

eHealth Laboratory

Andrés I. Moreno

Department of Signals and Systems
Chalmers University of Technology
Göteborg, Sweden, 2009 EX008/2009

 i

Abstract

A hand on experience is important when learning technology oriented subjects. More
students demand challenging tasks at the time of learning. This was the case during
spring 2008, in which student surveys demonstrated the need of a laboratory for the
eHealth course of the Masters program in Biomedical Engineering at Chalmers Institute
of Technology.
This thesis work explores the technology, design, development and results of two health
informatics experiments proposed for the eHealth course. The two experiments are a
Blood Pressure (BP) monitoring application and an Electrocardiogram (ECG)
monitoring application. The former application is a graphical interface for the BP
monitor A&D UA-767 Plus, which is a BP measuring device that transmits
measurement data via bluetooth. The graphical interface for this application was
developed in LabVIEW. The latter application consists of an ECG simulator server
created in LabVIEW and a Rich Internet Application (RIA) client created with Adobe
Flex. The graphical interface for this application was specifically configured to allow
for remote viewing of collected ECG data. A full experiment guide section with the
source code is included in the work so that any person interested is capable to recreate
and play with the experiments.
The discussion includes the final evaluation of the experiments, design considerations
and limitations. The final evaluation discusses the relevance of the experiments into the
eHealth or other similar courses. The design consideration reviews the requirements
and the selection of tools and frameworks used to develop the applications. The
limitations explain the graphical interface simplicity and controlled network
environment scenarios used because of learning purposes. Future trends suggest
expansion of the experiments to real life applications in more complex scenarios with
user friendly interfaces. In conclusion, the experiments reached their functionality
rendering proof that the selected tools and frameworks were appropriate for working in
a laboratory environment. Furthermore individuals can obtain valuable knowledge
about Information and Communication Technologies (ICT) and its growing potential in
modern medicine.

 ii

 iii

Table of Contents

Abstract .. i
Table of Contents.. iii
Acknowledgements ... v
Acronyms and Abbreviations ... vii
1. Introduction... 1

1.1 eHealth and Health Informatics.. 1
1.2 The Idea of a Laboratory .. 1
1.3 Related Work.. 2
1.4 The Thesis Work .. 2

2. Technology Overview ... 3
2.1 Software Tools.. 3

2.1.1 Core Developing with LabVIEW.. 3
2.1.2 Client Application with Flex ... 3

2.2 Hardware Tools .. 5
2.2.1 Blood Pressure Monitor... 5

2.3 Important Information and Communication Technologies Concepts 5
2.3.1 Bluetooth Serial Port Profile.. 5
2.3.2 TCP/ IP internet server .. 6

3. Experiments Overview.. 9
3.1 System classification .. 9
3.2 Blood Pressure Monitoring Experiment ... 10

3.2.1 What is Blood Pressure?.. 10
3.2.2 Design Overview ... 10
3.2.3 The Student Role ... 11

3.3 ECG Monitoring Experiment ... 12
3.3.1 What is an ECG? ... 12
3.3.2 Design Overview ... 12
3.3.3 The Student Role: .. 14

4. Experiments User Guide .. 15
4.1 Blood Pressure monitoring ... 15

4.1.1 Bluetooth Communication... 15
4.1.2 Serial Communication ... 17
4.1.3 Data Processing ... 19
4.1.4 Warning System .. 22
4.1.5 Measurements Stacking and Storing ... 25
4.1.6 LabVIEW BP monitoring Graphical interface .. 28

4.2 ECG Monitoring ... 30
4.2.1 LabVIEW ECG Simulation ... 30
4.2.2 LabVIEW TCP Publishing System ... 33
4.2.3 LabVIEW ECG Simulation Server ... 34
4.2.4 Flex Socket Client ... 37

5. Discussion .. 41
5.1 Experiments Evaluation.. 41
5.2 Design Considerations.. 41
5.3 Limitations.. 42

6. Future Work.. 43

 iv

7. Conclusion .. 45
References.. 47

Appendix A: ECG Monitoring Flex Client Source Code... 49

 v

Acknowledgements

First I would like to express my gratitude to the people wish gave their support and
confidence to make this work possible. Professor Bo Håkansson and PhD Student Anna
Gund. Thank you both for the opportunity and the guidance during the development of
this document. Jaakko Kerola from National Instruments, thank you for answering all
my questions regarding LabVIEW, even the tricky ones. Hamid Taghavi your
collaboration during the elaboration of the ECG experiment was essential. Erika Anden
your cool designs put a special touch in my presentation. Classmates in Communication
and Biomedical Engineering who with critical thinking and suggestions made my work
better. To the S2 and Student Center staff thanks for always being there ready to help
out all students.

To my roommate and one of my best friends Eduardo Epifanio you have been like a
brother to me, thank you for your reliable friendship and all the good advices and
laughs. To all my friends from Chalmers and Sweden, without you this experience of
being abroad would have never been the same. To all my friends in Panama, whose
thoughts helped along the way.

To the Afterworks, that really made my Fridays and helped keep some money in my
pockets. To the Thai food stand in Kungsportplatssen the best peanut sauce I have ever
tasted. To all my favorite moments and places in Sweden I will kept them forever.

To my family Mom, Dad you have been my role models, I am the man I am thanks to
you. Bro, Sis you gave me the good word and support every time I needed. To my
lovely friend/roommate/wife/my everything, Estela, thank you for always believing in
me as a person, a professional, and a man, I always felt your love through the up and
downs.

 vi

 vii

Acronyms and Abbreviations

AP Access Point

BP Blood Pressure

DCS Data Communication Specification

ECG Electrocardiogram

GPIB General Purpose Interface Bus

ICT Information and Communication Technologies
IDE Integrated Developing Environment

LMP Link Manager Protocol
L2CAP Logical Link Control and Adaptation Protocol

MAP Mean Arterial Pressure
MXML Magic eXtensible Markup Language

OOP Object Oriented Programming

PC Personal Computer
PDU Protocol Data Unit

RIA Rich Internet Application

SDP Service Discovery Protocol
SPP Serial Port Profile
SWF Shock Wave File

UI User Interface

VI Virtual Instrument
VISA Virtual Instrument Software Architecture
VME VERSA Module Europe
VXI VME eXtensions for Instruments

 1

1. Introduction

This document titled eHealth Laboratory, will describe the planning, base technology,
design and deployment of two laboratory experiments intended for an eHealth course in
the Biomedical Engineering Masters Program at Chalmers University of Technology.
The target audience of this material is any student, professional or technician that is
interested in applying Information and Communication Technologies (ICT) in the
medical field for learning purposes. The document does not intent to describe any real
life application or solve any specific problem, but it offers a rewarding learning
experience.

