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Abstract

The work presented here uses a previously developed substiturces method
(SSM) as the starting point for solving the problem with a loawrier in a turbu-
lent atmosphere. The formulation of the SSM involves a deuflegral and the
numerical solution is computationally demanding. The S8bllts are here used
as reference. As an intermediate step toward an analybtaian, an expression
containing a single integral is found. Its implementatiscd@mputationally much
less demanding and is here called the fast method. The m@dlyblution involves
further approximations and has a smaller range of validigntthe fast method,
but could nonetheless be useful. Both the fast method andralgtical solution
assume a flat geometry, whereby they can be useful as a comglémscatter-
ing cross-section based methods. Moreover, two-dimeak{@D) modelling is
done and no ground surface is considered. Agreement bettivee3SM and the
fast method is reasonably good, and additional restramet$aamulated for the

applicability of the analytical solution.

PACS: 43.20.Bi, 43.28.Gq, 43.28.Js
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1 Introduction

The atmospheric turbulence affects the outdoor sound. diadfyein sound shielding

situations can the turbulence have a large influence. Heeem@ain focus is on the
sound level increase in a barrier shadow due to the turbelédie problem of interest
is the reduction of traffic noise by the use of buildings omesthoise barriers.

In a previous work the results from a scattering cross-sediased method were
compared with measured data [1]. The turbulence was coedliedgive a strong influ-
ence at high frequencies or for large geometries. Due taterént single-scattering
approximation, the method is assumed to be applicable ¢ép gfeometries rather than
to flat ones. For flat geometries the effects of multiple scity grows stronger. (A
geometry is here seen as flat when the barrier is low in comparto its distance to
the source and to the receiver, so that the diffraction aisgmall. Otherwise the
geometry is seen as steep.)

The results presented here uses a previously developetitgighsources method
(SSM) [2, 3] as starting point. The formulation of the SSMuyatijon 8) involves a
double integral and the numerical solution is computafigrtiemanding; it could be
used as a reference method but is too heavy for a fast engiggenediction tool,
e.g. for traffic noise mapping. The final result presentee liean analytical solution
(equation 26). As an intermediate step an expression (equER), containing a single
integral, is found, whose numerical implementation cowddibed as a fast prediction
tool. In the following, this numerical implementation ideged to as théast method.
The analytical solution involves further approximationslchas a smaller range of
validity than the fast method, but could nonetheless beulis&oth the fast method
and the analytical solution assume a flat geometry, wheredy ¢an be useful as a
complement to the scattering cross-section based metksodatied above.

The results obtained here are compared with those from tive BSould be noted
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that the SSM can be applied to any barrier height [3], wheheas, for reduced com-
putation time, the Kirchhoff approximation is used, whichkas it applicable to only
flat geometries. For the cases without turbulence, the Koffrapproximation is as-
sumed to give an error smaller than 1 dB for diffraction asglEaboutl 2° or smaller
[2].

For a barrier in a flat geometry, the surface properties obtreier are of com-
parably smaller importance than for a barrier in a steep gtonj4]. Therefore the
solution for a thin screen presented here can be seen as aoxpation for an arbit-
rary barrier, concerning shape and surface material, irt gélametry.

It should however be pointed out that for a barrier that i€@thon a ground sur-
face, higher order diffraction terms will come into playlifet barrier is low compared
with the sound wavelength. The field diffracted at the bamridge and reflected in
the ground surface will again be diffracted at the barriggeednd cause a significant
additional contribution to the received pressure. Thisaffs not taken account of in
the present paper, where no ground surface is modelled. fidet would give a lower
limit to the barrier height, whereas the Kirchhoff approziion gives an upper limit.
However, since the turbulence effects generally are of mapae at higher frequen-
cies, the results presented here are expected to have & nasefe of validity. Within
the range of validity, the situation with a ground surface ba approximately mod-
elled as one with four rays, for instance with reduced mutohkerence as done in Ref.
[1].

In the present paper only two-dimensional (2-D) modellmdone. Previous stud-
ies indicate that 2-D modelling is sufficient for a variety sfuations where the in-
creased sound level behind a barrier due to turbulence ghs@gj. The last two ques-
tions, about higher order diffraction due to a ground swrfand the 2-D modelling,
would however benefit from further research.

