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Which is the most power-efficient
modulation format in optical links?
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Abstract: By exploiting the electromagnetic wave’s four-dimensional
signal space, we find that for the additive white Gaussian noise channel, the
modulation format with best sensitivity to be an 8-level format with 1.76 dB
asymptotic gain over BPSK, for uncoded optical transmission with coherent
detection. Low-complexity modulators are presented for the format, as well
as an interpretation in terms of quantum-limited sensitivity.
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1. Introduction

The recent interest in coherent optical transmission technologies has resulted in a remarkable
progress, such as demonstration of transmission at 10 Gbaudwith 4 bits/symbol using of-
fline [1, 2] and online [3] post-processing of the data. The modulation format used in [1–3]
is referred to as dual-polarization quaternary phase-shift keying (DP-QPSK), which is a 16-
level format that can be seen as independent binary phase-shift keying (BPSK) modulation in
the four quadratures of the optical field.

Many, if not most, coherent optical systems of practical interest, are well modeled as an addi-
tive white Gaussian noise (AWGN) channel. This includes forexample links limited by the am-
plified spontaneous emission (ASE) noise from optical amplifiers, or links limited by shot noise
from the local oscillator [4, Ch. 4]. For such optical links,the BPSK format are often believed
to be the most power efficient one—i.e., the modulation format requiring the lowest signal-to-
noise ratio (SNR) per bit to reach a given bit error rate (BER). However, we show in this paper
that there are modulation formats with better power efficiency than BPSK, and also, which is
most significant, with comparable, or less, complexity thanDP-QPSK. In particular, we will
present an 8-level modulation format that is asymptotically 1.76 dB more power efficient than
BPSK. Disregarding pulse position modulation (which may provide unbounded capacity but is
unpractical in high-speed links [5]) we provide numerical evidence that this format gives the
best possible sensitivity for the uncoded optical channel.Power-efficient modulation formats,
such as the one presented in this paper, are of practical importance in optical communications
by enabling increased nonlinear tolerances, as well as of fundamental importance by providing
ultimate sensitivity limits for the optical channel.

2. Global comparison of performance

It is well known that the problem of finding theM-ary modulation format with the least average
power requirement to reach a given BER in an AWGN environmentis equivalent (in the limit
of low BER) to the problem of placingM points so that their minimum distance is maximized
under an average energy constraint. Alternatively, the minimum distance can be kept constant
and the average energy minimized, which is in turn equivalent to packingM rigid spheres so that
their average squared distanceEs from the origin is minimized. Furthermore, it can be shown
that the bit error rate asymptotically becomes well approximated by the union bound [6, p. 195],
and that the dominating term for theBERdepends on the signal powerP as erfc(

√

Pγ/(RN0)),
whereR is the bit rate andN0 is the (single-sided) noise spectral density. Theasymptotic power
efficiencyγ is defined as [6, p. 220]γ = d2

min/(4Eb), whereEb = Es/ log2M is the energy per
bit, anddmin is the sphere diameter or, equivalently, the minimum (Euclidean) distance between
constellation points. Observe thatγ, which is usually given in dB, depends on the constellation
geometry only, not on the transmitted power. It is 0 dB for BPSK and QPSK, and it can therefore
be interpreted as thesensitivity gainover BPSK to transmit the same data rate. In this paper
we will, for what we believe is the first time, present the maximum sensitivity gain for all
constellation sizesM ≤ 32 and dimensionsN ≤ 4.

Coherent systems have in the most general case a four-dimensional constellation space
(N = 4), corresponding to two quadratures in two polarization states. The constellation vec-
tors are formed from the real and imaginary part of the electric field’s x and y polarization
components as [7](Ex,r ,Ex,i ,Ey,r ,Ey,i). As an example, the DP-QPSK format can be expressed
(in normalized units) as the 16 levelsC1 = {(±1,±1,±1,±1)}, allowing for any sign selection,
and it hasdmin = 2, Es = 4, andγ = 0 dB just as BPSK and QPSK.

