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Plasma shape and finite B effects on stability thresholds of the ion
temperature gradient modes
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The stability of electromagnetic ion temperature gradient driven modes with emphasis on the
lower and upper stability thresholds is investigated by a collisionless magnetized plasma in both
circular and noncircular geometry. The stability properties are discussed and the results are
compared for finite3 effects, arbitrary elongation, and Shafranov shift rate parameters. It has been
found that the lower stability thresholds are weakly dependent on(dbmbined effects of
Shafranov shift rate, finitg8, and elongation whereas the secdngpey stability regime shows
substantial dependence depending on parameter regim200® American Institute of Physics
[DOI: 10.1063/1.1804941

I. INTRODUCTION v+, the plasma pressuig, A appears indirectly througs,
the cylinder safety factoq.

Studies of confinement on shape and of magnetohydro-  Plasma shaping, finitg- stabilization, and Shafranov
dynamic (MHD) stability on toroidal plasma shape is well shift may affect the formation and sustainment of confine-
known and has been both dealt with theoretically and experiment regimes by the creation of a heat transport barser.
mentally. However, theoretical microinstability growth ratesshould be large enough that the growth rate should decrease
in the highn linear ballooning mode formalism for the ion with increasings;. Transport barriers with largs, have been
temperature gradieritTG) modes with emphasis on plasma observed in all major tokamaks, see, for example, Ref. 8. It
shape should be given full attention. Elongation effects havéas been reported that effects such as sheared rotation, finite
shown decrease in growth rates in the plasma core for IT@, and plasma shaping be considered in reducing the growth
modes as given in Ref. 1. Studies of trapped electron driftates see, for example, Ref. 9.
modes showed that increasing the elongation leads to a de- In this paper we investigate the elongatienb/a, elec-
crease in growth rate for these modes and for the ITG modgomagnetiqfinite 8) and Shafranov shifh(=4,R,), see, for
the growth rate decreases as elongation increases in the cafgample, Ref. 7 effects on the lowefi,, and upperz,,
region see, for example, Refs. 2 and 3. Collisional ITG modsstability thresholds of the ITG modes. We are specially in-
in cross-sectional elongation and Shafranov shift on the staerested in the effectecombined of finite 8, elongation pa-
bility of resistive edge modes have been investigated agameterx, and Shafranov shifh on the ITG mode particular
given in Ref. 4. In circular geometry it was shown that theto noncircular geometry and with various key plasma param-
ion temperature gradient mode stabilizes for high values oéters. We compare the results with the one obtained in circu-
(m=Ln/Ly;, whereL,=n|dn/dr|"* and Ly;=T;|dT;/dr|™* are  |ar geometry in the first and second stability threshaids,
the characteristic length scales of the density and ion temfiuid models give two marginal stability limits as given in
peraturg, see, for example, Ref. 5. Studies in both fluid andRref. 10.
gyrokinetic models for the upper stabilityy,, threshold Here we have modified the advanced fluid model see, for
with finite B (=plasma pressure/magnetic pressueffects  example, Refs. 11 and 12 and stability code to treat equilibria
have shown stabilization at high values as given in Ref. 6. with an arbitrary elongatiom of the cross section and with

Plasma shape parameters such as elongatieh/a)  arbitrary Shafranov shift ratd. The work is focused on the
(elliptic surface/circular surfageand Shafranov shift rate collisionless ITG ballooning modes in lo@ tokamak equi-
(A=0,Ry) see, for example, Ref. 7 in toroidal devices play anlibrium (s-a mode). The frequency regime of interest is
important role in the power scaling expressions for thermakoT < |w|<wT where wy is the transit frequency. The model
energy confinement tlm&th, which can be expressed either equatlons mvestlgated here contain the MHD ballooning

in “engineering” variables as 7n  mode generalized to finitk? p? finite Larmor radiugFLR),
=Cl«B*8P*Pn*M“MR*Re %k« and in “physics” variables as and generalyy/ w see, for example, Refs. 13 and 12. In the
rth:CerBpri‘P*V*”*,BXﬁMXMquerKXK whereR is major radius] MHD expansion the stability is determined by the param-

the plasma currenB the toroidal magnetic fieldat major  eters a=Bg?R/L[1+7.+(1+7)/7]7/(r+1) and s=rq’/q
radiusR), P the power losgcorrected for charge exchange with 7=T,/T;. Parallel ion dynamics and trapped patrticle ef-
and orbit losses n the line average density,the elongation, fects are ignored.

