
VERIFICATION OF SUPERVISORY CONTROL PROPERTIES OF

FINITE AUTOMATA EXTENDED WITH VARIABLES

ALEXEY VORONOV, KNUT ÅKESSON

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden
ISSN 1403-266X R003/2009

2

Abstract
Verification and synthesis of control logic programs using

Supervisory Control Theory (SCT) is an important topic. Most
SCT methods are based on finite state automata (FA). FA
extended with variables (EFA) are a compact, but otherwise
equivalent to FA notation, proven to be beneficial in modeling
control logic systems. To use existing SCT methods with EFA,
it is necessary to convert EFA to FA. In certain cases this
conversion can be very time-consuming, even if the number
of resulting reachable states is very small compared to the
total state-set of the system. In this paper we present a way
to do verification of SCT properties of EFA models without
converting them to FA. Instead, we convert them to the models
for Symbolic Model Verification tool NuSMV. The conversion
is performed in polynomial time. Experimental results show
that NuSMV effectively utilizes small reachable state-set of
the system to do verification.

Index Terms—Formal verification, supervisory control, finite
automata, manufacturing systems, control logic, model checking.

I. INTRODUCTION

Supervisory control theory [1] supports a user in the process
of generating correct control function. In SCT, Supervisor is
used to enable/disable events that may occur in the Plant. Plant
generates all events. Supervisors can be synthesized automat-
ically from the specification or can be created manually.

Finite state automata are usually used as a modeling for-
malism in SCT. In many cases it is cumbersome to use finite
automata to model signal-based manufacturing systems [2]–
[4]. Various extensions were introduced to simplify model-
ing (for example [5]–[7]), many of which were inspired by
Statecharts [8]. In this paper we will look at finite automata
extended with variables [9]. They provide a convenient way
to create the models, while still maintaining a possibility to
convert them to ordinary finite state automata to use existing
SCT algorithms. Here arises a problem: the conversion can
take exponential time, even if the resulting state-space of the
system is small. This paper describes approach to verification
of automata extended with variables without converting them
to ordinary automata.

Model checking [10] is a well-established area. It is used for
verification of software and hardware systems. Good results
were achieved in the area, and good end-user tools exist
[11]–[13]. Most often, symbolic representation is used for
verification instead of explicit representation. In this paper we
reduce supervisory verification problem of automata extended
with variables to the form that is suitable for symbolic model
verification tool NuSMV.

The rest of the paper is organized as following. Section II
gives formal definitions of automata extended with variables
and their supervisory control properties. Section III defines
NuSMV input model. Section IV describes the conversion
algorithm, and Section V illustrates the algorithm with an
example. The paper is concluded with experimental results
and discussion.

II. PRELIMINARIES

Extended Finite Automaton (EFA) is a six-tuple:

E = 〈Q× V,Σ,→, (q0, v0)〉 (1)

where
• Q × V is the extended finite set of states, where Q is

a finite set of locations and V = V 1 × V 2 × ... × V n
is the finite domain of definition of the variables v =
(v1, v2, ..., vn);

• Σ is a nonempty finite set of events (the alphabet);
• →⊆ Q × V × Σ × G × A × Q is a transition relation,

where G is a set of guards, and guard is a predicate on
V , A = { a | a is a function from V to V };

• q0 is an initial location and v0 are initial values of the
variables.

Transition relation (p, v, σ, g, a, q) ∈→ means that there is
a transition from state (p, v) to state (q, a(v)) labeled by event
σ if g(v) evaluates to 1 (true).

For convenience we use the symbol Ξ to denote implicit
actions that update variables to their current value. Unlike ex-
plicit actions, Ξ can be overriden when EFA are synchronized.

It is possible to write transition relation → in infix form:
p
σ−→g/aq. If g is absent it assumed that it always evaluates to

true. If a is absent, it is assumed that a = (Ξ,Ξ, ...Ξ).

A. Parallel Synchronous Composition, EFA

To simplify the notation when dealing with the parallel
synchronous composition of EFA, we assume that the EFA
share all variables. This is no restriction since it is always
possible to add don’t care variables that are never updated.
For the synchronous composition to exist, a necessary and
sufficient condition is that shared variables must have the same
initial values. The composition operator models that an event
can occur in the synchronized system if and only if it can
occur in all EFA that share the event.

