

There are several well known conventional techniques applied for computation
of motion cues named washout filters. The aim of these control methods is to
replicate as well as possible the vehicle dynamics in the motion simulator while
keeping the platform within its boundaries. This boundaries not only refer to
physical constraints, as mentioned earlier, but also to input and input variation
thresholds.

Several conventional motion cueing approaches are presented in [27] and [35].
Even though these techniques are well spread and present a good solution for the
motion cueing problem, they have some disadvantages. In the formulation of the
above methods there is no possibility of including constraint considerations. This
obstacle forces the washout filters to be designed in a very conservative fashion
limiting the platform workspace, hence the performance of the simulator.

This thesis work proposes the implementation of a Model Predictive Control
(MPC) algorithm controlling the platform motion in a driving simulator. MPC is
an effective technique for solving multivariable constrained optimal control prob-
lems. In MPC a model of the plant is used to predict the system behavior of a
future finite time horizon. Based on these predictions a cost function is mini-
mized over a sequence of future input commands. The first of such sequence is
applied to the plant and, at the next time step, the optimization is repeated over a
shifted horizon.
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Finally, the plant model consists of the driver sensing system and the con-
troller goal is to minimize the deviation between the specific forces and angular
rates perceived in a vehicle and the ones sensed in a driving simulator. This is
accomplished while fulfilling constraints on the platform workspace.
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Chapter 1

Driving Simulators

Driving simulators are very useful research tool. Driving simulators provide a
cheap and safe ways of testing new technologies to be implemented in vehicles.
Besides research applications, driving simulators can also be used for entertain-
ment purposes like integration on car games.

Driving simulators provide a realistic driving experience with the replication
of several driving cues. These cues can be divided in three types: visual, hearing
and inertial. Inertial cues are generated by a motion platform and even though, not
all the driving simulators have the ability of generating these cues, without them,
they are very incomplete [4]. Visual cues are generated by a graphical system
based on information computed by a vehicle model. Basically, the latter consist
of pictures of the road and surroundings to build the driving environment, figure
1.1. Finally, hearing cues focus on replicating the engine sounds based on current
engine states, e.g., speed of the engine.

The generation of inertial cues is very important, since without them, the driver
has no information about vehicle accelerations and rotations. Nevertheless, it is
physically impossible to reproduce, flawlessly, those information in a driving sim-
ulator. Unlike a real vehicle, motion platforms have limited workspace that re-
duces the capabilities of reproducing rotations and accelerations. For the stated
reason one can not simply extract signals from a vehicle model and apply them to
the motion platform, therefore there is the need for a motion cueing algorithm.

Motion cueing algorithms produce the motion commands to be sent to the
motion platform. The conventionally applied ones are called washout filters and
can be divided in several categories. A succinct overview on this motion cueing
technique and some of its variants is presented in chapter 2. Briefly, a washout
filter translates the signals in a vehicle, like accelerations and rotations, to a set of
displacement commands applied on the platform. This conversion is done in such
a way that the platform will not hit is limitations.

In a driver simulator, the zone where the driver seats is called cockpit. This
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Figure 1.1: Graphical environment

structure is mounted on top of the motion platform and its interior usually resem-
bles with the one found in a vehicle. In the cockpit one can find all the vehicle
controls like steering wheel and pedals.

Finally, one should address the vehicle model. As an essential component of
a driving simulator, the vehicle model computes the accelerations and rotations
generated in the body of the vehicle, given driver inputs such as steering, brak-
ing and gas pedal position. The signals extracted from this dynamical model are
used by the motion cueing strategies, the sound cue system, and by the graphical
environment.

This introduction served the purpose of familiarizing the reader with the dif-
ferent objectives and components of a typical driving simulator. To consolidate
ideas, a general scheme of a driving simulator can be found in figure 1.2.

The next section will provide more details from the particular systems that
form a driving simulator, and it is based on the Chalmers Driving Simulator, CVS.

1.1 Chalmers Driving Simulator

1.1.1 Vehicle model

The Chalmers vehicle simulator has installed uses a vehicle model developed by
students. It is a 14 DOF model and it is responsible for the computation of all
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Figure 1.2: Scheme of a driving simulator

vehicle dynamics. All constants and relevant information to build this model were
extracted from the Volvo X90 specifications.

The computed position and orientation of the vehicle are sent to the graphical
system, which, in its turn returns all information concerning the type of road and
path inclination. The vehicle model is also responsible for calculating the torque
to be applied by the force feedback steering wheel [2]. The vehicle model is
simulated in real time by Mathworks xPc target.

1.1.2 Cockpit

As introduced previously, the cockpit is where the driver is seated. It consists of a
quarter of a Volvo car, and it is attached to the top of the motion platform. Figure
1.3 illustrates the CVS cockpit.

It has a fully functional dashboard that provides information such as vehicle
velocity and RPM, as well as, all essential driving elements like steering wheel
and pedals.
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Figure 1.3: CVS cockpit

1.1.3 Motion platform

The CVS employs a six DOF Stewart motion platform. As presented in figure 1.4,
the Stewart platform consists of two bases connected by six hydraulic actuators.

The six degrees of freedom allow the platform to perform a large set of com-
plex and combined displacements, nevertheless, due to its size, the feasible am-
plitudes are very restricted. For information about the bounds and limits on dis-
placements, refer to appendix B.

When controlling the Motion platform the user is given the possibility of
choosing from two types of control inputs, either actuators displacement or de-
grees of freedom (Euler angles and positions of the simulator referential relatively
to the inertial one). In the current work the latter were selected since the first
hypothesis requires a physical model of the platform.

1.1.4 Graphical environment

The graphical environment receives information about the vehicle positions and
orientations. These are used to place the vehicle in the virtual world. This tool
is also responsible for generating information about the terrain that is used by the
vehicle model. The generated graphical cues are projected into a screen attached
to the cockpit, positioned in front of the driver (figure 1.1).
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Figure 1.4: Motion Platform

1.1.5 Sound system
This application receives information about the engine states, RPM and gears.
Then, a specific set of sound cues is computed given the current engine states.
Two speakers located inside the dashboard play the latter.

1.1.6 Motion cueing strategies
All motion cueing algorithms are installed together with the vehicle dynamical
model, inside the xPc target computer. There are eight different possibilities to
choose from, including the one developed by this work. A more detailed discus-
sion about this algorithms will be presented in the next chapter.

1.1.7 Sensorial system
This component is a part of the CVS owing to the motion algorithm developed
in the current thesis. Since the goal is to work with sensed signals, the sensorial
system will be included. Its function is to compute the sensed signals generated
by accelerations and rotations applied to the driver. To the best of the authors
knowledge, this system is not a common component of driving simulators.

The human being makes use of his senses to extract information about the
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Figure 1.5: Vestibulum - Inner Ear [39]

environment that surrounds him. This allows the latter to place himself in space
and interact with its surroundings. Bearing this in mind, it is possible to use
sensorial information as measurement of the controller performance. If both, the
sensations in a real vehicle and the sensations generated by the motion platform
are available, an error between the two can be computed and the overall quality of
the control approach measured. With the mentioned idea as our goal, a model of
the human movement sensorial system is developed. It relates the accelerations
and rotations applied to the driver with the one actually felt will be developed.

The sensory system is integrated in the human nervous system and its respon-
sibility is to identify stimuli, either internal or external to our body. Mainly it
can be divided into 5 sections: visual, vestibular, Proprioceptive, Kinesthesis and
Tactile Sites, smell and hearing. This thesis will focus on the vestibular system.
In the next section the latter is presented in more detail.

Vestibular system

The vestibular system main function is the control of the human sense of move-
ment and balance. Present in every moment of one’s life, this element of the
sensorial system provides the human with information about accelerations and ro-
tations applied to its body. Located in the vestibulum, inner ear figures 1.5 and 1.6,
the vestibular system interacts with the human eye movements as well as, with the
muscles that keep the latter upright [39] .It enables the human to maintain a pos-
ture, have notion of self and non-self motion, have spatial orientation, navigation,
perform voluntary movement, oculomotor control and autonomic control [6].

The vestibular system can be sub-sectioned in two smaller systems:
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Figure 1.6: Vestibular System - Position relatively to the Ear [6]

Semicircular Channels The Semicircular channels are responsible for sensing
rotations applied to the body and consist of three channels, horizontal, posterior
and anterior whose interior is filled with a fluid called endolymph. The relative
position of these channels, which are orthogonal to each other, enables sensing an-
gular rotations about a normal to the plane in which each channel is included[23].
The three Semicircular channels have a bulbous cavity called Ampulla (Figure
1.7) where a gelatinous mass, named Cupula, (Figure 1.7) [35], supports hairs
and sensory cells (Figure 1.7) [23].

Figure 1.7: Inside the Semicircular Channel - Cupula [43]

The rotation of the head moves the endolymph inside the semicircular chan-
nels, causing a deflection of the cupula which excites the hairs and sensory cells.
Depending on the excitation, informations regarding sensed rotations are sent to
the brain.

9
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Otoliths The otoliths detect linear motion. They have the responsibility of sup-
plying our brain with information related to sensed specific forces by the human
body. Specific force is a relation between translational acceleration and the gravity
vector whose definition will be presented in the next chapter.

The human being is incapable of distinguishing translational acceleration from
gravity force with the otoliths [35], [23]. Hence, another sensorial information is
needed, e.g., rotational and/or visual-wise. This feature offers a precious advan-
tage when developing motion cueing algorithms. In particular, low frequency
components of the acceleration that would have required to extend the platform,
can be reproduced by tilting the latter [27]. The tilting process is presented in
sections 2.1 and 2.5.

There are two otolith organs in the human ear, the Utricule and the Sacule
(Figure 1.5 and Figure 1.6). They sense horizontal and vertical motions respec-
tively [35]. These two organs consist of an otolithic membrane (Figure 1.8) which
is fixed on a sensory cell base, named Macula.

Figure 1.8: Otolithic Membrane [40]

The translational movements of the head cause deflection of the otolithic mem-
brane. This excites the sensory cells, and sends informations about applied spe-
cific forces, to the brain.

In the next chapter a mathematical formulation of the sensorial system will be
presented. It will allow the formulation of a dynamical model to be used by the
proposed controller, MPC.
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1.1.8 Communication
The CVS consists of several computers working together with the goal of, sim-
ulating a driving experience. The required tasks, like vehicle model simulation
and motion control, graphical cues computation and sound cues creation are dis-
tributed between computers. Detailed information on this issue can be found in
appendix B.
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Chapter 2

Motion Cueing Algorithms

The previous chapter presented all the necessary components that form a driving
simulator. The focus of this work is on motion cueing algorithms thus, from this
point forward, this thesis will mostly contemplate information about the latter.

Importance of motion cueing algorithms arises from the existence of workspace
and inputs limitations in the platform motion. As expected, it is not possible to
transfer directly accelerations and rotations, generated by a vehicle, to the plat-
form since the referred limits must not violated. A motion cueing algorithm plays
the role of translating the movement of the vehicle to the platform actuators dis-
placement, while satisfying all boundaries.

The conventional techniques applied in motion cueing problems are called
washout filters. These have the disadvantage of not being aware of constrains,
thus, most of the times, they are designed in a conservative fashion.

The Model predictive control, MPC, ability of dealing with large multivariable
constrained control problems, presents this technique as an interesting approach
for motion cueing algorithms. Due to the fact that this approach is constantly
aware of all constraints, it is expected that the available platform displacements
will be exploited in an optimal way. Implementation of this control method in the
CVS is the ultimate goal of this thesis, and its development will be discussed in
the current chapter.

2.1 Conventional Motion Cueing Strategies
The washout filter can be, in a very general way, split in three parts: rotational,
translational and coordination [27].Figure 2.1 shows this layout.

• Translational Channel This part is responsible for simulating the vehicle
translational movement. Its input is usually the translational accelera-
tion of the vehicle.
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Figure 2.1: Washout filter scheme

• Rotational Channel This Channel role is to simulate the vehicle rotations.
Its input is usually the angular rate of the vehicle, however angular
displacements, [27], or accelerations can also be used.

• Coordination Channel The current channel uses a Tilt Coordination algo-
rithm to simulate sustained accelerations that would eventually lead
the platform beyond its physical limits. The output of this channel
is summed to the one of the Rotational Channel thus establishing the
final rotation cue.

Tilt Coordination establishes a relationship between the sustained accelera-
tions, felt in the vehicle, with the Euler angles displacement of the platform. This
algorithm enables the simulator to recreate the low frequency components of the
accelerations. For example, tilting the platform about the Y -axis, a component of
the gravity vector develops in the simulator X-axis (figure 2.2). From the driver
point of view, it is the same as the vehicle acceleration, due to the inability of the
Otoliths of distinguishing gravity from translational accelerations. This process,
however, needs to be carried out with caution in order to avoid false cues. If the
tilting rate is above the sensing threshold, the driver feels rotations that are not
sensed in a real vehicle. Therefore, the output of this block should be limited
in order to avoid the driver to fell platform rotations caused by tilting. In [35],
these limits are presented and discussed. The used values are given in appendix
B, together with all the constraints for the platform displacements.

