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Abstract

The standardization of a Return Channel via Satellite (DVB-RCS) and the satellite com-
munity efforts in term of interoperability over the last few years are expected to play,
in a near future, a decisive role in Next Generation Networks (NGNs) through the inte-
gration of Satellite networks as an alternative to terrestrial networks like DSL (Digital
Subscriber Line) in low terrestrial infrastructure areas. Furthermore, the advance of dis-
tributed multimedia applications like voice over IP and videoconference implies some new
requirements to guarantee the Quality of Service (QoS). It concerns a limited transmission
delay, a weak jitter, a minimal loss rate and a guaranteed bandwidth.

The transport protocols considered in this work are TCP (Transmission Control Pro-
tocol) and UDP (User Datagram Protocol). TCP is used for the NRT (Non-Real Time)
applications (Peer to Peer, FTP...), and UDP for time-sensitive applications (VoIP ...).
The data applications are stored in the BE and AF queue while multimedia applications
in the EF and AF queue. Consequently, AF queue receives data and multimedia streams.
The goal of this work is to regulate a priori the Diffserv AF queue and avoid the over-
flow. Considering the AF queue shared between UDP based multimedia applications and
TCP based data transfer, the main idea consists in controlling TCP streams to guarantee
transmission capacity of UDP packets. The most constraint application can then enjoy
low buffers time delay and very few losses.

In order to solve this problem, we design a congestion control mechanism based on
Active Queue Management (AQM) techniques by using control theory. To this end a fluid
model of TCP connection originally designed for wire-networks is proposed for satellite
networks. Then, the design of a robust proportional integral (PI) and a robust dead time
based controller are investigated. To avoid AF queue over flooding, TCP packets are
voluntary dropped in the ST according to regulation rules. TCP connection throughput
is then controlled and limited to protect UDP streams against unnecessary drops. The
different methods are then simulated on matlab and NS2-Simulator and compared to a
classical DropTail mechanism.
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Introduction

Several commercial DVB-RCS (Digital Broadcast - Return Channel Satellite) based net-
works are already deployed and many efforts are done in order to enhance interoperability.
Most recent commercial deployments provide either Internet access or mesh connectivity
over a transparent geostationary satellite. Fixed bandwidth contracts are generally offered
to consumers thanks to a simple resource management scheme. It simplifies admission
control, reduces cost and gains experience while waiting for the standardization of finer
resource management strategies and equipment. A lot of work on IP (Internet Protocol)
over satellite remains particularly in the Quality of Service (QoS) field and the next step
is, obviously, to take benefits from DVB-RCS dynamic allocation schemes and IP QoS
architectures to cope with the satellite delay and the scarce uplink resources.

This work deals with an algorithm of the ST (Satellite Terminal) , more precisely,
it contributes to the QoS management of the return link, a central problem in satellite
network (compared to wire network) due to the satellite delay and the scarce uplink re-
sources. Instead of over-sizing the connection, which could be very expensive, we aim at
reaching an optimal exploitation of uplink resources [8].

In order to solve this problem, we design a congestion control mechanism (Active
Queue Management (AQM)). This mechanism is equivalent to a controller designed by
using automatic control methods. Two AQM are described in this article, a robust propor-
tional integral (PI) controller and a robust dead time based controller. These mechanisms
are applied to an existing model of the TCP (Transmission Control Protocol) for wire net-
work described in [12] that we adapt to the satellite network. The different methods are
simulated on NS2-Simulator and compared to the DropTail mechanism.

This report is composed of three parts. The first part presents the context of the
Satellite networks and the model. The second part deals with the model of TCP and the
design of both controllers. Finally, the third part presents the simulations and the results
in order to show the behavior of this method. The last part concludes on the model
evaluation and the future work.
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Chapter 1

Background in Satellite Network and
Modeling

In this first chapter, we introduce the context of the application. It is important to
understand the position of the problem regarding the satellite network as well as the
TCP. We will define the system used during the work and its modeling. It is from this
point that we will be able to apply the automatic control theory.

1.1 Satellite Network

Geostationary satellite access networks are expected to play, in a near future, a decisive
role in Next Generation Networks (NGNs) as they are intended to provide broadband
access to interactive multimedia services in low infrastructure areas. Known as a real
complementary technology in geographical locations beyond reach of terrestrial means,
satellite networks still suffer, in comparison to terrestrial networks, from long delays,
scarce bandwidth resources and high equipment costs.
The first DVB norm described a transmission scheme based on MPEG-2 (Motion Picture
Expert Group) video compression and transmission schemes, using MPEG-TS (MPEG
Transport Stream). This latter was adapted for satellite systems through DVB-S (DVB
transmission via Satellite) that defines series of options to send MPEG-TS packets over
satellite links and that is nowadays commonly used for Digital TV. The User Satellite
Terminals could therefore only receive DVB-S frames from the satellite, but did not have
the ability to send any traffic towards the satellite. In 1999, the ETSI (European Telecom-
munications Standards Institute) proposed a standard for a return channel via satellite,
the DVB-RCS, which supplements the STs with the ability to transmit traffic towards
the satellite.

1.1.1 Satellite Access Scenario

The satellite access scenario, shown in Figure (1.1) is a typical Satellite Networks Archi-
tecture. It consists of a geostationary satellite interconnected to terrestrial stations (ST)
network. STs provide single PC or Local Area Network (LAN) with access to network,
while Gateways (GTs) allows connection with Internet core network.The satellite network
resources are managed by a Network Control Center (NCC). The uplink access from each
ST is managed through DVB-RCS interface, whereas transmissions form GTs are imple-
mented through DVB-S (DVB-Satellite) interfaces.
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Figure 1.1: Satellite Access Scenario

1.1.2 QoS Architecture

This work deals with a part of the ST, more precisely, it contributes to the QoS manage-
ment of the return link. The QoS architecture is shown Figure (1.2). This structure is a
basic QoS structure, however, in classical networks, the QoS problem is not fundamental
thanks to the high link capacity. In Satellite Networks QoS is a central problem, due to
the satellite delay and the scarcee uplink resources. Instead of over-sizing the connection,
which will be very expensive, we try to reach an optimal exploitation of uplink resuources
[8].
The QoS is managed in the satellite systems [1] and especially in the ST at two levels :
MAC1 (Medium Access Control) and IP(Internet Protocol).

MAC Layer

The MAC layer controls the access to the medium (i.e. air in a satellite network). The
mechanisms at the MAC layer have as objective to maximize the resources utilization
between different STs while offering a good QoS using a Bandwidth on Demand (DAMA)
protocol.
Two classes of services are implemented at the MAC layer in the ST:

• DVB-RT (Real-Time): dedicated to applications with high temporal constraints
(VoIP)

• DVB-NRT (Non Real-Time): dedicated to more tolerant applications, or even not
affected by delay. (Peer to Peer, FTP...)

