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Abstract
In this paper, we demonstrate the importance of the details of the equilibria on
the stability of electron drift waves. A comparison of electrostatic electron
drift waves in numerical and analytical tokamak equilibria is presented in
fully three-dimensional circular and non-circular tokamaks. The numerical
equilibria are obtained using the variational moments equilibrium code and
the analytical equilibria used is the generalized ŝ–α model. An eigenvalue
equation for the model is derived using the ballooning mode formalism and
solved numerically using a standard shooting technique. The stability and the
localization of the electron drift wave is found to be strongly dependent on the
local shear of the magnetic field. Large values of the local shear are found to
be stabilizing. A disagreement in the results is found between analytical and
numerical equilibria at aspect ratios of typical tokamaks, suggesting that the
latter approach should be used in the transport calculations. The effects of
the local shaping of the magnetic surfaces are complicated and can be both
stabilizing and destabilizing, depending on the details of the equilibria.

1. Introduction

Drift waves are commonly believed to be responsible for the anomalous transport in fusion
plasma devices. The ion-temperature-gradient (ITG) driven mode is one of the main candidates
for explaining the anomalous transport in the core region [1–7]. The situation at the edge is
different, with a strong influence of electron–ion collisions giving a resistive nature to the drift
waves in this region.

The effects of plasma shaping on magnetohydrodynamic (MHD) modes are well docu-
mented [8,9]; however, the effects on drift wave stability are still rather unknown. In transport
code simulations it has been suggested that the main effects of plasma shaping on the confine-
ment time originates from the plasma edge region [10]. Nevertheless, there is no consensus on
whether the effects of shaping are due to stabilization of the linear modes or due to other indirect
effects. The investigation of the influence of plasma shaping is therefore of great interest.
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In this paper, the linear stability of the electron drift waves is examined in analytical
and numerical equilibria for circular and JET-like tokamaks. The numerical equilibria are
obtained from the three-dimensional equilibrium code variational moments equilibrium code
(VMEC) [11]. The generalized ŝ–α model is used for analytical equilibria, which allows for
variation of the parameters without recomputing the equilibrium [12].

In the model for the electron drift waves, we assume a response close to adiabatic for
the electrons and a cold ion response. The reason to consider this simple model is to emphasise
the effect of geometry and specifically to examine the role of local magnetic shear and
magnetic field curvature on the structure and stability of the modes. The model is formulated in
the ballooning representation [13] and the drift wave problem is set as an eigenvalue equation
along a magnetic field line. To solve the drift wave equation, we have used the standard shooting
technique and are applying Wentzel–Kramers–Brillouin (WKB) type boundary conditions.

In general, we have found that the more unstable modes are most localized. This is true for
both circular and non-circular tokamak geometries. However, in a tokamak with non-circular
cross-section, modes are found to be more localized than those in a circular equilibrium.
The effect of the local shear of the magnetic field is found to be important and that is seen
by comparing the circular and the JET-like equilibria. The existence of the high-frequency
modes, their localization along the field lines and their frequencies and growth rates are found
to be strongly dependent on the local magnetic shear. Moreover, the effect of non-circularity
on peaked density profiles is found to be stabilizing for small radii, due to the relatively large
local magnetic shear values. However, the effect is quite the opposite at the outer edge region
of high q-plasmas where local magnetic shear has smaller values.

The remainder of this paper is structured as follows. In section 2, the equilibrium magnetic
field is specified in straight field line coordinates and the contravariant and covariant basis
vectors are calculated. The equilibrium is computed using the VMEC code with fixed boundary
conditions for JET and for a circular tokamak having the same aspect ratio. The generalized
ŝ–α model is presented in section 3, which allows a comparison between the circular and
non-circular equilibria. In section 4, the iδ model is used as a physical model to describe the
electron drift modes and is derived from the fluid dynamics for the ions in the electrostatic
regime, whereas the electron response is assumed to be close to adiabatic. The resulting
equations are closed through the quasi-neutrality condition. In section 5 the results and a
discussion thereof are presented. Finally, a summary is given in section 6.

2. The magnetic field configuration of the toroidal system

The magnetic field configurations can be expressed in terms of the Boozer flux coordinates
(s, θ, ζ ), where θ and ζ are generalized poloidal and toroidal angles and s = 2πψ/ψp is the
normalized flux (radial) coordinate [14]. By construction, the radial label ranges from 0 (at the
magnetic axis) to 1 (at the last closed magnetic surface). Here, 2πψ is the poloidal magnetic
flux bounded by the magnetic axis and the ψ = constant surface and ψp = πB0ā

2/q the total
poloidal magnetic flux. Here, B0 is the magnetic field at the axis, ā is the average minor radius,
q = 2π/ι is the safety factor and ι = ι(ψ) is the rotational transform that measures the helical
twist of the magnetic field lines. The magnetic field, B, is expressed as