The signals sent to each channel of the washout filter are subject to scaling and
saturation. This is a nonlinear procedure whose goal is to change the input signals
amplitude in an even way through out all its frequencies [36]. This process will
provide an high gain to a small signal that would run the risk of not being felt after
simulation, and will perform in an opposite fashion for higher signals that would
try to extend the platform actuators beyond their limitations.
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Figure 2.2: Simulated Specific force in the X-axis [27]

2.1.1 Types of Washout Filters
There exist several different types of washout filters:

The classical washout filter [27], [29], [28], [31], [4], [5], [34], [16], [44], is
the most common approach and it makes use of high and low pass filters to deal
with the problems of actuators over extension. One big disadvantage of Classi-
cal washout filter comes with the fact that its filters parameters are kept constant
during all the simulation. This feature makes this method very inflexible owing
to the fact that it demands a tuning process focused on the worst case situations
[4], [28], [5], [16]. This leads to a poor usage of both workspace and platform
displacements.

The adaptive washout filter [27], [36], [35], [29], [28], [4],[5], appeared to
answer some shortages in the Classical format. In this approach the filters used in
the classical washout filter are replaced by time varying gains thus, adapting its re-
sponse to all situations. Moreover, the referred online adjusting of the parameters
allows a better exploration of the platform potential.

The optimal washout filter [27], [36], [35], [29], [28], [4],[5], [33], [16],
[31], takes a different approach to the motion cueing problem. The challenge is
now to establish a transfer function that relates the accelerations and rotations of
the vehicle with the ones that should be applied to the platform, such that the dis-
crepancy between the felt signals in both is minimized. This technique requires
the manipulation of several weights connected to states that often do not have a
clear physical representation, making the tuning task very intricate [5]. Further-
more, the transfer function is only optimal for a set of different input scenarios

14



Chalmers University of Technology Motion Cueing - MPC

recreated by white noise. In other words, the final result is the one with best over-
all fit to several situations, which does not mean it will perform in the best possible
way for all occasions.

The nonlinear washout filter [36],[35], is a combination of the features of
both Optimal and Adaptive filters. It solves the optimal control problem online
as a function of a gain much like the one used in the adaptive filter. This Nonlin-
ear approach maximizes the use of motion hardware thanks to the generation of
motion cues adapted to the current states of the platform.

From the above motion cueing methods, two of them can be found in the CVS.
Those are the optimal and classical washout filters. The more recent versions of
the latter were developed in thesis work, [27].

2.2 Reference Generation
Reference generation is an important step in any MPC problem. Knowing the fu-
ture behavior of the controlled system allows the computation of optimal control
actions. Bearing this in mind, it is easy to conclude that the quality of the gen-
erated reference is a factor that influences directly the overall performance of the
control approach.

The general process for generating references is formulated in the next three
steps:

a)- A batch of signals is extracted from the vehicle model whose dynamics are
supposed to be duplicated in the simulator. These signals consist of the vehicle
translational accelerations and velocities, Euler angular rates, steering ratio
and longitudinal tire forces at the current time instant.

b)- Choosing one of three methods, a reference vector is created. It holds refer-
ences for the Euler angular rates and translational accelerations. The size of
this vector is determined by the formulation of the purposed controller. It will
be discussed when this theme is introduced.

c)- The latter vector is filtered by the vestibular system to establish the final ref-
erences in terms of tracking variables, felt rotations and specific forces pre-
sented in section 2.7.4.

There are three different methods of calculating the references in terms of
accelerations and angular rates, second step.

The first method retrieves from the Euler angular rates and translational accel-
erations from the vehicle, step a). Then, this values are assumed constant through
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the prediction horizon, creating the vector mentioned in step b). Following the
procedure stated in step c), the desired references are created.

The second and third method use a simplified bicycle model presented in 2.2.3.
The second method extracts the necessary bicycle model states and inputs

from the vehicle model, according to step a). The bicycle model is then simu-
lated assuming constant inputs in the whole prediction horizon and the vector of
references, step b), is created. The final predictions are generated following step
c).

The third and last method uses the same information as method two in step
a). The derivative of the bicycle model inputs is established, with a backward
difference, and it is assumed constant for all the prediction horizon. The bicycle
model is then ran, establishing the desired vector in step b). The references in
terms of tracking variables are attained following the procedure presented by step
c).

With the exception of the first method the remaining ones do not generate any
kind of references, step b), for acceleration about the Z-axis, roll and pitch angular
rates. This fact renders these references, somewhat, incomplete. Nevertheless,
given that they are computed by a vehicle model, one might expect that the actual
computed reference values, have a more realistic evolution along the prediction
horizon

2.2.1 Vehicle Model

As stated in section 2.2, it is necessary to create a basic vehicle model, to predict
the future behavior of the simulated vehicle. The simplified vehicle model studied
and applied in our control application is extracted from [8]. This chapter will
provide a short explanation of the model and how to implement it, for a more
detailed explanation, the reader should consult [8].

Consider the figure 2.3:

Figure 2.3: Forces acting on the center of gravity [27]
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Note that the lateral axis py does not appear in the figure because its direction
points to the reader.

By applying Newton’s second law to the center of gravity (CoG) of the vehicle,
the lateral, longitudinal and yaw motions are described by the following set of
differential equations:

mp̈y = Fy, (2.1a)
mp̈x = Fx, (2.1b)

Icarψ̈ = M, (2.1c)

where ψ̈ is the vehicle angular acceleration around the Z-axis (assumed positive
counter clockwise as shown in figure 2.3), and M is the angular momentum around
the Z-axis.

Furthermore, to model the longitudinal and lateral velocities with respect to
the inertial fixed coordinates, Xm and Ym, the following relationship is defined:

Ẏm = ṗxsin(ψ)+ ṗycos(ψ), (2.2a)
Ẋm = ṗxcos(ψ)− ṗysin(ψ). (2.2b)

2.2.2 Bicycle Model
In this thesis work we use a bicycle model to simulate the vehicle motion. This
model considers longitudinal x, lateral y, and yaw ψ dynamics under the assump-
tion of negligible lateral weight shift, roll and compliance steer. The bicycle model
assumes perfect symmetry along the longitudinal axis of the vehicle. i.e., left and
right sides are identical. This assumption allows to describe the front and rear
dynamics of a vehicle in only one front and rear wheel. This originates the de-
nomination of bicycle model.

The input of the bicycle model, 2.4, is the front steering wheel angle δ f . Its
states, 2.3, are the lateral and longitudinal velocities, ṗy and ṗx, in the vehicle
frame, yaw angle ψ , yaw angular rate ψ̇ and the lateral and longitudinal positions
with respect to the fixed inertial coordinates, Ym and Xm, [8]. The bicycle model
is presented in figure 2.2.3.

ẋ =
[

ṗx ṗy ψ ψ̇ Xm Ym
]
, (2.3)

u =
[

δ f
]
. (2.4)
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Equation 2.1 defines the model dynamics. Moreover, the model 2.2 can be
rewritten in the following form:

mp̈y =−mẋψ̇+2Fy f +2Fyr , (2.5a)

mp̈x = mẏψ̇+2Fx f +2Fxr , (2.5b)

Icarψ̈ = 2d f Fy f −2drFyr , (2.5c)

Let ∗ ∈ { f ,r}, denote the front and rear axles. Fy∗ and Fx∗ are defined as:

Fy∗ = fy(Fc∗,Fl∗,δ∗), (2.6a)
Fx∗ = fx(Fc∗,Fl∗,δ∗), (2.6b)

where,

Fc∗ = fc(α∗,s∗,µ∗,Fz∗), (2.7a)
Fl∗ = fl(α∗,s∗,µ∗,Fz∗). (2.7b)

Fc∗ and Fl∗ are the tires cornering and longitudinal forces, respectively. α∗ is
the tire slip angle and it represents the angle between the wheel velocity vector
v∗ and the direction of the wheel itself as in figure 2.2.3. The slip ratio s∗, is
the relation between the theoretical and the actual longitudinal tire velocity. The
theoretical velocity is calculated by the tire angular rotation rate. µ∗ is the friction
coefficient. Fz∗ is the tire normal force.

The presented model defines a nonlinear relationship between the vehicle
states. Since the goal is to compute predictions of a vehicle dynamics in real time
a simpler model is needed. This motivates the next section, where a simplified
version of the presented vehicle model is introduced.

2.2.3 Bicycle Model Based on Small Angles Approximation and
Linear Tire Model

The nonlinear vehicle model can be simplified by assuming small angle approxi-
mation. In this model, the lateral and longitudinal tire forces are approximated by
linear functions of the tire slip angle α∗ and the slip ratio s∗, respectively .

The inputs of the simplified bicycle model 2.8 are the front steering wheel
angle and tire slip ratios while its states are defined as in 2.3.
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Figure 2.4: Linear Bicycle Model

u =
[

δ f s f sr
]
. (2.8)

For small values of the slip ratio (less than 10%) the longitudinal tire force Fl∗
is a linear function of the slip ratio s∗ [8].

Fl∗ = Cl∗s∗, (2.9)

where, Cl∗ is the longitudinal stiffness coefficient.
In order to compute the lateral tire force Fc∗ as a linear function of the tire slip

angle α∗, small values of the steering angle δ f (less than 10 degrees). Thus the
following linear equation can be presented [8]:

Fc f ∼= Cc, f (δ f −
ṗy +d f ψ̇

ṗx
), (2.10a)

Fcr ∼= Cc,r(
drψ̇− ṗy

ṗx
). (2.10b)
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The stiffness coefficient C f∗ is defined as the resistance of the tire to deforma-
tion by an applied force.

Furthermore, using the linearized longitudinal and lateral tire forces the fol-
lowing equations, that model the vehicle motion, are achieved:

mÿ =−mṗxψ̇+2[Cc, f (δ f −
(ṗy +d f ψ̇)

ẋ
+Cc,r

(drψ̇− ṗy)
ṗx

], (2.11a)

mẍ = mṗyψ̇+2[Cl, f s f +Cc, f (δ f −
(ṗy +d f ψ̇)

ṗx
δ f +Cl,rsr], (2.11b)

Iψ̈ = 2[d fCc, f (δ f −
(ṗy +d f ψ̇)

ṗx
−drCc,r

(drψ̇− ṗy)
ṗx

]. (2.11c)

By combining the equation 2.11 with equation 2.2 the motion of a vehicle
subject to linear tire dynamics and small steering angle is completely defined.

In the current work there was no need for yaw, and positions about the inertial
axis states except for model validation purposes.

2.3 Reference Frames

This section presents the reference frames used in the Chalmers Vehicles Sim-
ulator and shows how to translate variables between them. This is important in
order to obtain the correct input to the vestibular system. Moreover, the relations
between angular velocity and Euler angles, as well as inertial acceleration in ro-
tating frames, are also introduced. The material presented in this chapter has been
based on the works of Nikolce Murgovski [27] and Pieter van Balen [2].

To describe the development of motion cueing algorithms, five reference frames
are introduced. Two of them are connected with a real vehicle two with the sim-
ulator and an inertial frame that relates to all. The implemented frames are right
handed frames X×Y = Z. Figure 2.3 shows the five reference frames.

2.3.1 Inertial Frame I

The inertial frame is fixed, its orientation and position do not change over time,
and it is attached to the Earth. All the other frames in the simulator are defined
in relation to the Inertial frame. The XI-axis points forward, YI-axis points to the
reader and ZI-axis points downward. The origin of this frame is located under the
simulator between the lower gimbals positions.
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Figure 2.5: Overview of the reference frames [27]

2.3.2 Simulator Frame S
The simulator frame is connected to the Stewart platform. This frame follows
the platform movements, thus it alters its position in relation to the inertial frame.
The vector rSI is defined in order to have information of the origin of the simulator
frame in relation to the inertial one.

2.3.3 Driver Frame D
The driver frame has its origin attached to the center of the head of the driver in
the simulator. The vector rSD is defined in order to have information of the ori-
gin of the driver frame in relation to the simulator one. Note that this frame does
not change in relation to the simulator frame because they are parallel, i.e. rDS
is constant. This frame is of special importance in this work since all felt sig-
nals generated by the vestibular system model are created regarding this specific
location.

2.3.4 Vehicle Frame A
The vehicle frame is attached to the simulated vehicle. Its origin position is de-
fined by introducing the vector rAI defined as the position of the vehicle frame
in relation to the inertial one. Its position and orientation varies over time with
respect to the inertial frame.

2.3.5 Vehicle Driver Frame E
The vehicle driver frame has its origin attached to the head of the driver. Its origin
is defined by introducing the vector rEA. The latter is identified as the position of
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the vehicle driver frame in relation to the vehicle one A. Furthermore, since it is
parallel to the vehicle frame rEA is constant.