IP Layer

The QoS architecture proposed at the IP layer divided the traffic in three classes of service

1MAC protocol provides addressing and channel access control mechanisms that make it possible for
several terminals or network nodes to communicate within a multipoint network, typically a local area
network (LAN).
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• BE (Best-Effort): guaranteeing nothing

• AF (Assured Forwarding): ensuring a relative QoS

• EF (Expedite Forwarding): guaranteeing a total QoS

The EF and AF traffics are controlled by EDF (Earliest Deadline First) scheduler, while
BE traffic is stored in simple FIFO (First In First Out) queue. The three categories are
then served by PQ (Priority Queueing) Scheduler. The EF traffic is mapped on MAC
DVB-RT queue, instead of the AF and BF traffic shared the MAC DVB-NRT queue. IP
packets are extracted towards MAC layer as follows :

• EF packets tidy up through EDF scheduler are served as long as the EDF queue is
full.

• AF packets are then served and oriented to the MAC DVB-NRT queue.

• Lastly BE packets are directly introduced in the MAC DVB-NRT queue when AF
and EF queue are entirely empty.

Remark 1.1 This is a simplified view of the scheduler, and it could vary according to the
system architecture.

1.2 Objectives

In this work we will consider two kinds of traffic protocols : the TCP (Transmission Con-
trol Protocol) that we will introduce in the next part, this protocol is used for the NRT

8



applications (data streams), and the UDP (User Datagram Protocol) which uses a simple
transmission model without explicit hand-shaking dialogues for guaranteeing reliability,
ordering, or data integrity. Thus, UDP provides an unreliable service and datagrams
may arrive out of order, appear duplicated, or go missing without notice. UDP assumes
that error checking and correction is either not necessary or performed in the application,
avoiding the overhead of such processing at the network interface level. Time-sensitive
applications often use UDP because dropping packets is preferable to use delayed packets.
Generally, the data applications are stored in the BE and AF queue while multimedia
applications in the EF and AF queue. Consequently, AF queue receives data and multi-
media applications which present a problem. In other words, TCP and UDP flows come
in the same queue. When congestion occurs packets are lost and impact the TCP and
UDP connections. TCP connections reduce their throughput and UDP (multimedia) con-
nections experience a lower quality.
The goal of this work is to regulate a priori the AF queue and avoid queue over-flooding.
Therefore, it is necessary to :

• keep place in the buffer for UDP packets in priority, as TCP packets can be retrans-
mit contrary to UDP.

• reduce the buffer size, while keeping reasonable transmission capacity, i.e. having
as few losses as possible (and then protect UDP packets).

Hence we have to model the AF queue, and regulate it in order to respect the conditions
cited above.

1.3 TCP

TCP means ”Transmission Control Protocol”. It is an ”end-to-end” communication pro-
tocol, which means that a direct link between the source and the destination is establised.
The main characteristic of this protocol is to verify the data reception by the receiver,
using mechanism based on acknowledgement. If a packet is lost, the sender should send
it again. Thus TCP assures the transmission of the entire information.
TCP is a general purpose protocol, and does not make assumption on the network used.
To find the maximum transmission throughput, TCP probes the network until reaching
the limit. This is the role of slow start and congestion avoidance mechanisms.

1.3.1 Definitions

For a better understanding of this report, some definitions are necessary.

• The Acknowledgement is a message sent by the receiver to inform the sender that
the packets sent are achieved. If the sender did not receive the acknowledgement,
this means that the packet is lost, then the sender has to send the packet again (see
Figure (1.3)).

• The Timeout corresponds to the waiting time of an acknowledgement. The timer
starts when the packet is sent. When the time is elapsed, the sender should send
the same packet back. One supposes that the packet is lost (see Figure (1.3)).

• The Buffer is a random access memory area used to store temporarily the data.
When the packets reach the receiver, they are stored in the buffer to be treated.

9
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Figure 1.3: Timeout occurrence

• Congestion is a saturation phenomena. It occurs when the traffic is too heavy: for
example, when the buffer receives more packets than its capacity, or when the data
transit from a high capacity network to a lower capacity network. Congestion leads
to data losses.

• Congestion Window is a TCP state variable that limits the amount of data that a
TCP can send.

Figure 1.4: Congestion window principle

• The Round Trip Time (RTT) is the time needed by a packet to reach the destination
and the come back time of the acknowledegment of this packet. It corresponds to
the exchange time of a segment between the sender and the receiver.

• Three duplicate acknowledgement occurs, when a packet is lost during the trans-
mission, the following packets will trigger at the receiver side the sending of an
acknowledgement with the number of the correct last packet received. Then the
packet sequence number of the just before packet lost, will be sent until it is re-
transmitted and received. When the same acknowlegement has been received three
times by the source, it resends the lost packet (see Figure (1.5)).
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Figure 1.5: Three duplicate acknowlegement principle

1.3.2 Congestion avoidance algorithm

Congestion avoidance algorithm has been developed to regulate the flow rate as close as
possible to the ”transmission limits” in order to transmit a maximum of information and
avoid network congestion. The basic hypothesis of this algorithm is to consider that a
packet lost is equivalent to congestion. The principle of the algorithm is to control the rate
of each source as a function of traffic state. The principle is simple, each source increases
progressively their output flow. This increase takes place until a packet loss occurs. This
means that congestion is detected somewhere in the network. Thus the flow is decreased
enough in order to go out of the congestion state. The following sub-section gives an
outline of the Additive Increase Multiplicative Decrease (AIMD) algorithm implemented
in TCP.

Algorithm

• The source sends W packets.

• The receiver acquits the received segment and the source acts in consequence:

– If the flux is transmitted with success, the source increases its size: W ←W +1

– If there is a loss, the source should retransmit its data and reduce its congestion
window. There is principally two kinds of loss identification, indications by
Timeout (TO) and indications by duplicate acknowledgement (3DupAck)

∗ If the source did not receive the acknowledgement, TO: W ← 1.

∗ If the source receives three duplicate acknowledgement, 3DubAck: W ←
W/2.

The time of one exchange corresponds to a way return, i.e. one RTT (Round Trip Time).

Remark 1.2 Improvements:
To improve the efficiency of the protocol, some algorithms have been added to create
different versions of TCP (Tahoe, Reno, Vegas, New Reno, Santa Cruz...), New Reno
being the most used currently.
Some improvements (see Figure (1.7)):
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Figure 1.6: Example of congestion window W

• Slow-Start Algorithm [10]: The goal is to obtain a threshold congestion estimation.
Therefore the congestion window size grows exponentially until a loss is detected (ini-
tialization). On detecting a loss, the source sets the slow-start threshold (SSThresh)
to half of the current window size, retransmits the lost packet, and re-enters slow-
start by reseting its windows to one.

• Fast Retransmit Algorithm [10]: The goal is to recover from loss more efficiently.
The receiver indicates with an acknowledgement its position. The packets being able
to arrive in a mess, it is normal that the source received duplicate acknowledgement.
We consider that on reception of three duplicate acknowledgement, the link is con-
gested. Instead of waiting the Timeout, which is long, the source reduces is flow,
and retransmits the missing informations.

• Fast Recovery Algorithm [10]: If a loss due to duplicate acknowledgement occurs,
the slow-start set in motion, we use the fast recovery. The window is reduced to half
of the threshold plus three time the segment size, and reach directly the congestion
avoidance phase (linear phase).