1.1 eHealth and Health Informatics

The term eHealth is a recent addition to healthcare terminology; referring to electronic
processes and ICT. This is a wide field which embraces many services like electronic
medical records and telemedicine among others and at some point is discussed to
overlap with health informatics [1]. Nevertheless, eHealth refers more than technology.
Gunther Eysenbach gives us this broad definition “eHealth is an emerging field in the
intersection of medical informatics, public health and business, referring to health
services and information delivered or enhanced through the Internet and related
technologies. In a broader sense, the term characterizes not only a technical
development, but also a state-of-mind, a way of thinking, an attitude, and a commitment
for networked, global thinking, to improve health care locally, regionally, and
worldwide by using information and communication technology”[2]. A good definition
of health informatics is the one used by the School of Health Information at the
University of Texas that reads “Health Informatics combines the computer sciences and
latest communication technologies with the biological and cognitive sciences to better
address today’s healthcare problems through better data management, analysis, and
transmission” [3]. The continuous advances in ICT within health informatics are
expected to have a high impact in problem resolution in medical sciences through out
the upcoming years. The experiments described in this document are technical examples
which fall under the health informatics category.

1.2 The Idea of a Laboratory

During the spring semester of 2008 the idea of a laboratory emerged during the eHealth
course representative’s meeting. A main topic during this meeting was that the students
were demanding practical concepts in the course work. Later on, during the course
evaluation the survey showed that students asked for more challenging experiences, and
as consequence the idea of a master thesis for creating this lab came about. This Thesis
was proposed by Bo Håkansson, professor of biomedical engineering and examiner of
this work, Anna Gund, PhD student in charge of the course eHealth, and Andres

 2

Moreno, master student in communication engineering in the healthcare informatics
track and author of this document.
After some brain storming, the decision was made to design two laboratory experiments
in which the students were required to mix their knowledge from the Biomedical
Instrumentation course with ICT. The experiments chosen were a Blood Pressure (BP)
monitoring and Electrocardiogram (ECG) monitoring application. Furthermore,
equipment a (BP monitor), software (LabVIEW) available in the Signal & Systems
department and free licensed third party framework was used during the development.
This equipment, software and framework are described in later sections of this
document.

1.3 Related Work

Before developing the thesis some research was made about similar applications in
order to measure the feasibility of the experiments. Looking up for related work with
BP monitoring, “Integration of Bluetooth- Enabled Sensors into an eHealth
Application” by Agustín García [4] used the same BP monitor for home healthcare and
monitoring. This gave proof and confidence that the integration of the device and
known framework (.Net) was possible. The ECG monitoring offered several
possibilities for solution in the client side. A virtual bio-instrumentation book of
LabVIEW [5] gives a good base of how LabVIEW is integrated with web clients such
as Java Applets and Active X controls. The former is good reference for implementing
new web client technologies like Adobe Flex, which is described in later sections of this
document.

1.4 The Thesis Work

In the next chapters the technology, design, deployment, discussion, future and
conclusions of this work are described. Chapter 2 presents the ICT background and
developing tools needed for the laboratory experiments. Chapter 3 presents the design
overview of the experiments and gives an idea of how the applications work. This is
done by first giving a short description of the medical situation followed by the
explanation of the application stages. Chapter 4 gives a detailed technical guide for
developing the experiments; interested individuals can recreate the experiments without
any major complications. Chapter 5 discusses some issues about introducing the
laboratory into the learning environment and some design considerations. Chapter 6
comments future tendencies of the experiments. Finally a short conclusion of the
experience is given in Chapter 7.

 3

2. Technology Overview

This chapter reviews a few key Information and Communication Technology (ICT)
concepts, programming and hardware tools necessary to develop and review the
experiments in a proper manner.

2.1 Software Tools

2.1.1 Core Developing with LabVIEW

LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) is a visual
programming language developed by National Instruments [6]. It is one of many
developing programs in the market like C++ or Java. The main difference between
LabVIEW and other platforms is that is not text based. Instead, it uses graphical
programming commonly known as “G” programming [7] for developing different
functional blocks in a block diagram. As other programming languages, it has the
possibility of data types, objects, looping, sequence structures and error handling. The
programs developed with LabVIEW are called Virtual Instruments (VIs) that is the
basic unit in a block diagram. The advantage of VIs is that they can easily share
information with other software or networked applications [8]. Furthermore, LabVIEW
does not require vast experience in programming to get started. LabVIEW is the
requested core language for developing both applications in this thesis work and
Chalmers University of Technology has a very good license agreement. More
information about LabVIEW can be found in [9].

2.1.2 Client Application with Flex

Flex is a set of technologies released by Adobe for developing Rich Internet
Applications (RIAs). RIAs are web applications capable of running in any web browser
with the same functionality of desktop applications [10]. Similar to Flash, Flex creates
Shock Wave Files (SWF) rendered by a Flash Player. The programming language is
directed to programmers rather than web designers, consequently it requires some
knowledge of Object Oriented Programming (OOP). The development of Flex is based
in a framework which uses reusable and extendable User Interfaces (UI) components
within several functional services. The two core languages in Flex are Magic eXtensible
Markup Language (MXML) and ActionScript. The first one is an XML based language
and it is for layout and element display. The second is an ECMAScript compliant OOP
language that gives logic to the application. Figure 1 illustrates the workflow of flex
from the developer to the client. The client compiles the two languages in a SWF file
and uploads it into a host server for the application. When the client connects to the
server, it downloads the SWF and runs it in his computer. This action considerably
diminishes computation load in the server. Furthermore, ActionScript allows
interactivity, data handling, among other services. More information about Action

 4

Script can be found on [12]. Flex is the programming language used to develop the
client side of one of the applications.

Figure 1: Flex flow diagram from developer to client from [11]

 5

2.2 Hardware Tools

2.2.1 Blood Pressure Monitor

One of the experiments developed in this thesis work consists of Blood Pressure (BP)
monitoring. For this task the A&D UA-767 PlusBT was used, a BP monitor with
Bluetooth Class 1 integrated for measurement communications. To learn more about the
technical specification of this device see [13]. The instruction manual can be found in
[14].

2.3 Important Information and Communication Technologies
Concepts

2.3.1 Bluetooth Serial Port Profile

Bluetooth is a wireless technology that provides the capability of a short range
communication. It uses the 2.4 GHz band that is globally available for unlicensed low-
power uses. Bluetooth is intended to provide support to endless number of wireless
applications among different profiles which include data, audio, graphics video etc.
[15]. The use of Bluetooth throughout this work is narrowed down to cable replacement
in the A&D UA-767 PlusBT using the Serial Port Profile (SPP). The SPP sets up two
virtual serial ports to allow two Bluetooth enabled devices to connect and transmit data.
The SPP defines two main roles for working, device A the initiator and device B the
acceptor. As seen in Figure 2, two applications that are at the top of models
communicate over emulation of a serial port. The Bluetooth protocols that participate in
this communication are:

• RFCOMM Protocol: It is the cable replacement protocol in Bluetooth
• Service Discovery Protocol (SDP): It is responsible to get the devices

information and services from other devices.
• Link Manager Protocol: It is responsible for setting up the link between

Bluetooth de devices and ongoing link management.
• Logical Link control and adaptation protocol (L2CAP): Adapts the upper layer

protocols to the base band layer.
• Base band: Establishment of connections in the Bluetooth architecture.