Consider a constellation ofM nonoverlapping spheres inN-dimensional space. To find the
packing that minimizes the average squared distance from the origin is a geometric problem that
can be solved by numerical optimization. One starts withM randomly positioned nonoverlap-
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Fig. 1. Spectral efficiency vs. sensitivity penalty 1/γ for optimumM-ary constellations in
N = 2,3, and 4 dimensions. Coordinates(N,M) refer to the optimumM-ary constellation
in dimensionN. The points fromM = 2 to 32 are joined by lines as a guide to the eye. Also
shown areM-PSK (forM = 3 to 8) and 16-QAM for comparison.

ping spheres, which are then made to relax into a closely-packed cluster by suitable attractive
and repelling forces. Unfortunately, there exist many packings that are locally optimal in this
respect. Therefore the process is repeated for a large number of random initial conditions until
the best packing emerges, which can be very time consuming. The sphere-packing problem has
been addressed previously in the literature, mostly via such numerical optimization. Rigorous
mathematical proofs of optimality have been obtained only in a few special cases. For exam-
ple, optimum constellations for dimensionsN = 2 andN = 3 were discussed in [8] and [9],
respectively, and results forN = 4 are available online [10]. We independently designed similar
constellations ourselves, which support the results from these sources.

The results are expressed in Fig. 1, plotting the spectral efficiency SE vs. the sensitivity
penalty 1/γ for the optimum constellations. Such a chart is the conventional way of comparing
modulation formats [4, 6, 11] (possibly with a different normalization). Here we define the
spectral efficiency to be the number of bits per symbol per polarization (i.e., perdimension
pair, as suggested in [6, p. 219]), so thatSE= log2(M)/(N/2). This definition ofSEwill cause
BPSK, QPSK, and DP-QPSK to haveSE= 2, since BPSK has dimensionN = 1. The leftmost
points in this graph are thus the most power-efficient modulation formats, and we may note
that for smallN this occurs forsimplices,i.e., the equilateral triangle (or 3-PSK format) for
N = 2 and the tetrahedron (M = 4) for N = 3. These modulation formats have received limited
practical interest, due to the difficulty of (i) generating them and (ii) mapping bits to symbols
whenM is not a power of 2.

3. The PS-QPSK format

The first dimension for which the simplex isnot the most power-efficient format isN = 4.
Instead, the overall optimum occurs forM = 8, showing an improved asymptotic sensitivity of
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Fig. 2. (a) A transmitter configuration for PS-QPSK based on astandard QPSK transmitter
and a polarization modulator (PolM), whereBi denotes driving bits to the PS-QPSK chan-
nel. (b) Alternative transmitter for PS-QPSK using 8 out of the 16 symbols of a DP-QPSK
transmitter, wherebi denotes DP-QPSK driving bits.

1.76 dB (or 1.5 times) over BPSK. This 8-level modulation format consists of the levelsC2 =
{(±2,0,0,0),(0,±2,0,0),(0,0,±2,0),(0,0,0,±2)}. This normalization makes the amplitude
the same as for the DP-QPSK format discussed above. This is the four-dimensional version
of biorthogonal signaling[12, pp. 198–203], [13]. The constellation forms the vertices of a
four-dimensional polytope known as thecross-polytope,or 16-cell,since it is bounded by 16
tetrahedrons. It has been suggested previously to be used for signal modulation, see, e.g., [7,14],
but it has so far not been recognized as the overall most power-efficient modulation format in
four-dimensional space.

It is possible to directly implementC2 in a conventional (see e.g. [2]) optical transmit-
ter for DP-QPSK, although it would require three modulationlevels (−2,0,2). However,
we will consider also a few other representations of theC2 format, that might give rise
to simpler transmitter structures. By a 45° phase rotation,the constellation may be ex-
pressed asC′

2 =
√

2{(±1,±1,0,0),(0,0,±1,±1)}, which is QPSK transmission ineither
the x or the y polarization. Thus, two bits are transmitted via QPSK and the third bit de-
termines whether the x or y polarization is used. Therefore,we will refer to this format
as polarization-switched QPSK (PS-QPSK). A schematic transmitter for PS-QPSK is shown
in Fig. 2 (a), showing a standard QPSK transmitter followed by a polarization modulator.
Moreover, a 45° polarization rotation gives another way of expressing the PS-QPSK format:
C′′

2 = ±{(1,1,1,1),(1,1,−1,−1),(1,−1,1,−1),(1,−1,−1,1)}, revealing it to be a subset of
the DP-QPSK (C1) levels; namely, those having an even number of minus signs.This means
that the PS-QPSK format can be obtained from the conventional DP-QPSK transmitter by using
two XOR gates, which will force the driving bitsb1,b2,b3,b4 to have even parity, as shown in
Fig. 2 (b).