Figure 1.7: Slow-start, fast retransmit and fast recovery illustration

1.3.3 AQM (Active queue management)

The main principle is to drop intentionally TCP packets before the router queue becomes
full so that the source can prevent the congestion, by reacting to the losses with the con-
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gestion avoidance mechanism. The goal is to optimize the data transmission maintaining
a high stream at the buffer level. AQM detects network congestion, packet losses of in-
cipient congestion, and informs traffic sources. Sources react and decrease the congestion
window to avoid buffer saturation. This way to prevent router congestion is an active
research subject, see for example [3] and references therein. We propose in this work an
AQM to enhance IP QoS on the return channel.
AQMs have also the objectives to insure equity between each source.
In the state of art, we can cite the following AQMs which have been developed : The RED
(Random Early Detection) [7] is one of the first AQM. It introduces probabilistic early
packet dropping to avoid the full queue phenomena. However, RED tuning is hard, and it
has a very high network configuration sensitivity. Following RED, many variants such as
SRED (Stabilized-RED), ARED (Adaptive-RED) and DRED (Dynamic-RED) have been
proposed. They are auto-tuned, and adapted to networks [18]. It exists likewise the ECN
(Explicit Congestion Notification) [16] using the same principle as RED. But instead of
dropping the packet, a bit called ECN in the acknowledgement is set to ”1” to explicitly
inform an imminent congestion the source. The advantage is to avoid the packet loss and
the retransmissions are not needed.

1.3.4 Modeling

Following the algorithm developed in the paragraph (1.3.2) we clearly recognize that the
overall system is an interconnected feedback system as described by the Figure (1.8).
Thus feedback control principle appears to be an appropriate tool for the analysis and
design of AQM strategies.

Acknowledgements

data packets routed packets

lost packets

Sender Receiver

Congested Router

Figure 1.8: The considered system

1.3.4.1 A fluid-flow model of TCP behavior

In order to use control theory, we propose to introduce a mathematic model of the TCP
behavior which has been developed in [15] and [14]. This model is based on two assump-
tions:

• The traffic is considered fluid-flow

• The losses are described by a Poisson Process

13



That means for example, when a loss occurs, all of the TCP connections react to the loss.
Of course, considering a single loss, the hypothesis is improper, but considering multiple
losses and because TCP has been designed to be fair, this hypothesis becomes acceptable.
This is designed to guarantee the equity between TCP connections and modify the win-
dows size of each sources simultaneously. The first assumption implies that the congestion
window increases in a continuous way instead of step increase. It increases by one every
RTT and hence the continuous increase is represented as dt/RTT .
The second assumption models the packets loss occurrences. We assume idealized behav-
ior, i.e. we model the losses as Poisson streams.
Then the evolution of the congestion window size W can be described as follows:

dW (t) =
dt

RTT
−

W (t)

2
dN(t) (1.1)

by noting that dN(t) is defined as:

dN =

{

1, if a loss occurs
0, otherwise

(1.2)

This equation reflects the ”Additive Increase Multiplicative Decrease” aspect of TCP.
The first term corresponds to the additive increase part, which states that the windows
size will increase by one every RTT. The second term corresponds to the multiplicative
decrease part, which halves the window size for each arrival of a loss. Note that we use a
simplified model, which ignores the TCP slow start mechanism that starts at the begin-
ning of a connection, and timeouts. Effectively, some measures realized on Ourses-Project
[17] using a DVB-S2/RCS system using a Ka-Band link, show that timeouts barely occur,
and TCP works most of the time as congestion avoidance instead of a slow start only at
the beginning of the connection.

1.3.4.2 The system

Using stochastic differential analysis of the equation (1.1), and considering the simplifi-
cations cited above, [15] have developed a dynamic model of the TCP behavior. In this
model, we consider a system in which there is a single congested router with a trans-
mission capacity of C. Associated with this router is an AQM that is characterized by a
packet discard function p(·) that takes as its argument an estimate of the average queue
length at the router, and the average congestion window size. The proposed model from
[12] is then of the form:

{

Ẇ (t) = 1
R(t)
− W (t)

2
W (t−R(t))
R(t−R(t))

p(t− R(t))

q̇(t) = −C + N(t)
R(t)

W (t)
(1.3)

where ẋ denotes the time-derivative and
W =̇ average TCP window size (packets);
q=̇ average queue length (packets);

R(t)=̇round-trip-time = q(t)
C

+ Tp(secs);
C=̇link capacity (packets/sec);
Tp=̇ propagation delay (secs);
N=̇ load factor (number of TCP sessions);
p=̇ probability of packet mark, which takes values only in [0, 1].
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1.3.4.3 Linearization

The dynamic TCP behavior is thus modeled by a non-linear time delay systems which can
be complicated to analyse from a control theory point of view. That is the reason why
we are only interested in the design of an AQM around an equilibrium point (W0, q0, p0).
To linearize model (1.3) we first assume that the number of TCP sessions and the link
capacity are constant i.e., N(t) ≡ N and C(t) ≡ C. Taking (W, q) as the state and p as
an input, the operating point (W0, q0, p0) is then defined by Ẇ = 0 and q̇ = 0 so that

{

Ẇ = 0 ⇒ W 2
0 p0 = 2

q̇ = 0 ⇒ W0 = R0C
N

, R0 = q0

C
+ Tp

(1.4)

The important point of this work is the propagation delay. The operating point are then
defined such that R0 is as small as possible all in keeping a suitable queue size q0. From
this point, we compute W0 and p0. Moreover, we ignore the dependance of the time-delay
argument t− R on the queue-length q, and assume it fixed to t− R0. The delay R0 will
be denoted by the letter h.
Given the vector of network parameters η=̇(N, C, Tp), we define the set of feasible operating
points Ωn by

Ωn = {(W0, q0, p0) : W0 ∈ (0, W̄ ), q0 ∈ (0, q̄), p0 ∈ (0, 1) and (1.4) satisfied} (1.5)

We obtain finally the linearized model (1.6) around equilibrium point defined by (1.4):
(see appendix A.1):











δẆ (t) = −
N

R2
0C

(

δW (t) + δW (t− h)
)

−
1

R2
0C

(

δq(t)− δq(t− h)
)

−
R0C

2

2N2
δp(t− h)

δq̇(t) =
N

R0
δW (t)−

1

R0
δq(t)

(1.6)
where δW

.
= W −W0, δq

.
= q− q0 represent the state variables and δp

.
= p−p0 the input.

This can be rewritten as (1.7):

[

δẆ (t)
δq̇(t)

]

=

[

− N
R2

0
C
− 1

CR2

0

N
R0

− 1
R0

]

[

δW (t)
δq(t)

]

+

[

− N
R2

0
C

1
CR2

0

0 0

] [

δW (t− h)
δq(t− h)

]

+

[

−C2R0

2N2

0

]

δp(t−h)

(1.7)
where δW and δq are the state variables and δp the input.
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Chapter 2

AQM Design for Satellite Access

This chapter treats two different AQMs control strategies to have the anticipatory con-
gestion detection and control capability but also achieve satisfactory control performance
in terms of the queue length dynamics (or equivalently delay). The first method uses the
well know Proportional Integral (PI) feedback control adapted to the TCP network in
[12]. The second method is a predictive controller introduced in [13] for a system with
control delay that we have adapted to TCP network.