The next Section describes the theory for the fast methodtemenalytical solu-
tion. In the third Section the numerical results are presgtaind some examples are

plotted. In the Appendix tables display more fully the résédr a single screen height
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from the SSM and the corresponding errors in the fast met8edtion 4 contains the

conclusions.

2 Theory

2.1 The Rayleigh integral and the Kirchhoff approximation

In three-dimensional free space the sound pressysg due to a point source with

strength() can be written

o—IkL
Po,3p = Q 17 (1)

wherek is the wave numbel, is the distance, and where the time oscillatétf with
the angular frequency is omitted. If the point source is extended mathematically
along a line parallel with the horizontataxis, with L the smallest distance to the

receiver, the pressure becomes

po = QJinf’(kL) )

which can be seen as the corresponding 2-D solution. (Thesatrength(), does
however have different units for the point and the line seyré far field approxima-

tion of the Hankel function is used

[ 2 L.
H(()2)($) _ Eeﬂw+yr/4 (3)

which inserted into equation (2) gives the 2-D solution

2 _. :
— = —_]kL—J7r/4‘ 4
po=Q kLe (4)

If the velocity component,, normal to a flat surface is known, the pressure can be

calculated using a Rayleigh integral
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W
p= [oH w0y ©)

where/ is the line of integration in the verticatdirection andR is the distance to
the receiver from the point on the line (see Figure 1). (The normal direction is into
the halfspace wherg is calculated.) It can be noted that the above equationg/appl
to a homogeneous atmosphere. The Rayleigh integral canvieole formulated for
other cases, for instance for a sound speed profile that sedetl or a temperature
gradient.

Letting the normal velocity,, in equation (5) be the free-field velocity on a part of
the line/, and zero outside, can be seen as a Kirchhoff approximaiiahé diffracted
field from the corresponding opening. (For a descriptiorhefKirchhoff approxima-
tion, see e.g. Ref. [5].) The free field velocity can be founnahf the free field pressure,

Do, @S

-1 Q d [27 _iiRy—jn/a
n = — . ~N — — - ™ 6
U Sop PR e R \ R ©

wherep is the densityRy is the distance from the source to wheygis calculatedd
is the projection of?, on the normal direction, and where a far-field approximaison
used in the last step.

Equation (5) for the received pressure as a Rayleigh integranow be rewritten

as

o s i) eIV BB
p= st/ / @
¢ ¢

Wdy =Qds | @& Ty, 1 Y
where far field approximations are used for bo;ihandH@), as in equations (6) and
(3), respectively. In the last step in equation (7) it is asad that thesubstitute surface,
i.e. where the Rayleigh integral is calculated, is at raf\gevhereds + dr = L is the
total distance to the receiver, and that the source—rechieeis perpendicular to the

y-axis. (The notatiomsubgtitute surface is used even though it is a line in 2-D.)



J. Forssén 6

The free field solutiopsqeis taken as when the integration in equation (7) is made
over the wholey-axis; £ € (—oo, 00), or, equivalently, as twice the result foe (0, co).
In the far field one will approximate the free fielg o = po. The screen diffraction
solution in the Kirchhoff approximatiompy, is for integration from the heigtf of the
edge of the screen to infinity;e (H, c0). A solution ofpg can also be found via the
integral over the interval of the screéi, (0, H), since the result equalgee/2 — pr-.
This change of integration domain (sometimes referred Badsnet’s principle, see
e.g. Refs. [5, 6]) allows for a fast numerical solution fowlscreen heights. The power
of the received signal is proportional to the square of ttedhlte value of the pressure
amplitude, and herd” = 1|p|? is simply referred to as the power. The free field power

is Wiree = 3 |Pfree” and the diffracted power &y = |pa|*.