e the inverse aspect ratio aM the average ion mass. The The sensitivity of drift waves to plasma shape depends
“physics” variables arerg the Bohm time, the normalized strongly on the fluid closure. Hence to clarify the effects of
variables are the toroidal Larmor radips the collisionality  elongation with an advanced fluid model is essential. The
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modified advanced fluid model has successfully reproduced Gyr =01 =040=04s=0, (12
experimental and nonlinear gyrokinetic results, see, for ex-
ample, Ref. 14. Furthermore, this advanced fluid model has Kz _~ ~ =2

g : r,0) = -0 13
shown to exhibit an excellent agreement with the full 3D (26 =GB~ Tro) (13
nonlinear gyrokinetic particle simulation in the estimation of Here « is the elongation, and Eq13) is the normalized
ion heat diffusivity coefficient, under the Cyclone project, Jacobian. The elements of the inverse metric teigdoare

see, for example, Ref. 15. given by
The remainder of the paper is organized as follows: In -
Sec. I1, the model is presented and the eigenmode equationis 9 = dedss/I(r, 6), (14
derived. In Sec. lll the simulation results are discussed and in _
Sec. IV a summary is given. 9% =0, Gy (1, 0), (15)
Il. MODEL FORMULATION §7=9" = =G @y I, 0), (16)
The fluid model used here is the ion fluid model with §or=1, (17)
Boltzmann electrons. The model equations are solved by uti-
lizing a generalized noncircular equilibrium motfeihich T =g¢=9%"=g5""=0, (19
allows for modification of arbitrary elongation and Shafra- _
nov shift. The flux coordinate system is given by and the Christoffel symbolkj, are
. T",=G"sin6-g"(A +cosh), 19
R, 0)= 3 R, cosnd), ® so =0 SING=G (A + cos) 19
n=0 ~
I5,=9"sing-g"(cosf+A). (20)
z20r,00=> Z, sin(né). ) In deriving the normalized Eg$19) and(20) we have used
n=0 the non-normalized expressions
Here R and Z are the usual cylinder coordinates. The Jpo = R?, (21)
termsRy, Ry =r,Z;=rk describes shift, minor radius and el-
lipticity, respectively. In Egs(1) and (2) R,,Z, describes - Yoo 22)
triangularity which is neglected in this work. The Riemann O Too— 9%
metric tensoig; Ref. 17 and 18 is usually used in modeling
the magnetic flux surfaces and is defined as
06 — grr 23
Sz_N 2, ~ ~ 2 _~ i v g - N2 ( )
ds’ =G, dr? + Gyed6” + 25, ,drd o + G ,dp” = G;dxXdx, 9906~ Yo
3
- - . 1o — o0 — _ Y%e (24)
wheregy,, Ggg, Org, Ogg are the relevant normalizedy R g9°=9 grrgaa_gze'
andr) elements of the metric tens@ﬁ@kzéik defining the '
geometry. The inverse of the metric tensor is deduced from " =—1q% +q9'% 25
the relationg;g*= ¢ where & is the Kronecke: 66= " 2(97 0yt 9 dpg), (29
5 = 7 (4) 4= =30"00905 * 90944 - (26)
~ o~ _~2 1 n .
GrrGee = Gro By introducingB=B,0+B,¢ (with § and ¢ the poloidal
~ and toroidal directions respectivglye=B/B, V=Vrg,
g% = % (5) +V0d,+Vdy, we obtain the parallel structure operator as
9rr900~ Grg
B B
- kH = Q| -V = a]ﬂo"(ﬁ*' ﬁag, (27)
GO = - (®) o
r ~ ~ ~2 1
91960~ Gro whereh,= y@;, and hy= V’%:L We note that there is no
Ro=A @ ¢-dependencétoroidal axis symmetnyon ggg, 944, By, and
rho = 2, B,. This leads to
¢
T = (A + 24 (xsin 6)2, 8 1 (B3 B,B - 1
Orr = (A + cOSO)"+ (i sin 6) ® (- V)g= B2 Ez(éej + ﬁé(ﬁahalea"‘ hy Theey
&
Tgo=1+ (k- 1)cosé?, (9)
- 1yl B,
+ 00h 1e¢+ [h l+ h l]FJ e) + _angeg
Trp=0gr = Sin [ k% cosH— (A + cosh)], (10) ’ v N
B
§¢¢ = 1, (11) + h_heqs(ggBd,elﬁ) + || terms (28)
(%
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Herel"J FJ(,¢ 0,(j=r,6) wherel,,, F,M, andI" are non-  bation. We have assuméd| ~ kpa <k in the regime un-
normallzed guantities. The terms paraIIeIBchave been ne- der consideration and the parallel current perturbation is pri-
glected because they will be canceled when the cross produgtarily carried by the free electrons. The current and electron
e X (e-V)g (which isvp). k, is calculated using the WKB density perturbations are derived from the parallel electron
aproximation, i.e., momentum and continuity equations leading¢ee, for ex-
ample, Refs. 12, 13, and 19 for detils