2.3.6 Euler angles
The orientation of the frames is defined through their Euler angles. Frame S is
taken as an example for defining orientation when the Euler angles are given. The
Euler angles of S are:

βs =

 φs
θs
ψs

 . (2.12)

To completely define frame S with respect to frame I, the orientation βs and
the position vector rSI are necessary. It can be obtained through the following
steps:

• Set the initial position of frame S equal to frame I,

• Rotate the frame S with angle φSI(roll) around the Xs-axis,

• Rotate the frame S with angle θSI(roll) around the Ys-axis,

• Rotate the frame S with angle ψSI(roll) around the Zs-axis,

• translate the frame S with rSI .

We point out that the Euler angles are always defined with respect to the iner-
tial frame. Then there is no need to use the index I .

2.3.7 Translational acceleration
The translational acceleration vector consists of surge ax, sway ay and heave az
accelerations, as in equation (2.13):

a =

 ax
ay
az

 . (2.13)
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The acceleration in general frame Λ, can be found by multiplying the rotation
matrix LIΛ by the acceleration in the frame I as in equation 2.14 .

aΛI = LIΛaI. (2.14)

By rotating the frames step by step, first around the X-axis with a roll angle,
then around the Y -axis with a pitch angle, and finally about the Z-axis with a yaw
angle, LΛI can be found by multiplying the three rotations matrices as in equation
2.15. Figure 2.6 illustrates the rotation process described above.

LIΛ = Rx×Ry×Rz. (2.15)

Figure 2.6: Rotation around X-axis(φ), Y -axis(θ) and Z-axis(ψ)

Rx =

 1 0 0
0 cos(φ) sin(θ)
0 −sin(φ) cos(φ)

 , Ry =

 cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 , (2.16)

Rz =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 . (2.17)

With the three rotation matrices defined in 2.16 and 2.17, LIΛ can be easily
calculated as:
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LIΛ =

 L11 L12 L13
L21 L22 L23
L31 L32 L33

 , (2.18)

where

L11 = cos(θ)cos(ψ),
L12 = cos(θ)sin(ψ),
L13 =−sin(θ),
L21 = sin(φ)sin(θ)cos(ψ)− cos(φ)sin(ψ),
L22 = sin(φ)sin(θ)sin(ψ)+ cos(φ)cos(ψ),
L23 = sin(φ)cos(θ),
L31 = cos(φ)sin(θ)cos(ψ)+ sin(φ)sin(ψ),
L32 = cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ)),
L33 = cos(φ)cos(θ).

2.3.8 Frames rotation
The rotations can be expressed through their axes of rotation. The angular velocity
vector consists of three components and its speed of rotation is defined by the
magnitude of the vector ω in [rad/s].

ω =

 p
q
r

 , (2.19)

where p, q and r represent the components of ω about the x, y, and z respectively.

2.3.9 Relationship between angular velocity and Euler angular
rates

The angular rate, ω, can be expressed by a relationship between Euler angular
rates. To find the angular rate in a general Λ frame, given the Euler angular rates,
equation 2.20 can be used.

ωΛ = RΛβ̇Λ, (2.20)
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where the equation 2.20 is derived as follows,

ωΛ =

 φ̇Λ

0
0

+Rx

 0
θ̇Λ

0

+RxRy

 0
0

φ̇Λ

= RΛβ̇Λ, (2.21)

and

RΛ =

 1 0 −sin(θΛ)
0 cos(φΛ) sin(φΛ)cos(θΛ)
0 −sin(φΛ) cos(φΛ)cos(θΛ)

 . (2.22)

The inverse operation, β̇Λ = R−1
Λ
×ωΛ, can be performed by computing the

inversion of RΛ.

2.4 Vestibular System - Modelling
This section contains the development of the vestibular model. First the Semi-
circular channels model will be presented, secondly the otolith model is derived
and finally the last two systems are aggregated and the complete vestibular system
dynamical model is formulated.

2.4.1 Dynamic Modeling of the Semicircular Channels
Several number of models for the vestibular system are available in literature.
In many existing models, the cupula deflection is modeled as a torsion pendu-
lum. References as well as representations of the semicircular channels dynamical
model can be found in [35]. In this thesis we used the modeling proposed in [31],
sketched in figure 2.7, where ω and ω̂ are the rotation rate and felt rotation rate,
respectively.

Figure 2.7: Dynamical Model of the Semicircular Channels [31]

The given representation is used for all the three dimensional rotations along
the X , Y , Z axes. Each rotation component requires different model parameters
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in the transfer functions as well as deadzone width. These values can be found in
Table 2.1.

In figure 2.7, the first block refers to the cupula displacement model, i.e., the
over damped torsional pendulum. The second block represents the human capa-
bility of sensing only accelerations higher than a certain threshold and the last
block models the washout of human response to steady state rotational accelera-
tion inputs [31].

Table 2.1: Coefficients of the Semicircular Channels Model [31]
Roll(x) Pitch(y) Yaw(z)

TL [s] 6.1 5.3 10.2
Ts [s] 0.1 0.1 0.1
Ta [s] 30 30 30

δT H [deg/s] 3.0 3.6 2.6

In order to establish the dynamical model the equivalent state space repre-
sentation of the blocks, shown in 2.7, was developed. Let the block before the
deadzone be Block-A and the block after Block-B.

Using the transfer functions presented in 2.7 the following state space models
can be derived, for Block-A and Block-B respectively:

ẋ = Ax+Bω,
δ = Cx+Dω,

A =
[
−(Tl +Ts) 1
−1 0

]
,B =

[
Tl
0

]
,C =

[
1 0

]
,

(2.23)

and

ẋ = Ax+B∆,
ω̂ = Cx+D∆,

A =
[
−1

]
,B = [−Ta] ,C =

[
1
]
.

(2.24)

The state feedthrough matrices are zero for both blocks.
By evaluating the output of Block-A in the deadzone with the characteristics

specified in table 2.1, the system is completely defined and a nonlinear relation-
ship between applied rotation rates and felt rotations is established.

2.4.2 Dynamic Modeling of the Otoliths
As for the semicircular channels, several number of models have also been pro-
posed for the otoliths. Some of them evolved from an initial model built by mea-
suring the subjective indication of direction [35]. This thesis uses the model in
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[31], presented in figure 2.8, where f and f̂ are the specific force, and felt specific

Figure 2.8: Otoliths Dynamic Model [31]

force, respectively. Let the input of the otoliths model be the specific force, and it
is defined as ~f =~a−~g..

The first block in figure 2.8 stands for the otolith actual mechanical behavior,
the second is the mechanical threshold, while the last one represents a neural
processing activity [31].

As for the semicircular channels case, the given transfer function represents
felt specific forces for the Cartesian coordinates. Replacing the constants in the
transfer function by the different sets of values, it is possible to build the three
transfer functions, one for each axis X , Y , Z. The model parameters can be found
in table 2.2.

Using the same procedure applied when defining the model of the semicircular
channels, let the blocks before and after the deadzone ,in figure 2.8, be designated
by Block-A and Block-B, respectively.

Using the canonical form of observability, the following state state model can
be attained for Block-A:

ẋ = Ax+B f ,
d = Cx+D f ,

A =
[
−(τ−1

l + τ−1
s ) 1

−τ
−1
l τ−1

s 0

]
,B =

[
0

kτaτ
−1
l τ−1

s

]
,C =

[
1 0

]
.

(2.25)

Filtering d through the correspondent deadzone and then by Block-B leads to
desired objective which is the establishment of the dynamical model for the otolith
model. Nevertheless, the challenge defining this model comes with Block-B.

As it is possible to conclude, the transfer function of the Block-B is a non-
causal system. This implies that the current output of the model has a dependence
from the future ones. In order to deal with this problem, Block-B will be repre-
sented directly in its discretized form

f̂ =
(Dm−Dmp)

Ts
+

Dm

τa
, (2.26)

where Dmp is the previous input of Block-B, Dm the current input and the input
derivative is computed with a backward difference.
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2.4.3 Dynamic Modeling of the Vestibular System
The model of the vestibular system is established by combining the two previously
defined models. For constraint monitoring during the optimization problem, nine
extra states are added to this model. These new states are the last nine values of
the equation 2.65, presented in section 2.7.4.

The latter are added by integration of the translational accelerations as well as
Euler angular rotations. In the discrete case they will be computed by backward
difference.

Table 2.2: Coefficients of the Otoliths Model [31]
ax ay az

τl [s] 5.33 5.33 5.33
τs [s] 0.66 0.66 0.66
τa [s] 13.2 13.2 13.2

K 0.4 0.4 0.4
dT H

[
m/s2] 0.17 0.17 0.28

2.5 Tilt Coordination
As pointed out previously, section 2.1, the sustained components of the accelera-
tion tends to prolong the actuators, pushing the platform to its physical limitations.
Tilt coordination is a technique used to simulate the specific forces by tilting the
motion platform.

Considering the rotation matrices in equation 2.16, one can define the gravity
vector represented in the simulator frame as:

gsi = RxRygi =

 −gsin(θ)
gcos(θ)sin(φ)
gcos(θ)cos(φ)

 . (2.27)

By the equation, fs = as−gsi, the specific force is defined as: fx
fy
fz

=

 ax−gsin(θ)
ay−gcos(θ)sin(φ)
az−gcos(θ)cos(φ)

 . (2.28)

Given equation 2.28 it is obvious to understand how the tilting of the platform
contributes to simulate the specific force, because the components of the gravity
about the different axes affect it.
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In section 2.6, a small angles approximation will be taken in account. In that
case, the previous equation changes to: fx

fy
fz

=

 ax +gθ

ay−gφ

az−g

 . (2.29)

2.6 Vestibular System - Linearization
The plant introduced in the last section is nonlinear. This is a problem in terms of
computational weight since it requires nonlinear optimization techniques to solve
the MPC problem. To solve a simpler optimization methods, a linearization of the
vestibular system is suggested, based on the work developed in [31].

2.6.1 Semicircular Channels - Linearization
The first step taken in order to build the proposed model is to disregard the dead-
zone related to the threshold of felt rotations. The previous action will define the
transfer function of the Semicircular Channels as:

T Fscc =
TlTas2

(Tas+1)(Tls+1)(Tls+1)
=

ω̂

ω
, (2.30)

where the input and output were introduced previously in section 2.4.1.
Using the formulation found in [31], the previous transfer function can be

rearranged in the following way:

T Fscc =
1
Ts

s2

s3 +( 1
Ta

+ 1
Tl

+ 1
Ts

)s2 +( 1
TlTs

+ 1
TlTa

+ 1
TsTa

)s+ 1
TlTsTa

. (2.31)

All the presented coefficients are function of the considered rotation about one
of the three axes. This means that there will be one transfer function for each of
the three rotations, and the MIMO system can be represented in the following
way:

[
ω̂
]
=

 T Fsccx 03×3 03×3
03×3 T Fsccy 03×3
03×3 03×3 T Fsccz

[ ω
]
, (2.32)

where the inputs and outputs can be represented by:

ω =

 ωx
ωy
ωz

 , ω̂ =

 ω̂x
ω̂y
ω̂z

 . (2.33)
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The coefficients for the linear transfer functions of the Semicircular Channels
can be found in table 2.1.

From the start of the current subsection until the present paragraph a linear
model for the semicircular channels behavior has been presented, whose input
and output are ω and ω̂, respectively. Nevertheless, since only the Euler angular
rates, φ̇, θ̇, ψ̇, are available, it is important to establish a model that represents the
relationship between the latter and felt rotations.

Taking the inverse of the relationship presented in equation 2.20 and calculat-
ing its linearization around β = 0 the following relationship is attained:

R−1
s =

 1 0 θs
0 1 −φS
0 φs 1

 . (2.34)

Assuming that the Euler angular displacement is small the presented matrix is
reduced to an identity matrix which leads to the final result:

β̇ = ω (2.35)

This last result implies that the transfer function can now be presented in the
following way:

ω̂ = T Fsccβ̇. (2.36)

Connecting the previously developed relationship with the one found in equa-
tion 2.31 a state space representation can be developed such as:

ẋ = Ax+Bβ̇,

ω̂ = Cx+Dβ̇.
(2.37)

The state space presented in 2.37 was developed recurring to the canonical
form of the observer, resulting in the set of system matrices shown in equation
2.38.

A =

 − 1
Ta
− 1

Tl
− 1

Ts
1 0

− 1
TlTs
− 1

TlTa
− 1

TsTa
0 1

− 1
TlTsTa

0 0

 ,B =

 1
Ts
0
0

 ,C =
[

1 0 0
]
. (2.38)

Given that the number of zeros is less than the number of poles there exists no
feedthrough, which implies D = 0.