B = ∇α × ∇ψ = ψ̇∇α × ∇s, with ψ̇ ≡ dψ

ds
= B0ā

2

2q
, (1)

which fulfills ∇·B = 0 and B ·∇ψ = B ·∇α = 0, implying that ψ and α are stream functions
(constant along a field line) of the magnetic field. It further implies that ψ = constant is a
magnetic flux surface and that α = ζ −qθ is a field line label on this surface. A given magnetic
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flux surface can be represented by a square cell, 0 � θ < 2π , 0 � ζ < 2π , with the edges
θ = 0, 2π and ζ = 0, 2π topologically identified. While the equilibrium is periodic in ζ and
θ, for the eigenvalue problem along the field line, described in the next section, the magnetic
field lines lie in the domain −∞ < θ < ∞, −∞ < ζ < ∞, which is usually referred to as a
covering space [15]. This is because in general field lines never close. The equilibrium code
VMEC solves the MHD force balance equation,

J × B = ∇P, (2)

in three-dimensional geometry. Here, J = µ0∇ × B is the plasma current, µ0 is
the permeability of free space and P is the isotropic plasma pressure. In VMEC, two flux
surface quantities are prescribed. One is the net toroidal plasma current enclosed within each
flux tube and the second is the plasma pressure profile. In this paper we use the plasma
pressure profile for all VMEC equilibria. The equilibria for the JET and circular tokamaks
are computed with fixed boundary conditions and for a set of 97 magnetic surfaces. The
VMEC code uses a coordinate system that has been optimized by minimizing the number of
harmonics required to represent the equilibrium quantities so that the equilibrium calculation
is very efficient. However, the VMEC coordinate system is not a straight field line coordinate
system. Thus, before solving the drift wave equation, we first transform the equilibrium to
Boozer coordinates. The VMEC code uses an inverse equilibrium representation, in which
the real space cylindrical coordinates are given by Fourier expansions. The Boozer system
and the standard cylindrical coordinates (R, φc, z) are related through the Fourier series (for
a given magnetic surface, s = constant—a surface that is traced out by a series of magnetic
field lines)

R =
np∑

m=0

nt∑
n=−nt

Rmn(s) cos(mθ + nNζ),

φc = ζ,

z =
np∑

m=0

nt∑
n=−nt

zmn(s) sin(mθ + nNζ).

(3)

Here, np and nt are the maximum poloidal and toroidal Fourier components and are both input
parameters of VMEC, and N is the number of field period, which is different for different fusion
machines. In this case, we use np = 47 , nt = 1 and since the tokamak has toroidal symmetry,
the field period is 1. The Fourier coefficients Rmn, φmn and zmn and the rotational transform, ι,
are calculated as functions of the flux coordinate s by the VMEC code [11] and then mapped
over to the Boozer coordinate system (s, θ, ζ ) [16, 17]. The position vector, rp, of any point
(s, θ, ζ ) at a flux surface s in the coordinate system (x, y, z) is rp = (R cos φc, R sin φc, z),
where the covariant basis vectors in the Boozer coordinate system are

es = ∂rp

∂s
, eθ = ∂rp

∂θ
, eζ = ∂rp

∂ζ
(4)

and the associated contravariant basis vectors are

∇s ≡ es = eθ × eζ

J
, ∇θ ≡ eθ = eζ × es

J
, ∇ζ ≡ eζ = es × eθ

J
. (5)

The covariant basis vector eθ is tangent to the θ coordinate curves, which lie at the intersection of
the coordinate surfaces s = constant and ζ = constant, whereas the contravariant basis vector
∇θ is perpendicular to the coordinate surface θ = constant. The Jacobian (the determinant
of the matrix produced by nine partial derivatives) of the transformation J can be calculated
using the set of covariant basis vectors

J ≡ es · eθ × eζ = ψ̇

B2

(
Bθ + qBζ

)
, (6)
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where Bθ and Bζ , the covariant components of B, are surface quantities, i.e. Bθ = Bθ(s) and
Bζ = Bζ (s). Having calculated the derivatives of the cylindrical coordinates R, φc and z with
respect to s numerically, equation (6) can be used to calculate derivatives of B with respect to
θ and ζ analytically, while the derivatives with respect to s are calculated numerically. Using
the reciprocal relation of contravariant and covariant basis vectors, equation (1) can be written
as B = ψ̇/J (eθ + qeζ ), and the parallel gradient operator, e‖ · ∇ (where e‖ = B/B), can be
written as

e‖ · ∇ = ψ̇

JB

(
∂

∂θ
+ q

∂

∂ζ

)
= ψ̇q

JB

d

dζ

∣∣∣∣
field line

(7)

and the field line curvature vector, κ, is

κ ≡ e‖·∇e‖ = q

(
ψ̇

JB

)2 [
d

dζ

(
eθ + qeζ

) − 1

2

d ln J

dζ

(
eθ + qeζ

)]
. (8)

When the curve under consideration lies within a surface, it is customary to define curvature
components with respect to the surface. The component of κ normal to the surface is called
the normal curvature, κn, whereas the component of κ tangent to the surface is referred to as
the geodesic curvature, κg. The normal and geodesic components of κ are

κn = κ ·
∇s

|∇s| , κg = κ ·
(

∇s

|∇s| × e‖

)
. (9)

Regions of the configurations with a negative normal curvature are expected to be unstable to
local pressure-driven instabilities, whereas positive regions are expected to be stable. The
design of the magnetic confinement devices are often numerically optimized to enhance
the positive average curvature.