More information regarding SPP and Bluetooth protocols can be found in [16] and [17]

 6

APPLICATION

SERIAL PORT EMULATION LAYER

RFCOMM SDP

L2CAPLMP

BASEBAND

APPLICATION

SERIAL PORT EMULATION LAYER

RFCOMM SDP

L2CAPLMP

BASEBAND

DEVICE A DEVICE B

Figure 2: Bluetooth SPP protocol model from [16].

2.3.2 TCP/ IP internet server

An application server for one of the applications will be developed in the basis of
Transmission Control Protocol/Internet Protocol (TCP/IP) internetworking. TCP/IP
refers to the Internet Protocol suite named by its two standards Transmission Control
Protocol (TCP) and Internet Protocol (IP). This is the base technology for the global
internet and it is used for communication across any interconnection of networks [18]. It
can be said that TCP/IP communications involve three significant parts: applications,
computers and networks. File transfer and electronic mail are examples of applications.
Several applications, communications and data exchange can run simultaneously in the
same computer. The communication tasks of the TCP/IP protocol are divided in the
following independent layers [19]:

• Physical layer: This layer takes all the physical interface of any device for
transmitting data. This varies depending on the medium wired (Ethernet,
coaxial cable etc) or wireless (Wifi, Wimax, Bluetooth etc).

• Network access layer: This layer takes care of the data exchange between end
system and networks attached to it. Addressing issues take place in this layer
and the sending device have to provide the address of the recipient in order that
the network can deliver information accurately.

• Internet layer: The previous layer takes care of data exchange and addressing

among systems contained in the same network. When the exchange and
addressing is performed among different networks, this layer takes care of the
routing function.

 7

• Transport layer: This layer takes care of mechanism to assure the reliability of
the data exchange. The TCP is the most common protocol used to provide this
reliability.

• Application layer: This layer contains the process to support different user
applications.

An interaction of the layers between two devices is illustrated in Figure 3. In the figure,
the application in device A generates a data packet. Subsequently, each layer adds a
header with relevant information. The relevant information contained in the headers is
as follows:

• TCP header: Destination port, sequence number and checksum.
• IP header: Destination
• Network header: Destination sub network address, facilities requests.

The data packets is sent through a network and properly routed to device B. In device B
the process of removing headers is performed until the application gets device A data
and data exchange occurs virtually at each layer. The generic name given for a block of
data exchanged at any layer is Protocol Data Unit (PDU) [21].

Figure 3: TCP/IP layers interaction from [20].

 8

 9

3. Experiments Overview

This chapter overviews the experiments design in a functional way. The idea is to give
the reader a sense of the medical concept and how the applications were designed.
Recommendations of which topics the students should review for a successful
reproduction of the experience are provided also.

3.1 System classification

Before going into details, it is necessary to understand the kinds of applications that
have been designed. Table 1 describes different kinds of networking system scenarios.
The applications designed fit into Remote Monitoring perform because no major
interaction occurs between the server and the client than authentication messages.

Table 1: Functional categories of networking scenarios reference [22].

Networking Scenario Description
Remote Monitoring A process can be monitored from another

location in the network. In this process the
client cannot give any feedback to the
server.

Remote Control The same as remote monitoring plus
possibility of giving feedback to the server
which affects the outcome.

Collaboration Multiple users from remote locations use a
client to communicate and share
information with the server and each other.

Distributed Computing Software process that runs on more than
one computer to accomplish a task.

 10

3.2 Blood Pressure Monitoring Experiment

3.2.1 What is Blood Pressure?

Blood Pressure (BP) is the force produced by circulating blood to the blood vessels and
is one of the most important vital signs. It varies between systolic and diastolic
pressures generated both at the beginning and the end of the cardiac cycle. A normal
measure is around 110 systolic and 70 diastolic millimeters of mercury (mmHg) [23].
Furthermore, an important variable is obtained by both pressures mentioned defined
medically as Mean Arterial Pressure (MAP). The MAP is the notional average blood
pressure in an individual [24].

3.2.2 Design Overview

The first experiment is to construct a BP monitoring system conformed by the BP
monitor A&D UA 767 PlusBT as a client and a Personal Computer (PC). The system
has three stages as exposed in Figure 4:

1. BP measurements: The BP monitor user measures the systolic, diastolic,
Pulse/min and MAP

2. Measurements communications: The Action of sending the measurements to a

PC hosting an application by using Bluetooth Serial Port Profile (SPP).

3. LabVIEW application:
a. Serial communication: A serial communication is established with the

BP monitor. This process extracts the recorded measurements and write
commands according to BP monitor Data Communication Specification
(DCS).

b. Data processing: A data process based in the DCS is responsible for the
graphical display.

c. Warning system: A color warning system based in the MAP displaying
lower and upper thresholds.

d. Stacking and storage of measurements: The specifications of the BP
monitor allows to store up to 40 unloaded measurements [13]. This
feature provides the possibility of future use of measurements.

 11

Figure 4: Experiment 1 overview

3.2.3 The Student Role

The students recreating this experiment must have basic knowledge of LabVIEW;
although they are provided with an experiment guide in order to speed up the learning
process. The detailed guide is available in the next section. Furthermore, the students
will have to have knowledge in the following topics:

• The basics of Bluetooth communication focused in the SPP.
• The communication protocol provided by the manufacturer.
• The LabVIEW VIs mentioned in the experiment guide.

 12

3.3 ECG Monitoring Experiment

3.3.1 What is an ECG?

An Electrocardiogram (ECG) is a recording of the electrical activity of the heart. A
normal ECG signal of a single heart beat is shown Figure 5. The P wave is the atrial
depolarization; the QRS complex is the ventricular depolarization and the T wave is the
ventricular repolarization [25].

Figure 5: A typical ECG signal

3.3.2 Design Overview

The second experiment is to construct an ECG monitoring system composed by an ECG
simulation contained in a LabVIEW server and a Flex client contained in a web browser
for visualization. Ideally the experiment should be performed by two PCs and a network
device (switch, router, etc) for a more real life experience. For simplicity, the
experiment can be deployed in one PC as a localhost. The system has three stages as
exposed in Figure 6:

1. LabVIEW ECG simulation server:
a. Simulation of an ECG signal recording: A recording of an ECG signal is

simulated and repeated in a loop in order to generate an ongoing signal.
b. Calculation of the Heart Rate: Although the simulation is repeated

continuously, a calculation of the heart rate variation is possible by
randomly changing the sampling frequency of the signal. As a result, it is
possible to calculate different heart rates at different periods of the
experiment.

c. Creation of a data packet: Once the heart rate is calculated a data packet
is created that contains the ECG amplitude and heart rate information.

d. Publication of Packet by a Transmission Control Protocol/Internet
Protocol (TCP/IP) server: After a packet is created, it is made available
to the client application by a TCP/IP server waiting constantly in standby
mode for an inbound connection.

 13

2. Network connectivity: This stage represents the environment of

interconnection. The use of a switch or router will suffice to simulate a
controlled environment of a network. When simplicity is required it is possible
to develop the whole experience in the one computer as a “localhost”.