Like in the transfer function case, the presented state space is a general repre-
sentation that fits each one of the three rotations, for the correspondent parameters
(table 2.1). Finally, the complete Semicircular Channels model is defined in the
following way:
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ẋscc = Asccxscc +Bsccβ̇,

ω̂ = Csccxscc +Dsccβ̇,
(2.39)

where

Ascc =

 Ax 03×3 03×3
03×3 Ay 03×3
03×3 03×3 Az

 ,Bscc =

 Bx 03×1 03×1
03×1 By 03×1
03×1 03×1 Bz

 , (2.40)

and

Cscc =

 Cx 01×3 01×3
01×3 Cy 01×3
01×3 01×3 Cz

 ,Dscc =
[

0
]
,xscc =

 xsccx

xsccy

xsccy

 . (2.41)

All the underscript symbols, x, y and z identify the state space matrices as
part of a system related to rotations around that specific axis. For example, the
matrices with underscript x belong to the state space model that associates the
input φ̇ with the output ω̂x.

2.6.2 Otoliths - Linearization
The development of the present model originates from the same principle as in
the previous case, this means that the deadzone dynamics will be ignored and the
system will only be regarded as the product of both transfer functions introduced
in figure 2.8. The result of latter relationship is the following transfer function:

T Foto =
K(τas+1)

(τls+1)(τss+1)
=

f̂
f
, (2.42)

where the input and output were introduced previously in section 2.4.2.
The given transfer function can hold the following representation:

T Foto =
Kτa
τlτs

s+ Kτa
τlτs

s2 +
(

1
τl

+ 1
τs

)
s+ 1

τlτs

. (2.43)

As in the semicircular channels case, all the given coefficients are function of
the specific force about a specific axis. This implies that the layout of the overall
transfer function, representing the complete otolith model, is a MIMO system,
3×3, with the following format:
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[
f̂
]
=

 T Fotox 02×2 02×2
02×2 T Fotoy 02×2
02×2 02×2 T Fotoz

[ f
]
. (2.44)

where

f =

 fx
fy
fz

 , f̂ =

 f̂x
f̂y
f̂z

 . (2.45)

All the needed coefficients are stated in table 2.2.
The corresponding state space of the equation 2.43 can be formulated by:

ẋ = Ax+B f ,
f̂ = Cx+D f ,

(2.46)

where, through utilization of the canonical form of the observer, the state matrices
are represented by:

A =

[
− 1

τl
− 1

τs
1

− 1
τlτs

0

]
,B =

[
Kτa
τlτs
K

τlτs

]
,C =

[
1 0

]
. (2.47)

Like in the previous model the state space feedthrough matrix, D, is zero.
The complete otolith model, attained by replacing all parameters for the dif-

ferent axes, can be presented by:

ẋoto f = Aoto f xoto f +Boto f f ,
f̂ = Coto f xoto f +Doto f f ,

(2.48)

where the state space matrices have a similar format as the previously derived in
equations 2.40 and 2.41, with correspondently sized zero matrices. The under-
script f identifies the state space matrices as being defined for a system whose
input consists of specific forces.

All the former work, in the present section, shows how the standard otolith
model is built. Nevertheless, the resulting model can not be used in this project
without an input transformation. Since specific forces are not available signals, a
relation between the latter with translational accelerations and Euler angular rates
needs to be developed.

Recollecting the tilt coordination technique, section 2.5, a relationship be-
tween the Euler angles and the components of the gravity vector about the three
axes was developed. This means that f , in the relationship f = a−g, can be rep-
resented as a function of the Euler angles and accelerations (equation 2.28) and
the following equation can be derived:
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f = H
[

β a
]T

, (2.49)

and, considering the approximation applied to obtain equation 2.29 as well as
disregarding its constant term in the component about the Z-axis,

H =

 0 g 0 1 0 0
−g 0 0 0 1 0
0 0 0 0 0 1

 . (2.50)

If the input of the vestibular system consisted of Euler angles and accelera-
tions, one could just use the product between Boto f and H to compute the new
input matrix. However, that is not the case because the goal is to have Euler angu-
lar rates as input, as justified in section 2.7.4. This implies that the derived state
space model needs to be modified to fit with the desired input:

u =
[

β̇ a
]T

. (2.51)

This goal is attained by adding three extra states, θ,φ,ψ, to the state space
system. Recalling the input matrix,

Boto f =

 Bx 02×1 02×1
02×1 By 02×1
02×1 02×1 Bz

 , (2.52)

and, let Botoβ,a = Boto f H, be the input matrix for the system using [β a] as inputs.

Assuming Botoβ,a can be partitioned in two, Botoβ,a=
[

B1 B2
]

then, Botoβ,a

[
β a

]T =
B1β+B2a. Bearing in mind this relationship, replacing f by u,equation 2.51 and
dropping the underscript f in equation 2.48, the new state space matrices can be
computed:

Aoto =



Ax 02×2 02×2 B1(1:2,:)
02×2 Ay 02×2 B1(3:4,:)
02×2 02×2 Az B1(5:6,:)
01×2 01×2 01×2 01×3
01×2 01×2 01×2 01×3
01×2 01×2 01×2 01×3

 ,Boto =
[

06×3 B2
I3×3 03×3

]
, (2.53)

and
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Coto =

 Cx 01×2 01×2 0 0 0
01×2 Cy 01×2 0 0 0
01×2 01×2 Cz 0 0 0

 ,Doto =
[

0
]
,xoto =


xotox

xotoy

xotoz

φ

θ

ψ

 .

(2.54)
Given the approximation used to achieve the relationship between felt specific

forces, accelerations and Euler angles, equation 2.50, the third output of the above
model is not the felt specific force about the Z-axis.

In order to obtain the desired output, the constant term of the specific force
vector about the Z-axis, disregarded previously, needs to be filtered by the vestibu-
lar system and added to the output correspondent output. This term represents the
stationary gain of the Otolith transfer function for the felt force about the Z-axis.
It can be regarded as an equilibrium term due to the constant presence of gravity.

2.6.3 Vestibular System - Linearization

Gathering all the information from the previous two subsections, it is possible to
build the final dynamical model for the whole vestibular system. It consists of
an aggregation of the two previous models plus the addition of integral states that
will be needed in the MPC formulation.

The objective of the present section is to build the following model:

ẋvest = Avestxvest +Bvestu,
Yvest = Cvestxvest +Dvestu,

(2.55)

where u is stated in 2.51. The state vector has the form

xvest =



xscc
xoto
px
vx
py
vy
pz
vz


, (2.56)

and the state matrices, as well as the output vector, will be defined in the forth-
coming steps.
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In equation 2.56 there are six extra states besides the previously defined ones.
The latter are integral states and will be used for constraint purposes in the MPC
optimization problem.

To build the state matrix, the matrices developed in equations 2.40 and 2.53
need to be aggregated. Subsequently, extra elements must be added given the
integral states presented in 2.56. Taking all the late steps into account, the state
matrix is defined such as:

Avest =

 Ascc 09×9 09×6
09×9 Aoto 09×6
06×9 06×9 Ae

 , (2.57)

where

Ae =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 . (2.58)

Like in the previous case, Bvest consists in the aggregation of the input matrices
2.40 and 2.53. Since there are six new states, a [6×6] block is added underneath
the matrix formulated by the mentioned aggregation. This new block is defined
such that the accelerations are equal to the state derivative of the velocity states.
According to these instructions the system input matrix takes the following for-
mat:

Bvest =



Bscc
Boto

0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1


. (2.59)

Linking the output matrix in equation 2.41 with the one defined in 2.54, plus
an identity matrix that defines the integral states as outputs, the final output matrix
is formulated as:

Cvest =

 Cscc 03×9 03×6
03×9 Coto 03×6
09×9 09×6 I9×9

 . (2.60)
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The output matrix format determines the next set of outputs:

Yvest =
[ω̂x ω̂y ω̂z f̂x f̂y f̂z φ θ

ψ px vx py vy pz vz]
T .

(2.61)

2.7 MPC Formulation
The interest in the field of Model Predictive Control (MPC) started in the 1980s
after the publication of dynamic matrix control (DMC) (Cutler & Ramaker, 1979,
1980), and since then, it has been extensively studied [26]. DMC had a tremen-
dous impact in the oil industry and the initial research on MPC is defined by
efforts to understand DMC. The latter has the ability to deal with constrained con-
trol problems, and it works with a step response or finite impulse model of the
plant [26].

Its ability to deal with large multivariable constrained control problems, has
made MPC quite popular in industry, over the past 30 years [42]. Firstly it was
applied in Petrochemical industry [3], [21]. Currently with its development, MPC
applications have been increasing in others sectors of the process industry such
as, Automotive and Aerospace systems [30].

MPC is a control technique where the provided control actions are optimized
according to a determined system model, plant, as well as a set of constraints on
state evolution, input and input rates. The idea is to compute the control action
by solving a finite horizon open-loop optimal control problem, at each sampling
instant over a future fixed interval (Prediction Horizon) while always respecting
the previously defined constraints. The current state of the system is used as initial
state of the plant and the optimization process gives an optimal control sequence.
The most common approach is to use the receding horizon technique, 2.7.2. wIt
dictates that only the first value of the vector of optimized control actions is ap-
plied to the plant. This method will be introduced later on.

2.7.1 Advantages and Limitations of MPC
The main feature of MPC, that clearly distinguishes it from other control tech-
niques, is its ability to handle input and output constraints (soft and/or hard), by
direct incorporation into the optimization problem. This aspect of MPC is of great
importance because most profitable operations are usually achieved when a pro-
cess is running near its constraints [21]. It is a very versatile method which is
able to control a several number of different processes, for instance, those with
non-minimum phase, long time delay, or even open-loop unstable characteristics
[3]. Furthermore, it also has advantages regarding the way in which the control
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objective is defined. All control objectives are established in a single cost function
where different parameters are weighted according to the user preferences for the
resultant system behavior. MPC can also implement feedforward control in order
to compensate the effects of disturbances [3].

On the other hand, MPC also has some disadvantages. Theoretical aspects
associated with stability and performance properties of MPC have proven to be a
problematic issue [37]. These properties are difficult to estimate and are currently
an active area of research. Stability, for instance, is complicated to ascertain due
to the introduction of constraints in the optimization process, which renders a non-
linear closed-loop system even if the the plant dynamics are linear, [37]. Usually,
to enforce stability, one can define a last state constraint that forces a selected
group of states to achieve a certain value, [21].

A big disadvantage associated with MPC is the computational weigh associ-
ated with solving the optimization problem. Since at everytime instant an opti-
mization problem needs to be solved, a lot of computational resources are needed,
thus compromising real time applications.

MPC uses an internal model of the plant to be controlled, and this can be
considered as an advantage and limitation simultaneously. It can be regarded as
one advantage because the process model allows the controller to deal with a
replica of the real process dynamics, leading to a much better set of control actions
[25]. On the other hand, any available model, as good as it might be, is never so
accurate as the real system behavior. This means that the predictions will differ
from actual system values for the same set of conditions.

2.7.2 Receding Horizon
The receding horizon idea is related with the application of the control input, and
is motivated by both the fact that the plant predictions are not so accurate, and
by the presence of unmeasured disturbances that can lead the system states away
from the ones predicted by the plant.

The main idea is that MPC only uses the first value of the control sequence

U(t) = [u(t|t), ...,u(t +Hp−1|t)], (2.62)

over the time horizon Hp, computed at each optimization. The rest of the control
sequence is discarded hence, the name receding horizon. Figure 2.9 shows how
the receding horizon idea would perform with Hp = 6. Each plot shows the min-
imizing control sequence, equation 2.62, that is computed at the sampling instant
zero and one, respectively. The colored inputs are the ones that would be applied
to the system and the remaining are discarded.
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Figure 2.9: Example of receding horizon idea

2.7.3 MPC Problem

When using MPC, an optimization problem is solved online over a finite pre-
diction horizon Hp. There are three different kinds of variables to be taken into
consideration. These are known as the tracking variables, manipulated and con-
strained variables. The tracking are defined as the variables that need to follow a
given reference, the manipulated are the plant inputs and the constrained are the
variables limited with upper and/or lower bounds. It is important to notice that
the tracking and the manipulated variables may also be constrained. In addition to
the previously defined prediction horizon it is also common to establish two extra
important parameters for the definition of the MPC problem.

• The control horizon Hu determines the number of time instants for which
the input u is going to be optimized .For instants above and equal to Hu the
control input is equal to the last computed one. By other words, there are no
input variations after Hu time instants. The relationship between the control
and prediction horizon is stated as Hu ≤ Hp.

• The constraint horizon, Hc, establishes the number of sampling instants
where the constraints will be enforced and its relation with the prediction
horizon is as follows, Hc ≤ Hp.

2.7.4 Working Variables

In order to understand the problem at hand there is a set of working variables that
needs to be presented. This group includes three smaller sets that refer to Manip-
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ulated variables, Constrained variables and Tracking variables. These smaller sets
might have common variables as it is going to be shown.