Using equation (6), we write

∇ ln B = 1

2

[(
d

ds
ln

(
Bθ + qBζ

) − ∂ ln J

∂s

)
∇s − ∂ ln J

∂θ
∇θ − ∂ ln J

∂ζ
∇ζ

]
(10)

and
∂J

∂s
= ∂es

∂s
· eθ × eζ + es ·

∂eθ

∂s
× eζ + es · eθ × ∂eζ

∂s
. (11)

The local magnetic shear is the local rate of rotation of the magnetic field direction and is another
equilibrium quantity that plays an important role in the stability [18] and can be written as [19]

S = ψ̇

B

[∇α · ∇s

|∇s|
( ∇s

|∇s| · ∇
)

∇s − (∇s · ∇)∇α − (∇α · ∇)∇s

]
· e‖. (12)

3. The magnetic field configuration in the ŝ–α model

As a model for an analytical equilibrium we employ the generalized ŝ–α model of [12], which
allows for modification of the equilibrium parameters like elongation and Shafranov shift
without recomputing the equilibrium. The flux coordinate system is defined by

R(r, θ) =
∞∑

n=0

Rn(r) cos(nθ), (13)

Z(r, θ) =
∞∑

n=0

Zn(r) sin(nθ), (14)
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where R and Z are the usual cylindrical coordinates. The terms R0, R1 = r , Z1 = rκ describe
the major radius, minor radius and ellipticity, respectively, and the terms R2, Z2 describe
triangularity. The scale factors become

grr = (∂rR0 + cos θ)2 + (∂r(rκ) sin θ)2, (15)

gθθ = r2(1 + (κ2 − 1) cos2 θ), (16)

grθ = ∂r(κr)κr sin θ cos θ − r(∂rR0 + cos θ) sin θ, (17)

gφφ = R2, (18)

where κ is the elongation and ∂j = (∂/∂xj ) (note that it only acts on the object directly
following), and we denote the position vector �r = (R, Z) and the basis vectors êj = 1/hj∂j �r .
The metric tensor, gij , is defined as

ds2 = gij dxidxj .

Keeping only the first terms in inverse aspect ratio ε = a/R-ordering, where a and R

are the minor and major radius of the plasma, respectively, and with the B-field given by
�B = Bθ θ̂ + Bφφ̂, we have the magnetic drift frequency and perpendicular wave vector, k⊥, as
ωD

ω∗e

= εng(θ) ≈ εn√
gφφ

(gθrr
φφJ

q

r
s + gθθr

φφJq − grrθ
φφJ

q

r
s − gθrθ

φφJq), (19)

k2
⊥ = k2

θ k(θ) ≈ − k2
θ

J 2
(grr + gθθ (sθ)2 + 2grθ sθ), (20)

where ŝ = d ln q/d ln r is the global magnetic shear. Here, the inverse of the metric tensor is
defined by the relation gijg

jk = δk
i . The Christoffel symbols are given by


j

ik = 1
2gjn(∂kgni + ∂ignk − ∂jgik), (21)

r
φφ = −1

4

(gθθ

J 2
∂rg

2
φφ − grθ

J 2
∂θg

2
φφ

)
, (22)

θ
φφ = −1

4

(
−gθr

J 2
∂rg

2
φφ +

grr

J 2
∂θg

2
φφ

)
, (23)

where the Jacobian is given by

J 2 = gφφ(grrgθθ − g2
rθ ).

These results reduce to the usual expressions in circular geometry, i.e.
ωD

ω∗e

≈ εn(cos θ + sθ sin θ), (24)

k2
⊥ ≈ k2

θ (1 + s2θ2). (25)

The effects of triangularity are neglected in the analytical equilibrium. A previous study by
Hua et al [20], using a high-n linear ballooning mode code for ITG modes, showed that the
growth rates in the plasma core decrease with elongation, but are insensitive to triangularity.
Meanwhile, Waltz and Miller [6], using a non-linear ballooning mode gyrofluid code for
ITG turbulence, showed that the growth rate is only slightly modified for small values of
triangularity. However, high and reversed triangularity give improvements. Furthermore, Belli
et al [21] used a gyrokinetic code and found that increasing the triangularity and triangularity
gradient at a finite elongation has a stabilizing influence at high α (here α ≈ −R0/q

2∂β/∂ρ),
but at high shear, however, a high degree of shaping effects is found to have a destabilizing
influence at low α. The numerical equilibria we use here have a low β and small triangularity
(0.11) on the magnetic surface s = 0.75. Therefore, due to a small triangularity and low β, we
expect weak effects on the growth rate, and hence triangularity is neglected in the analytical
equilibrium, whereas it is included in the numerical equilibrium.