3. Flex TCP socket Client:

a. Socket connection to TCP/IP server: The client connects to the standby
server by a socket connection in a specific port.

b. Data Packet reading: Once the connection is made to the server, a reading
operation of a fixed amount of bytes is executed in order to retrieve an
accurate packet.

c. Data Packet processing: After the packet is received; operations are made
over it in order to retrieve the ECG amplitude and heart rate information.

d. Data Graphical Representation: The representation of the data obtained in
the packet the ECG amplitude as curved vector chart and the heart rate in
a numerical display.

a. Simulation of a ECG signal
recording

b. Calculation of the Heart Rate.

c. Creation of a Data Packet

d. Publication of Packet by TCP/IP
server

1.LABVIEW ECG
SIMULATION SERVER

d. Data Graphical representation

c. Data packet processing.

b. Data packet Reading

a. Socket connection to TCP/IP
server

3.Flex socket Client

2. Network Connectivity

70

Figure 6: Experiment 2 overview

 14

3.3.3 The Student Role:

The students developing the experiment need to have a basic knowledge of LabVIEW
to develop the server application. The client is made for the students to have a taste of
Object Oriented Programming (OOP). Partial knowledge of Flex is recommended for an
improved experience but is not essential. A guide to speed up the learning process is
included. Furthermore, the complete Flex code with extensive comments can be found
in the appendix section. It is recommended that the students acquire knowledge in the
following topics:

• The basics of TCP/IP internet protocols.
• The LabVIEW VIs mentioned in the experiment guide.
• Review the Flex MXML buttons and text controls [26] if the intention is to

modify the client.
• Review the Flex ActionScript socket connections [27] for better understanding

of the socket class designed.

 15

4. Experiments User Guide

This chapter overviews the experiments technical design. The idea is to give the reader
a detailed explanation of how the applications were designed in order to reproduce the
experiments.

4.1 Blood Pressure monitoring

4.1.1 Bluetooth Communication

In this stage the A&D Blood Pressure (BP) monitor connects to the Access Point (AP)
hosting the application via Bluetooth Serial Port Profile (SPP). The Bluetooth SPP
creates a serial port for incoming communication from the BP monitor. In order to
recreate this experiment it is necessary to have the Data Communications Specification
(DCS) of the BP monitor. The DCS is confidential and only available after signing a
special release form; although some fragments of this document will be referenced to
understand the procedures. Some parts in the LabVIEW code are blurred due
confidentiality reasons. In order to create this virtual channel between the device and
the machine these steps are needed:

• Ensure that the Bluetooth device in the AP is currently working.
• Perform a measurement with the BP monitor; the BP monitor will try to

establish communication with the nearest AP as in Figure 7.
• To establish communication a password will be requested. This password is

available in the DCS of the BP as shown in Figure 8.
• The installation is finalized and communication is enabled between the BP

monitor and the AP as in Figure 9.
• Now that the communication is initiated it is necessary to create the virtual serial

port. For this is necessary to add an incoming com port in the COM PORTS
section of the Bluetooth device in the AP.

Figure 7: BP requesting communication

 16

Figure 8: Password request

Figure 9: The communication successfully established

 17

4.1.2 Serial Communication

Once the serial port is created, the serial communication stage in the application is
constantly listening for incoming measurements bytes from the BP monitor at the
specified port. If a valid message is received (70 bytes message), the application sends
back an acknowledgement message to the BP monitor. This message communicates to
the BP monitor to disregard the measurements from its database. With the help of the
Virtual Instrument Software Architecture (VISA) palette of LabVIEW the serial
communications are simplified. This library of functions simplifies communicating with
General Purpose Interface Bus (GPIB), serial, VME eXtensions for Instrumentations
(VXI), and computer-based instruments [28]. More detailed information of VISA can be
found in [29]. To accomplish this stage the following steps are needed:

Construction of the Block Diagram: First go to LabVIEW block diagram and insert the
VIs from the different Palettes interconnecting them as shown in Figure 10 and 11 and
creating the controls referenced. The VIs are:

• VISA palette: VISA configures serial port, read, break, write and close VI’s.
• Structures palette: Case structure VI.
• Comparison palette: Empty string/path VI.
• Boolean palette: Not VI.

VISA configuration: The configuration of the port session is made to establish read
and write operation. It is necessary to define parameters like enable termination
character, timeout, port name, baud rate, data bits, parity, stop bits and flow control to
the VISA configures serial port VI.

Reading measurements from port: Once the desired port is configured, (the same one
created during the Bluetooth communication stage) it is necessary to read the
measurements from the port if they are available. Taking as reference the DCS of the
BP monitor; the whole message received from the BP monitor should be 70 bytes. From
this message, 60 are from the header and 10 are measurement data. Finally, a constant
of 70 bytes is determined in the VISA read VI byte count parameter.

Sending acknowledgement back to the BP: The acknowledgement process begins as
soon as a 70 byte message is received. The comparison VI and the Boolean VI sets the
condition to writing an acknowledgement message. If the message received is 70 bytes,
the condition is set to true as in figure 10. Afterwards, the break VI makes a pause of
250ms and a message in Hexadecimal is sent by the write VI to state data acceptance.
All of the previously described process was made according to the DCS. If there is no
70 byte message the state is set to false as in Figure 11 and no further action is taken.

Closing the connection: After all reading and acknowledgement actions have been
performed, the connection is closed by the VISA close VI. At this point the application

 18

only has the ability to receive messages in a non-readable hexadecimal form and
acknowledge them back. The resulting front panel is visualized in Figure 12.

Figure 10: Interconnection showing "true" case structure.

Figure 11: Interconnection showing the "false" case structure.

 19

Figure 12: View of the front panel after completing a serial communication process

4.1.3 Data Processing

After the valid message is received, the data needs to be processed in order to extract
relevant information. At this point the bytes are divided and transformed from a
hexadecimal form to a readable form. In some cases, they are manipulated with
arithmetical operations to present the relevant fields. In order to achieve this stage, the
following steps are needed:

Construction of the block diagram: Right click over Received data (Hex) control in
the block diagram and then go to create and then click local variable. This will create a
variable reference inside the block diagram to receive the hexadecimal data. Insert the
following VIs and interconnect them as shown in Figure 13 creating controls, indicators
and constants:

• Conversion Palette: String to byte array VI and string to number VI.
• Array Palette: Index array VI.
• String Palette: String subset VI.
• Data manipulation Palette: Join numbers VI
• Structures Palette: Formula node and case structure VIs.
• Numeric Palette: Add VI.

 20

Data processing techniques: The techniques used for data processing mix different
ways of processing data. The parameters expected at the end of the operations are year,
month, day, hour, minute, battery voltage, serial number, systolic pressure, diastolic
pressure, Mean Arterial Pressure (MAP) and pulse/min. The data processing techniques
are:

• Indexed array data: The technique used to obtain the year, month, day, hour,
minute, and battery voltage consists in using the string to byte array VI. This VI
arranges the hexadecimal received data in an array of bytes represented with
ASCII values. With the index array VI it is easier to take portions of information
and present it. Information of which byte represents a specific parameter can be
obtained from the DCS. The year parameter is represented by two bytes and it is
necessary to use the join numbers VI to obtain the parameter. A formula needs to
be applied to the byte as specified in the DCS in order to obtain battery voltage.

