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Plasma shape and finite b effects on stability thresholds of the ion
temperature gradient modes

B. Jhowry, J. Andersson, and S. Dastgeer
Department of Electromagnetics and Euratom/VR Association, Chalmers University of Technology,
S-41296 Göteborg, Sweden

(Received 5 February 2004; accepted 9 August 2004; published online 9 November 2004)

The stability of electromagnetic ion temperature gradient driven modes with emphasis on the
lower and upper stability thresholds is investigated by a collisionless magnetized plasma in both
circular and noncircular geometry. The stability properties are discussed and the results are
compared for finiteb effects, arbitrary elongation, and Shafranov shift rate parameters. It has been
found that the lower stability thresholds are weakly dependent on the(combined) effects of
Shafranov shift rate, finiteb, and elongation whereas the second(upper) stability regime shows
substantial dependence depending on parameter regimes. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1804941]
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I. INTRODUCTION

Studies of confinement on shape and of magnetohy
dynamic (MHD) stability on toroidal plasma shape is w
known and has been both dealt with theoretically and ex
mentally. However, theoretical microinstability growth ra
in the high-n linear ballooning mode formalism for the i
temperature gradient(ITG) modes with emphasis on plas
shape should be given full attention. Elongation effects
shown decrease in growth rates in the plasma core for
modes as given in Ref. 1. Studies of trapped electron
modes showed that increasing the elongation leads to
crease in growth rate for these modes and for the ITG m
the growth rate decreases as elongation increases in th
region see, for example, Refs. 2 and 3. Collisional ITG m
in cross-sectional elongation and Shafranov shift on the
bility of resistive edge modes have been investigate
given in Ref. 4. In circular geometry it was shown that
ion temperature gradient mode stabilizes for high value
(hi =Ln/LTi, whereLn=nudn/dru−1 and LTi=TiudTi /dru−1 are
the characteristic length scales of the density and ion
perature), see, for example, Ref. 5. Studies in both fluid
gyrokinetic models for the upper stability(hiup threshold
with finite b s=plasma pressure/magnetic pressured effects
have shown stabilization at highhi values as given in Ref.

Plasma shape parameters such as elongationks=b/ad
(elliptic surface/circular surface) and Shafranov shift ra
sD=]rR0d see, for example, Ref. 7 in toroidal devices play
important role in the power scaling expressions for the
energy confinement time,tth, which can be expressed eith
in “engineering” variables as tth

=CIaIBaBPaPnanMaMRaR«a«kak and in “physics” variables a
tth=C1tB

xrBr*
xr*n*

xn*bxbMxMqxq«xrkxk whereR is major radius,I
the plasma current,B the toroidal magnetic field(at major
radiusR), P the power loss(corrected for charge exchan
and orbit losses), n the line average density,k the elongation
e the inverse aspect ratio andM the average ion mass. T
“physics” variables aretB the Bohm time, the normalize

variables are the toroidal Larmor radiusr* , the collisionality
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n* , the plasma pressureb, D appears indirectly throughb,
the cylinder safety factorq.

Plasma shaping, finite-b stabilization, and Shafrano
shift may affect the formation and sustainment of confi
ment regimes by the creation of a heat transport barriehi

should be large enough that the growth rate should dec
with increasinghi. Transport barriers with largehi have bee
observed in all major tokamaks, see, for example, Ref.
has been reported that effects such as sheared rotation
b, and plasma shaping be considered in reducing the gr
rates see, for example, Ref. 9.

In this paper we investigate the elongationk=b/a, elec-
tromagnetic(finite b) and Shafranov shiftDs=]rR0d, see, fo
example, Ref. 7 effects on the lowerhilow and upperhiup

stability thresholds of the ITG modes. We are specially
terested in the effects(combined) of finite b, elongation pa
rameterk, and Shafranov shiftD on the ITG mode particula
to noncircular geometry and with various key plasma pa
eters. We compare the results with the one obtained in c
lar geometry in the first and second stability thresholds(i.e.,
fluid models give two marginal stability limits as given
Ref. 10).