Manipulated variables - MV This set contains all the variables used to control
the plant. They can be stated as:[

φ̇r θ̇r ψ̇ ax ay az φ̇a θ̇a
]
. (2.63)

From left to right, the first two variables represent the roll and pitch angular
rates used to simulate rotations in the motion platform referential. The third one
represents the yaw angular rate. The following three variables are the translational
accelerations of the motion platform referential. The last two variables are the
roll and pitch angular rates, in the motion platform referential. They are used
to simulate accelerations by tilt coordination. All these variables are assumed to
be the same in the drivers head because the simulator and head referentials are
parallel.

The given set of variables is the input of the vestibular system as presented in
section F.2.

Tracking variables - TV The current set consists of the group of variables that
are tracked by the MPC. Every sampling time, future references for the tracking
variables are fed to the controller. Every time instant the controller will try to
minimize the error between the estimated values for all tracking variables, given
a set of control inputs, and the provided references. This set of variables consists
of:

[
ω̂x ω̂y ω̂z f̂x f̂y f̂z φ θ ψ px vx py vy pz vz

]
. (2.64)

From left to right, the first three variables correspond to the rotations felt by
the driver and the three following ones the felt specific forces. These six variables
are the ones for which references are computed. The minimization of the error
between the sensation signals in the platform and in the vehicle is the utmost goal
of this work.

The last remaining variables have a constant reference which is equal to zero.
This is done to guarantee that the platform returns to its neutral position, therefore
allowing more freedom of displacements in future motion cues. In other words,
the tracking of this variables is performed to ensure the washout of the motion
platform. About this group of nine variables, from left to right, the first three refer
to the Euler angles of the motion platform while the last six are positions, p, and
translational velocities, v, of the motion platform referential referent to the inertial
one.
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All underscripts refer to the axis that the variable is represented in.

Constrained Variables - CV The set of constrained variables consists of all
states that are bounded to a certain interval of values. This set is represented by:[

MV ∆MV φ θ ψ px vx py vy pz vz
]
. (2.65)

MV and ∆MV refer to the manipulated variables and their variation rates,
while the remaining variables, also introduced previously, can be found in the
group of tracking variables. The bounds for these states can be seen in the Ap-
pendix B, tables B.1 and B.2.

As shown in the section about the CVS, the platform command is in the form
of Euler angles and positions. This means that the set MV can not be sent directly
to the motion platform but instead integration is necessary. The necessary values
are already computed in the CV set and are applied directly as control commands.

2.7.5 Weights

Weights are used in the objective function in order to set relationships between
the different variables. They are applied to tracking variables, Q matrix, inputs, S
matrix, and input rates, R matrix.

The most common approach, when dealing with these kind of problems, is to
scale the states and the state space matrices. The goal of this process is to make the
weighting task easy. If all variables belong to the same range, 0-1, the relationship
between the different weights can be translated to the variables they are weighing.
For example, if two variables are weighted by the same quantity it means that they
have the same importance.

In the current master thesis, the state space model had states with no physical
meaning. This implies that the boundaries of the latter are not known, therefore
they can not be scaled. This reason forces the application of completely different
weights on the variables thus, making the relationship between the latter not so
obvious.

Sensed rotations

Given the prediction model in appendix F.2, the weights for these variables need
to be high when compared to the remaining ones. This is done to prevent the con-
troller from creating false cues, by tilt coordination. These high weights have no
other effect in the controlling task than the above, and guarantee a good tracking
of the sensed rotations.
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Felt specific forces

When weighting these variables one should be careful enough to think about the
constraint hitting. If weighted harshly, the controller will do everything that is
possible to track their values. This can lead to constraint hitting for the positions
and angular displacements, causing the driver to feel a discontinuity in the specific
force.

Euler angles, translational positions and velocities

These values have a constant reference of zero. Weighting these values is done to
guarantee that the platform returns to its original position when the errors on the
sensed signals start to decrease.

Inputs and input rates

Weighting the input rates is important to prevent big input variations.
Input weighting is not so obvious in this Thesis. It was used to establish a re-

lationship between the usage of the different control inputs. For example, weights
on accelerations were far smaller than the weights in the Euler angular rates. This
was done to make the controller use both inputs in an even way when simulating
specific forces.

2.7.6 MPC Mathematical Model
Using the linear plant defined in section 2.6.3, the optimization problem can be
solved with a quadratic programming optimization technique. It is a well known
optimization operation and due to the convexity of the problem it is relatively easy
to achieve a global optimum.

Consider the discretization of the vestibular system presented in the preceding
section.

ẋvest(k +1) = Avestd xvest(k)+Bvestd u(k),
Yvest(k +1) = Cvestxvest(k)+Dvestu(k), (2.66)

where Avestd and Bvestd are the discrete time correspondent state and input matrices.
More information about the discretization process is presented in Appendix C.

The plant model 2.66 expresses the plant state xvest in terms of the values
of the input u. However, it is desired to have the input changing rates, ∆u(k),
as the optimization variables in the MPC problem. For that reason, ∆u(k) will
be included in the above state space representation. Moreover, the plant model,
as presented in section 2.6.3, leaves no room for constraints on the angular rate
inputs, when it comes to tilt coordination.

41



Chalmers University of Technology Motion Cueing - MPC

As mentioned previously, angular displacement is going to be applied to sim-
ulate low frequency accelerations. However, one should be careful enough not to
generate false rotation cues and for that reason a maximum tilting velocity needs
to be specified. Because of this fact, and the inclusion of ∆u(k) in the MPC plant,
the prediction model is going to differ slightly from the given vestibular model.
The formulation of the prediction model is presented in appendix F.2.

Let the objective function be defined by

J(t) =
Hp

∑
i=1
||ytr(t + i|t)− r(t + i|t)||2Q +

Hu−1

∑
i=0
||u(t + i|t)||2S +

Hu−1

∑
i=0
||∆u(t + i|t)||2R, (2.67)

where all states, inputs and outputs of the prediction model are distinguished
from the physical system ones by the usage of term t. It refers to the instant in
which they were created. For example ytr(k|t) refers to the output estimated for
instant k at time t. The problem of having an initial state x(k) at time k is assumed,
then the model predictive control action u(k + i)Hp−1

i=0 at time k is obtained by
solving the optimization problem:

min
∆U(t)

J(ξ(t),u(t−1),∆U(t)), (2.68a)

sub j. to,

ξ(t + i+1|t) = Aaugξ(t + i|t)+Baugδu(t + i|t), i = 0, . . . ,Hp (2.68b)
ỹ(t + i|t) = Caugξ(t + i|t)+Daugδu(t + i|t), i = 0, . . . ,Hp (2.68c)
u(t + i|t) = ∆u(t + i|t)+u(t + i−1|t), i = 0, . . . ,Hp−1

(2.68d)

∆u(t + i|t) = 0, i = Hu, . . . ,Hp−1
(2.68e)

ymin ≤ y(t + i|t)≤ ymax, i = 0, . . . ,Hc−1
(2.68f)

umin ≤ u(t + i|t)≤ umax, i = 0, . . . ,Hc−1
(2.68g)

∆umin ≤ ∆u(t + i|t)≤ ∆umax, i = 0, . . . ,Hc−1
(2.68h)

ξ(t|t) = ξ(t), (2.68i)
u(t−1|t) = u(t−1). (2.68j)
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The meaning of the introduced constrains is explained in the next set of steps.
The given indices b,c, ..., j are equivalent to the ones found in equation 2.68.

b)- The next prediction state is computed calculated accordingly to the system
dynamics.

c)- Like the next state, the predicted output is a function of the system dynamics.

d)- The input in instant t is a sum of the input rate at same instant with the input
for t−1.

e)- For all prediction instants above Hu−1 the input rate is zero.

f)- All outputs must be within their bounds. ymax and ymin are vectors that contain
upper and lower bounds for the output.

g)- All inputs must be within their bounds. umax and umin contain upper and lower
bounds for the input.

h)- All input rates must be within their bounds. ∆umax and ∆umin contain upper
and lower bounds for the input changes.

i)- Prediction states at time t are equal to the system state at time t.

j)- Predicted input at time t−1 is equal to the applied input to the system at time
t−1.
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Chapter 3

Experimental Results

In this section the results obtained for offline and real time simulations of the
implemented controllers will be presented. of the bicycle model is discussed as
well as issues with the discretization of the MPC plant.

3.1 Testing Scenarios

The testing scenarios should contemplate the majority of inputs that can be found
when driving a vehicle. Bearing this in mind, a combination of maneuvers was
used in all presented simulations; lane changing and posterior braking. This ma-
neuver was chosen due to its combination of lateral and longitudinal dynamics
excitation, rendering a very complete test scenario.

For testing the MPC in the motion platform the maneuver was augmented. In
this case, the car starts from a stopped position and accelerates until a speed of
about 100Km/h prior to performing the actions mentioned above.

3.2 Experimental Setup

All offline simulations and tests were performed with Matlab R2007a, Version
7.4.0.287. All applications, regarding the proposed controllers, were developed
using Simulink applying the built in blocks as well as some user C-coded S-
functions. Tuning and validation of the bicycle model was done recurring to a
series of user defined functions in m-files.

Real time tests were performed recurring to Real Time Workshop, RTW, present
in Matlab Version 7.1.0.246, R14. The Target computer, working in real time, was
a Pentium 4 with 2.4GHz and 512mB of available RAM. All real time applications
are developed in Simulink just like in the previous case.
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The developed controller was C-coded, and the optimization problem was
solved with the use of a package named LSSOL that solves quadratic program-
ming problems. LSSOL consists of a series of optimization routines, and for more
information consult [11].

3.3 Tuning of the Vehicle Model
In order to completely define the bicycle model of section 2.2.3, there are four
parameters that were needed to be defined. These are the longitudinal and lateral
stiffness coefficients for the front and rear wheels. They were optimized, via
genetic algorithms, by minimization of the error between estimated states by the
bicycle model and states extracted from the vehicle model in the driving simulator.

The bicycle model was tuned based on two different sets of data. One was
focused on the longitudinal stiffness coefficients, breaking maneuver, while the
other focused on lateral stiffness coefficients, lane changing maneuver. One hun-
dred iterations with genetic algorithms, appendix E, proved to be enough to achieve
a group of parameters that guarantee a good performance in simulation. Neverthe-
less, when the model was validated with the driving scenario presented in section
3.1, it showed a very bad performance when tracking the velocity about the X-
axis. It was discovered that the slip ratio values would push the tire forces away
from the linear region, thus compromising the estimations of the tuned model.

We decided that the values for the longitudinal forces would be directly ex-
tracted from the vehicle model. This reduced the number of optimization param-
eters to two, front and rear lateral stiffness coefficients.

With a new set of data and the previously mentioned modification, the model
was tuned once again. Like in the first tuning phase, one hundred generations
resulted in very satisfactory set of results for the bicycle model states evolution.
At the bottom of this section one can find a batch of figures displaying the states
path for test scenario described above.

The values for the lateral stiffness coefficients, resulting from the optimization
process, are presented in the next table.

Table 3.1: Lateral stiffness coefficients
Front (N) Rear (N)

46679 52971

After analyzing the results, it is possible to conclude that there is a good track-
ing, particularly in the cases of yaw angular displacement and rate as well as
estimated position in the inertial frame. In what the concerns the velocity about
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the X-axis one can observe the good state estimation, even though a small tracking
error is present.

Relatively to the estimated values for the velocity about the Y -axis, it is possi-
ble to conclude that the evolution of the bicycle model and the real vehicle signal
are similar. Nevertheless, one can observe a difference in the signals magnitude.
This might be due to nonlinear behavior of the tires that is not reproduced by the
bicycle model.
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Figure 3.1: Bicycle model estimation of Yaw displacement
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Figure 3.2: Bicycle model estimation of Yaw rate
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Figure 3.3: Bicycle model estimation of the velocity about the Y -axis
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Figure 3.4: Bicycle model estimation of the velocity about the X-axis
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Figure 3.5: Bicycle model estimation of the position in the inertial referencial
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3.4 Choosing the sampling period

The sampling period is an important feature of the presented controller because it
is directly connected with the computational time. The sampling period dictates
the size of the required parameters of the MPC, like prediction horizon, there-
fore the dimension of the optimization problem. The choice of the sampling rate
is done so that stability is achieved and the dynamical behavior of the plant is
replicated.

In appendix C, was shown that a minimal sampling period of 0.2s should be
selected in order to obtain a stable discrete plant. In what concerns the repro-
duction of plant dynamics, selecting a sampling rate equal or less than 1/10 of
the rising time of the fastest pole usually ensures that all dynamics are captured.
Figure 3.6 shows that the latter is around 0.025s.
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Figure 3.6: Step response of the first order filter whose pole is the fastest in the
vestibular system

The selection of the sampling period in this problem would be done taking in
consideration the rate at which information is sent to the platform, 0.01s. This is
the minimal sending rate that ensures smooth movements by the motion platform,
according to the user manual. Nevertheless, testing showed that the above value
requires large horizons, thus high computational weights. It was confirmed in real
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time that it is impossible to implement the controller using the referred period of
0.01s, because the optimization problem is to complex to be solved in the required
time.