• Subset string data: To obtain serial number, systolic pressure, diastolic pressure,

MAP and pulse/min the technique used consisted in the string subset VI. This VI
extracts the portions of received data based on the DCS. In some cases the data
(systolic, diastolic, Pulse/min, MAP) needs to be transformed in numeric
representation by the string to number VI. For the case of the systolic pulse is
necessary to make an arithmetic operation with the add VI the operation is stated
in the DCS. At this point the application is capable of taking the data obtained
4.1.2 and displaying it in a readable form as shown in Figure 14.

 21

Figure 13: Data processing block diagram

Figure 14: Capture of the front panel after data processing stage.

 22

4.1.4 Warning System

Now that the data has been processed and displayed, a warning system for the MAP
measurement is established. The color of the numeric text will change as a warning
according to the thresholds established. In order to accomplish the following steps are
taken.

Creation of a reference cluster control in the front panel: In order to arrange the data
in a layout that will contain the information; the data will be arranged in a cluster. From
the front panel a cluster will be created which will contain the year, month, day, hour,
minute, systolic, diastolic, pulse/min and MAP parameters. The cluster should look
similar to Figure 15.

Figure 15: Cluster of measurement parameters, appearance changes according customization.

Creation of the block diagram: Insert the following VIs and arrange them as shown in
Figure 16:

• Array palette: Threshold 1d array VI, index array function VI and array constant.
• Numeric palette: Round to nearest integer VI.
• Dialog and user interface palette: Color box constant.
• Cluster palette: Bundle by name VI.
• Application control pane palette: Property node VI.

 23

Figure 16: Updated block diagram showing only the data processing stage.

Bundling parameters into a cluster: With the reference cluster control created, it is
simple to create an extra indicator by doing a copy paste operation and then changing
the properties to an indicator. By the bundle by name VI all the parameters are bundled
to a cluster as seen in Figure 17.

Figure 17: a cluster is filled by simply connecting the parameters by name to the VI

 24

MAP warning display: The MAP parameter obtained from the measurements is
introduced as a threshold for the threshold 1D array VI. It is then matched to the nearest
threshold associated with the MAP control reference as seen in Figure 18. The resultant
index value is rounded with the round to nearest integer VI; afterwards the index array
VI makes the proper color selection to be displayed. Finally the property node VI is
linked to the MAP parameter contained in the cluster indicator, changing the color of
the numeric text according to the threshold. The block diagram is shown in Figure 19.
At this point the application in addition of section 4.1.3 can display a color alarm based
on the MAP threshold. The final result is shown in Figure 20.

Figure 18: Threshold reference for the threshold 1D array VI.

Figure 19: Color selection process for the warning system.

 25

Figure 20: Capture of the front panel with warning system.

4.1.5 Measurements Stacking and Storing

In previous sections the application is only capable of processing one measurement
received from the BP monitor. In this section functionality is added and the application
is capable of stacking and storing multiple measurements in each session. This is useful
when the user needs to take several measurements during one session, or if the BP
monitor needs to upload stored measurements. In order to achieve this, the following
steps are to be taken:

Creation of an array for stacking measurements: To create an array to stack
measurement, the reference cluster indicator created in section 4.1.4 is taken and
introduced in an array in the front panel. The result is shown in Figure 21.

 26

Figure 21: Array created for stacking session measurements.

Creation of the block diagram: Insert the following VIs in the block diagram and
arrange them as in Figure 22:

• Array palette: into array function VI and build an array VI.
• Numeric palette: Add VI.
• Structures palette: Feedback node and while loop VI.
• Application control pane panel: Property node VI.
• File I/O palette: Read and write to spreadsheet VI.

Figure 22: Block diagram with stacking and storing

 27

Making the application ready for multiple measurements: For handling multiple
measurements, a while loop contains the whole application but the serial port
configuration and the closing connection of section.

Stacking measurements: For stacking the measurements each cluster lecture is stacked
into an array of clusters. The insert into array VI stacks the cluster in the in the position
given by the index generated by the feedback node VI and the add VI. A feedback node
feed back the array in the next measurement to keep the stacked information. The
operation in the block diagram is in Figure 23.

Figure 23: measurement stacking operation

Storing measurements: To store the measurements it is needed to store them in a
spreadsheet file. With unbundle by name and build array VIs, the measurements are
arranged in an array. The write to spreadsheet VI stores all the measurements in a
spreadsheet file. Finally the retrieval of stored measurements is made with read from
spreadsheet file VI. The block diagram of this operation is shown in Figure 24 and 25.
At this point the application is complete and capable of stacking multiple measurements
by session and to store measurement data in a spreadsheet.

 28

Figure 24: Summary of measurement store operation.

Figure 25: Read operation, this needs to be located inside while loop for updating.

4.1.6 LabVIEW BP monitoring Graphical interface

After completing the previous stages the final result is shown in Figure 26. The
proposed interface has the following controls and displays:

1. VISA configuration panel: Is in charge of setting the connections parameters
like COM port, baud rate, data bits, parity, stop bits and flow control.

2. MAP control: Is in charge of setting the thresholds for the MAP measurement
warning display.

3. Hexa data display: Displays the raw hexadecimal data received by the device in
every measurement.

4. Battery voltage display: Shows the current battery voltage of the BP monitor.
5. Last and current session measurements displays: Displays the last and all the

session measurements received from the BP monitor.
6. Store measurements control and display: The control sets the action to

overwrite or append measurements; it displays the stored measurements.

 29

Figure 26: Final application result, the layout depends on the customization of the front panel.

1

2

3
4

5

6

 30

4.2 ECG Monitoring

4.2.1 LabVIEW ECG Simulation

This stage simulates an Electrocardiogram (ECG) signal to publish. The signal
generated is based on a recording from a laboratory performed in the Biomedical
Instrumentation course. A simulation gives students the advantage of working with the
laboratory experiments in different locations.

Construction of the block diagram: Insert the following VIs and interconnect them as
shown in Figure 27 creating their controls and indicators.

• Structures palette: Feedback node, case structure and while loop VIs.
• Input express VI palette: Simulate arbitrary signal express VI.
• The String functions palette: Format into string, string length and concatenate

strings VIs.
• Signal Manipulation Express VI palette: Convert from dynamic data express VI.
• Array palette: Insert into array, array size, index array and delete from array VIs.
• Signal Operation palette: Peak detector VI
• Comparison palette: Less? and equal ? VIs.
• Numeric Functions palette: Subtract, divide, increment and round to nearest VIs.
• Conversion VIs and Functions: To long integer VI.

Figure 27: Labview ECG simulation block diagram

 31

Creation of ECG Signal: The pre recorded signal is simulated in each iteration by the
simulate arbitrary signal VI .Figure 28 shows details about the VI and signal.

Figure 28: ECG signal details

Heart Rate Extraction: The simulated signal is analyzed during each interaction to
extract the heart rate. Since the same signal is repeated continuously, it is necessary to
change the estimated sampling frequency to obtain a heart rate variability effect. With
the arrays VI, case structures, comparison and numeric functions the application first
collect 600 samples. Afterwards, the peak detector VI detects the RS of the QRS
complex of the 600 samples signal. The indexes of these RS are subtracted and divided
by the variable and arbitrary sampling frequency. After dividing these by the 60 seconds
in a minute the estimated heart rate is obtained. Finally this value is rounded and
formatted into a string for further use. Figure 29 shows the section of the block diagram
responsible of this task.