Here we have modified the advanced fluid model see
example, Refs. 11 and 12 and stability code to treat equi
with an arbitrary elongationk of the cross section and w
arbitrary Shafranov shift rateD. The work is focused on th
collisionless ITG ballooning modes in lowb tokamak equi
librium (s-a model). The frequency regime of interest
vTi

, uvu!vTe
wherevT is the transit frequency. The mod

equations investigated here contain the MHD balloo
mode generalized to finitek'

2 ri
2 finite Larmor radius(FLR),

and generalvD /v see, for example, Refs. 13 and 12. In
MHD expansion the stability is determined by the par
eters a=bq2R/Lnf1+he+s1+hid /tgt / st+1d and s=rq8 /q
with t=Te/Ti. Parallel ion dynamics and trapped particle
fects are ignored.

The sensitivity of drift waves to plasma shape depe
strongly on the fluid closure. Hence to clarify the effect

elongation with an advanced fluid model is essential. The

© 2004 American Institute of Physics
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modified advanced fluid model has successfully reprod
experimental and nonlinear gyrokinetic results, see, for
ample, Ref. 14. Furthermore, this advanced fluid mode
shown to exhibit an excellent agreement with the full
nonlinear gyrokinetic particle simulation in the estimation
ion heat diffusivity coefficient, under the Cyclone proje
see, for example, Ref. 15.

The remainder of the paper is organized as follows
Sec. II, the model is presented and the eigenmode equa
derived. In Sec. III the simulation results are discussed a
Sec. IV a summary is given.

II. MODEL FORMULATION

The fluid model used here is the ion fluid model w
Boltzmann electrons. The model equations are solved b
lizing a generalized noncircular equilibrium model16 which
allows for modification of arbitrary elongation and Sha
nov shift. The flux coordinate system is given by

Rsr,ud = o
n=0

`

Rn cossnud, s1d

Zsr,ud = o
n=0

`

Zn sinsnud. s2d

Here R and Z are the usual cylinder coordinates. T
termsR0,R1=r ,Z1=rk describes shift, minor radius and
lipticity, respectively. In Eqs.(1) and (2) R2,Z2 describe
triangularity which is neglected in this work. The Riema
metric tensorg̃ij Ref. 17 and 18 is usually used in model
the magnetic flux surfaces and is defined as

ds2 = g̃rrdr2 + g̃uudu2 + 2g̃rudrdu + g̃ffdf2 = g̃ijdxidxj ,

s3d

where g̃rr , g̃uu , g̃ru , g̃ff are the relevant normalized(by R
and r) elements of the metric tensorg̃ij g̃

jk=di
k defining the

geometry. The inverse of the metric tensor is deduced
the relationg̃ij g̃

ik=di
k wheredi

k is the Kroneckerd:

g̃rr =
g̃uu

g̃rr g̃uu − g̃ru
2 , s4d

g̃uu =
g̃rr

g̃rr g̃uu − g̃ru
2 , s5d

g̃ru = g̃ur = −
g̃ru

g̃rr g̃uu − g̃ru
2 , s6d

]rR0 = D, s7d

g̃rr = sD + cosud2 + sk sinud2, s8d

g̃uu = 1 + sk2 − 1dcosu2, s9d

g̃ru = g̃ur = sinufk2 cosu − sD + cosudg, s10d

˜
gff = 1, s11d
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g̃fr = g̃rf = g̃fu = g̃uf = 0, s12d

J̃2sr,ud = g̃ffsg̃rr g̃uu − g̃ru
2 d. s13d

Here k is the elongation, and Eq.(13) is the normalize
Jacobian. The elements of the inverse metric tensorg̃ij are
given by

g̃rr = g̃uug̃ff/J̃2sr,ud, s14d

g̃uu = g̃rr g̃ff/J̃2sr,ud, s15d

g̃ru = g̃ur = − g̃rug̃ff/J̃2sr,ud, s16d

g̃ff = 1, s17d

g̃fr = g̃rf = g̃fu = g̃uf = 0, s18d

and the Christoffel symbolsG̃ jk
i are

G̃ff
r = g̃rr sinu − g̃rrsD + cosud, s19d

G̃ff
u = g̃uu sinu − g̃ruscosu + Dd. s20d

In deriving the normalized Eqs.(19) and (20) we have use
the non-normalized expressions

gff = R2, s21d

grr =
guu

grrguu − gru
2 , s22d

guu =
grr

grrguu − gru
2 , s23d

gru = gur =
gru

grrguu − gru
2 , s24d

Gff
r = − 1

2sguu]rgff + gru]ugffd, s25d

Gff
u = − 1

2sguu]ugff + gru]rgffd. s26d

By introducingB=Buû+Bff̂ (with u andf the poloida
and toroidal directions respectively), ei=B /B, == = r]r