V f~ik, f, f=fellvdod) (29) e
is the eikonal assumption with=u(r, 6). By using, Eq.(3) J=J,.= kT ((w*e— w)$
we now obtairk ; asn(Vrad,q+V 6d,0-V ¢). Through some ‘
tedious algebr | -e; < (g-V)g, can be calculated. Finally . (0= w+e) (0 — Wpe) + Tow+eWpe (38)
we obtain the factog(6) (poloidal variation of the magnetic ck, Ay
field) through space variatiok |, -vp=wpg(6) as g
an
~ 1
G(0) = g—J 2(r, 09T (@ 50 +3") e (¢ w w*eA1> e (39
V4o oo\ PT T
No ck; | Te

0 re  ®rr

r""”@] +g'so)l. (30 wheree is the electron chargd,, the electron temperature,
k , is the propagation vector perpendicular to the magnetia, the background density the eigenfrequency, andy, is
field B and originates from Eq(3) (Refs. 17 and 18 For  the magnetic drift frequency, andy,=d[In(Ty)]/d[In(n)]
small k, the motion of the electrons along the field lines is=L,/L; . The two-fluid ion model includes first order FLR
less efficient for space charge cancellations. This is the reaerms, the polarization drift and the compressibility effects
son for our interest in modes with, >k, which is the main  due to the field curvaturén particular, the contribution from
variation of the mode in the perpendicular plane. Here the divergence of the diamagnetic heat flow in the energy
=rq’/q and q is the safety factor. Herg ands appear in  equation. The ion density response is deduced by combining
k. =n(Vro.q+V6d,q-V ¢) andvp (sum of VB and curva-  the energy equation and the ion continuity equation leading

ture drifty. to (see, for example, Refs. 12 and)19
The magnetic drift frequencyp andk, are given by s
i e
K2 —=Q(k, 6)(—(1)) : (40)
K =KEK(0) = = =[G +To(S0)° + Zys6],  (31) o T
J2(r,0)
where
T
k(6) = - # [”@n +Too(6) + 25y 4501, (32 Qlkw,0) =, (4D
rl
where and
Ky Vp=wpd(d), (33 T = w(wp; = o) + (§ = 7) opjon; = S0 = b(w = wip)
S
Wp = £,Wre, (34) X(w- 3‘*’Dl)’ (42)
en= 2L, /Lg. (35) N=w® - Fowp + J0f, 43
w+e IS the electron diamagnetic frequency. where . is the ion diamagnetic drift frequency

For A=0 andx=1 the magnetic drift in circular geom- (w+¢=—7ws), wp; is the ion magnetic driftcurvature an&vB
etry can be deduced from the above results vgtty)  drifts) frequency, wpe=—7wpi, w@yp=ws(l+y), 7
=cos@+s6 sin @ andk(h) =1+s26%. A low B equilibrium(to-  =d[In(Ty)]/d[In(n)]=L,/Ly;, L, is the density scale Iength
kamak dischargewith elongation(x) effects is assumed. (L; —|(d[ln(J)]/dr) 1| =TT, b=(k,p)? and 7p?/2=p?
The perturbed electric field is represented by the scalar pO"(Cs/wm) wherecZ=Te/m and w;=eB/mc. We note that
tential ¢ and the parallel vector potenti&|,. The compres- the ion density perturbatlon is purely electrostatic. Using the
sional Alfvén (magnetosonic mode is omitted. The field standard higm ballooning mode formalism as given in Ref.