2.1 Objectives

The objective of this part is to build two robust controllers which will stabilize the delayed
system. Three points are important for the AQM performance: efficient queue utilization
and queueing delay, stabilization of a delayed system and robustness.

2.1.1 Efficient queue utilization

For efficient use, the queue should avoid overflow or emptiness. The former situation
results in lost packets and undesired retransmissions, while an empty buffer underutilizes
the link. Both of these extremes should be avoided in both transient and steady-state
operation.
The time required for a data packet to be serviced by the routing queue is called the
queueing delay and is equal to q/C. This time, together with the propagation delay
Tp, accounts for the network’s delay and it is desirable to keep small both the queueing
delay and its variations. This calls for regulating to small lengths. However, doing so
may result in link underutilization and this limitation presents a fundamental tradeoff to
AQM design.

2.1.2 Robustness

AQM schemes need to maintain closed-loop performances in spite of varying network
conditions. These conditions include variations in the number of TCP sessions N, and
variations in the propagation delay Tp and link capacity C.
In this approach, we consider the delay effect as a perturbation of the nominal dynamics.
The objective is to have a robust stability in relation of the delay. The method consists in
dividing the system in two parts in order to get a LFT form (Linear Fractional Transfor-
mation) (see Figure (2.1)) where ∆ represents the uncertainties and Σ the new considered
nominal system.
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The important question is Robustness, i.e., what model error ∆ can be allowed without

∆

Σ

Figure 2.1: LFT form for robust approach

endangering the stability in the closed loop system.
To investigate this, we need to find the representation in Figure (2.1), i.e., the blocks ∆
and Σ.

2.2 An LFT representation

In order to use the robust framework from the control theory, we recall the linearized
state space model from chapter 1:

[

δẆ (t)
δq̇(t)

]

=

[

− N
R2

0
C
− 1

CR2

0

N
R0

− 1
R0

]

[

δW (t)
δq(t)

]

+

[

− N
R2

0
C

1
CR2

0

0 0

] [

δW (t− h)
δq(t− h)

]

+

[

−C2R0

2N2

0

]

δp(t−h)

(2.1)
From the model (2.1), we separate the nominal dynamic and the uncertainties :

[

δẆ (t)
δq̇(t)

]

=

[

− 2N
R2

0
C

0
N
R0

− 1
R0

]

[

δW (t)
δq(t)

]

+

[

−C2R0

2N2

0

]

δp(t− h)

+

[ N
R2

0
C
− 1

CR2

0

0 0

] [

δW (t)
δq(t)

]

+

[

− N
R2

0
C

1
CR2

0

0 0

] [

δW (t− h)
δq(t− h)

]
(2.2)

Using x(t)=̂

[

δW (t)
δq(t)

]

and Dhv(t) = v(t− h) (delay operator), this can be rewritten

as
ẋ(t) = Ax(t) + Bw1(t) + Gw2(t) (2.3)

with w1(t) = Dhδp(t),w2(t) = (1−Dh)x(t)

A =

[

− 2N
R2

0
C

0
N
R0

− 1
R0

]

, B =

[

−C2R0

2N2

0

]

and G =

[ N
R2

0
C
− 1

CR2

0

0 0

]

Figure (2.2) gives a representation of the linearized AQM control system using state-
space model.

Now we switch to transfer function by Laplace transforming (2.3)

sX(s) = AX(s) + BW1(s) + G∆h(s)X(s); ∆h(s)=̂1− e−sR0

δQ(s) = [0 1]X(s)=̂CX(s)
δQ(s)
W1(s)

= C[sI −A−G∆h(s)]
−1B

(2.4)
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Nominal dynamic

1−Dh

Dh

x(t)

w2(t)

w1(t)

K

Figure 2.2: Block diagram of a linearized AQM control system

If we compute δQ(s)
W1(s)

, we obtain:

δQ(s)

W1(s)
=

−N
R0

.C2R0

2N2

(s + 2N
CR2

0

)(s + 1
R0

)− N
CR2

0

.s∆h

= −
P (s)

1− P (s)∆(s)
(2.5)

Where the transfer function P (s) in (2.6), relates how the packet-marking probability
dynamically affects the queue length.

P (s) =
C2

2N
(

s + 2N
R2

0
C

)(

s + 1
R0

) (2.6)

The transfer function ∆(s) in (2.7), relates the uncertainties.

∆(s) =
2N2s

R2
0C

3
(1− e−sR0) (2.7)

Figure (2.3) shows a feedback control system depiction of AQM using transfer function.

∆(s)

P (s)

e−sR0

δP

δQ

C(s)
−W1

Figure 2.3: AQM as feedback control

Stabilizing AQM control law
C(s) is the control law (see Figure (2.3)). Closed-Loop stability is fundamental in order
to satisfy the performance objectives. Reference [12] gives the condition for stabiliza-
tion which amounts to C(s) stabilizing the delayed nominal plant P (s)e−sR0and gain-
stabilizing the uncertainties ∆(s). In the following proposition, we require the transfer
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function

V (s) =
P (s)

1 + P (s)C(s)e−sR0

(2.8)

Proposition 2.1 [12] Given the feasible network parameters η = (N, C, Tp) and operating
point (W0, q0, p0) in Ωη, the linearized AQM control system, illustrated in (2.3), is stable
if

i) C(s) stabilizes the delayed nominal plant P (s)e−sR0;

ii) the uncertainties ∆(s) is gain stabilized, i.e., |∆(jω)V (jω)| < 1; ∀ω > 0.

Proof 2.1 If C(s) stabilizes the delayed nominal plant P (s)e−sR0, then V(s) is stable.
Since ∆(s)V (s) is stable, the small gain condition |∆(jω)V (jω)| < 1, together with the
Nyquist stability criterion implies closed loop stability.

2.3 Control design

For the study of both controllers, we assume that the RTT is constant.

2.3.1 First case: PI controller

In this section, we recall the basic way to ensure the closed loop stability by designing
a classical PI controller adapted to the system of the form (2.8). The controller C(s) is
defined as:

C(s) = KPI

s
z

+ 1

s
(2.9)

We denote L(s) as the open-loop transfer function of the model (2.8)

L(s) =
KPIC2

2N

(

s
z

+ 1
)

e−sR0

s
(

s + 2N
R2

0
C

)(

s + 1
R0

) (2.10)

We define z such that the dominant pole is cancelled:

z =
2N

R2
0C

or z =
1

R0

(2.11)

Then, we take the loop’s unity gain crossover frequency as

ωg =
β

R0
(2.12)

where β is chosen to set the phase margin. KPI is chosen such that |L(jω)|=1

KPI = ωgz

∣

∣

∣

∣

∣

jωg + 1
R0

C2

2N

∣

∣

∣

∣

∣

(2.13)

We then calculate the desired phase loop by choosing β which lead to a positive phase
margin.