4. Bit- and symbol error rates

We will now compare the PS-QPSK and DP-QPSK formats in terms of bit- and symbol error
rates. The DP-QPSK constellation points form the vertices of a four-dimensional hypercube,
and as it can be regarded as four parallel independent BPSK channels, its BER will be equal
to that of BPSK, i.e.,BERDP-QPSK= BERBPSK = erfc(

√

Eb/N0)/2. The SER of PS-QPSK
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Fig. 3. BER vs.Eb/N0 for PS-QPSK and BPSK over an AWGN channel.

is [12, p. 201]

SERPS-QPSK= 1− 1√
π

∫ ∞

0
(1−erfcx)3e

−
(

x−
√

Es
N0

)2

dx (1)

=
1
2

erfc

√

Es

N0
+

1√
π

∫ ∞

0
(3−3erfcx+erfc2x) ·erfc(x)e

−
(

x−
√

Es
N0

)2

dx (2)

where Eq. (2) is an expression that facilitates numeric evaluation of the integral [13]. To get the
BER we need to consider the bit-to-symbol mapping. The eightlevels of the PS-QPSK format
are not possible to Gray code, since each point has 6 nearest neighbors. The best one can do is
to encode the levels so that the pairs that are furthest away from each other have inverted binary
code words, which is achieved by the transmitter in Fig. 2 (b)(although not with the transmitter
in Fig. 2 (a)). In such a situation, the six most likely symbolerrors will have one or two bits
wrong, of the transmitted three bits. Ignoring the seventh possible symbol error, which is much
less probable,BERPS-QPSK≈ SERPS-QPSK/2. (An exact expression is given in [12, p. 203].) The
BER for PS-QPSK and BPSK/DP-QPSK is shown in Fig. 3. The requiredEb/N0 at a BER of
10−3 is 5.82 dB for PS-QPSK and 6.79 dB for BPSK, while at 10−9 we have 11.04 dB for
PS-QPSK and 12.55 dB for BPSK. As the BER decreases, theEb/N0 difference approaches
10log10(3/2) = 1.76 dB.

5. Sensitivity limits

We have seen from the above that PS-QPSK can give up to 1.76 dB of improved sensitivity over
BPSK. We will now consider how much this improves the ultimate quantum-limited sensitiv-



ity of a coherent transmission system. As a specific example,we consider a coherent optically
amplified system limited by ASE noise from inline optical amplifiers. We also assume a homo-
dyne receiver with phase and polarization diversity. Such asystem has been shown to be well
described by the AWGN model, with the SNR given by [4, Ch. 3.4,Table 1],

Eb

N0
=

nb

NAnsp
(3)

wherenb is the average number of received photons per bit,NA is the number of amplifiers in the
link andnsp is the spontaneous emission noise factor from the inline amplifiers. In fact, Eq. (3)
holds for both heterodyne and homodyne receivers limited byASE noise. SinceNansp > 1,
we see that in the limiting case (a single amplifier with a 3 dB noise figure), the sensitivity in
terms of number of photons per bit is given directly byEb/N0. ForBER= 10−9, this translates
into the well-known [4, 11] sensitivity of 18 photons per bitfor BPSK. However, from Fig. 3
we see that PS-QPSK improves this sensitivity to 13 photons per bit. At BER= 10−3, we get
4.5 photons per bit for BPSK (which was given in dB units in [4]) and 3.8 photons per bit for
PS-QPSK.

Since the SNR in the shot-noise limit is 3 dB higher than for the ASE limit (assuming the
same number of photons per bit and unity photodetector quantum efficiency [4, Erratum, Table
1]), the shot-noise limited sensitivity in terms of photonsper bits is half of the above values.
Since no more power efficient modulation formats are possible, according to Fig. 1, we be-
lieve the above values provide the ultimate quantum-limited sensitivities for optical coherent
receivers without coding.

6. Conclusions

We have shown that the overall most power-efficient modulation format for uncoded, coherent
optical systems is the PS-QPSK format, or four-dimensionalbiorthogonal signaling, which has
an asymptotic gain relative to BPSK (and DP-QPSK) of 1.76 dB.This can be understood as
follows: half the symbols of DP-QPSK are used, in such a way that the power can be decreased
to half without reducing the minimum distance of the constellation, giving a factor of 2 of
improved sensitivity. However, the reduced number of bits per symbol from 4 to 3 gives 3/4 of
penalty, thus in total a gain of 3/2, or 1.76 dB. At a BER of 10−9, this improves the ASE-limited
sensitivity from 18 (for BPSK) to 13 (for PS-QPSK) photons per bit. We conclude that the PS-
QPSK format has the best sensitivity attainable in optical systems, unless the constellation
dimension is extended, e.g., by the use of error-correctingcodes. Thus, the PS-QPSK format is
the answer to the deceptively simple question posed in the title.
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