equations are the parallel Ampéres law 20, the parallel Ampéres law and the quasineutrality condi-
4 tion (17) leads to the following eigenvalue differential equa-
V2A = %TJH, (36)  tion for the reduced potentiab=A/k;:
ineutrality condit ii(—"i(e)>id—‘f’+ﬁ—2 (q) V(kw,0)6=0,
and the quasineutrality condition hydo\ K2 )hydo  P1+1i\s, w,
éhe: 6ni, (37) (44)
wherec is the speed of light); is the current parallel to the
magnetic field, andn, is the electror(ion) density pertur- hy,= v@, (45)
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andk? (6) is as in Eq.(15). Here g is the plasma betay is
the safety factorg is the extended poloidal angle, ands a
ballooning parameter. The potential functigns given by
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FIG. 1. The growth rater (normalized
by ws) VS B with varying parameters
A(=-0.0,-0.2 and «(=1,1.5. The
curves(1) and(2) have shiftA=-0.1
and A=0, respectively, with fixed
elongationk=1.5. The curveg3) and
(4) have shiftA=-0.1 andA=0, re-
spectively, with fixedk=1. Other pa-
rameters are;,=0.5, 7=2, q=2, k?p?
=0.1,5=0.5, andr=1.

V(k w,0) = (- 1)[5_ 8ng(a)] + 7een0(6)

1-Qkw,6)
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Here o is the normalized eigenfrequendyn/w«g), G(6)

FIG. 2. The growth rates (normalized
by w«) as a function ofne=7=17.
with fixed parameters\(=-0.0,-0.2
and «(=1,0,1.5. Other parameters
arek?p?=0.1,9=2, s=0.5,¢,=0.5, 8
=0.3%, and 7=1. The curveg1l) and
(2) have elongationc=1.5 and«x=1.0,
respectively, with fixed Shafranov
shift A=—0.1. The curveg3) and (4)
have elongationc=1.5 and«=1.0, re-
spectively, and fixedA=-0.0. The
curves(1) and (3) have 8=0.26 and
curves(2) and(4) have 8=0.3%.
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0351 4 FIG. 3. The growth rates (normalized
by w.,) as a function ofn.=7n=17,
with  fixed parameters A(=-0.0,

03r ] -0.009 and«(=1,1.05. Other param-
eters arek®p?=0.1, q=2, s=0.5, ¢,
>-0.25+ . =0.5, B=0.4% and 7=1. The curves
(1) and (2) have Shafranov shift
A=-0.005 andA=-0.0, respectively,
0.2 § with fixed elongation k=1.05. The
curves (3) and (4) have Shafranov
015k | shift A=-0.005 andA=-0.0, respec-
’ tively, with fixed elongationk=1.0.
The curve(5) hask=1.0 andA=-0.0
01 b and with 3=0.1%.
0.05F -
0
1.5 5
given by Eq.(30) above represents the normalized po- do
loidal variation of wp in noncircular geometry, s d_a(a_ 0=0 (483
=d[In(qg)]/d[In(r)] is the shear parameter, a@dis given by
Eq. (41). The derived eigenvalue differential equatiogf) B(0— ) — 0 (48h)

describes the finitg modified 7, mode in the toroidal limit
and the electromagnetic ballooning mode. The boundaryfhe eigenvalues are iterated until the boundary condition
conditions for the potentialh) and the extended poloidal ¢(6—x)—0 (Ref. 20 is satisfied. In this work we have

angle in toroidal geometry are given by assumedT.=T;,, »=n=7.. The plasma shape parameters
15 T T T T T T T T T
4
1 (3) 1

FIG. 4. The dependence of growth
rate y (normalized byw..) as a func-
tion of A with x=(1,1.9 and %
b =(2,4) as parameters. Curvé$) and
(2) havek=1 andx=1.5, respectively,
with »=2). Curves(3) and (4) have

2 k=1 andk=1.5, respectively, withy
=4). The other parameters ar@
0.5 7 =0.001,£,=0.5,q=2, k%?=0.1, 7=1,
M s=0.5.
0 1 1 1 1 1 1 1 1 1
-0.5 -0.45 -0.4 -0.35 -03 -0.25 -0.2 -0.15 -0.1 -0.05 0
A
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FIG. 5. The dependence of growth
rate y (normalized byw..) as a func-
tion of kg, with fixed parameters
x(=1,1.05. Curve(l) hask=1.05 and

i curve(2) hask=1.0. The other param-
eters are8=0.004,q=2, 7=1, s=0.5,
£,=0.5, 7,=3, andA=0.0.