 32

Figure 29: Heart Rate Extraction block diagram.

Creation of the Data Package: Once the heart rate variable is obtained it is merged
with the amplitude values to create a data package for publishing. Due amplitudes can
be either positive or negative it is necessary to make the length of the packet even
before being published. The maximum length is set to 9; in case that the amplitude
value does not present this condition a zero will be concatenated to the packet.
Afterwards, the value of the heart rate is also concatenated and the string is ready to be
published. Figure 30 shows the corresponding section of the block responsible of this
operation.

Figure 30: Data package creation block diagram.

600 samples
collection stage

Peak Detection
stage

 33

4.2.2 LabVIEW TCP Publishing System

At this section there is a Transfer Control Protocol (TCP) server listening constantly for
incoming connections from a client. Once the connection is detected the server sends
the resulting string of the previous section to the client. If the client closes the session
the server will get in stand-by mode until a new connection is made.

Construction of the block diagram: Insert the following VIs and interconnect them as
shown in Figure 31 creating their controls and indicators.

• TCP VI and Functions: TCP listen, TCP write and TCP close VIs.
• Timing VIs and Functions: Wait until next ms multiple functions.
• Cluster palette: Unbundle by name function.
• Boolean Functions palette: OR function.
• Dialog & User Interfaces VIs and Functions: Clear errors VI.

Figure 31: LabVIEW TCP publishing system block diagram.

 34

TCP Server: This server is contained in two main loops. The outer loop will take care
of the stand by functionality of the system. The inner loop is in charge of the write
operation and will publish the resultant string if available. Both TCP server write
function and data package loop are synchronized with the same iteration delay control.
This way the timing of the data is reliable. The unbundled by name VI detects if there is
any error in the connection (connection closed by client) and stops the writing function.
The clear error VI clears any minor errors that need to be ignored for continuing the
execution of the server.

4.2.3 LabVIEW ECG Simulation Server

By merging the blocks of sections 4.2.1 and 4.2.3 the final Simulation server is obtained
as seen in Figure 32. The proposed graphical interface is shown in Figure 33. The
interface has the following controls and displays:

1. Delay Control: Controls the speed of the simulation signal that is running.
2. Heart Rate Variability control: Controls the change of the heart rate parameter.
3. Heart Rate display: Displays the current heart rate.
4. Samples display: Displays the amount of samples collected for the hearth rate

calculation.
5. Published string display: Displays the string to be published by the TCP server.
6. ECG amplitudes display: Plots the ECG amplitudes in a chart.
7. TCP port control: Controls in which TCP port the data will be published.
8. Remote address: The client’s address.
9. Remote port: Port where the client is connected.

 35

Figure 32: Simulation Server block diagram.

 36

Figure 33: Simulation Server Front Panel

1 2

3

4

5

6

7

8

9

 37

4.2.4 Flex Socket Client

A web based client with TCP sockets is created with the Flex Builder. The client can
initiate and end connections to different ECG servers that publish data in different
sockets. The real time data is plotted in a graph and also shown in a text box. When
using this application, it is necessary to take into consideration the network policies in
which the client and the server are contained. It is recommended to execute this
experiment in a controlled scenario. To accomplish this, the following steps are taken:

Creation of a New Flex Builder Project: The first step is to create a new project in the
flex builder. Go to file/New/Flex in the configuration window to create a new project,
Figure 34. In this window the proper name and the option of web application are
selected as in Figure 35. No application server is chosen in order to deploy the result as
a standalone application in the web browser. After clicking finish, the environment is
ready to start developing a flex application as shown in Figure 36.

Figure 34: Creation of new flex project.

 38

Figure 35: Flex project configuration

Figure 36: Flex project working area

 39

Developing the Flex code: Flex coding requires knowledge of ActionScript and
MXML. The code is divided in two sections: the ActionScript and the MXML graphical
layout code. Appendix A contains the source code properly commented. The first part
of the code introduces behavior (ActionScript) to the application. The second one
(MXML) models the graphical interface.

Flex client application: Copy the code described in Appendix A to the working area of
the flex project and run it; the final graphical interface can be visualized in Figure 37.
The application is easy to use and has the following controls and displays:

1. Server Name control: The name or address of the host containing the LabVIEW
ECG Simulation Server.

2. Port control: The TCP port in which the server data is available.
3. Start and Stop Buttons controls: To begin and stop reading data from the

server.
4. Server Messages display: Displays the data read from the port in the server.
5. Heart Rate display: Displays the heart rate data extracted from the server

messages.
6. Chart area display: Plots the amplitudes values obtained from the server

messages.

 40

Figure 37: ECG client interface connected to Local host server in port 2055

1 2 3

4
5

6

 41

5. Discussion

5.1 Experiments Evaluation

The purpose of this work was to design a laboratory for the eHealth in the Biomedical
Engineering Masters Program. Furthermore, this course is part of the Health Care
Informatics specialization in the Communication Engineering Masters Program. During
this document’s final stage of evaluation and through its final presentation with other
professors, the inclusion of this laboratory in the eHealth course is still under
consideration. The use of these experiments is meant for use in laboratories in
biomedical instrumentation courses or as future reference for works in other medical
system projects.

5.2 Design Considerations

When these experiments were developed some requirements were established before
hand. The initial requirements are:

• Use of LabVIEW as core programming language when developing the
experiments. LabVIEW is in increasing inclusion in the biomedical engineering
department in courses like Biomedical Instrumentation.

• Use of A&D UA-767 PlusBT, a Blood Pressure (BP) monitor in one of the
experiments.

• Use the concept of the Electrocardiogram (ECG) for a monitoring application.
• Use a real time web based client for the ECG monitoring application.

Complications begun when choosing a proper tool for designing the web based client
for the ECG. The author’s inclination towards Flex came after extensive research of
available frameworks in the market like Java, Ajax, Microsoft Silverlight etc. Flex
stands out among the others for the following reasons:

• Clear and easy to follow tutorial documentation. The author reviewed the
documentation tutorial for all of the previous mentioned frameworks. For
learning purposes. Flex has a quicker learning time and it is recommended for
these experiments.

• Friendly and freeware Integrated Developing Environment (IDE) Flex Builder 3
Student Edition.

 42

5.3 Limitations

An important limitation can be observed in the graphical interface of the applications.
The experiments are oriented to learning purposes; there are no complex visual designs
or animations.

Furthermore, some limitations were observed when designing the ECG experiment. Due
to the Remote Monitoring scenario of the application, a controlled testing scheme was
needed to achieve success. In one case, the networking environment was developed as a
localhost application. Both server and client were working in the same computer. In
other cases, a simple network device (switch, router) was used for the network
interconnection.