2.2 Introduction of turbulence

A change in integration domain is used also for finding theitsmh including turbu-
lence, as shown below. The estimate of the mean power in #sepce of turbulence,
W, is found as a double integral over the pressure contrib@ia its conjugate using

a mutual coherence factor (MCH), which depends on the spatial separation of the
points of contributiony; andy- [7, 2]. Using equation (7) the mean povxﬁ can be

written

va de?g //F( )e—jk(R51+RR1—R52—RR2) dord @®
-9 =42 3212 32 pij2  (Y10Y2
2 Jede RY R R R

= //F(?Jl —¥2)D(y1,y2)dy1dy»
eJe
whereRs1 = \/d% + y3, Rri = \/d} + i, Rs2 = \/d& + 3, Rra = /d} + 3.
A simplifying substitution of variables that is commonlyaasfor expressions like
equation (8) isy; + y2 = 2u, y1 — y2 = v [8, 9]. (See Figure 2.) In these new
coordinated” depends omw only and some additional symmetry qualities with respect

to bothu andv can be used.
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The next step in the derivation is based on an energy cortgamargument. As-
sume that, fo¥ € (—oo, ), Win equation (8) equallfqe, i.€. that, in the absence
of a screen (and of a ground surface), there is no influenagrbfilence on the mean

power. The energy conservation assumption can be written

Wiree= de?s /

— 00

F(v)/ cos[k(Rs1 + Rr1 — Rsa — RRZ)]dudv 9)
0

3/2 pl/2 R3/2 p1/2
RS\ Ry Ry Ry
where it is taken advantage of that the integrand in equé®ipis a Hermitian function
of u, i.e. its real part is even and its imaginary part is odd. Wasing the energy

conservation assumption, the integration domain 0 (which corresponds '@Wfree)

is split up in two partsWH andWC, so that

= =~ 1
Wu+We = 5Wfree (10)

The integraIWH is the result when the lines of integration in equation (&) both
(H,0), i.e. Wy is the mean power due to sound propagation above the barréer i
turbulent atmosphere. The remaining integrakin- 0 is W¢. (See Figure 2.) The
desired resulti¥y, is then found by way of findin@c and Wiee WhereWirae
can be obtained from equation (2). Using that the integraretjuation (9) is an even

function inv, the integra[/~V0 can be written

[e's) H+4v
e cos[k(Rs1 + Rr1 — Rs2 — Rr2)]
We = Q*d% /0 I'(v) /0 T 2 T 1] dudv.  (11)
S1 R1 ~“S2 R2

It can be shown that the MCF goes toward an asymptotic valwnwis increased
(see Ref. [9], Eq. 7.65). This valueds?”, wherey is the extinction coefficient and
L the range of propagation [9], and it is used to rewrite the MIC#) in equation (11)

in two terms: a constant term and a term which goes to zero ptsyitally, as

C(v) =e 2" 4 (1 - e 2E) T (v) (12)

with
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. I'(v) —e 2k
L(v) = S g

(13)
Equation (12) can be seen as causing a separation of therfteléicoherent part,
corresponding to the facter 7%, and anincoherent part, corresponding to the factor
1 — e and having the MCH(v). To see this, equation (12) can be inserted in

equation (8) to calculatd

Wy = / / T D dy, dy, (14)
H H

0o oo 0 oo
=e 2L / / Ddydys + (1 — e_QrYL) / / I' D dy;dys.
H H H H

The first term in the last step of equation (14) is the cohepant and can be found
directly from the diffraction solution, without turbuleagase=27LWy;.

Using, in equation (11), the rewrittdi{v), as in equation (12), gives

o) H+v
— Conl cos[k(Rs1 + Rr1 — Rs2 — RR2)]
We = Q*ds (e / / 3/2 51/2 53/2 pl/2 dudv  (15)
0 Jo Rg"Rg Rgy Rp,

3/2 51/2 53/2 p1/2
0 R5/1 RR/I Rs/2 RR/2

The first term in the above equationes?" W, i.e. e~ 27l times equation (11) with

oo H+v _ —_
+(1- e_27L) / ['(v) / coslk(Es1 + Rm — Bss — Rra)] dudv} .
0

I(v) =1 (W stands folVe without turbulence). This term can be rewritten assum-
ing energy conservation for the case without turbulefe: = %Wfree_ W
Concerning the second term in equation (15)A“,(rf;) goes to zero sufficiently fast,
ie. thatf(v) makes the integral contribute only for< dg, dg, and the screen is low
(H < dg,dg), the dominant contribution will be fay,, y» < dg,dgr. The argument

of the cos-function, i.e. the phase difference, can then be appraeichasing

2_ 02w
Rs1 — Rgy = \/d§ +y?— \/d?s +ys~ y12d5y2 - ds (16)
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and similarly forRg; — Rgo. In the denominator of the integrand more crude approx-

imations are used according to
A +yi ~ ds, dg+y; ~ds (17)

and similarly fordpg.