0 I I 1 1 I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

KqPg

such as elongatior and the Shafranov shith are linked _ _ 1 -

through the magnetic drift frequenayp, the scale factor V(K w,6) = sng(w(l tet ;(1 + 77i)) + 0%, (49
\Oge and througH<2L in the eigenvalue differential equation
(44). In the limit B— 0 the eigenvalue equatiad4) reduces
to a local dispersion relatio®(k, w, §=0)=1/7 for the elec-
trostatic, mode. The ideal MHD ballooning mode equation 1d/[K(0)1de
can be recovered from Eq44) in the limit |o|> o+, wp ——(l—z)— + aGgpd +
(|Q|<1). The potential function/ then takes the form hydo\ ki

and Eq.(44) reduces to the ideal MHD equation

? K2 (6)
— ——=-¢=0, (50
h, déo wi K ¢ 0

FIG. 6. Eigenfunction®| as a func-
tion of the extended poloidal angje

In curves(1) has k=1 and curve(2)
has k=1.2. The other parameters are
£=0.2, 3=0.001,q=2, 7=1.0,5=0.5,
k?p?=0.1 and»=3 andA=-0.0.
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_ BR
==

a (5)  ,=1.05. Curves(3) and (4) have A=—-0.005 andA=-0.0,

respectively, with fixedk=1.0 (circular casg The other pa-

where wpa=1/qRV, is the Alfvén frequency andufe/wi rameters are,=0.5, 8=0.4%, s=0.5,9=2, 7=1, k?p?=0.1.
=B 2/(1+1/7) qjp/ e has been used. Corrections to the Here the lower stability threshole,,, shows weak depen-
ideal MHD-ballooning mode equatigi0) arising from per-  dence on botl and« for fixed 8= (0.4% and slightly stron-
pendicular compressibility were calculated in Ref. 21 using ger dependence on the upper thresh@ug)_ However, there
kinetic model and a two fluid model similar to the one usedis a strongB sensitivity when comparing curvgd—4). In
here (but neglecting the contribution from the diamagneticFig. 4 we show the growth ratg as a function of Shafranov
heat flow. These compressibility terms lead to instability shift A in circular and noncircular geometry. Curvgd and
below the MHD g limit for the MHD ballooning mode (2) havex=1.0 andx=1.5, respectively, witiy=2.0. Curves
branch. (3) and (4) have k=1.0 and k=1.5, respectively, withy
=4.0. The other parameters arg=0.5, 4=0.001,5=0.5,q
=2, =1, k?p?=0.1. Shafranov shift has in general the weak
effect on the eigenfrequency both in the circular and elon-

The eigenvalue equatio@4) with boundary conditions gated cases. Next we display effects of elongatoan k,
in toroidal geometry48) has been solved numerically by a spectrum. Figure 5 shows mode growth as a functioky,pf
fourth order Runge-Kutta solver combined with a standardvith « as parameter. Curved) and (2) have x=1.05 and
shooting technique. The shooting begins &0, where «=1.0, respectively. Fok,p=0.55 we have the maximum
®’(0)=0 and the complex eigenvalue is iterated until thegrowth rate in the circular caga=1). However, the peak is
boundary conditionP — 0 as#— o is met. The equilibrium shifted towards largekyp in the elongated case cur¢g). In
model considered here demonstrates effects of fipigeabi-  Fig. 6 the modulus of the eigenfunction is shown as a func-
lization, Shafranov shift in circular and noncircular geom-tion of the extended poloidal angjefor x(=1,1.2. Curves
etry. They are the standas+ o model. An isothermal dis- (1) and Curve(2) have k=1.20 andx=1, respectively. The
charge(T,=T,) with 7= 17,= 5, has been assumed throughout other parameters ar&,=0.2, 3=0.001, =17=7.=3, 9=2,
this study. Figure 1 shows A scaling against growth ratg  $s=0.5, 7=1. The mode tend to be localized in both circular
with parameters«(=1.,1.9 and Shafranov shif\(=—0.0,  and elongated cases for large 3.
-0.1). Curves(1l) and(2) haveA=-0.1 andA=-0.0 respec-
tively with fixed k=1.5. Curves(3) and (4) have A=-0.1  |V. SUMMARY