+ =u]u+ =f]f, we obtain the parallel structure operator

ki = ei · = =
Bf

Bhf

]f +
Bu

Bhu

]u, s27d

wherehu=Îg̃uu and hf=Îg̃ff=1. We note that there is n
f-dependence(toroidal axis symmetry) on guu, gff, Bu, and
Bf. This leads to

sei · = dei =
1

B2SBf
2

hf
2 ej +

BuBf

hu

s]uhu
−1eu + hu

−1Guu
j ej

+ ]uhf
−1ef + fhu

−1 + hf
−1gGuu

j ejd +
Bu

hu
2 ]uBueu

+
Bu ] B e + i terms. s28d
huhf
u f fD
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HereGfu
j =Guf

j =0, s j =r ,ud whereGuu
j , Gfu

j , andGuf
j are non

normalized quantities. The terms parallel toB have been ne
glected because they will be canceled when the cross pr
ei 3 sei ·¹ dei (which is vD). k' is calculated using the WK
aproximation, i.e.,

¹'f < ik'f, f = f̃e−isendu±fd s29d

is the eikonal assumption withn=nsr ,ud. By using, Eq.(3)
we now obtaink' asns=r]rq+ =u]uq− =fd. Through som
tedious algebrak' ·ei 3 sei ·= dei can be calculated. Final
we obtain the factorg̃sud (poloidal variation of the magnet
field) through space variationk' ·vD=vDg̃sud as

g̃sud =
1

Îg̃ff

J̃2sr,udqsfG̃ff
r sg̃rusu + g̃uud

− G̃ff
u sg̃ru + g̃rrsudg. s30d

k' is the propagation vector perpendicular to the magn
field B and originates from Eq.(3) (Refs. 17 and 18). For
small ki the motion of the electrons along the field lines
less efficient for space charge cancellations. This is the
son for our interest in modes withk'@ki, which is the main
variation of the mode in the perpendicular plane. Hes
=rq8 /q and q is the safety factor. Hereq and s appear in
k'=ns=r]rq+ =u]uq− ¹fd andvD (sum of=B and curva
ture drifts).

The magnetic drift frequencyvD andk' are given by

k'
2 = ku

2ksud < −
ku

2

J̃2sr,ud
fg̃rr + g̃uussud2 + 2g̃rusug, s31d

ksud = −
1

J̃2sr,ud
fg̃rr + g̃uussud2 + 2g̃rusug, s32d

where

k' ·vD = vDg̃sud, s33d

vD = «nv*e, s34d

«n = 2Ln/LB. s35d

v*e is the electron diamagnetic frequency.
For D=0 andk=1 the magnetic drift in circular geom

etry can be deduced from the above results withg̃sud
=cosu+su sinu andksud=1+s2u2. A low b equilibrium (to-
kamak discharge) with elongation skd effects is assume
The perturbed electric field is represented by the scala
tential f and the parallel vector potentialAi. The compres
sional Alfvén (magnetosonic) mode is omitted. The fiel
equations are the parallel Ampères law

¹'
2 Ai =

4p

c
Ji, s36d

and the quasineutrality condition

dne = dni , s37d

wherec is the speed of light,Ji is the current parallel to th

magnetic field, anddnised is the electron(ion) density pertur-
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bation. We have assumeduvu,kivA!kivte in the regime un
der consideration and the parallel current perturbation is
marily carried by the free electrons. The current and elec
density perturbations are derived from the parallel elec
momentum and continuity equations leading to(see, for ex
ample, Refs. 12, 13, and 19 for details):

Ji = Jie
=

n0e
2

kiTe
Ssv*e − vdf

+
sv − v*edsv − vDed + hev*evDe

cki

AiD s38d

and

dne

n0
= Sf −

v − v*e

cki

AiD e

Te
, s39d

wheree is the electron charge,Te the electron temperatur
n0 the background density,v the eigenfrequency, andvDe is
the magnetic drift frequency, andhe=dflnsTedg /dflnsndg
=Ln/LTe