Applying the above results to equation (15) gives

~ 1
We=e2" (EWfree_ WH) (18)

—2vL Q2 = f\ i 1 1
+(1—e™%) dedn /0 (v)/0 cos [kuv (% + £>] dudv.

The integral with respect ta can be solved analytically. Doing this and writing the

solution forWy asWy = Wiee— We (from equation 10) gives

Wi =e 2 Wy 4 (1 - e 2F) x (19)

{%Wfree - k(dSQide) /0oo I'(v) sin [k(H-H;)U (é n i)] i_v}

The fast method is the numerical implementation of equdti®), the results of which
are shown in the following Section.

The different turbulence models used here are describelgeiméxt Subsection.
For the Kolmogorov model the extinction coefficient is innf9], which leads to that

equation (19) can be rewritten usiag?'’ = 0.

2.3 Turbulence models

The mutual coherence factor (MCF) will in general dependechoice of turbulence
model, its parameter values, the transversal separatidine distance of propagation,
L, and the sound frequency, Here, the starting point is the von Karman turbulence

model with MCF for spherical wave propagation as

2L Kov 91/645/6
FVK(U) = exp {_K—Ov /0 YT [1 - W/G)Kzs/e(t) (20)
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o, [1 _ % <K5 Jo(t) — %Kl /G(t)>] dt}

where~yr and+y, are the extinction coefficients of the mean field due to teaipee
and velocity fluctuations, respectiveli(, = 2w /Lo, whereL, is taken as the outer
scale of turbulencel’(5/6) ~ 1.13 is the gamma function; anfl’; s and K, 6 are
modified Bessel functions of the second kind. The total etitim coefficient can be

written

3 5 s 53 (Ch  4C?

where A =~ 0.0330, Tp is the mean temperaturey is the mean sound speed, and
C2 andC? are the structure parameters describing the strengthsryfetature and
velocity fluctuations, respectively. (For the above foratigin of VK Ref, [9] was
used.)

Itis assumed that the MCF for spherical wave propagatiorbeaunsed for the 2-D
situations studied here without significant errors in tHeuwdated barrier insertion loss.
A previous comparison, involving a Kolmogorov turbulencedal, indicates that such
2-D modelling is sufficient [3].

In the region where the Kirchhoff approximation is validsiteasonable to assume
that, in the MCF in equations (20) and (19), the longitudisiatancel. = dgs + dgr
could be used as a good approximation. In a more strict apprahe turbulence is
introduced first after the screen, gividg= dg, which is used in the numerical tests
made here.

The range of test calculations used here provides a goodriynity to compare
different turbulence models. Here the Gaussian and the ggdrov models are stud-
ied in addition to the von Karman model. The models are ected according to
Ostashev [9], where the von Karman spectrum is assumed theomodel spectrum
of turbulence. Following the same reference, it is thenmasslthat, for the Gaussian
and the von Karman spectra, the integral length scaletharsame for the normalised

longitudinal correlation functions of the velocity fluctiens, and that the same is true
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for the temperature fluctuations. It is also assumed thatdhiances of the turbulent

fields are the same. The resulting MCF for the Gaussian maatethen be written

IC(v) = exp [—27TL (1 - q’q%l)) —2y,L (1 - %@%1) ~ %e_UZ)/lZ)] (22)

whered(v/l) = [/ e~+"ds andl = 25((15/36)) Ky! ~ 0.843K; . By connecting the

Gaussian and the von Karman spectra in this way, the Gauspectrum can be seen as

modelling the larger scales of the turbulence. It shoulddiedhthat, for other values of
the strength and the correlation lengththe Gaussian spectrum can model a different
range of scales.

The Kolmogorov spectrum is seen as an approximation for thaller scales,

within the inertial range, and the MCF can be written

K 3 C’% 22 C’ﬁ 2 5/3
T - _Ipl = 4L 220 L 2
(v) exp[ 3 (TOZ + 3 cg kv (23)

whereB =~ 0.364.