110 T Rafiq et al

4. The drift wave model

In the three-dimensional geometry described before, we use a simple drift wave model in
which ions are treated as a cold magnetized fluid and the electrons are assumed to be close
to adiabatic. The eigenmode equation is then derived from the quasi-neutrality condition.
The plasma is assumed to be in the collisional regime so that particle trapping and detrapping
effects are not important. A ballooning representation is used for the electrostatic potential
perturbation, φ̂ = �(ζ) exp[iε−1S(ψ, α)], where ε is the WKB expansion parameter, S is the
eikonal and � is the envelope [22]. The wave equation can be written as

R̄2

�2
∇ · ∇‖φ̂ −

[
i
A

�

(
p∗ + pd

)
· ∇⊥ +

A2

R̄2B2
∇2

⊥ − 1 − iδ

]
φ̂ = 0, (26)

where A = R̄B0ρs0, R̄ is the average major radius, B0 is the magnetic field at the axis,
ρs0 = cs/ωci0, cs =

√
(Te/mi) is the ion thermal velocity evaluated at the electron temperature

and ωci0 is the ion cyclotron frequency evaluated at the magnetic axis. The frequency is
normalized with respect to cs/R̄ (� = R̄ω/cs) and φ̂ ≡ eφ/Te is the normalized perturbed
potential. The parameters p∗ and pd are proportional to the diamagnetic and the magnetic drift
velocities and we have defined

p∗ = −B × ∇ ln n

B2
, pd = B × (κ + ∇ ln B)

B2

and δ represents the non-adiabatic response of the electrons and can be due to collisions or
any other dissipative mechanism. In deriving the above equation we also assume that the
characteristic perpendicular wavelength is much larger than the ion thermal gyro-radius.

By analogy with the Fourier form, the perpendicular wavenumber is

k⊥ = i∇⊥ ln φ̂ = ε−1∇⊥S = 1

ε

∂S

∂α

{
∇α +

∂S/∂ψ

∂S/∂α
∇ψ

}

= ε−1 ∂S

∂α

[
∇ζ − q∇θ −

{
θ

dq

dψ
− ∂S/∂ψ

∂S/∂α

}
∇ψ

]
. (27)

Equation (26) is to be solved along a given field line, labelled by α, on a flux surface ψ . This
field line passes through the point (θ0, ζ0). The equilibrium is periodic and therefore invariant
under the operations

α(ψ, θ0, ζ0) → α(ψ, θ0 + 2π, ζ0) and α(ψ, θ0, ζ0) → α(ψ, θ0, ζ0 + 2π).

We want k⊥ to fulfil the same periodicity. This is obtained if we require that

∂S/∂ψ

∂S/∂α
= (θ0 + θk)

dq

dψ
.

Note that the definition of θk differs slightly from that used in [15]. Here, a fixed θk gives a
constant local value of the normal component of the perpendicular wave number as θ0 and ζ0

are varied. To see this we use the field line equation

ζ − qθ = α = ζ0 − qθ0

and write equation (27) in the form

k⊥ = ε−1 ∂S

∂α

[
∇ζ − q∇θ −

(
ζ − ζ0

q
− θk

)
dq

dψ
∇ψ

]
.

From this expression it is clear we are looking at the same mode as we make calculations at
various matching points θ0, ζ0 on the magnetic surface.
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Writing ∇‖ = e‖(e‖ · ∇) and employing equation (7), the operator ∇ · ∇‖ can be written
in terms of the field line parameter ζ as

∇ · ∇‖ =
(

ψ̇q

JB

)2
d2

dζ 2

∣∣∣∣
field line

.

Then, the drift wave equation, equation (26), may be written in the form of a Schrödinger-
like equation,

d2�

dζ 2
= U�, (28)

where the potential, U , is

U(ζ, �) =
(

JB

qR̄ψ̇

)2
{

(�∗ + �d)χ� −
(

1 +
B2

0χ2|k̂⊥|2
B2

+ iδ

)
�2

}

and where

�∗ = �∗(s) = −2R̄

Ln
, L−1

n = −d ln n0

ā ds
, χ = ε−1 qρs0

ā

∂S

∂α
,

�d = �d(s, α, ζ ) = B0R̄pd · k̂⊥,

k̂⊥ = ā

q
[∇ζ − q∇θ − (θ − θ0 − θk)q̇∇s], θ = α − ζ

q
, θ0 = α − ζ0

q
.

The physical problem is now reduced to an eigenvalue equation along the field line, which
is similar to the problem of a particle in a potential well in quantum mechanics. Hence,
equation (28) is solved numerically along a magnetic field line (α) on a given flux surface
(s). This is solved by applying an appropriate boundary condition for a large |ζ | and by
demanding continuity of the eigenfunction and its first derivative at a point ζ = ζ0, usually
referred to as a ‘matching point’. Hence, at a given magnetic surface s, the eigenfunction �

and the corresponding normalized eigenfrequency, �, can be determined for given values of
the equilibrium plasma density scale length, Ln, and the free parameters χ and θk . The former
controls the magnitude of the perpendicular wave vector, k⊥, and the latter its orientation.

5. Numerical results and discussion

The drift wave equation is solved by a shooting algorithm using a sixth-order Numerov scheme
and WKB-type boundary conditions and by demanding continuity of the function at its first
derivative at a matching point. Details of the boundary conditions and the numerical method
used are given in [23].