. The two-fluid ion model includes first order FL
terms, the polarization drift and the compressibility effe
due to the field curvature(in particular, the contribution from
the divergence of the diamagnetic heat flow in the en
equation). The ion density response is deduced by combi
the energy equation and the ion continuity equation lea
to (see, for example, Refs. 12 and 19)

dni

n0
= Qsk,v,udSef

Ti
D , s40d

where

Qsk,v,ud =
T

N
, s41d

and

T = vsvDi − v* id + s 7
3 − hidvDiv* i − 5

3vDi
2 − bsv − v* iPd

3sv − 5
3vDid , s42d

N = v2 − 10
3 vvDi + 5

3vDi
2 , s43d

where v* i is the ion diamagnetic drift frequen
sv*e=−tv* id, vDi is the ion magnetic drift(curvature and=B
drifts) frequency, vDe=−tvDi, v* iP=v* is1+hid, hi

=dflnsTidg /dflnsndg=Ln/LTi, Ln is the density scale leng
sLj = usdflns jdg /drd−1ud, t=Te/Ti, b=sk'rd2, and tr2/2=rs

2

=scs/vcid2, wherecs
2=Te/mi and vci=eB/mic. We note tha

the ion density perturbation is purely electrostatic. Using
standard highn ballooning mode formalism as given in R
20, the parallel Ampères law and the quasineutrality co
tion (17) leads to the following eigenvalue differential eq
tion for the reduced potentialf=Ai /ki:

1

hu

d

du
Sk'

2 sud
ku

2 D 1

hu

df

du
+ b

2

1 + 1/t
S q

«n
D2

Vsk,v̄,udf = 0,

s44d

Î
hu = gff, s45d

cense or copyright, see http://pop.aip.org/pop/copyright.jsp
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b =
8pnsTe + Tid

B2 , s46d

andk'
2 sud is as in Eq.(15). Hereb is the plasma beta,q is

the safety factor,u is the extended poloidal angle, anda is a
ballooning parameter. The potential functionV is given by
Downloaded 01 Dec 2004 to 129.16.87.99. Redistribution subject to AIP li
Vsk,v̄,ud = sv̄ − 1dfv̄ − «ngsudg + he«ngsud

−
sv̄ − 1d2

1 − tQsk,v̄,ud
. s47d

Here v̄ is the normalized eigenfrequencysv /v*ed, g̃sud

FIG. 1. The growth rateg (normalized
by v*e) vs b with varying parameter
Ds=−0.0,−0.1d and ks=1,1.5d. The
curves(1) and (2) have shiftD=−0.1
and D=0, respectively, with fixe
elongationk=1.5. The curves(3) and
(4) have shiftD=−0.1 andD=0, re-
spectively, with fixedk=1. Other pa
rameters are«n=0.5, h=2, q=2, k2r2

=0.1, s=0.5, andt=1.

FIG. 2. The growth rateg (normalized
by v*e) as a function ofhie=hi =he

with fixed parametersDs=−0.0,−0.1d
and ks=1,0,1.5d. Other paramete
are k2r2=0.1, q=2, s=0.5, «n=0.5, b
=0.3%, and t=1. The curves(1) and
(2) have elongationk=1.5 andk=1.0,
respectively, with fixed Shafrano
shift D=−0.1. The curves(3) and (4)
have elongationk=1.5 andk=1.0, re-
spectively, and fixedD=−0.0. The
curves(1) and (3) haveb=0.2% and
curves(2) and (4) haveb=0.3%.
cense or copyright, see http://pop.aip.org/pop/copyright.jsp
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given by Eq. (30) above represents the normalized
loidal variation of vD in noncircular geometry, s
=dflnsqdg /dflnsrdg is the shear parameter, andQ is given by
Eq. (41). The derived eigenvalue differential equation(44)
describes the finiteb modifiedhi mode in the toroidal limi
and the electromagnetic ballooning mode. The boun
conditions for the potentialf and the extended poloid
angle in toroidal geometryu are given by
Downloaded 01 Dec 2004 to 129.16.87.99. Redistribution subject to AIP li
df

du
su = 0d = 0 s48ad

fsu → `d → 0. s48bd

The eigenvaluesv̄ are iterated until the boundary condit
fsu→`d→0 (Ref. 20) is satisfied. In this work we hav
assumedTe=Ti, h=hi =he. The plasma shape parame

FIG. 3. The growth rateg (normalized
by v*e) as a function ofhie=hi =he

with fixed parameters Ds=−0.0,
−0.005d andks=1,1.05d. Other param
eters arek2r2=0.1, q=2, s=0.5, «n

=0.5, b=0.4% and t=1. The curve
(1) and (2) have Shafranov sh
D=−0.005 andD=−0.0, respectively
with fixed elongation k=1.05. The
curves (3) and (4) have Shafrano
shift D=−0.005 andD=−0.0, respec
tively, with fixed elongationk=1.0.
The curve(5) hask=1.0 andD=−0.0
and withb=0.1%.