2.4 The analytical solution

In the limit of small screen heights, the effect of turbulercassumed to be dominated
by the larger scales. This is due to that the larger scalétes@adirections more near
forward, which can be seen from a Bragg scattering analagy [&]). For the largest
scales the von Karman turbulence model is well approxéchlly the Gaussian one as
it is used here, and hence the Gaussian model could be usedatian (19) to find an
approximation for near zero screen heights. (It could bechthiat one should be able
to reach the same end result by using the von Karman mouatethe Gaussian model
provides a simpler analysis.)

For this approximatiorf‘(v) in equation (19) is replaced by a small argument ap-
proximation of equation (22). Far < [ one can find that equation (22) can be approx-

imated as
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rCw) = exp(—av?) (24)

with o = (yr + 2v,)2L/(31?). (For different length scales of the temperature and
the velocity fluctuations]r andl, respectively, one can write = 2y7L/(31%) +

4+, L/(312).) If strong turbulence effects are assurmied;) will go to zero fast enough

to make the integrand in equation (19) contribute only foabrguments of thein-
function, and an approximation ais\(z) ~ « can be used, assumifig < 2. With

the latter approximation ari?i(u) = exp(—ow2), equation (19) can be rewritten as

WH — e—Z’YLWH + (1 _ e—Q’YL) |:1 _ Q_2 /OO(H_'_U)e—avzdv] ) (25)
0

The integral is solved to give the analytical solution

Wy =e Wy + (1 - e 1) lwf -9 (& LNEAT (26)
2 77" 9dedg a a

The restriction for the small argument approximation of ghefunction used above

can be written as

1 1
)2 =
‘k( +v)v (ds + ir

> ‘ L 27 (27)
where all variables are positive excefit which may be positive or negative. The
inequality (27) should hold as long as? in equation (25) is near 1 or smaller, where
av? = 1 is attained at the correlation radius= v.. If the term corresponding to
H in equation (27) is taken to separately fulfil the inequalégdv = v, is used,

a limit on H can be written a%|H|v. (1/ds + 1/dr) < 2x. If the other term is
restricted in the same way, the result can be writtew&s(1/ds + 1/dr) < 2.
This can be formulated in terms of the first Fresnel zagg,which here is given by
fuf: =2n/[k(1/ds+1/dRr)], assumingds,kdr > 1. As aresult, the two inequalities

to be fulfilled arel H|v. < v andv? < vg.
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3 Numerical test

In the numerical tests the fast method is evaluated usinguhstitute sources method
(SSM) as reference. The fast method is implemented fromteouE 9) and the SSM
from equation (8). Results for different turbulence modsis studied but the main
results are for the von Karman model. Thereafter followswaluation of the analytical
solution, equation (26).

The consequences of changing the integration area, eq@y and the low angle
approximations, as in equations (16) and (17), appliedérathove derivation, are not
easily foreseen. The calculations therefore constitutararpeter study with aim to
investigate the limits of applicability of both the fast metl and the analytical solution,
as well as to study the behaviour of the physical problemnsiglfit

The test calculations are made for a single source-readistancel. = dg + dg,
with source—barrier distaneg = 100 and barrier—receiver distandg = 900 m, but
for different frequencies, screen heights and turbuleacameters. Only velocity fluc-
tuations are considered’. = 0), with strengthsC? = 10~*, 1073, 1072, 1071, 1,
and10m*/3s~2, and withLy = 27/ K, = 1, 10, 10?, and10% m. The frequencies are
f = 63, 125, 250, 500, and 1000 Hz. Some of the values chosen foratarneters
correspond to unrealistic situations, mainly concerniregdtrong turbulence. Scaling
properties can however be applied, as will be describedh&tbich change the range
of realistic values. The large valuesd¥ anddg are chosen to give substantial influ-
ence of moderately strong turbulence at frequencies ofdatdor traffic noise. That
the distanceds anddg differ by a large factor fits well to the SSM, where the turbu-
lence is modelled on only one side of the barrier, and it atsddi many noise barrier
situations, where the barrier is located relatively clasthe source or to the receiver
(the reciprocal problem).

The different combinations of the values ffLo, andC? give 120 cases, of which
a few results are shown below as examples of trends and spebiaviour. A more

extensive collection of results are tabulated in the Apperfebr each case the screen
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height is varied with fine discretisation over a large rarige plots show the increased
sound pressure level due to the turbulensé,, = IOIOgIO(WH/WH), as a function

of screen height, foHe(—10, 30) m. A negative screen height thus stands for a screen
edge that is below the line of sight. A = 20 m the diffraction angle will be about
12°, which is assumed to give less than 1 dB error due to the Kafflapproximation.