The last conclusion forces a change in the approach. Either the simulation
period is increased allowing more time to perform the necessary computations for
the optimization or the sampling time of the MPC plant is changed.

The simulation period is 0.001s. This value was selected given the fast dy-
namics of the vehicle model that is supposed to be simulated, so it should not be
modified. This result implies that the sampling period of the MPC plant will be
changed.

Offline simulations showed that 0.05s represents a good trade off between
results quality and optimization problem size.

The chosen sampling period does not respect the criterion specified above for
dynamic behavior reproduction. Nevertheless, given that they do not differ much,
the difference will be ignored and the model dynamics will still be considered as
reproduced.

3.5 MPC selection
This section contains a comparison between the results of the three developed
linear MPC controllers. The testing data was extracted from the vehicle model, in
driving simulator, and comprises of the maneuver introduced in section 3.1. Let
the different controllers be defined as follows:

• Controller 1 - This controller assumes that the vehicle accelerations and
rotations are constant for all the prediction horizon. References in terms of
tracking variables are computed by filtering the latter data with the vestibu-
lar system.

• Controller 2 - This controller assumes that the bicycle model inputs are
constant through the prediction horizon. With this information accelerations
and rotations are computed for all time instants in the prediction horizon.
The latter are filtered by the vestibular system thus, creating references in
terms of tracking variables.

• Controller 3 - This control approach uses the bicycle model to generate
references in terms of accelerations and rotations. Instead of assuming that
the inputs are constant, like the previous one, the input derivative is assumed
constant. Generation of references for tracking variables is done in the same
way as for the other controllers.
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Figures 3.7 to 3.12 show the achieved results. The tests were performed with
a prediction horizon of 18 time instants, control and constraint horizon of 6 time
instants. These were selected by trial and error, and it has verified that applying
bigger constraint and control horizons would not affect considerably the results.

The weights of objective function variables are given in A.5.
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Figure 3.7: Felt specific force about the X-axis
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Figure 3.8: Felt specific force about the Y -axis
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Figure 3.9: Felt specific force about the Z-axis
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Figure 3.10: Felt rotation about the X-axis
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Figure 3.11: Felt rotation about the Y -axis
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Figure 3.12: Felt rotation about the Z-axis

In what concerns the specific force about the X-axis, figure 3.7 shows that
both controllers 1 and 2 behave in the same fashion but the second one has a
lower tracking error. The remaining controller, 3, shows a different behavior,
showing two major deviations in the results. This is possibly due to the gener-
ated references for the specific force about X-axis. The derivative of the bicycle
model inputs is considered constant for the prediction horizon. Recalling that the
derivatives are computed with a backwards method, this may be the reason behind
the lack of quality of achieved results, since there could be very big gaps between
reality and predictions.

Figure 3.8 represents the perceived specific force about the Y -axis. It is pos-
sible to observe a lower tracking error from controller 1. For the remaining two
controllers, the signals evolution is very similar while the results appear some-
what shifted in the time axis. Given that it affects both controllers, 2 and 3, one
can safely assume that the mentioned shifting is connected with the reference gen-
eration since it is the only feature common to both and not present in controller
1.

The sensed specific force about the Z-axis was well tracked by the three con-
trollers, figure 3.8. There is a very small and very similar tracking error for all the
different approaches.
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Both the felt rotations about the X and Y axes present identical patterns. Con-
troller 1 is the one with lower tracking error. The remaining two have similar
behavior while controller 3 has bigger error fluctuations. Moreover, one can add
that controllers 2 and 3 clearly track the reference variations, nevertheless there
exists a gap in magnitude.

The felt rotation about the Z-axis can be commented like the specific force
about the Y -axis. Controller 1 holds the smaller tracking error, while the other
two have a matching behavior and what looks like a shift on the time axis.

Finally, based on the presented results, the controller chosen for implementa-
tion on the motion platform was number 1 because it originates the smaller overall
tracking error, from all the three approaches.

3.6 Comparison of MPC with Washout Filter
Tests were done to compare the performance of controller 1 with the behavior of
the washout filter. After reading [27] it was concluded that, from the controllers
implemented in the driving simulator, the classical washout filter was the one with
better performance. The testing scenario was once again the maneuver introduced
in 3.1.

Even though the same driving scenario was used, there is a noticeable differ-
ence in the reference signals between these results and the ones from the previous
section, 3.5. This is due to data filtration.

There is a considerable amount of noise on the signals coming from the motion
platform. Thus, filters were created in order to counter its effects. The washout
filters were developed taking in to account such filters and without them the re-
sults are not the anticipated ones. Then, to obtain a just comparison between the
performance of both controllers, the data sent to the MPC needed to be filtered
too, resulting in the difference observed in results mentioned in the previous para-
graph.
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Figure 3.13: Specific force about the X-axis, MPC vs Washout
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Figure 3.14: Specific force about the Y -axis, MPC vs Washout
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Figure 3.15: Specific force about the Z-axis, MPC vs Washout
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Figure 3.16: Felt rotation about the X-axis, MPC vs Washout
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Figure 3.17: Felt rotation about the Y -axis, MPC vs Washout
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Figure 3.18: Felt rotation about the Z-axis, MPC vs Washout
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A general remark, for the given set of figures, is that the MPC clearly follows
the references better than the classical washout filter. The difference in results
observed in figures 3.13 and 3.14 is most certainly due to the scale and limiting in
the washout filter.

Figures 3.15, 3.16 and 3.17 have the most relevant differences between the
washout filter results and the computed references. The washout filter results
present a similar evolution to the one given by the reference signal, nevertheless,
the signals magnitude do not match the referenced ones. This might be explained,
once again, by the scale and limiting implemented in the washout filter. However,
given the magnitude of the signals, the latter is not expected to interfere with the
washout results.

Finally, figure 3.18 shows that both washout and MPC present analogous pro-
gression for the tracked variables. Contrary to the last three discussed cases, the
washout output has a bigger magnitude than the one from the MPC. To the current
date, no justification was found for these results.

In section A, the commands sent to the motion platform are presented. These
are of interest because they allow a comparison between the utilization of the
workspace. As expected, it is possible to see a bigger exploitation of the workspace
by the MPC, except in figure A.6. This is a connected to the previously discussed
problem of tracking the felt rotations about the Z-axis.

3.7 Driving simulator testing
The current section contains the results of a simulation done in the motion plat-
form. First the implementation of the controller in the real time environment will
be discussed followed by a presentation of the data extracted from the driving
simulator.

3.7.1 Implementation of the controller in the CVS

The MPC was included in the existing Simulink model for motion cueing. The
controller generated a control action every 0.05s and the motion commands were
sent to the platform at the rate of 0.01s, the minimal sending rate that ensures
smooth displacements. The motion commands were assumed constant in the in-
terval between two different MPC commands. This method resulted in displace-
ments that were not smooth and the user could feel the difference between con-
secutive control inputs.

To solve this issue the hypothesis of sending different commands to the plat-
form at every 0.01s was considered. The idea was to extract the derivatives of
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the motion commands from the MPC at every 0.05s. Then, for every 0.01s in be-
tween consecutive MPC commands, compute a different control action based on
the available derivatives. This was first tested in offline simulation and only then
implemented in the platform.

Section A.4 holds a comparison between the commands originating from the
MPC and the ones actually sent to the motion platform. As an overall overview,
one can say that when the accelerations, angular or translational, go through big
variations there is a difference in the evolution of the two motion command sig-
nals. This was expected since the assumption of a constant first derivative will
present big errors in situations where the second derivative has big variations,
even if for short time periods.

Despite all, the latter implementation provides smooth displacements of the
motion platform and it is better than the first approach.

This method should only be considered for normal driving situations. In harsh
changing lane maneuvers, one can feel the platform changing its lateral and roll
displacements severely. This is prone to cause a discontinuity in the perceived
specific forces.

Big variations on the accelerations, lead to bigger gaps between the current
MPC motion command and the previous command originating from the developed
algorithm (consult figure A.20 to see these gaps). This requires higher velocities,
from the platform, to comply with the consecutive control inputs. It is obvious that
these velocities are not in accordance with the ones predicted by the MPC, thus
creating the mentioned discontinuity in specific forces. Until the date of delivery
of the current report no more solutions arose for this problem.

3.7.2 Results

The platform displacements were compared against its motion commands. Sec-
tion A.3 shows these results. All the displayed plots confirm that the low level
controller, installed in the motion platform, has a very good performance, because
the error between the presented signals is very low.

The last statement validates the following assumption: the predicted perceived
signals by the MPC are an almost perfect match to the ones generated by the
platform displacements.

This is very convenient because there is not the possibility of extracting the
platform accelerations and angular rates. If necessary, these signals would have
to be numerically differentiated from the extracted displacements. Also, filtering
would have been required to eliminate the noise. These two processes would
distort the actual signal derivative and they were avoided thanks to the conclusion
drawn in the previous paragraph.
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Based on these conclusions the felt signals in the platform will be represented
by the felt signals predicted by the MPC.

The shown plots represent the evolution of the perceived signals against the
reference signals from vehicle car model. Moreover, the classical washout filter
results are shown. These will not be addressed (check section 3.6) and are only
presented to recall the relationship between the two controllers.

The testing maneuver is described in section 3.1.
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Figure 3.19: Felt specifc force about the X-axis
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Figure 3.20: Felt specific force about the Y -axis
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Figure 3.21: Felt specific force about the Z-axis
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Figure 3.22: Felt rotation about the X-axis
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Figure 3.23: Felt rotation about the Y -axis
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Figure 3.24: Felt rotation about the Z-axis

Analyzing the evolution of the specific force about the X-axis, figure 3.19,
one can conclude that the controller performs a good tracking. The difference in
amplitudes is due to the weight applied on the evolution of this variable. It is small
to avoid the platform from going against the boundaries causing a discontinuity in
the tracking task.

In what concerns the specific force about the Y -axis, figure 3.20, similar re-
marks can be made. Furthermore, it is possible to see that the tracking error for
the offline simulation was lower. This is due to the application of a smaller weight
on this tracking variable (consult sections A.5 and A.6).

According to driver remarks the perceived specific force about the Y-axis was
to irrealistic. To reduce the reproduction of this signal, its weight on the objective
function was lowered resulting in a bigger tracking error.

The controller presents a good tracking of the reference for felt specific force
about the Z-axis. Nevertheless, like in the previous case, the tracking error is
bigger than the one achieved with the offline simulations. This is due to the same
problem affecting the specific force about the Y -axis; irrealistic results led to a
smaller weight which is responsible for a bigger tracking error.

In what concerns perceived rotations, it is possible to conclude that the con-
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troller behaves very well when it comes to sensed angular rates about the X and
Y axes, figures 3.22 and 3.23 respectively. There is a very small tracking error,
nevertheless one should pay attention to the small amplitude of the signals which
are, most likely, not felt by the driver.

The sensed rotation about the Z-axis is given in figure 3.24. It has a bigger
tracking error when compared to the remaining felt rotations, but the overall per-
formance is good.

In section A.2, a comparison between the motion commands computed by
both MPC and washout filter is presented. Like in the offline tests, the MPC
shows a better exploitation of the motion platform displacements. However one
should refer that the position about the Y -axis has smaller displacements on the
MPC case. This happens because the controller has a lower priority on tracking
the specific force about that axis, thus using less displacement.

In what concerns the Yaw case, higher displacements by the washout filter are
connect with its behavior when tracking the perceived rotations about the Z-axis,
figure 3.24. These are not according to the reference or the expected outcome of
the washout filter, thus no comparison can be performed.

Furthermore, there is one interesting result to be highlighted in section A.2.
Analyzing figure A.7 one can see that the MPC is operating very close to the
boundaries. As expected, the constraints were respected.
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Chapter 4

Conclusion

This thesis proposed a new motion cueing approach, the MPC. It was motivated
by the possibility to enforce the displacements constraints of the platform, while
providing optimal motion commands.

The control goal was to reproduce sensed specific forces and rotation rates, in
the driving simulator. This reason prompt the study of the vestibular system that
acted as the MPC plant.

Furthermore, three different methods were considered for reference genera-
tion. Two of them used a simplified vehicle model, bicycle model, for prediction
of the vehicle future behavior. By application of the bicycle model, the reference
generation methods were expected to compute more reliable information, in what
concerns future vehicle states.

The methods for reference generation were tested. The one that resulted in a
controller with better performance, was compared with the conventional washout
strategies.

Finally, the controller was implemented in the Chalmers Vehicle simulator and
its application evaluated.