 43

6. Future Work

The applications developed in the experiments are pieces of big puzzles in more
complex scenarios. Although including large databases or complex network scenarios
are out of the scope of this thesis work; real life applications requires taking into
consideration these and other several human factors. An example of work related to real
life applications can be seen in “Design of an Internet-Based Disease Management
System for Chronicle Heart Failure” by Anna Gund [30]. In this work, the same Blood
Pressure (BP) monitor and internet technology were used to create a disease
management system. Students are encouraged to overcome the limitations found in this
document and develop state of the art applications for real medical problems. Some
suggestions for future projects are:

• Expand to more complex network scenarios which include remote control.
• Develop more sophisticated user interfaces.
• Use live data instead of simulations.
• Incorporate multiple vital signs.

 44

 45

7. Conclusion

The purpose of this thesis was to design a laboratory for the eHealth course. Although
the experiments developed are yet to be approved for use in the proposed course; other
important points were proven during the development of the applications. LabVIEW as
a language program has been proven to be useful in the developing of the experiments.
At the moment the author of this document begun the development of the applications
he had no previous knowledge in LabVIEW. This proofs that it is possible for any
student to reproduce the experiments with guidance. There was some struggle at the
moment of working with Flex due to Object Oriented Programming (OOP); although
the learning curve is lower compared to more complex languages like Java or .Net. Flex
stands out as a good alternative for students searching for less complex alternatives to
develop web and desktop applications. Besides all this, all the applications worked
successfully accomplishing the functionalities for what they were designed. Students
who decide to take on this challenge will get a great deal of experience in how medical
concepts and Information and Communication Technologies (ICT) can work together to
take medical solutions to a next level.

 46

 47

References

[1] eHealth. 2009 [cited 2009 Jan 19]. Available from: http://en.wikipedia.org/wiki/EHealth

[2] Eysenbach G. What is eHealth?. J Med Internet Res [serial online] 2001 [cited 2009 Mar 27]; 3(2).
Available from URL: http://www.jmir.org/2001/2/e20

[3] Johnson TR. What is Health Informatics?. [Online] 2006 [cited 2009 Jan 19]. Available from:
http://www.shis.uth.tmc.edu/about-us/what-is-health-informatics

[4] Garcia A. Integration of Bluetooth- enabled Sensors into an E-health application. Master Thesis,
School of Engineering, University College of Borås; 2008

[5] Olansen JB, Rosow Eric. Virtual Bio-Instrumentation: Biomedical, Clinical, and Healthcare
Applications in labview. Upper Saddle River (NJ): Prentice Hall, Inc.; 2002. p.513-526

[6] LabVIEW. [Online] 2009 [cited 2009 Jan 26]. Available from:
http://en.wikipedia.org/wiki/LabVIEW

[7] National Instruments Corporation. Introduction to G Programming. [Online] 2009
[cited 2009 Mar 27]. Available from: http://zone.ni.com/devzone/cda/tut/p/id/7668

[8]Olansen JB, Rosow Eric. Virtual Bio-Instrumentation: Biomedical, Clinical, and Healthcare
Applications in labview. Upper Saddle River (NJ): Prentice Hall, Inc.; 2002. p.490

[9] National Instruments Corporation. How Can I Learn LabVIEW?. [Online] 2009 [cited 2009 Jan 26].
Available from: http://www.ni.com/academic/lv_training/how_learn_lv.htm

[10] Rapoza J. RIA War Is Brewing. 2008[cited 2009 Jan 26]. Available from:
http://etech.eweek.com/content/application_development/ria_war_is_brewing.html

 [11] Adobe Systems Incorporated. Get Oriented To Flex. [Online]. 2007 [cited 2009 Jan 26]. Available
from: http://learn.adobe.com/wiki/display/Flex/Get+oriented+to+Flex

[12] Adobe Systems Incorporated. Programming Action Script 3.0/Introduction to Action Script 3.0 .
[Online]. 2008 [cited 2009 Jan 26]. Available from:
http://livedocs.adobe.com/flex/3/html/01_Introduction_2.html#122319

[13]. UA 767 PlusBT. 2009[cited 2009 Jan 26]. Available from:
http://www.telemedicine.jp/product_ua767pbt.html

[14]. Instruction Manual. 2009[cited 2009 Jan 26]. Available from:
http://www.aandd.jp/products/manual/manual_medical.html

[15] Stallings W. Wireless Communications and Networks. 2nd ed. Upper Saddle River (NJ): Pearson
Education, Inc.; 2005. p 464-465

[16] Bluetooth SIG. Serial Port Profile (SPP). [Online]. 2009 [cited 2009 Jan 26]. Available from:
http://www.bluetooth.com/Bluetooth/Technology/Works/SPP.htm

[17] Stallings W. Wireless Communications and Networks. 2nd ed. Upper Saddle River (NJ): Pearson
Education, Inc.; 2005. p 466

 48

[18] Comer DE. Internetworking with TCP/IP Volume1: Principles, Protocols, and Architecture. 5th ed.
Upper Saddle River (NJ): Pearson Education, Inc.; 2006. p 2

[19] Stallings W. Wireless Communications and Networks. 2nd ed. Upper Saddle River (NJ): Pearson
Education, Inc.; 2005. p 71-72

[20] Stallings W. Wireless Communications and Networks. 2nd ed. Upper Saddle River (NJ): Pearson
Education, Inc.; 2005. p 73-74

[21] Stallings W. Wireless Communications and Networks. 2nd ed. Upper Saddle River (NJ): Pearson
Education, Inc.; 2005. p 75

[22] Olansen JB, Rosow Eric. Virtual Bio-Instrumentation: Biomedical, Clinical, and Healthcare
Applications in labview. Upper Saddle River (NJ): Prentice Hall, Inc.; 2002. p.492

[23] Tortora GJ, Derrickson B. Introduction to the Human Body: The essentials of anatomy and
physiology. 7th ed. Danvers (MA): John Wileys & Sons, Inc.; 2007. p 391

[24] Mean Arterial Pressure. 2009 [cited 2009 Jan 26]. Available from:
http://en.wikipedia.org/wiki/Mean_arterial_pressure

[25] Tortora GJ, Derrickson B. Introduction to the Human Body: The essentials of anatomy and
physiology. 7th ed. Danvers (MA): John Wileys & Sons, Inc.; 2007. p 374

[26] Adobe Systems Incorporated. User Interfaces. [Online]. 2008 [cited 2009 Jan 26]. Available from:
http://livedocs.adobe.com/flex/3/html/controls_01.html

[27] Adobe Systems Incorporated. Programming Action Script 3.0/Flash Player Apis/ Networking and
Communications . [Online]. 2008 [cited 2009 Jan 26]. Available from:
http://livedocs.adobe.com/flex/3/html/17_Networking_and_communications_5.html#124745

[28] Gregory E. VISA. [Online] 2004 [cited 2009 Jan 26]. Available from:
http://cnx.org/content/m12288/latest/

[29] National Instruments Corporation. LabVIEW 8.2 help/ VISA VIs and Functions. [Online] 2006
[cited 2009 Jan 26]. Available from: http://zone.ni.com/reference/en-XX/help/371361B-
01/lvinstio/visa_lib_ref_func_descr/

[30] Gund A. Design of an Internet-Based Disease Management System for Chronicle Heart Failure.
Licentiate Thesis, Dept. of Signals and Systems, Chalmers University of Technology; 2008