The input pressure profile used in the calculation of the magnetic field configuration is
shown in figure 1 together with the q-profile, which is an output from the code. The poloidal
cross section of the non-circular tokamaks is provided in figure 2 (right). For the sake of clarity,
only 19 of the nested magnetic surfaces are plotted. Analytical circular and non-circular cross-
sections used in comparison with to the numerical equilibria are shown in figure 2 (left). The
full equilibrium has been determined with 97 magnetic surfaces. The average major radius
(R̄) is 2.96 m, the magnetic field strength at the magnetic axis is 3.45 T and the aspect ratio is
R̄/ā = 1.77 (ā is the average minor radius).

Figure 3 shows the drift wave spectrum calculated on the flux surface s = 0.65 using
the matching point (θ0 = 0, ζ0 = 0). Here the local magnetic shear is small, normal
curvature is large negative (unfavourable) and geodesic curvature is zero. The parameter
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Figure 1. The output q profile (left) and input pressure profile (right) used in the calculation of the
magnetic field configuration.

Figure 2. The analytical and the numerical equilibrium cross sections (left) used as a comparison
and the reduced non-circular magnetic flux surfaces (right).

values used are b = (k⊥ρs)
2 = χ2|k̂⊥ · k̂⊥|ζ=ζ0 = (ε−1∂s/∂α)2|∇α · ∇α|ζ=ζ0 = 0.1

and θk = 0, εn = Ln/R̄ = 0.05, where Ln is the radial density scale length, and
L−1

n = −d ln n0/ds ŝ · ∇s|ζ=ζ0 , where ŝ ≡ ∇s/|∇s| is a unit vector normal to the magnetic
surface and pointing outwards. In the case of an axisymmetric circular tokamak

ψ = B0

∫
r

q
dr, ∇s = r̂

2q(ā)r

ā2q
, ψ̇ = B0ā

2

2q(ā)
,

therefore s relates to r as

s = 2q

ā2

∫
r

q(r)
dr, ∇s = 2qr

ā2q(r)
∇r
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Figure 3. The drift wave spectrum (the growth rate, R̄γ /cs , versus normalized real frequency,
R̄ω/cs ) obtained for εn = 0.05, b = 0.1, θk = 0, δ = 0.01, along the field line passing through
θ0 = 0, ζ0 = 0 on the flux surface s = 0.65. Asterisks represent the non-circular tokamak, and
squares the circular tokamak.

and density gradient scale length in terms of r can be written as

L−1
n = −d ln n0

ds
ŝ · ∇s|ζ=ζ0 = −d ln n0

dr
|∇r|ζ=0.

Eigenfunctions in different parts of the spectrum are shown as insets. At low frequencies
the modes are extended along the field line and for higher frequencies they are more localized.
This is the case for both circular and non-circular tokamaks. For the non-circular case, the
growth rate is somewhat larger than for the circular configuration, whereas the real frequency
is found to be similar. However, the envelope of the eigenfunction in the non-circular case is
found to be more localized than the circular case. Both the larger value of the growth rate and
the localization of the modes along the field line can be understood by examining the local
characteristics of the field.

Figure 4 shows the eigenfunctions of the most unstable modes, which are plotted as a
function of generalized toroidal angle, ζ ; local magnetic shear, |B|, and normal curvature for
circular and non-circular tokamaks are also superimposed. In both cases, the most unstable
mode is found to be localized in unfavourable curvature, in the minimum of |B| and in the
minimum of the local magnetic shear. However, increasing the local magnetic shear has a
major influence on the favourable behaviour of the circular configuration over the non-circular
configuration on this specific field line. Furthermore, the role of the local magnetic shear in
localizing and constraining the mode along the field line is also seen. The driving effect of the
normal component of the curvature is found to be almost the same in both configurations.

Figure 5 shows the variation of the magnitude of the local magnetic shear, S, and k̂2
⊥ as

a function of the ballooning coordinate (non-periodic), ζ , on the magnetic surface s = 0.75
along the magnetic field line specified α = 0. This field line contains θ0 = 0, ζ0 = 0. The
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Figure 4. Eigenfunction (left for circular and right for non-circular tokamak) of most unstable
mode as a function of ζ for the case of figure 1. The strength of the field line |B| (- - - -), normal
curvature κn (— · —) and local magnetic shear (· · · · · ·) are also plotted.

Figure 5. Variation of S(ζ ) (left) and k̂2
⊥(ζ ) (right) along a magnetic field line with θ0 = 0,

ζ0 = 0 on the magnetic surface s = 0.75. The dash-dotted line represents the circular cross section
tokamak, dotted line the simple circular infinite aspect ratio ŝ–α model equilibrium and solid line
the JET.