FIG. 4. The dependence of grow
rate g (normalized byv*e) as a func
tion of D with k=s1,1.5d and h
=s2,4d as parameters. Curves(1) and
(2) havek=1 andk=1.5, respectively
with h=2). Curves (3) and (4) have
k=1 andk=1.5, respectively, withh
=4). The other parameters areb
=0.001,«n=0.5,q=2, k2r2=0.1, t=1,
s=0.5.
cense or copyright, see http://pop.aip.org/pop/copyright.jsp
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such as elongationk and the Shafranov shiftD are linked
through the magnetic drift frequencyvD, the scale facto
Îg̃uu, and throughk'

2 in the eigenvalue differential equati
(44). In the limit b→0 the eigenvalue equation(44) reduces
to a local dispersion relationQsk,v̄ ,u=0d=1/t for the elec
trostatichi mode. The ideal MHD ballooning mode equat
can be recovered from Eq.(44) in the limit uvu@v* i ,vD

suQu!1d. The potential functionV then takes the form
Downloaded 01 Dec 2004 to 129.16.87.99. Redistribution subject to AIP li
Vsk,v̄,ud = «ng̃uuS1 + he +
1

t
s1 + hidD + tbv̄2, s49d

and Eq.(44) reduces to the ideal MHD equation

1

hu

d

du
Sk'

2 sud
ku

2 D 1

hu

df

du
+ ag̃uuf +

v2

vA
2

k'
2 sud
ku

2 f = 0, s50d

FIG. 5. The dependence of grow
rate g (normalized byv*e) as a func
tion of kuru with fixed parameter
ks=1,1.05d. Curve(1) hask=1.05 and
curve(2) hask=1.0. The other param
eters areb=0.004,q=2, t=1, s=0.5,
«n=0.5, hie=3, andD=0.0.

FIG. 6. EigenfunctionuFu as a func
tion of the extended poloidal anglex.
In curves(1) has k=1 and curve(2)
has k=1.2. The other parameters
«=0.2, b=0.001,q=2, t=1.0, s=0.5,
k2r2=0.1 andh=3 andD=−0.0.
cense or copyright, see http://pop.aip.org/pop/copyright.jsp
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a =
bq2R

Ln
S1 + he +

1 + hi

t
D t

t + 1
, s51d

where vA=1/qRVA is the Alfvén frequency andv*e
2 /vA

2

=b 2/s1+1/td q2ku
2rs

2/«n
2 has been used. Corrections to

ideal MHD-ballooning mode equation(50) arising from per
pendicular compressibility were calculated in Ref. 21 usi
kinetic model and a two fluid model similar to the one u
here (but neglecting the contribution from the diamagn
heat flow). These compressibility terms lead to instabi
below the MHD b limit for the MHD ballooning mode
branch.

III. SIMULATION RESULTS

The eigenvalue equation(44) with boundary condition
in toroidal geometry(48) has been solved numerically by
fourth order Runge-Kutta solver combined with a stand
shooting technique. The shooting begins atu=0, where
F8s0d=0 and the complex eigenvalue is iterated until
boundary conditionF→0 asu→` is met. The equilibrium
model considered here demonstrates effects of finiteb stabi-
lization, Shafranov shift in circular and noncircular geo
etry. They are the standards−a model. An isothermal dis
chargesTi =Ted with h=hi =he has been assumed through
this study. Figure 1 shows ab scaling against growth rateg
with parametersks=1.,1.5d and Shafranov shiftDs=−0.0,
−0.1d. Curves(1) and(2) haveD=−0.1 andD=−0.0 respec
tively with fixed k=1.5. Curves(3) and (4) have D=−0.1
andD=−0.0 respectively with fixedk=1.0. The other param
eters areq=2, t=1, s=0.5,h=2.0,«n=0.5,k2r2=0.1. In the
elongated case, in curves(1) and (2) with k=1.5 the b
thresholds (b critical) shows substantial dependence
Shafranov shiftD). The growth rate is slightly higher witho
Shafranov shiftsD=−0.0d near the electrostatic limit,(i.e., as
b approaches zero). In circular geometry[curves(3) and(4)]
with k=1 the b thresholds depends strongly on Shafra
shift as predicted in earlier works. We note that the crit
value ofb is improved substantially in the elongated cas
compared with circular geometry[curves (1) and (3)]. As
b→0 the electromagnetic ITG mode tends towards the
trostatic limit. Elongation may be stabilizing or destabiliz
depending on«n. However, for a given largeb with elonga-
tion effects, the ITG mode is expected to reduce anoma
ITG-mode transport in toroidal devices. Next we cons
the dependence of the mode growth onh=hi =he and com
pare in the circular and noncircular cases. Figure 2 show
growth rates as functions ofh=hi =he with k=s1.0,1.5d and
D=s−0.0,−0.1d as parameters. Curves(1) and (3) have
D=−0.1 andD=−0.0, respectively, with fixedk=1.5 and
fixed b=0.2%. Curves (2) and (4) have D=−0.1 and
D=−0.0, respectively, with fixedk=1.0 and fixedb=0.3%.
The other parameters are«n=0.5, s=0.5, q=2, t=1, k2r2