 49

Appendix A: ECG Monitoring Flex Client Source Code

As follows the source code of the Flex application with proper comments; the
comments start with a “//” or “/*”:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical"
backgroundGradientAlphas="[1.0, 1.0]" backgroundGradientColors="[#7B766F,
#040404]" viewSourceURL="srcview/index.html">

I. ACTION SCRIPT CODING :

 <mx:Script>
 // Import the classes needed for script functionality
 <![CDATA[
 import flash.events.*;
 import flash.net.Socket;
 import flash.system.Security;
 import flash.utils.ByteArray;
 import flash.utils.setTimeout;
 import flash.utils.IDataInput;
 import flash.display.Sprite;
 import mx.collections.ArrayCollection;
 import mx.controls.TextArea;
 import mx.core.UIComponent;
 // Creation of Private variables for using in the standalone script
 private var serverURL:String;
 private var port:int;
 private var socket:Socket;
 private var ta:TextArea;
 [Bindable] private var myRandomData:ArrayCollection;
 [Bindable] private var RandomData:ArrayCollection;

 // fucntion incorporated as standalone

 public function connect():void
 {
 // Link the variables of the graphical interface to the script
 serverURL = serverName.text;
 port=int(portNumber.text);
 ta = output;

 /* Creation of a new Socket object for TCP connection
 and assignation of event listeners.*/

 socket = new Socket();

 50

 socket.addEventListener(Event.CONNECT, connectHandler);
 socket.addEventListener(Event.CLOSE, closeHandler);
 socket.addEventListener(ErrorEvent.ERROR, errorHandler);
 socket.addEventListener(IOErrorEvent.IO_ERROR, ioErrorHandler);
 socket.addEventListener(ProgressEvent.SOCKET_DATA, dataHandler);

 // Load policy file from remote server.
 Security.loadPolicyFile("http://" + serverURL + "/crossdomain.xml");

 // Connecting to remote Labview ECG simulation server.
 try {
 msg("Trying to connect to " + serverURL + ":" + port + "\n");
 socket.connect(serverURL, port);
 } catch (error:Error) {
 /*
 If the client is unable to connect
 to the server, an error message is displayed
 and the connection is closed.
 */
 msg(error.message + "\n");
 socket.close();
 }
 console.title = "Connecting to " + serverName.text + ":" + portNumber.text;
 console.enabled = true;

 //Array to collect a 1000 samples from the server
 var myArray:Array= new Array(1000);
 myRandomData = new ArrayCollection(myArray);

 }
 //Function to disconnect to the remote ECG
 public function disconnect():void
 {
 try{
 socket.close();
 msg("connection closed...\n");
 }
 catch(error:Error)
 {
 }
 }

 // This method is called if the socket finds an ioError event.

 public function ioErrorHandler(event:IOErrorEvent):void {
 msg("Unable to connect: socket error.\n");
 }

 // This method display the connection message.

 51

 private function connectHandler(event:Event):void {
 if (socket.connected) {
 msg("connected...\n");
 } else {
 msg("unable to connect\n");
 }
 }

 /* This method is used when the connection is closed by
 the server.*/
 private function closeHandler(event:Event):void {
 msg("connection closed by the server...\n");
 }
 // This method is used if the socket got an error.

 private function errorHandler(event:ErrorEvent):void {
 msg(event.text + "\n");
 }

 // This method is used to handle the data from the server.

 private function dataHandler(event:ProgressEvent):void {
 var n:int = socket.bytesAvailable;

 /* the variable len is = to 11 due the message package is 9 (hr1) for
 amplitude and 2 (hr2) for the heart rate ult is the last index of the array
 pri is first index */

 var len:uint=11;
 var ult:int=999;
 var pri:int=0;
 var hr1:Number=9;
 var hr2:Number=2;
 /* the operation will be performed while there is a valid package message of 11
 characters and read them as UTF bytes. The portion of the amplitude and heart
rate
 are extracted and displayed in their respetive graphical display.
 */
 while (--n >= 11) {

 try{

 var str3:String=socket.readUTFBytes(len);
 var hr:String=str3.substr(hr1,hr2);
 var myECG:Number = Number(str3);

 /* the data array is updated by removing the first element and adding one
 at the end */
 myRandomData.removeItemAt(pri);

 52

 myRandomData.addItemAt(myECG,ult);
 heart_rate.text=hr;
 //Display the incomming values in the text area

 msg(str3+"\n");

 }

 // Catch undesirable delayed data errors
 catch(error:Error)
 {

 }

 }
 }

 /*
 Add the data to the TextArea.
 After adding text, the setScroll() method controls
 the scrolling of the TextArea.
 */
 private function msg(value:String):void {
 ta.text += value;
 ta.dispatchEvent(new Event(Event.CHANGE));
 setTimeout(setScroll, 100);
 }

 /*
 Scroll the TextArea to its maximum vertical scroll
 and the TextArea always shows the last line returned
 from the ECG server.
 */
 public function setScroll():void {
 ta.verticalScrollPosition = ta.maxVerticalScrollPosition;
 }

]]>
 </mx:Script>

 53

II. MXML CODING

 <mx:SeriesInterpolate id="eff"/>
 <mx:Label id="title" text="ECG Socket-Monitoring" fontSize="24" fontStyle="bold"
color="#F1F7F8"/>
 <mx:ApplicationControlBar width="100%">
 <mx:Label text="Server:" color="#F0F6F7"/>
 <mx:TextInput id="serverName" width="100%" text="localhost" />
 <mx:Spacer />
 <mx:Label text="Port:" color="#F1F7F8"/>
 <mx:TextInput id="portNumber" text="2055" textAlign="right" maxChars="5"
restrict="0-9" />
 <mx:Spacer />
 <mx:Button label="Start" click="connect();" color="#F2F7F8"/>
 <mx:Button label="Stop" click="disconnect()" color="#F2F8F9"/>
 </mx:ApplicationControlBar>

 <mx:Spacer />
 <mx:Panel id="console" enabled="false" width="100%" height="100%"
paddingTop="10" paddingBottom="10" paddingLeft="10" paddingRight="10"
cornerRadius="7" backgroundColor="#373434" color="#F4F9FA">
 <mx:Canvas width="100%" height="100%">
 <mx:Label text="HEART RATE" width="168" fontSize="20"
textAlign="center" y="24"/>
 <mx:TextArea id="heart_rate" width="147" color="#080909"
fontSize="30" fontWeight="bold" fontStyle="italic" textAlign="center" height="75"
x="10" y="76"/>
 <mx:Label x="367" y="10" text="SERVER MESSAGES" width="221"
textAlign="center" fontSize="20"/>
 <mx:TextArea id="output" editable="false" width="251" height="141"
fontFamily="Courier New" color="#1D19CF" fontSize="10" x="376" y="49"/>
 <mx:LineChart id="linechart1" height="150" width="100%"
dataProvider="{myRandomData}" color="#EEF5F7" x="-10" y="198">
 <mx:series>
 <mx:LineSeries displayName="Random"
showDataEffect="{eff}" form="curve"/>
 </mx:series>
 </mx:LineChart>
 </mx:Canvas>
 </mx:Panel>
</mx:Application>