Figure 6. Variation of ωd/ω∗(ζ ) (left) and k̂2
⊥(ζ ) (right) using analytical equilibria. The dashed line

represents the circular cross section tokamak and solid line the non-circular (κ = 1.58) tokamak.

solid line represents a non-circular tokamak and the dash-dotted line is for a circular tokamak.
A higher value of local magnetic shear is found for the circular case near ζ = 0 than for the
non-circular case. Therefore, in the circular case, a relatively lower growth rate is expected
for highly localized modes along the field line. Figure 6 shows the variation of ωd/ω∗(ζ )
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Figure 7. Normalized real frequency, R̄ω/cs (left), and growth rate, R̄γ /cs (right), as a function
of b (asterisks representing the JET-like equilibrium and squares the circular equilibrium) for
εn = 0.05, θk = 0, α = 0 and s = 0.75.

Figure 8. Normalized real frequency, R̄ω/cs (left), and growth rate, R̄γ /cs (right), as a function
of b (asterisks representing the elongated (κ = 1.58) and squares the circular (κ = 1.0) analytical
equilibria); other parameters are the same as in figure 7.

and k̂2
⊥(ζ ) using analytical equilibria for q = 1.5 and κ = 1.58 for the non-circular case and

κ = 1.0 for the circular case. A good agreement between the analytical and the numerical
results is found in the case of the perpendicular wave vector.

Figure 7 gives the mode eigenfrequency (both real frequency and growth rate) of the most
unstable modes as a function of b on a magnetic surface s = 0.75, and other parameters are
the same as in figure 3. The asterisks represent the non-circular tokamak and the squares the
circular tokamak. It is found that as b increases the growth rate and the real frequencies of
the modes decrease, which is consistent with earlier tokamak studies. The difference between
the two cases is that the maximum growth rate occurs at b = 0.1 for the non-circular case,
while it occurs for b < 0.1 for the circular case. This shift towards a shorter wavelength
for elongated equilibria tends to reduce the transport by reducing the correlation length in the
plasma. However, while a stabilization effect is found in the circular case for higher values of
b (shorter wavelengths), at longer wavelengths the mode growth decreases more rapidly for
the non-circular case. As can be seen from the inset eigenfunctions, the modes become more
localized along the field line for shorter wavelengths, and feel the higher values of the local
magnetic shear, as earlier discussed in connection with figure 5.

Figure 8 shows the same results for the analytical equilibria. The asterisks represent
the non-circular tokamak and the squares the circular tokamak. The results of numerical
and analytical equilibria with respect to plasma shaping are qualitatively similar. For the
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Figure 9. Normalized real frequency, R̄ω/cs (left), and growth rate, R̄γ /cs (right), as a function of
εn (asterisks representing the JET and squares the circular equilibria) for b = 0.1; other parameters
are the same as in figure 7.

Figure 10. Normalized real frequency, R̄ω/cs (left), and growth rate, R̄γ /cs (right), as a function
of εn (asterisks representing the elongated (κ = 1.58) and squares the circular (κ = 1.0) analytical
equilibria) for b = 0.1; other parameters are the same as in figure 8.

real frequencies there is a shift towards smaller values for the analytical equilibria where the
largest differences are found for the non-circular tokamak. For the growth rates the situation
is reversed, with the best agreement found in the non-circular case. Note that for larger values
of b the numerical growth rates in circular and non-circular tokamaks differ by more than 50%
but not at all for the analytical case.

In figure 9 the growth rates and the real frequencies are presented as functions of εn, and
otherwise using the same parameter values as in figure 7. In both cases, the mode is stabilized
by compressional effects for large εn. This happens in the flat density regime, εn > 0.25,
which extends over a large portion of the plasma radius in tokamaks [24]. We also note
that for large εn the stable regime appears earlier for the non-circular case than for a circular
tokamak. However, the effects of elongation are slightly destabilizing for peaked density
profiles (εn < 0.1), typical for an edge plasma discharge. Therefore, the mode is expected to
be more strongly destabilized at the outer part of the discharge. This is due to the fact that the
local magnetic shear in the non-circular case is slightly smaller than the circular case in the
region of the mode localization, as can be seen from figure 5. The same εn function is plotted
in figure 10 for analytical equilibria. We note that for the numerical and analytical equilibria
the results are qualitatively similar.

The parameter θk controls the component of the wave vector along the normal of the flux
surface and appears in the wave equation through k̂⊥. When θk is increased, the wave vector
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Figure 11. Normalized real frequency, R̄ω/cs (left), and growth rate, R̄γ /cs (right), as a function
of θk (asterisks represent the JET and squares the circular equilibria) for εn = 0.05, b = 0.1, α = 0
and s = 0.75.

rotates in the plane perpendicular to B. This is also a free parameter and so the spectrum should
be scanned over this parameter. Note that our θk is not periodic and differs slightly from the θk

used in [15]. Our θk is chosen so as to keep the orientation of the wave vector at the matching
point normal to the magnetic flux surface zero for all the points (θ0, ζ0) on the magnetic surface.
Figure 11 shows the eigenfrequency as a function of θk , with other parameters the same as used
in figure 3. The eigenfunctions of some of the modes are shown as insets. In both cases, the
maximum growth rate is found at θk = 0, which means that the radial wavenumber vanishes
at the matching point. Accordingly, the finite Larmor radius stabilization effect is weakest at
this point. As θk increases, the frequencies and growth rate of these modes decrease and the
corresponding eigenfunctions are shifted away from the symmetry point of the magnetic field
and have a broader envelope. However, for large values of θk the strongly localized modes
cease to exist. The results indicate that modes are strongly dependent on the orientation of the
wave vector and thus propagate within the surface perpendicular to the field line. As was seen
in figure 5, the growth rates and real frequencies in the non-circular case are smaller than in
the circular tokamak except at the symmetry point, where the modes are most localized.