∠L(jωg) = ∠
e−jωgR0

jωg.
(

jωg + 1
R0

) = −90−
180

π
ωgR0−arctan(wgR0) = −90−

180

π
β−arctan(β)

(2.14)
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Summary 2.1 The steps to design the PI controller are:

• Define β such that the phase margin is positive (2.14)

• From β we can calculate the crossover frequency (2.12)

• z should cancel the dominant pole (2.11)

• ωg and z being defined, we can calculate KPI (2.13)

• Finally, we have all the parameters to calculate the controller (2.9)

2.3.2 Second Case: Predictive Controller

Finite spectrum Assignment problem for systems with delays [13]

In the last subsection, a classical controller originally designed for finite dimensional sys-
tems is proposed to ensure the closed-loop stability of a time delay system. Nevertheless,
the presence of delay could inevitably lead to performance degradation. That is the reason
why a more interesting way to control such system is to introduce an infinite dimensional
controller. In this subsection we propose to design a predictive controller to control the
nominal system defined by the state space model (2.15):

ẋ(t) = Ax(t) + Bu(t− h) (2.15)

where x(t) =

[

δW (t)
δq(t)

]

denotes the state, u(t) = δp(t) the input, A =

[

− 2N
R2

0
C

0
N
R0

− 1
R0

]

,

B =

[

−C2R0

2N2

0

]

. Finally the delay is denoted by h.

This state space is similar to the state space model (2.3), where the uncertainties are not
connected to the nominal dynamic i.e., Gw2(t) is removed.
Then we look for a control law of the form:

u(t) = Fx(t + h). (2.16)

which ensures the closed-loop stability of the nominal system defined by:

ẋ(t) = (A + BF )x(t) (2.17)

This last equation shows that the problem of finding the matrix parameter F is then
reduced to a classical finite spectrum assigment problem and could be easily solved using
classical tools from Matlab toolboxes. Nevertheless, if the solution appears to be con-
venient in terms of stability, performances and calculus, it remains that, apparently, the
proposed implemented controller (2.16) is not causal. The Prediction is performed by
noting that:

x(t + h) = eAhx(t) +

∫ h

0

eAθBu(t− θ) dθ. (2.18)

The control law is then reduced to:

u(t) = Fx(t + h) = F

(

eAhx(t) +

∫ h

0

eAθBu(t− θ) dθ

)

. (2.19)

20



which appears to be a causal function. We can rewrite the controller as follow:

u(t) = Fxx(t) +

∫ h

0

Fu(θ)u(t− θ) dθ. (2.20)

Where Fx = FeAh and Fu(θ) = FeAθB.

Implementation of the controller

In order to implement the controller in C++, we have to rewrite it in a different way. The
simulation on Matlab/Simulink could be easily implementable than the following way,
but in order to use the same simulation with the two software, we will realize the Matlab
simulations using this way.

If A-matrix has two distinct real eigenvalues λ1 and λ2, then the A-matrix is diago-
nalizable and P−1AP = D = diag(λ1, λ2)

So A = PDP−1 then eAθ = PeDθP−1 = P

[

eλ1θ 0
0 eλ2θ

]

P−1

Thus Fu(θ) = FeAθB = FPeDθP−1B

with F =
[

f1 f2

]

, P =

[

p11 p12

p21 p22

]

, P−1 =

[

pinv11 pinv12

pinv21 pinv22

]

and B =

[

b1

b2

]

Therefore
Fu(θ) = C1e

λ1θ + C2e
λ2θ (2.21)

Where C1 = (f1.p11 + f2.p21)(pinv11.b1 + pinv12.b2)
and C2 = (f1.p12 + f2.p22)(pinv21.b1 + pinv22.b2)
Now we can rewrite the integral of (2.20)

∫ h

0

Fu(θ)u(t− θ) dθ =

∫ t

0

Fu(t− θ)u(θ) dθ −

∫ t−h

0

Fu(t− θ)u(θ) dθ. (2.22)

Using (2.20), (2.21) and (2.22), the predictive controller become:

u(t) = Fxx(t) + C1e
λ1t

[

∫ t

0
e−λ1θu(θ) dθ −

∫ t−h

0
e−λ1θu(θ) dθ

]

+C2e
λ2t

[

∫ t

0
e−λ2θu(θ) dθ −

∫ t−h

0
e−λ2θu(θ) dθ

] (2.23)

This form of the controller is implementable with simulations software.

Addition of an integral action

In order to cancel the steady-state error in the predictive controller, we add an integral
action to the state feedback law. The principle is to add an integrator in the direct chain
as shown in Figure (2.4):

The closed-loop equations have the form:







ẋ(t) = Ax(t) + Bu(t− h)
y(t) = Cx(t)
ẋi(t) = y(t)

(2.24)
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+

−

ẋi(t)

−kixi(t)

u(t)

x(t)

y(t)u(t− h)
e−sR0

Fx

{

ẋ(t) = Ax(t) + Bu(t− h)
y(t) = Cx(t)

∫

ki

Figure 2.4: State feedback and integral action

This gives the following augmented system:

[

ẋ(t)
ẋi(t)

]

=

[

A 0
C 0

] [

x(t)
xi(t)

]

+

[

B
0

]

u(t− h) (2.25)

Or taking xa(t) =

[

x(t)
xi(t)

]

, we obtain the following augmented state space model

which is similar to the state space model (2.15):

ẋa(t) = Âxa(t) + B̂u(t− h) (2.26)

So we can apply the same control law as previously to the augmented model:

u(t) = F̃ xa(t + h) = F̃xxa(t) +

∫ h

0

F̃u(θ)u(t− θ) dθ (2.27)

where F̃ =
[

Fx ki

]

, F̃x = F̃ eÂh and F̃u = F̃ eÂθB̂
This lead to a system of the third order, with an input delay.
The problem of a state feedback with an integral action is equivalent to a classical state
feedback on an augmented system (Â, B̂, Ĉ, 0)
In order to make the simulation of the model with the integral action, we make the
same transformation than in sub-section (2.3.2), so the predictive control law used for the
simulations is:

u(t) = F̃xxa(t) + C1e
λ1t

[

∫ t

0
e−λ1θu(θ) dθ −

∫ t−h

0
e−λ1θu(θ) dθ

]

+C2e
λ2t

[

∫ t

0
e−λ2θu(θ) dθ −

∫ t−h

0
e−λ2θu(θ) dθ

]

+ C3e
λ3t

[

∫ t

0
e−λ3θu(θ) dθ −

∫ t−h

0
e−λ3θu(θ) dθ

]

(2.28)
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Chapter 3

Results and Applications

The controllers developed in the previous chapter are now implementable. In this part, we
will present the results of both controllers though Matlab/Simulink and NS2-Simulator,
and show that the integral part is a future improvement to be implemented. These
simulations will validate the behavior of the system using the satellite network that we
consider.

3.1 Network topology

We consider the network topology consisting of 6 TCP sources and 1 UDP source, with
the same propagation delay connected to a destination node through a router (see Figure
(3.1)). All these sources together arrive to the satellite connection, which has a bigger
propagation delay and a smaller link capacity, where the phenomenon of congestion col-
lapse appears. It is then necessary at this node to control the stream with the help of an
AQM.