4.1 Summary of Results
The bicycle model was used for reference generation. It was defined according
to section 2.2.3 and its parameters were tuned by genetic algorithms. As it is
possible to conclude from the figures in section 3.3, the tuned parameters establish
the bicycle model as a good estimator for the vehicle behavior.

References for the MPC were generated in three ways, section 2.2. The three
given methods defined three different controllers. These controllers were tested
and their performance judged in terms of tracking capabilities. Contrary to what
was initially expected, controllers working with the bicycle model, did not have
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better results than the controller who did not. The figures in section 3.5, show that
controller one (not using references generated by the bicycle model) has smaller
or similar tracking error when compared to the remaining controllers. Particularly
one should mention the results obtained with controller three, because of the large
variations in the tracking errors. This may be justified by the way in which the
bicycle model inputs derivative is computed, a backward approach.

The best MPC , controller one, was compared against the classical washout
filter. Studying the attained results, section 3.6, was possible to conclude that the
developed controller has smaller tracking errors than the washout filter.

Appendix A.1, shows the motion commands generated by washout filter and
the MPC. One can understand that all the given plots (except Yaw displacement)
show a better exploitation of the motion platform capabilities by the MPC, as
expected.

The low level controller, in the motion platform, has a very good performance.
All motion commands by the MPC were reproduced almost flawlessly by the lat-
ter. Section A.3 illustrates the drawn conclusion.

The implementation of the controller in the platform showed that tuning the
weights can not be carried out while only considering the computed tracking error.
In an offline simulation, what appears to be a good tracking action, is considered to
harsh by the driver in the platform, section 3.7. This was reported for the specific
forces about the Y and Z axes.

Due to the way in which motion commands are sent to the platform, section
3.7.1, it was shown that the current implementation should be avoided in rough
driving conditions. As explained earlier big variations in translational acceleration
will cause discontinuities on the felt perceived forces.

Through the performed tests and given results, the developed controller proved
to be a good alternative for the implemented washout filter, nevertheless, there is
still work to be done.

4.2 Future Work

The noise in the data, originating from the vehicle model, should be addressed. Its
presence requires filtering before any kind of data handling. The filtering process
not only removes the noise but also affects the properties of the filtered signal and
adds delay to the motion commands. To solve this issue, a new car model could
be developed for the CVS.
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Feedback of the platform states could be used to improve the MPC perfor-
mance. For instance, if a rotation and acceleration sensor is placed at the driver
head, real sensed specific forces and rotations could be computed. This would
provide the MPC with more reliable states of the vestibular system, which would
reflect in a better tracking performance.

The current thesis showed that the MPC can be a good alternative to the motion
cueing algorithms installed in the CVS. This can be improved by utilization of
different and more recent vestibular models, like the ones given in [35]. The used
vestibular model was only applied in order to perform a even comparison with the
washout filter, since the latter was tuned with the same model.

The washout function in the developed MPC is performed thanks to tracking
of the positions and angular displacements to zero. These variables need to be
weighted and the washout is triggered when the errors in the tracking perceived
signals are small. This feature has its disadvantages because it penalizes the usage
of displacements even when they are necessary. Also, it is possible to ascertain,
specially in the specific forces about the X and Y axes, that aggressive weights
will lead the platform against its constraints very fast, disturbing the tracking task.
This implies that "worst case scenario" weight tuning is required, compromising
the exploitation of the platform workspace.

Both problems in the last paragraph could be addressed by a similar solution.
The weights in all the referred variables could be adapted according to the situa-
tions. For instance, considering the first problem, when the accelerations remain
constant for long time periods, the weight in the position of the motion platform
frame could increase. In the second problem, the weights increase as the specific
force decreases and vice versa.

This is a very simple way to describe these solutions. Most probably they
would be implemented AS optimization problems, functions of the current vestibu-
lar states and inputs.

Stability analyzes were not performed for the controller developed in this the-
sis. It could be interesting to address this issue in future works.

The method used to send motion commands to the platform should be revised.
The current implementation prevents users from doing harsh maneuvering, section
3.7.1.

For example, a study could be done to determine the possibility of using a
more powerful processor in the real time computer. This study would focus on
the implementation of a controller with smaller sampling time, as close to the
platform receiving rate as possible.

In the developed thesis, the boundaries of the motion platform displacements

68



Chalmers University of Technology Motion Cueing - MPC

were extracted from the user manual. These consisted on a set of limitations
for the degrees of freedom based in combined motion scenarios. Was one can
understand, the referred values are computed in a conservative fashion, and do
not match with the boundaries for single D.O.F. displacement. This fact limits
the utilization of the platform, compromising an optimal usage of the available
workspace.

To fix this issue, an algorithm could be built that computes the real constraints
in real time. This algorithm would make use of the platform model and, given the
current actuators length, update the motion boundaries for the MPC.

Another interesting proposal of future work is connected with the vestibular
system itself. The idea is to implement the nonlinear model as the MPC plant.
The purpose of such an approach would be to improve the driving experience by
a better exploitation of the motion hardware capabilities.

Using the nonlinear model as the plant, the MPC would be aware of the human
motion thresholds. Using these, the controller would know how to displace the
platform without any kind of perceived signal by the driver. This is useful because
the control approach would be able to displace the platform to a set of D.O.F. that
enable a better dynamical reproduction of the car dynamics; all without generation
of false cues.
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Appendix A

Results

A.1 Commands for the Motion Platform: MPC vs
Washout - offline simulations

This section presents the comparisons between the commands sent to the platform
by the washout filter and the MPC. Information about these figures can be found
in section 3.6.

Notice that these values are all constrained. Upper and lower bounds are only
shown if the signals are close to the latter. The boundaries can be found in B.1.
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Figure A.1: Position about the X-axis
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Figure A.2: Position about the Y -axis
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Figure A.4: Angular displacement - Roll
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Figure A.5: Angular displacement - Pitch
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Figure A.6: Angular displacement - Yaw
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A.2 Commands for the Motion Platform: MPC vs
Washout - online simulations

This section presents the comparisons between the commands sent to the platform
by the washout filter and the MPC. Information about these figures can be found
in section 3.7.

Notice that these values are all constrained. Upper and lower bounds are only
shown if the signals are close to the latter. The boundaries can be found in B.1.
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Figure A.7: Position about the X-axis
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Figure A.9: Position about the Z-axis
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Figure A.10: Angular displacement - Roll
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Figure A.11: Angular displacement - Pitch
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Figure A.12: Angular displacement - Yaw

A.3 Commands for the Motion Platform: Motion
commands vs Platform displacements

This section holds the comparison between the results sent to the motion platform
and the displacements it executes. More information about these figures can be
found in section 3.7.

Notice that these values are all constrained. Upper and lower bounds are only
shown if the signals are close to the latter. The boundaries can be found in B.1.
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Figure A.14: Position about the Y -axis
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Figure A.15: Position about the Z-axis
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Figure A.16: Angular displacement - Roll
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Figure A.17: Angular displacement - Pitch
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Figure A.18: Angular displacement - Yaw
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A.4 Commands for the Motion Platform: Sending
rate

This section contains a comparison between the commands computed by the MPC
and the ones actually sent to the platform. For more information on this issue con-
sult section 3.7. These results were extracted from a test done with the Controller
1, section 3.5 with the maneuver presented in section 3.1.

Notice that these values are all constrained. Upper and lower bounds are only
shown if the signals are close to the latter. The boundaries can be found in B.1.
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Figure A.22: Angular displacement - Roll
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Figure A.23: Angular displacement - Pitch
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Figure A.24: Angular displacement - Yaw
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A.5 Weights of the MPC - Offline Simulations

The weights used for the MPC formulation are presented in the tables A.1, A.2
and, A.4. They were chosen by a trial and error. For more information about
weights and its relationships consult section 2.7.5.

Table A.1: Weighs on the tracking variables
wx wy wz fx fy fz

Weights 10000 10000 60 9 10 80

Table A.2: Weighs on the tracking variables cont.
φ θ ψ px vx py vy pz vz

Weights 20 20 5 10 15 10 15 5 9

Table A.3: Weighs on the control inputs
φ̇r θ̇r ψ̇ ax ay az φ̇a θ̇a

Weights 1 1 1 1 1 1 20 20
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Table A.4: Weighs on the control input rates
∆φ̇r ∆θ̇r ∆ψ̇ ∆ax ∆ay ∆az ∆φ̇a ∆θ̇a

Weights 1 1 1 0.01 0.01 0.01 8 8

A.6 Weights of the MPC - Online Simulations

The weights used for the MPC formulation are presented in the tables A.5, A.6
and, A.8. They were tuned by trial and error, according to the drivers tips about
the perceived signals. For more information about weights and its relationships
consult section 2.7.5. Commentaries about this specific set of weights can be
consulted in section 3.7.

Table A.5: Weighs on the tracking variables
wx wy wz fx fy fz

Weights 20000 20000 300 6 3 10

Table A.6: Weighs on the tracking variables cont.
φ θ ψ px vx py vy pz vz

Weights 60 60 25 20 20 20 20 30 15
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Table A.7: Weighs on the control inputs
φ̇r θ̇r ψ̇ ax ay az φ̇a θ̇a

Weights 1 1 1 1 1 1 20 20

Table A.8: Weighs on the control input rates
∆φ̇r ∆θ̇r ∆ψ̇ ∆ax ∆ay ∆az ∆φ̇a ∆θ̇a

Weights 1 1 1 0.1 0.1 0.1 20 20
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Appendix B

Chalmers Vehicle Simulator -
Communications

This section explains in detail the communication between the driving simulator
computers. A scheme of connections is shown and a brief explanation of the
computers is given.

All communications between platform and control computer as well as be-
tween all computers are presented in figure B.1.

Figure B.1: Communications layout

• Control Computer - In this computer the Simulink control scheme is devel-
oped, compiled and sent to the real time environment. In the scheme this
computer is represented bellow the computer with the graphics application.
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• xPc Target Computer - This computer is responsible for all real time calcu-
lations. Inside it is possible to find the vehicle model, and all the motion
cueing algorithms that generate control inputs for the Platform.

• Platform Computer - Located in the motion platform base, this computer is
responsible for communicating to the platform all desired displacements so
that all control commands from xPc Target Computer are met. Its command
inputs are in the form of Euler and positions about the X , Y and Z axes.
In the given scheme, it is included in the driving simulator, between the
xPc-target computer and the motion platform.

• Graphical Computer - This computer function is to create all visual cues
displayed in the drivers screen.

B.1 Bounds on Platform States

Table B.1: Bounds for Euler angles
φ θ ψ

displacement(deg) ±22 +25/−23 ±23
rate(deg/s) ±30 ±30 ±40

acceleration(deg/s2) ±500 ±500 ±400

Table B.2: Bounds for translational movement
x y z

position(m) ±0.18 ±0.27 ±0.26
velocity(m/s) ±0.3 ±0.5 ±0.25

acceleration(m/s2) ±0.6g ±0.6g ±0.6g

Bounds for the roll and pitch angular rates used to simulate rotations, are the
ones presented in the above tables. The same quantities, when used to simulate
accelerations, are bounded by the values for threshold, in table 2.1.
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Appendix C

Discretization

The pole map illustrated in figure C.1 holds the poles for the system represented
by the state space model 2.55.
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Figure C.1: Pole Zero Map

It is possible to conclude that the system has slow dynamics given that the
furthest pole, from the origin, is situated at −10 units. This result enables the
utilization of the forward Euler method. Let Tsm be the maximum sampling period
that guarantees stability for the discrete system.
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The Euler forward method does not necessarily guarantee stability in the Z
plain even if that is a property of the continuous time system. In this transforma-
tion only the values contained in the circle presented in the S plain, figure C.2,
are mapped to the unit circle in the Z plain, thus being stable in the discrete time
form.
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Figure C.2: Forward Euler Method stability zone

Given that the most distant pole from the origin is a located at a distance
of 10 units, a minimum sampling period of 0.2s is required to enforce a stable
discretized system.

The discretized state space model has the following format:

x(k +1) = Adx(k)+Bdu(k),
y(k) = Cdx(k)+Ddu(k), (C.1)

where

Ad = ATsamp + I, Bd = BTsamp, Cd = C, Dd = D. (C.2)
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Appendix D

Bicycle Vehicle Model Data

The vehicle model simulates the dynamic motion of a Volvo XC90. The data
given in this section was extracted from the latter. It will be applied to bicycle
model, section 2.2.1.

Vehicle Data
Parameters Values Units (SI)
mass(m) 2081 Kg
Inertia(I) 4512.6 Kg×m2

Distance from the CoG to the front axles (d f ) 1.3242 m
Distance from the CoG to the rear axles(dr) 1.5328 m

Table D.1: Vehicle model constants
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Appendix E

Genetic Algorithms

Genetic algorithm (GA) is an optimization method developed by John Holland in
early 1970’s, who based his thoughts on the Darwin’s theory. Establishing that
all species of life have evolved over time from common ancestors, through the
process he called natural selection [38]. The initial idea came from observing
how the evolution of biological creatures derives from their constituent DNA and
chromosomes. In this sense a simple analogy can be made with a mathematical
problem. Genetic algorithms are used to solve several different problems, for
instance, Optimization, Automatic programming and Economics [10].