In tokamaks, as one moves in the poloidal direction the equilibrium quantities like magnetic
field, normal and geodesic curvature and local magnetic shear change periodically. Therefore,
the spectrum can also vary with the position of the matching point on the flux surface. This
variation is calculated in figure 12 by moving the matching point θ0, and fixing ζ0 = 0,
because of toroidal symmetry. As discussed in the work of Dewar and Glasser [15] the growth
rate depends on the flux surface, the magnetic field line label and the radial wave number. In
principle, one sets these three parameters and solves for the spectrum. However, the eigenmode
spectrum associated with a specific set of these three parameters is beyond every attempt to
obtain a solution in one go. This is not at all surprising as the field line in general is infinitely
long, passing arbitrarily close to every point on a magnetic surface. Hence every attempt to
solve for the full spectrum invariably picks up only part thereof. With the shooting method
used in this paper, what we tend to pick up is the part of the spectrum localized around the
matching points where the continuity of the eigenmodes is enforced. Hence, by moving the
matching point around, one therefore recovers the complete spectrum. One can either do this
by keeping the field line fixed and move the matching point on the field line or by moving from
field line to field line. Formally, these two methods are not identical as in the latter case the
three parameters are not held fixed. However, since every field line, on a non-rational surface,
passes arbitrary close to every point on the surface, the two spectra obtained are identical in
the limit of arbitrary fine resolution. That both these methods work in practice, and give the
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Figure 12. Variation in the growth rate, frequency, local magnetic shear, S, change in field, |B|,
geodesic curvature, κg, and the normal curvature, κn, as a function of θ0 for the non-circular (left)
and circular (right) cases. |B| is the solid curve (——), κg is the cross curve (x) and κn is the
dash-dotted curve (— · —) for b = 0.1, and the other parameters are the same as in figure 7.

same results, can easily be demonstrated numerically as well. What is done here is slightly
more advanced. Since the growth rate has a maximum at θk = 0, θk is redefined in such a way
that it sets the radial mode number to zero at each matching point and the most unstable modes
on the magnetic surface are picked up. Figure 12 illustrates the variation of the growth rate,
frequency, local magnetic shear, |B|, normal curvature and geodesic curvature as a function of
poloidal angle, θ0, for θk = 0, and the other parameters used are the same as in figure 11. In
both geometries, the growth rate is found to be strongly coupled to the local magnetic shear. As
the magnitude of the local magnetic shear increases and unfavourable curvature decreases, the
growth rate of the mode decreases as well. However, in the region of unfavourable curvature the
modes are found to be localized, while the envelope of the eigenfunction becomes broader as
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Figure 13. Normalized real frequency, R̄ω/cs (left), and growth rate, R̄γ /cs (right), as a function
of the surface label s (squares representing the circular numerical and stars the circular analytical
equilibria) for εn = 0.05, θk = 0, b = 0.1 and α = 0.

Figure 14. Normalized real frequency, R̄ω/cs (left), and growth rate, R̄γ /cs (right), as a function
of the surface label s (asterisks representing the non-circular numerical and pluses the non-circular
analytical equilibria) for εn = 0.05, θk = 0, b = 0.1 and α = 0.

it enters the favourable curvature region. Therefore, the highest growth rate and real frequency
for both cases is found in regions where the local magnetic shear is small and normal curvature
is unfavourable, that is at θ0 = 0.

A radial scan over the magnetic surface label s is performed for circular tokamak equilibria
in figure 13 and for non-circular tokamak equilibria in figure 14. In the process, b = 0.1,
θ0 = 0, εn = 0.05, θk = 0, δ = 0.01 and α = 0 are kept fixed. It must be remarked here
that εn is not varying during this scan because our emphasis is on examining the effect of the
geometry on the same mode rather than the effects of density profiles. In the case of numerical
tokamak equilibria, we observed that, for small values of the radial normalized variable s, the
growth rate is higher in the circular case than in the non-circular tokamak, whereas it has a lower
growth rate for larger values of s. This is a consequence of the variation in the local magnetic
shear strength that changes its magnitude from a lower value to a higher value as s increases.
This can be demonstrated by plotting the value of the local magnetic shear on the magnetic
surface s = 0.8 for the circular tokamak and the non-circular case. We note in figure 15 that
the normal component of the curvature is found to be almost the same in both configurations,
while the shear is considerably smaller for the circular tokamak and becomes even smaller for
the simple infinite aspect ratio ŝ–α model equilibrium. The differences in the eigenvalues are
found between the analytical and the numerical equilibria. This is due to decreasing the inverse
aspect ratio (ε = R̄/ā = 2.96/1.675 � 1.77) of analytical equilibria in order to compare and
contrast its results with numerical circular and JET-like equilibria of same aspect ratio. This
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Figure 15. Variation of the shear, S(ζ ) (left), and κn(ζ ) (right), along a magnetic field line with
θ0 = 0, ζ0 = 0 on the magnetic surface s = 0.8. The dash-dotted line represents the circular cross
section tokamak, dotted line the simple circular infinite aspect ratio ŝ–α model equilibrium and
solid line the JET.