TCP Sources 1 to 6

Receiver

300 ms

512kbps

Router

User Network Satellite Network

50 ms

256 kbps

UDP source

15 mbps

50 ms

Figure 3.1: The network topology

The simulations are realized with Matlab/Simulink and NS2-simulator [2] and [6].
We have adapted the parameters to the conditions of the satellite network, i.e. the link
capacity C = 128 packets/sec1, the propagation delay Tp = 0.7 secs2 and the number of
sources N = 6 sources. The operating point is chosen such that the average queue length
q0 = 35 packets. Using the equations (1.4) we obtain a RTT R0 = 0.9734 secs, an average

1corresponds to a 0.512 Mb/s link with an average packet size 500 bytes
2corresponds to a return from the source to the receiver, i.e. (50ms + 300ms)× 2
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TCP window size W0 = 20.77 packets and a probability of packet mark p0 = 0.0046.
The transfer functions P (jω) and ∆(jω) with these numerical values are:

P (jω) = 1365
s2+1.126s+0.01016

∆(jω) = 3.623× 10−05s(1− e−0.9734s)
(3.1)

and the state-space model (3.2):

[

δẆ (t)
δq̇(t)

]

=

[

−0.0989 0
6.1637 −1.0273

] [

δW (t)
δq(t)

]

+

[

−221.5111
0

]

δp(t− h(t)) (3.2)

The magnitude Bode plots for the transfer function P (jω) and ∆(jω) are shown in
Figure (3.2). The plot of P (jω) reveals the low-pass nature of the TCP-queue dynam-
ics. The frequency response of the uncertainties |∆(jω)| shows its influences at higher
frequencies. Hence the uncertainties will not have influences on the nominal dynamic.
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Figure 3.2: Magnitude Bode plots of P (s) and ∆(s) for TCP loads

3.2 Controllability and stability

3.2.1 PI controller

A plot of ∠L(jωg) versus β in Figure (3.3) shows that values of β ∈ (0, 1.39) give positive
phase margins, with margins increasing for decreasing β.
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−100

−90

β

∠
 L

(jω
g)

Figure 3.3: Loop phase angle ∠L(jωg) as a function of design parameter β. Positive phase
margins occur for β ∈ (0, 1.39).
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For the parameters of the satellite network, we choose β = 0.13, because we have the a
larger positive phase margin. This gives ωg = 0.13rad/sec and KPI = 4.27.10−5 and we

choose z as the dominant pole i.e., z = 2N
R2

0
C

= 0.099. Hence C(s) = 4.27.10−5 ( s
0.099

+1)
s

.
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Figure 3.4: Frequency response using PI controller C(s) = 4.27.10−5 ( s
0.099

+1)
s
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response of L(s) shows positive gain and phase margin (left plot). |∆(jω)V (jω)| < 1
showing stability on face of uncertainties. (right plot)

For this pairs (z,KPI) the PI compensator stabilizes the nominal plant and enjoys robust
stabilization. In Figure (3.4), we give the resulting frequency response of L(jω) and
∆(jω)V (jω). The PI design has a bandwidth of 0.13rad/sec, and the figure shows stability
in the presence of uncertainties.

Remark 3.1 Here is described only one case with a low bandwidth, because different
simulations have been realized, with different bandwidth. This configuration gives the best
results.
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Remark 3.2 As with any application of integral control, one should be aware of integrator
windup due to control signal saturation. This is a possibility in AQM where the control
signal (the packet-marking probability) takes value in [0, 1]

3.2.2 Predictive Controller

The system is continuous, so we have to define two negatives poles. To place the poles,
we have to take care of the system speed due to control signal saturation. The further the
poles are on the left-hand of the imaginary axis, the faster the system will be. However, if
we choose poles to large, the control signal will be saturated. By doing some simulations,
we observe that the control signal is not saturated for the pairs of poles [−0.55 − 0.55].
The poles have a negative real part so the system is stable. Using the Matlab function
acker, we define the gain matrix F = [−0.1184 0.1668].10−3. Then we have to check the
controllability matrix of the state space model to be sure that the system is controllable.
The system is controllable, if the controllability matrix S(A, B) = [B AB A2B ... An−1B]
has full full rank [9].
For the model (3.2), S(A,B) has full rank (second order system and the rank of S is 2)
then the model is controllable. We plot the frequency response and the stability condition
(see Figure (3.5)). As shown Figure (3.5), the uncertainties will not cause instability on
the nominal plant.

3.3 Matlab/Simulink Simulations

The second step was to implement the simulation on Matlab/Simulink to analyse the
behavior of the mathematical model. The simulation is realized with the linearized model,
and the non-linear model. We can verify if the linearization is close to the original model.
We simulate for both controllers, with a perturbation of 20 packets between the 50th and
70th seconds, to evaluate the effect on the differents controllers. The initial conditions
are defined such that the buffer is empty at the beginning of the simulation (q0 = 0),
the congestion window size such that the simulation is in congestion avoidance from the
begininng (W0 = 20) and the packet mark probability is null (p0 = 0) . The Simulink
model of the predictive controller is shown in appendix B.1

In obedience to the Lyapunov’s linearization, if the linearized system is strictly stable,
then the equilibrium point is asymptotically stable for actual nonlinear system. If we
look at the Figure (3.6), we see that the behavior of the linear and non-linear systems are
similar. Furthermore, we remark that when the perturbation occurs, the comportment
changes between the linear and non-linear.
Concerning the settling time, both controllers are similar, and before the perturbation,
the steady state error is null. When the perturbation appears, the reaction is different.
The PI with the Integral part tries to cancel the steady state error, and come back to the
reference, while the predictive controller behaves differently.

3.4 NS Simulations

NS2-simulator is the reference simulator in terms of network. The simulations are realized
using three different algorithms (DropTail, PI and predictive control). The controllers are
implemented in C++, and the simulations are implemented in TCL, which is a specific
language for NS (see appendix C). For each simulation, we observe the window size, the
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Figure 3.5: Frequency response using predictive controller F = [−0.11840.1668].10−3.
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queue size, and the propagation delay.
The DropTail queue management is already available in the NS library. We only need to
specify the queue management type when we create the link between two sources.
The PI controller, on NS, is the controller developed by [11] which was already imple-
mented (see appendix B.2.1).
The predictive controller was not included in the library, so it has been implemented
and added to the NS source (see appendix B.2.2). The integrals are realized using the
rectangle method (3.3). This method is usually very approximative. Some more efficient
methods, like the Simpson’s method could be used. However, as the sampling frequency
is calculated between two packets arrivals, and one of the assumption of the model is that
the model is fluid because of the large number of arrivals. Hence the rectangle methods
is sufficient. Moreover, a comparison between the integral realized with Matlab using the
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Figure 3.6: Matlab simulations of the linearized system and the non-linear system with
the PI and the Predictive controller

solver ode4 (Rung-Kutta) and the integral realized using the rectangle has been observed,
and the result is similar.

∫ t+h

t

f(x)dx ≈ hf(t) (3.3)

For each AQM, two simulations are realized, the first one only with TCP sources, we set
the UDP source to 0, in order to evaluate the TCP behavior only. During the second
simulation, we add a first UDP connection between the 40th and the 160th seconds, a
second one between the 80th and 120th seconds.
The probability of packet mark for the PI and the predictive controller is computed at
each packet arrival, which defines the sampling frequency by calculating the time between
each arrivals. The probability is a value between 0 and 1. We draw a random variable
v(·). If p is smaller than v we keep the packet, if p is bigger, we drop the packet. With
DropTail, when the queue is filled to its maximum capacity, the newly arriving packets
are dropped until the queue has enough space to accept incoming traffic.