For the value of the sound speed= 340 m/s is used.

Results for other source—receiver distances thaa 1000 m can be found from
using scaling properties of the sound field and of the MCF.dmahstrate this, assume
that one wants results for a geometry scaled by a factBor instance fos = 0.1 the
values of the geometrical parametégs dg and H are reduced to one tenth of their
original value. Without turbulence the result for the sdajeometry is found from the
result for the original geometry at ten times the frequeney (divided bys). For a
turbulent atmosphere the parameters of the MCF that invgdemetry or frequency
are scaled accordinglyL, is multiplied bys (i.e. Ky is divided bys), L is multi-
plied by s, andk is divided bys. Finally, it can be found that by multiplying? by
s~ 2/3 the MCF is kept the same in the scaled parameters. For erawith s = 0.1,
[ds, dr, H, f, Lo, C?] = [100, 900, 10, 100, 10, 1] gives the same received pres-
sure level relative to free field §ds, dr, H, f, Lo, C%] =[10, 90, 1, 1000, 1, 4.64],
where0.172/3 ~ 4.64. (The units of the parameters dre, m, m, Hz, m, m*/3s~2],
and are left out in the following.)

In Figures 4—12 the three thicker curves show the referegmdts from the SSM,
using the von Karman, Kolmogorov, and Gaussian model® titee thinner curves
show the fast method results for the same turbulence mothks.analytical solution

is exemplified in Figures 8 and 11. (Line styles are plotteBigure 3.)

3.1 Results using the von krman model

Concerning general trends in the SSM results, the 120 cagksive von Karman

model show a larger turbulence influenéel,,, whenf, Lo, or CZ increases. The de-
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pendence o, can be explained by that an increasé. while keepingC? constant,
exclusively adds to the strength of the large scale turlmgleRor a larger part of these
cases, the results from the fast method follow the SSM resuetl.

In the Appendix tables of the SSM results and the corresparelirors when using
the fast method are shown for the screen hefght 20 m. Most results show good
agreement, but larger errors (more than 1 d®&at 20 m) do appear whefy and the
correlation radiusy,, are large at the same time. The correlation radius growe lar
whenC? or f becomes sufficiently small. Probably large angle scatj@siimportant
here, i.e. the low angle approximation is the cause for ther&rLy does not fulfil
Ly < dg, dgr at the same time as the corresponding large scale turbullemsimates
the scattering. Here, this takes place for = 10% or 10® and when the correlation
radius no longer fulfils, <« dg, dg. (These cases are marked by an astetisi the
Appendix, using, < ds/10 as a limiting condition. For these results the correlation
radius is found numerically from equation 20.) An exampletiafse deviations is
shown in Figure 4, where, = 23 m and[f, Lo, C2] = [1000, 10%, 10~2].

As can be seen in the Appendix, large errors can be found &r gtses than with
large Ly andv,, as discussed above. Of these cases, the ones with errer them

1 dB atH = 20 m are underlined. The error is 2 dB at most.

3.2 Other results

Concerning the results for the Gaussian and Kolmogorowtarize models, some lar-
ger deviations than for the von Karman model can be fousdpminstance in Figures
6, 9, and 10.

In Figures 7, 8, and 10 it can be seen how the Gaussian and i§ohowe models
relate to the von Karman model. In Figure 8 the Gaussiartlemdon Karman results
match, whereas in Figure 10 it is instead the Kolmogorov Aedson Karman results
that match. This relates to the correlation radius, or toviiee ofyL, where a small

value ofyL gives a large correlation radius. Heyé = +,dr = 0.05 for the results in
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Figure 8 andy,dr = 105 for those in Figure 10. WheqL is small, and the correlation
radius is large, the large scales become influential, whielvall approximated by the
Gaussian model as it is used here. In the opposite caseylitlarge, and a small
correlation radius, the smaller scales are the most inflalefdr which the Kolmogorov
model is a good approximation. The conclusion is made in Red] that foryL <
0.5 andyL > 100 the Gaussian and the Kolmogorov model, respectively, gives
good approximation of the MCF, which is in accordance with thsults in Figures
8 and 10. However, the variation of the screen height addeaacomplexity. For
example, the results in Figure 7, for whighdr = 0.56, show how the von Karman
results first match the Gaussian ones for the smaller screights and then tend to
the Kolmogorov results for the larger screen heights. Tdlisdvs the Bragg scattering
analogy, in which the smaller scales cause the scatterilaggg angles, i.e. for larger
screen heights.