andA =-0.0 respectively with fixed=1.0. The other param- ) )
eters arg=2, =1, 5=0.5, 7=2.0,£,=0.5,k%?=0.1. In the The 7; mode with emphasis on the lowefi,, and

elongated case, in curvad) and (2) with x=1.5 the 8 higher 7, threshold vqlues with elonga_ttiom, finite B ef-
thresholds (8 critical) shows substantial dependence on!€CtS and Shairanov shilt has been studied by an advanced

; 11 : . . .
Shafranov shift\). The growth rate is slightly higher without 11Uid model.= The derived eigenvalue equatie#d), which
Shafranov shiftA=-0.0) near the electrostatic limiti.e., as includes elongation effects and Shafranov shith is solved
B approaches zeyoln circular geometrycurves(3) and(4)] numerically. Boltzmann distributions for the electrons is as-

with «=1 the B thresholds depends strongly on ShafranoySUMmed. Elongation effects enter through Ep), by modi-
shift as predicted in earlier works. We note that the criticalfYing the magnetic drift frequenciype. It is shown that these

value of 8 is improved substantially in the elongated case a§99mbined effects reduce the second stability threshold s?g-
compared with circular geometricurves (1) and (3)]. As nificantly whereas a weak dependence on the lower stability

B—0 the electromagnetic ITG mode tends towards the e|ecr__egime is shown by these effects. Stabilization is als_o sensi-
trostatic limit. Elongation may be stabilizing or destabilizing V€ 0 FLR and one,=2L,/Lg. The results of the linear
depending ors,. However, for a given larg@ with elonga- studies presented here may be relevant for the nonlinear re-
tion effects, the ITG mode is expected to reduce anomaloudMe which is emphasized by nonlinear investigations of the
ITG-mode transport in toroidal devices. Next we consider”s Mode turbulence, see for example, Refs. 22 and 23.7he
the dependence of the mode growth A 7= 7, and com- threshold stabilizations studied here may be important in the

pare in the circular and noncircular cases. Figure 2 shows thgy€ation of enhanced confinement regimes. Elongation,

growth rates as functions of= 7,= 7, with «=(1.0,1.5 and Shaf_ranov_ shi_ft an_d finitﬁ stal_)ilization mechanism may be
A=(-0.0,-0.) as parameters. Curved) and (3) have dominant in S|tuat|0_n_s vv_|th aligned transport barrle_rs. In or-
A=-0.1 andA=-0.0, respectively, with fixede=1.5 and d_er that these stabilization schem_es be r_elevant in realistic
fixed 8=0.%6. Curves (2) and (4) have A=—0.1 and S|tuat_|on other effc_ects sgch. as trlangularlty, reverse shear,
A=-0.0, respectively, with fixed=1.0 and fixeds=0.%. trapping and collisional dissipation may be importatt

Ihe other parameters ar=0.5, $=0.5, g=2, 7=1, k' D. D. Hua, Y. Q. Yu, and T. K. Fowler, Phys. Fluids & 3216(1992.
=0.1. In both circular[curveg2) and (4)]_ and e_I_ongate_d 2G. Rewoldt, W. M. Tang, and M. S. Chance, Phys. FIuf 480 (1982.
[curvegl) and (3)] cases the ITG mode is stabilizing with 3p. D. Hua, X. Q. Xu, and T. K. Fowler, Phys. Fluids & 10 (1992,.
dependence on Shafranov shift. We now show the effects oﬁJA- gnder§0nF,J HA- l\(ljordman, andeJ-V\\//Vf;lilandd,’\Thyls.FPI;;BJﬁC; gg%l)-
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