3.4.1 Congestion Windows

We represent in Figures (3.7), (3.8) and (3.9) the congestion windows of the 6 sources.
On the three figures, we observe the slow-start behavior at the beginning of each

simulation. The phase is not include in our model, so we neglect this phase. However,
right after this part, as expected we can recognize the congestion avoidance mechanism
for the three methods. Indeed, each source increases linearly until a loss occurs. Then
the source is halved, like congestion avoidance mechanism described part (1.3.2). On the
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Figure 3.7: Congestion windows for the 6 souces with DropTail
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Figure 3.8: Congestion windows for the 6 souces with PI controller

other hand, for the PI and predictive controller, we see that the sources are set to one,
which means that timeout occurs. Timeouts have been neglected in our model, but this
choice is justified by the fact that only few timeouts occurs (four for the PI controller and
only two for the predictive controller). All these points allow us to validate the choice of
our model.

3.4.2 First experiment: TCP evaluation

In this part, we make a simulation with TCP connections only in order to evaluate the
behavior of TCP, and verify that our model is close to the NS simulation.

AQM DT PI PC

Mean(pkts) 136.2 36.8 30.6
Stand.dev.(pkts) 45.8 28.8 27.7

Average queueing delay(secs) 1.7 0.99 0.94

Table 3.1: Statistics on the queue length for the three AQM

With the aid of the Figures (3.15), (3.16) and (3.17) as well as Table (3.1), we observe
that obviously using DropTail the average congestion window size as well as average queue
size are larger than the two other controllers. This is justified by the fact that the window
size of each source increases until the buffer is full, leading to a loss. Figures point that
thanks to the regulation the queue size is more stable for the two automatic based AQM
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Figure 3.9: Congestion windows for the 6 souces with predictive controller
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Figure 3.10: NS simulation of the System with DropTail
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Figure 3.11: NS simulation of the System with PI controller

than for the DropTail. Thanks to the Integral part of the PI controller, which cancels the
steady state error, the average queue size is close to the fixed reference (35 packets). So
we have reasonable delays because the queue size does not grow. About the predictive
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Figure 3.12: NS simulation of the System with predictive controller

controller, the average queue size is less than the reference, but the standard deviation is
smaller than the PI’s standard deviation.
In terms of delay, we know that the RTT is proportional to the average queue size (R(t) =

Tp + q(t)
C

). Looking at the figure (3.13), the delay with DropTail exceed two seconds, while
they are around one second for the two others. From the losses point of view, with Figure
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Figure 3.13: Delays using the three methods

(3.14) and Table (3.2), we observe that with DropTail there is less losses than with the two
other controllers, however it is not very significative. We can also point that with DropTail,
losses occur at the moment where the queue is full, then when congestion occurs, all the
packets are dropped. This can pose a problem to solve the congestion problem, because
the router is already congested and we will have to resend all the dropped packets. Using
the two other methods, the buffer is never congested, and packets are lost continuously
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Figure 3.14: Losses using the three methods

one by one. It will be easier to resend the lost packet.

AQM DT PI PC

Transmitted(pkts) 25702 25590 25513
Dropped(pkts) 225 236 286
Percentage(%) 0.88 0.92 1.1

Table 3.2: Statistics on TCP packet losses for the three AQM

After the study of the performances of TCP connections only, we can conclude that the
AQM using automatic control are much more efficient in terms of delay. This thanks to
the fact that using regulation, the queue length stays approximatively constant around the
queue reference (35 packets). Now that we have verified that we have the desired behavior
with TCP connection, we will study the effect of perturbations on the connection. We
will make the simulation using UDP connections in addition to TCP connections.

3.4.3 Second experiment: TCP behavior in the presence of UDP

perturbation

In this simulation, UDP flux arrive with a flow rate of 128kbits. A first UDP connection
occurs between the 40th and the 160th seconds, a second one between the 80th and 120th

seconds. As for the previous part, we have a slow-start phase at the beginning of each
simulation, that we do not take in consideration.

In Figure (3.15) we see that we have a buffer overflow when the perturbation occurs.
This will lead to higher RTT. Concerning Figures (3.16) and (3.17) we remark that the
queue size increases a bit when congestion occurs, however, the queue never reaches its
maximum. We also notice that with the PI controller, the integral part does not manage
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Figure 3.15: NS simulation of the System with DropTail
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Figure 3.16: NS simulation of the System with PI controller
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Figure 3.17: NS simulation of the System with predictive controller
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to cancel the static error. Regarding the figure with the predictive controller, the response
oscillates less. We clearly recognize the three different phases of the simulation.

AQM DT PI PC

Transmitted(pkts) 5120 5120 5120
Dropped(pkts) 29 23 0
Percentage(%) 0.57 0.45 0

Table 3.3: Statistics on UDP packet losses for the three AQM
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Figure 3.18: NS simulation of the System with predictive controller

In term of UDP packet loss (see Table (3.3)) we notice that with DropTail and PI
the number of losses is similar. However there is no UDP losses using the predictive
controller. Moreover Figure (3.18) points that using DropTail, if the perturbation occurs
when congestion occurs, the buffer is full, so all the UDP packets will be lost. Using
this controller, the connection will be cut during the congestion phenomena. With the
PI controller some UDP packets are dropped during the connection, which will lead to a
lower connection quality, but still acceptable. Otherwise using the predictive controller,
none of the UDP packets are lost, then the UDP connection will be completely transmit.

3.5 Improvement

As observed in the previous section, the simulations using the predictive controller show
a response with less delay and with less oscillations. Nevertheless, the static error is not
canceled, so when the perturbation occurs, the stabilization is not close to the reference.
In order to remove this error, we apply to the predictive controller an integral action that
has been developed sub-section (2.3.2). For a question of time, the integral action has
not been implemented on NS-simulator, but with Matlab only. It will have to be carried
out in a forthcoming work. In this part, we will present only the Matlab results which
are promising.
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The simulations on Matlab are realized using the equation (2.28). This is the same
technique described for the controller without integral action. The difference is that with
the integral action, we have a third order equation. To evaluate the behavior, we have
plot the windows size and the queue size of the model without and with the integral part.
The aim of the integral part is to remove the static error on the queue size, with a goal
to have a queue size as close as possible to the reference.
The C matrix of the system (2.4) is defined such that the output y(t) represents the queue
size (q(t)), i.e. C = [0 1]. Then we define the F̃ matrix such that the poles have a negative
real part, and the input p is not saturated. Considering all these conditions, we obtain the
following simulations for the linear and the non-linear model (see Figure (3.19)). In both
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Figure 3.19: Matlab simulations of the linearized system and the non-linear model with
the predictive controller without and with the integral part

cases (linearized and non-linear model), we observe that when the perturbation occurs,
the integral part removes the static error.
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Conclusion

During the Master’s thesis, we have designed two different AQMs based on automatic con-
trol that we compare to the DropTail AQM. This method is very interesting in terms of
delay regulation. Indeed, it leads to constant and lower delay than DropTail AQM, and a
response which oscillates less. Concerning the PI controller, we obtain a zero steady-state
regulation error, and the method is very easy to implement on NS-simulator. Regard-
ing the predictive controller, the implementation is more complex. We observe that the
steady state error is not cancel when the perturbation occurs. However none of the UDP
packets are lost which is one of most important goal of this work, despite that we have
a steady state error. Conversely, the DropTail AQM poses a huge problem if the UDP
packets arrive when the buffer is full.