The field of Genetic optimization is quite wide, this work only explains the
main points in order to help the reader to understand the work developed. For a
deeper insight into the genetic algorithm the reader should consult the following
books [24] and [10].

E.1 Main Concepts of GA
The following list of important concepts of Genetic algorithm can be established:

• Population: Group formed by many individual solutions, each of them with
its own characteristics.

• Individual: Can be represented in a decimal or binary base. It is usually
referred to as chromosome.

• Fitness: Objective function value for a determined individual. It is directly
proportional to the quality of the solution presented by the latter.

• Crossover: This genetic operator is responsible for the creation of new off-
spring. Several types of crossover exist, [10], where single point crossover
is one of the most common one and simplest techniques, [24].
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Figure E.1: Set of feasible solutions with many local optima

• Mutation: Introduced in this algorithm to reproduce the natural possibility
of mutation, this operator is the second way for GA to explore the cost sur-
face [13]. According to a specified probability mutation may occur swap-
ping one bit to its antagonic value.

• Elitism: Top individuals are conserved without any kind of alteration for the
following generation. This guarantees that the best fitness value is at least
the same as in the previous iteration.

Genetic Algorithms are population based optimization algorithm. The fitness
of each individual in a current population is evaluated in order to establish the
quality of the respective solution. Individuals within the population will mate
with each other generating offspring, according to a previously defined crossover
rule. The offspring will be subjected to the possibility of mutation before the new
generation is completely defined. This process establishes a new population to be
processed by the algorithm once again, and it will be iterated until some stopping
criterion is fulfilled.

This method is usually implemented when the set of feasible solutions is so
large that typical brute force optimization algorithms would take a lot of time to
check all the possible combinations and achieve an optimal solution. One disad-
vantage of this method is that it does not guarantee a global optimum. However,
a wide solution set is tested which increases the probability of finding a global
optimum or at least a close solution.
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E.2 Outline of the Genetic Algorithm
1. An initial population of N individuals is created.

2. Evaluate the fitness of all individuals according to an objective function.

3. Convert the population from decimal to binary representation. By perform-
ing this transformation the problem of formulating offspring as well as per-
forming eventual mutations will be easily implemented.

4. Create offspring by mating individuals according to a crossover technique.

5. A probability of mutation is defined. Each gene of all offspring is subjected
to this possibility of change. If mutation occurs, the gene value will change
to its antagonic value.

6. A new population is formed by the offspring. Usually, the individuals with
higher fitness are kept from population to population ensuring that the best
fitness value in the new iteration is at least the highest value of the previous
generation (Elitism).

7. Convert the population from binary to decimal. Then, check the stop crite-
ria. If it is verified the algorithms stops else, it goes to step 2.

E.3 Experimental Setup
The genetic algorithm was implemented as a m-file function. One point crossover
was applied and twenty iterations without improvement was the used stopping
criterion. Elitism was implemented and the two top individuals of each iteration
passed to the next generation. Populations consisted of twenty individuals.

The fitness value for each individual was the mean square error between the
bicycle model estimated states and the actual ones.
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Appendix F

Optimization problem formulation

F.1 Optimization Algorithm for QP Problems
A quadratic programming (QP) problem has a quadratic objective function of the
optimization variables. A QP problem may be constrained.

A quadratic problem can be formulated as follow:

Minimize f (x) = cT x+
1
2

xT Ax, (F.1a)

subj. to Acx≤ b and x≥ 0, (F.1b)

where c ∈ℜn, and A ∈ℜn×n describe the coefficients of the linear and quadratic
terms in the cost function, respectively. Let x is defined as the decision/optimization
variable. If A is a positive semidefinite matrix, f (x) is a convex function, on the
open and convex set S ⊆ℜn, and every local minimum is also a global one. Fur-
thermore, if A is positive definite then, only a unique local minimum exists which
is also the global one [7]. There are several methods to solve QP problems, for
instance, a modified version Simplex method, the Frank-Wolfe algorithm or the
Simplicial Decomposition algorithm [7].

The solver used in this work to compute the optimization problem is named
LSSOL. The latter uses a two-phase (primal) quadratic programming [11].

• Feasible Phase (I) - Finds an initial feasible point by minimizing the sum of
infeasibilities.

• Optimality Phase (II) - Minimizes the objective function within the the fea-
sible region.

At each new iteration the variable values xk+1 are found by applying the fol-
lowing equation:
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xk+1 = xk +αk pk, (F.2)

where, αk and pk are a positive scalar step length and the search direction respec-
tively.

An important feature regarding the LSSOL algorithm is the computation of the
search direction. It is performed in a way that, if one or several variables are close
(within a Feasibility Tolerance defined by the user) to its constraints, the referred
search direction is found so that the value of those variables remain unaltered.

Detailed information regarding LSOOL package can be found in [11].

F.2 Augmented Model
Consider the linearized discrete-time state space model 2.66. It was already dis-
cussed that the MPC prediction model needs different inputs for constraint pur-
poses. Let us then introduce the changes.

The state matrix is defined as

Apred =
[

Avest ιA
02×24 02×2

]
, (F.3)

where

ιA =



012×1 012×1
0 Kτa

τlτs

0 K
τlτs

−Kτa
τlτs

0
− K

τlτs
0

010×1 010×1


. (F.4)

The input matrix is defined like:

Bpred =
[

Bvest 024×2
02×6 I2×2

]
. (F.5)

The output matrix is given by:
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Cpred =
[

Cvest ιC
]
, (F.6)

where

ιC =


06×1 06×1

0 1
0 1
1 0
1 0

05×1 05×1

 . (F.7)

Finally, the direct feedtrough matrix, Dpred , has two more columns of zeros
than Dvest and the same number of rows.

The state vector is present as follows:

xpred =



xscc
xotox

xotoy

xotoz

φr
θr
φ

px
vx
py
vy
pz
vz
φa
θa



, (F.8)

where φr and θr are the Euler angles generated to simulate rotations and, φa, θa
the Euler angles used for tilt coordination.

This formulation allows the tilt coordination rates to be constrained because
they are now a part of the problem variables. It also allows the MPC to understand
that every rotation cue will also affect the felt specific force cues. The contrary
does not happen because we are dealing with angular velocities undetected by the
driver.

102



Chalmers University of Technology Motion Cueing - MPC

Since the MPC sees that angular velocities, used to generate sensed rotations,
also affect the specific force, it may be temped to use those inputs for the purpose
of tracking specific forces. Using a big weight on felt rotations this situation is
prevented. For more information on this issue consult section 2.7.5

The formulation applied by this work defines the input variation rate ∆u(k) as
the optimized variable, thus the state space model needs to be modified in order
to include the latter as input.

Let us first define the augmented state as

ξ(k) =
[

x(k)
u(k−1)

]
. (F.9)

This alteration to the state vector enables the definition of the following aug-
mented model

ξ(k +1) = Aaugξ(k)+Baug∆u(k),
Z(k|k) = Caugξ(k)+Daug∆u(k), (F.10)

where

Aaug =
[

Apred Bpred
08×26 I8

]
,Baug =

[
Bpred

I8

]
,Caug =

[
Cpred Dpred

]
,Daug =

[
Dpred

]
.

(F.11)

F.3 Problem Formulation

F.3.1 Prediction Model
The current section is based on the work of Paolo Falcone [8]. Taking in account
the augmented system model defined in the last section, the prediction model can
be defined as follows

ξ(k +1|t) = Aaugξ(k|t)+Baug∆u(k|t),
y(k|t) = Caugξ(k|t)+Daug∆u(k|t). (F.12)

Let λ(t) be a vector p×Hp, where p is the number of outputs. λ(t) contains
the predictions [y(t|t), ...,y(t +Hp|t)]T generated by the sequence of input rates,
∆U(t) = [∆u(t|t), ...,∆u(t +Hp|t)]T . Then, the relationship between both quanti-
ties is presented as,
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λ(t) = ψξ(t|t)+Θ∆U(t), (F.13)

where, dropping the underscript ()aug for simplicity,



y(t +1|t)
y(t +2|t)

...
y(t +Hu|t)

y(t +Hu +1|t)
...

y(t +Hp|t)


=



CA
CA2

...
CAHu

CAHu+1

...
CAHp


︸ ︷︷ ︸

Ψ

ξ(t|t) +



CB 0p×nin · · · 0p×nin

CAB CB . . . ...
...

... . . . . . .
CAHu−1B CAHu−2B · · · CB
CAHuB CAHu−1B · · · CAB

... · · · . . . ...
CAHp−1B CAHp−2B · · · CAHp−HuB


︸ ︷︷ ︸

Θ


∆u(t|t)

∆u(t +1|t)
...

∆u(t +Hu−1|t)

 .(F.14)

Note that in the system F.14 it is assumed that ∆u(t + Hu|t) = ∆u(t + Hu +
1|t) = . . . = ∆u(t +Hp−1|t) = 0. nin is the number of inputs.

The output vector of the system λ(t) can be divided in two parts, λ(t) =
[λ(t)tr,λ(t)c], where λ(t)tr are the outputs that need to be tracked, and λ(t)c are
the outputs to be hard constrained.

Since in this problem all the outputs are tracked, the following conclusion is
immediate,

λ(t)tr = ψξ(t|t)+Θ∆U(t) = λ(t). (F.15)

Nevertheless, it is not the same case for the constrained variables. Let υ be a
pc×Hp by p×Hp matrix . If

λ(t)c = υλ(t), (F.16)

then, υ takes the form
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υ =


0pc×(p−pc) Ipc×pc · · · 0pc×(p−pc) 0pc×pc

0pc×(p−pc) 0pc×pc · · · 0pc×(p−pc) 0pc×pc
...

...
...

...
...

0pc×(p−pc) 0pc×pc · · · 0pc×(p−pc) Ipc×pc

 (F.17)

because the constrained outputs are the last pc in the output vector, y(k|t). With
this result, it is possible to define

λ(t)c = ψcξ(t|t)+Θc∆U(t), (F.18)

where
ψc = υψ, Θc = υΘ. (F.19)

F.3.2 Objective Function Formulation
Just like in the previous function the current one is based on the work presented
in [8]. Let equation 2.67 be redefined such that

J(t) = ||λ(t)tr− re f (t)||2Q + ||U(t)||2S + ||∆U(t)||2R, (F.20)

where λtr(t) and ∆U(t) were introduced in the previous section, while re f (t) =
[r(t +1, t), . . . ,r(t +Hp, t)] and U(t) was defined previously in section 2.7.2.

U(t) can be defined as a function of ∆U(t) and u(t−1), like shown in equation
F.21.

U(t) = κ∆U(t)+Ut , (F.21)

where Ut is the product u(t−1)⊗1Hu for 1Hu defined as a vector of ones with Hc
rows and ⊗ defined as the Kronecker product. κ is established as the Kronecker
product between a lower triangular matrix of ones Hc×Hc and an identity matrix
nin×nin.

Let us define λtr, when ∆U(t) = [0, . . . ,0], as the free response of the system,
and E(t) as the difference between the free response and re f (t). Then, the cost
function F.20, can be defined as

J(t) = E(t)T QE(t)+UT
t SUt +

2(ET (t)QΘ+UT
t Sκ)∆U(t)T +

∆U(t)T [ΘT QΘ+R+κ
T Sκ]∆U(t). (F.22)
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Finally, the optimization problem can be described as:

min
∆U(t)

J(∆U(t),u(t−1),ξ(t)), (F.23a)

sub j. to,

Ymin ≤ ψcξ(t|t)+Θc∆U(t),≤ Ymax (F.23b)
Umin−Ut ≤ κ∆U(t)≤Umax−Ut , (F.23c)
∆Umin ≤ ∆U(t)≤ ∆Umax. (F.23d)

The presented constraint vectors are a function of the ones presented in section
2.7 and are defined as follows

Ymin = ymin⊗1Hc, Umin = umin⊗1Hu, Umin = umin⊗1Hu. (F.24)

where 1H∗ is defined as a column vector of ones with size H∗.
In order to be applied to the algorithm for optimization presented in F.1, the

optimization problem F.23 needs to be changed. As it is possible to conclude, the
objective function, equation F.22, is already presented in the desired format but
the set of constrains is not. With all the gathered information one can define the
matrices Ac and b in equation F.1b

Ac =


κ

−κ

Θc
−Θc

 ,b =


Umax−Ut
−Umin +Ut

Ymax−ψcξ(t|t)
−Ymin +ψcξ(t|t)

 . (F.25)

Leaving the problem completely defined for application of the optimization
algorithm.
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