It should be noted that in some cases where the SSM preditE,aof around
5 dB or smaller, the fast method with the Kolmogorov modekgivery large errors,
as exemplified in Figure 12. The reason for this is not cleambay be due to the
infinite turbulence strength given by the Kolmogorov modehie limit of large scales.
Moreover, some cases with the Kolmogorov model, both fofakemethod and for the
SSM, show oscillations in the results for larger screenfitsigvhich are assumed to be
due to numerical problems. It should also be noted that idéhivation of a MCF for a
turbulent atmospheriev. > 1 is assumed [9]. Herdw, > 10 is fulfilled for all cases
with the von Karman model, except for the two cafgsLo, C2] = [1000, 10%, 10]
and[1000, 103, 10], wherekv, = 3.

Concerning the analytical solution, the results thereffollow well the SSM res-
ults with the von Karméan model for all cases where the fasthod is shown to work
and under the additional restraint$ < v and|H|v. < vg, as described above.
In Figures 8 and 11 two examples are shown, where the von &amesults match
the Gaussian and the Kolmogorov ones, respectively. Theaiets for these cases

are given byv? /vg = 0.009 andvi/v. = 60 m for Figure 8, and’? /v = 0.004
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and vf:/vc = 90 m for Figure 11. That one ha&ﬁ/vf: < 1 says that the addi-
tional approximations for the analytical solution are gallhenH <« 60 and 90 m,
respectively. Summarising the numerical tests, the aaftditirestraints for when the
analytical solution can be used with small errors can be @tated asug/fuf: < 0.1
and|H| < 0.1v¢/ve.

The computation times for the different methods have beatuated on a contem-
porary desktop computer for single cases with the von Kartarbulence model and
for the highest sound frequency (e.g. for the results shawRigures 4 and 8-12).
The computation time was about half an hour for the referemethod, the SSM, and
about ten seconds for the fast method. The implementatidimec&nalytical solution

provided at least a hundred times faster calculations thafeist method.

4 Discussion and conclusions

The problem with a low noise-barrier in a turbulent atmospheithout the influence
of a ground surface, has been studied analytically and riatigrin two-dimensional
space. The study uses a previously developed substituteesomethod (SSM) [2, 3]
as starting point. The formulation of the SSM (equation 8pines a double integral
and the numerical solution is computationally demandinig;tiere used as a reference
method but is too heavy for a fast engineering predictioih. tdde final result is an
analytical solution (equation 26). As an intermediate stegxpression (equation 19),
containing a single integral, is found, whose numericallengentation can be used as
a fast prediction tool, here called the fast method.

The analytical solution involves further approximationsidas a smaller range of
validity than the fast method, but could nonetheless beulis&oth the fast method
and the analytical solution assume a flat geometry, wheredy ¢an be useful as a
complement to scattering cross-section based method$ahnécassumed to be best
applicable to steeper geometries.

For application of the fast method or the analytical solutima situation including
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a ground surface, the barrier must be tall in comparison thi¢hwavelength, since
higher order diffraction contributions are not modelled the same time the barrier
must be low enough, also without a ground surface, to givdlgfiftaction angles
(about12° or smaller).

Test calculations in the form of parameter studies have bsed to evaluate the
fast method and the analytical solution with the SSM as esfeg. A reasonably good
over-all agreement was shown and the errors are concludethirdy be due to the
low-angle approximations, and additional restraints wWermulated for the analytical
solution. Moreover, scaling properties were described¢clwincrease the range of the
parameter study.

Effects of using different turbulence models have beenistlydoth in the fast
method and in the SSM. Examples were found where the resaitsthe von Karman
model were either followed by the ones from the Gaussian hardgy the ones from

the Kolmogorov model.

Appendix A

The Tables below show, for a single screen heifh 20 m, the increase in sound
pressure level due to the turbulencel.,, calculated using the SSM, and the corres-
ponding errors of the fast method.