In order to improve the predictive controller, it could be useful to implement an in-
tegral part on NS-simulator, which will cancel the steady-state error, because we observe
a good behavior on Matlab. This is the next objective of this work. Secondly one other
interesting work that could be done will be to implement the two controllers on a platform
available at LAAS (Platine [4]) to make more experimentations.

Another method that could be used for this problem is to have two queues (one for
UDP and one for TCP) with different priorities. However in this scheme, we can ask
the question of the necessity of AF queue. It will lead to a scheme with an EF queue
and an BE queue in the AF queue. Moreover, some problems of TCP instability could
occur, because TCP packets will be blocked when UDP packets arrive, so the congestion
phenomena will be accentuated (c.f. 4.3).

Finally, from a personal point of view, this work was very rewarding in terms of
automatic control background. This work has enabled me to better understand the effect
of the delay on a system, as well as control this delay. Moreover, I had the possibility
to apply and understand the robust control. Lastly, during this Master’s Thesis, I have
learned a lot about network theory, domain which was completely unknown for me. The
work I realized was the subject of an article [5], which will be presented at the conference
Ka and Broadband Communications, Navigation and Earth Observation between the 23rd
and 25th of september 2009 in Cagliari. To conclude, this work has allowed me to discover
the research field, which corresponds well to my vision of the work. So I have decided to
continue my steady by a PhD in France in a laboratory in the Parisian suburbs.
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Appendix A

Linearization

A.1 Linearization

The system (1.3) being non-linear, we have to linearize it around the operating point
((W0, q0, p0)) defined by (1.4).First we define the functions f and g by

f(W, WR, q, qR, pR)
.
= 1

q

C
+Tp
− WWR

2(
qR
C

+Tp)
pR

g(W, q)
.
= N

q
C

+Tp
W − C

(A.1)

where WR(t)
.
= W (t − h(t)), qR(t)

.
= q(t − h(t)) and pR(t)

.
= p(t − h(t)) are the delayed

states variables and the delayed input and h(t) = q

C
+ Tp.

The partial derivatives of f and g at the operating point are:

∂f

∂W
= −

WR

2( qR

C
+ Tp)

pR = −
W0

2( q0

C
+ Tp)

p0 = −
W0p0

2R0
= −

N

R2
0C

∂f

∂WR

=
∂f

∂W
∂f

∂pR

= −
WWR

2( qR

C
+ Tp)

= −
W 2

0

2R0

= −
C2R0

2N2

∂f

∂q
= −

1/C

( q

C
+ Tp)2

= −
1

C( q0

C
+ Tp)2

= −
1

CR2
0

∂f

∂qR

=
WWR(1/C)

2( qR

C
+ Tp)2

pR =
W 2

0 p0

2C( q0

C
+ Tp)2

=
1

CR2
0

∂g

∂W
=

N
q

C
+ Tp

=
N

q0

C
+ Tp

=
N

R0

∂g

∂q
= −

NW (1/C)

( q

C
+ Tp)2

= −
NW0

C( q0

C
+ Tp)2

= −
1

R0

∂g

∂pR

= 0

(A.2)
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Appendix B

Simulation

B.1 Matlab/simulink

Figure B.1: Simulink model of the predictive controller

B.2 NS2-simulator

B.2.1 PI controller

see figure (B.2)
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Figure B.2: PI function implement on NS

B.2.2 Predictive controller

see figure (B.3)
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Figure B.3: Predictive controller function implement on NS
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Appendix C

Network Simulator 2

C.1 Writing of a script

The writing of a script start by the creation of a simulator object, the opening of the
trace file.

#Create a simulator object
set ns [new Simulator]
#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

The class used to create the nodes is the class Node. Function of the desired architecture,
the user connect this nodes with the adapted link. The links have as parameters the
bandwidth, the propagation delay and the AQM type. In this work we use DropTail, PI
and PRED. The sources nodes are creating using a for-loop, and two nodes are creating
for the bottleneck and the destination.

#Create bottleneck and destination nodes
set N [$ns node]
set D [$ns node]
#Source nodes
for {set j 1} {$j¡=$NumbSrc} { incr j } {
set S($j) [$ns node]
}

#Create links between these nodes
$ns duplex-link $N $D 512kb 300ms AQM type
#Create links between source and bottleneck
for {set j 1} {$j¡=$NumbSrc} { incr j } {
$ns duplex-link $S($j) $N 15Mb 50ms DropTail
}

Once the nodes created, the user has to define the transport protocols used, adding agents
on the nodes. For each protocol, we define a source agent which will send the traffic and
a receiver agent.
The user can then link an application to the chosen agent, it will generate the traffic which
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will be passed to the agent. The generated traffics depend of the chosen application.

#TCP Sources
for {set j 1} {$j¡=$NumbSrc} { incr j } {
set tcp src($j) [new Agent/TCP]
}
#TCP Destinations
for {set j 1} {$j¡=$NumbSrc} { incr j } {
set tcp snk($j) [new Agent/TCPSink]
}
#Connections TCP
for {set j 1} {$j¡=$NumbSrc} { incr j } {
$ns attach-agent $S($j) $tcp src($j)
$ns attach-agent $D $tcp snk($j)
$ns connect $tcp src($j) $tcp snk($j)
}
#Parametrisation of TCP sources
for {set j 1} {$j¡=$NumbSrc} { incr j } {
$tcp src($j) set packetSize 500
$tcp src($j) set window 100
}

This is for TCP, we use the same code for UDP, by changing TCP by UDP.
The script finishes by the launching of the simulator and the choice of the starting and
finishing time of each applications.

#Schedule events for the FTP agents:
for {set i 1} {$i¡=$NumbSrc} { incr i } {
$ns at 0.1 ”$ftp($i) start”
$ns at Duration ”$ftp($i) stop”
}
# Start Simulation
$ns run

In order to use the PI controller the predictive controller, we need to specify the pa-
rameters as follow:

#PI parameters
Queue/PI set a ...
Queue/PI set b ...
Queue/PI set w ...
Queue/PI set qref ...
Queue/PI set pref ...

#parametre PRED CONT
Queue/PRED CONT set qref ...
Queue/PRED CONT set R0 ...
Queue/PRED CONT set wref ...
Queue/PRED CONT set pref ...
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Queue/PRED CONT set lambda1 ...
Queue/PRED CONT set lambda2 ...
Queue/PRED CONT set lambda3 ...
Queue/PRED CONT set C1 ...
Queue/PRED CONT set C2 ...
Queue/PRED CONT set C3 ...
Queue/PRED CONT set k1 ...
Queue/PRED CONT set k2 ...
Queue/PRED CONT set k3 ...
Queue/PRED CONT set w ...
Queue/PRED CONT set NbConnect ...
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