=0.1. In both circular[curves(2) and (4)] and elongate
[curves(1) and (3)] cases the ITG mode is stabilizing w
dependence on Shafranov shift. We now show the effec
finite b on the ITG mode for arbitraryk, D, andb. Figure 3
shows the growth rates as functions ofh=hi =he with k

=s1,1.05d and D=s−0.0,−0.005d as parameters. Curves(1)
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and(2) haveD=−0.005 andD=−0.0, respectively, with fixe
k=1.05. Curves(3) and (4) have D=−0.005 andD=−0.0,
respectively, with fixedk=1.0 (circular case). The other pa
rameters are«n=0.5, b=0.4%, s=0.5, q=2, t=1, k2r2=0.1.
Here the lower stability thresholdhilow shows weak depe
dence on bothD andk for fixed b= (0.4% and slightly stron
ger dependence on the upper thresholdhiup). However, ther
is a strongb sensitivity when comparing curves(1–4). In
Fig. 4 we show the growth rateg as a function of Shafrano
shift D in circular and noncircular geometry. Curves(1) and
(2) havek=1.0 andk=1.5, respectively, withh=2.0. Curve
(3) and (4) have k=1.0 andk=1.5, respectively, withh
=4.0. The other parameters are«n=0.5, b=0.001,s=0.5, q
=2, t=1, k2r2=0.1. Shafranov shift has in general the w
effect on the eigenfrequency both in the circular and e
gated cases. Next we display effects of elongationk on ku

spectrum. Figure 5 shows mode growth as a function okur
with k as parameter. Curves(1) and (2) have k=1.05 and
k=1.0, respectively. Forkur=0.55 we have the maximu
growth rate in the circular casesk=1d. However, the peak
shifted towards largerkur in the elongated case curve(1). In
Fig. 6 the modulus of the eigenfunction is shown as a f
tion of the extended poloidal anglex for ks=1,1.2d. Curves
(1) and Curve(2) havek=1.20 andk=1, respectively. Th
other parameters are«n=0.2, b=0.001,h=hi =he=3, q=2,
s=0.5, t=1. The mode tend to be localized in both circu
and elongated cases for largeh=3.

IV. SUMMARY

The hi mode with emphasis on the lowerhilow and
higher hiup threshold values with elongationk, finite b ef-
fects and Shafranov shiftD has been studied by an advan
fluid model.11 The derived eigenvalue equation(44), which
includes elongation effectsk and Shafranov shiftD is solved
numerically. Boltzmann distributions for the electrons is
sumed. Elongation effects enter through Eq.(30), by modi-
fying the magnetic drift frequencyvDe. It is shown that thes
(combined) effects reduce the second stability threshold
nificantly whereas a weak dependence on the lower sta
regime is shown by these effects. Stabilization is also s
tive to FLR and on«n=2Ln/LB. The results of the linea
studies presented here may be relevant for the nonline
gime which is emphasized by nonlinear investigations o
hi mode turbulence, see for example, Refs. 22 and 23. Thi

threshold stabilizations studied here may be important in
creation of enhanced confinement regimes. Elonga
Shafranov shift and finiteb stabilization mechanism may
dominant in situations with aligned transport barriers. In
der that these stabilization schemes be relevant in rea
situation other effects such as triangularity, reverse s
trapping and collisional dissipation may be important.24,25
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