The results marked by an asterig ére for cases where both the outer scalg,
and the correlation radius,, are large, i.e. no longer fulfily, v. < dg, dr, Where
ds = 100 m is the source—screen distance agd= 900 m the screen—receiver dis-
tance. The asterisk marks cases witharger than 10 m and with, = 102 or 103 m,
for which it is assumed that the low angle approximationswarlnger applicable, and
large errors are possible.

Large errors are found in other cases than those markeddryskst The errors are

between 1 and 2 dB, and the results are underlined.
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c?=10"* 10°* 1072 107* 1 10
f =63 0.0 00 00 00 00 01
125 0.0 00 00 00 01 0.7
250 0.0 0.0 0.0 0.1 0.7 _4.2
500 0.0 0.0 0.1 06 3.7_11.2
1000 0.0 00 03 26 96 180
Table B1.AL, for cases withLy = 1 m.
c?=10"* 107%® 1072 107! 1 10
f =63 0.0 00 00 00 00 02
125 0.0 0.0 0.0 00 01 0.8
250 0.0 0.0 0.0 01 05_17
500 0.0 00 00 02 08_14
1000 0.0 0.0 0.1 03 07 10

Table B2. Error of the fast method corresponding to the tesultable B1.
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cZ2=10""

1073

20

10-2 107! 1 10
f =63 0.0 00 00 00 05 _31
125 0.0 00 00 03 20 79
250 0.0 0.0 0.1 0.9 52 129
500 0.0 0.0 0.3 2.3 9.2 174
1000 0.0 01 07 46 135 21.2
Table B3.AL, for cases withLy = 10 m.
Cc?=10"* 107%® 1072 107! 1 10
f =63 0.0 00 00 00 03_13
125 0.0 0.0 0.0 00 03 0.7
250 0.0 00 00 01 04 06
500 0.0 00 01 04 05 06
1000 0.0 0.0 0.2 0.7 04 0.7

Table B4. Error of the fast method corresponding to the tegultable B3.
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C?=10"* 10°* 1072 107! 1 10

f =63 0.0r 00 00 02 20 76
125 0.0 00 O0I 05 37 111
250 0.0 00 03 26 105 183
500 0.0 00 03 26 105 183

1000 0.0 0. 08 49 148 216

Table B5.AL, for cases withly = 10> m.

c?=10"* 107%® 1072 107! 1 10

f =63 0.0 0.00 00 02 09 0.7

125 0.0 00 0 08 13 03
250 0.0 0 05 19 09 04
500 0.0 02 14 20 05 06
1000 0.r 08 25 14 02 038

Table B6. Error of the fast method corresponding to the tegultable B5.
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C?=10"* 10% 1072 107! 1 10

f =63 0.06 00 00 03 26 87
125 0.0 00 01 06 42 118
250 0.0 00 O0I1 1.3 74 152
500 0.0 00 03 27 112 185

1000 0.0 01 08 50 152 217

Table B7.AL, for cases withl, = 10° m.

c?=10"* 107%® 1072 107! 1 10
f =63 0.0f 0.1 09 21 13 06

125 0.r 05 21 24 12 03
250 0.z 15 27+ 24 07 05
500 0.9 28 29 20 04 06
1000 2.3 3. 27 14 02 038

Table B8. Error of the fast method corresponding to the tegultable B7.
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Figure 2: Integration domains far > 0. The domaini¥ is shown in grey and the

domainWC is striped.
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Figure 3: Legend for plotted results in Figures 4-12.

Figure 4: Results foff, Lo, C2] = [1000, 100, 0.01]. (The units[Hz, m, m*/3s=2]

are omitted in the following.)
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H [m]

Figure 5: Results foff, Ly, C?] = [250, 1, 10].
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Figure 6: Results foff, Ly, CZ] = [250, 1000, 1].
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Figure 7: Results foff, Ly, C?] = [500, 10, 1].

A Lp [dB]

-10 0 10 20 30
H [m]

Figure 8: Results foff, Lo, CZ] = [1000, 1, 1].
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Figure 10: Results fdif, Lo, C2] = [1000, 100, 1].
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Figure 11: Results fdif, Lo, C2] = [1000, 100, 10].
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Figure 12: Results fdif, Lo, C2] = [1000, 10, 0.01].
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