Figure 16. Normalized real frequency, R̄ω/cs (left), and growth rate, R̄γ /cs (right), as a function
of the surface label s (squares representing the circular analytical aspect ratio 10 and stars the
corresponding circular numerical equilibria); other parameters are the same as in figure 13.

is checked by plotting the eigenvalue as a function of the normalized radial Boozer coordinate
‘s’ in figure 16 for the simple circular infinite aspect ratio ŝ–α model and is compared with the
corresponding numerical equilibrium. They are found to be in good agreement. Moreover, the
local magnetic shear plotted for the simple circular infinite aspect ratio ŝ–α model in figure 5
has smaller values than for the numerical equilibria. Hence large eigenvalues can be understood
with the help of figure 12, where they are inversely proportional to the local magnetic shear.
Finally, we have done an elongation scan which is presented in figure 17. This has been done
using an analytical equilibrium and the results show destabilization for peaked density profiles.
Maximum destabilization is found for κ � 1.7. As the equilibria become more elongated, the
influence of κ is reversed and a stabilization is observed for large values. A decrease in real
frequency is also found due to elongation. This is because the magnetic drift frequency, �d,
is expected to be reduced with increasing elongation.

6. Summary

A detailed comparison of the linear stability of electron drift modes is made between circular
and non-circular tokamak geometries, which are also compared with ŝ–α model equilibria.
A JET-like equilibrium is compared with a circular equilibrium with the same aspect ratio.
The cold ion model used to describe these modes is derived from the fluid dynamics for ions
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Figure 17. Normalized real frequency, R̄ω/cs (left), and growth rate, R̄γ /cs (right), as a function
of the elongation (κ), using analytical equilibrium for εn = 0.05, θk = 0, b = 0.1 and α = 0.

in an electrostatic regime, whereas the electron response is assumed to be close to adiabatic.
The eigenvalue problem for the drift wave equation is solved numerically using the ballooning
mode formalism in fully three-dimensional tokamak geometries. Drift waves have been found
everywhere on the flux surfaces. The high-frequency modes are strongly localized, while the
low-frequency modes are weakly localized along the field lines. We have also found that
the existence of the high-frequency modes, their localization along the field lines and their
frequencies and growth rates are strongly dependent on the local shear of the magnetic field.
The mode frequencies and growth rates are inversely proportional to the magnitude of the
shear, while field line curvature has less influence on these drift modes. Modes are found to be
more localized in a non-circular tokamak than in a circular equilibrium. As in stellarators, this
is found to be due to the variation in the strength of the local magnetic shear, which localizes
the modes along the field lines and constrains them. Shaping parameters, like elongation, do
modify the perpendicular space variation and thereby the effective magnetic shear and one gets
an enhanced convective damping due to magnetic shear. At the same time, however, the mode
width is reduced and this tends to reduce the benifical effect on shear damping. This can be seen
in figures 3, 4 and 17 of this paper. Therefore, in the non-circular low-β equilibria considered,
shaping turns out to be destabilizing. This has also been seen by Belli et al [21]. However, at
high α (here α ≈ −R0/q

2∂β/∂ρ), stabilizing effects have been observed due to the increase in
triangularity at finite elongation. In summary, shaping is important for stability but can have
both stabilizing and destabilizing influences. However, the stabilization due to compression
is recovered for smaller values of εn in the non-circular case than in the circular tokamak.
A slight shift towards a shorter wavelength is found in the spectrum of the unstable modes for
the non-circular case. This shift may tend to reduce the transport by reducing the correlation
length in the plasma. The effect of non-circularity for peaked density profiles is found to be
stabilizing in the inner radial region, whereas the effect is found destabilizing at the outer
radial region. This is due to the variation of the local magnetic shear, which varies strongly in
the non-circular case in comparison with the circular case. Finally, in the comparison of the
numerical and the analytical equilibria results, differences are found. This is due to decreasing
the inverse aspect ratio of analytical equilibria in order to compare and contrast its results with
numerical circular and JET-like equilibria of same aspect ratio. This is checked by taking a
simple circular infinite aspect ratio model and is compared with the corresponding numerical
equilibrium. They are found to be in good agreement. Therefore, the analytical equilibria are
found to be fine as long as the aspect ratio is large enough, but it has problems for smaller aspect
ratios such as in JET. However, to validate this point, work on a more complete model including
ion and electron temperature gradients and electron trapping to compare numerical equilibria
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with analytical equilibria including the effects of elongation, triangularity and Shafranov shift
is in progress. Unstable drift modes are found both in favourable and unfavourable curvature
regions. This is partly due to keeping the dissipative mechanism constant. While this is an
artefact, it is also an advantage as it separates the driving mechanism from the effects of the
magnetic configuration, which was the main purpose of this paper.
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