Let Ek =
〈
Qk × V,Σk,→k, (qk0 , v0)

〉
, k = 1, 2 be two

EFA with the shared variables v = (v1, ..., vn). The parallel
synchronous composition of E1 and E2 is

E1||E2 =
〈
Q1 ×Q2 × V,Σ1 ∪ Σ2,→, (q1

0 , q
2
0 , v0)

〉
, (2)

where the state transition relation → is defined as
• (p1, p2) σ−→g/a(q1, q2), σ ∈ Σ1

⋂
Σ2 if

∃(p1, v1, σ, g1, a1, q1) ∈ →1, ∃(p2, v2, σ, g2, a2, q2) ∈
→2 such that g = g1 ∧ g2 and for i = 1...n and ∀v ∈ V :

ai(v) =


ai1(v) if ai1(v) = ai2(v)
ai1(v) if ai2(v) = Ξ
ai2(v) if ai1(v) = Ξ
vi otherwise

(3)

• (p1, p2) σ−→g/a(q1, q2), σ ∈ Σ1 \ Σ2 if (p1, σ, g, a, q1) ∈
→1 and p2 = q2;

• (p1, p2) σ−→g/a(q1, q2), σ ∈ Σ2 \ Σ1 if (p2, σ, g, a, q2) ∈
→2 and p1 = q1.

3

Note that if the action function of E1 and E2 explicitly tries
to update a shared variable to different values, the variable
is not updated. This implies that the synchronized EFA may
not have the intended behavior. Sufficient condition to avoid
this possibility is given in [9]. This condition is a global
requirement and may be computational expensive to compute.

B. Supervisory control properties

Let E = 〈Q× V,Σ,→, (q0, v0)〉 be an extended finite
automaton and Qm× V m ⊆ Q× V be a set of marked states
of the automaton. EFA is called non-blocking if

∀(q, v) ∈ (Q×V) : ∃s ∈ Σ∗,

∃(qm, vm) ∈ (Qm×V m).(q, v) s−→ (qm, vm) (4)

In words, the system is non-blocking if from any state there
is a path to some marked state.

Let G = (Q×V,Σ,→, (q0, v0) be an EFA. The active event
function Γ : Q× V → 2Σ of G is defined as

Γ(p, v) = {σ ∈ Σ|(p, v) σ−→}. (5)

Let G and K be two EFA using shared variables with
domain V . Let Σu be the set of uncontrollable events and ΣK
be the alphabet of K. A state (pG, pK , v) ∈ QG × QK × V
in the synchronized automaton G||K, is controllable if the
following statement holds:

ΣK ∩ Σu ∩ Γ(pG, v) ⊆ Γ(pK , v). (6)

Uncontrollable states are the states of G||K where G allows
an uncontrollable event but K disables the same event via the
synchronization.

Let G be a plant and K be a specification and Σu be the
set of uncontrollable events. K is controllable with respect to
G and Σu iff all reachable states of G||K are controllable.

III. NUSMV

NuSMV [12] is a tool for symbolic model verification. It is
mature tool with numerous users and proven efficiency, and it
is open source.

We will represent NuSMV program as a tuple:

P = 〈S, InpV ar,D, init, t, C〉 (7)

where
• S = S1 × S2 × ... × Sm is a set of finite domains of

definition of state-keeping variables s1...sm;
• InpV ar is a set of domains of input variables; input

variables have no state and on each step can take any
value that satisfies transition constraints;

• D is a set of expressions that specify “define identifiers”
or non state-keeping variables, that can be considered as
macro definitions;

• init is a predicate that describes an initial state;
• t is a predicate that describes transition constraints;
• C is a set of Computation Tree Logic (CTL) expressions

of specifications.
NuSMV has two types of expressions. Simple expressions are
ordinary arithmetic and logical expressions. Next expressions

relate current and next value of state-keeping variables. We
will denote next value of a variable s by next(s). We will use
the following simple expressions: ==, 6=, ∧, ∨, and +, for
equality, inequality, conjunction, disjunction and sum, respec-
tively. One more simple expression is case expression. Case
expression consists of a list of pairs of predicates and simple
expressions. Starting from the beginning of the list, elements
are taken one-by-one until predicate that evaluates to true will
be found. Second element (expression) of the pair that contains
this predicate is taken as a value of the case expression.
Define declarations create synonims for expressions. We will
write v := e to denote that name v is a macro definition for
expression e.

To specify properties that are necessary to verify, NuSMV
accepts Computation Tree Logic (CTL) formulas. CTL is a
branching-time logic, meaning that its model of time is a tree-
like structure in which the future is not determined; there are
different paths in the future, any one of which might be an
actual path that is realized.

We will use the following two constructs from CTL:
• AG ϕ - All paths Globally: ϕ has to hold on all paths

starting from the current state and to hold on the entire
subsequent path.

• EF ϕ - Exists path where Finally: there exists at least one
path starting from the current state where ϕ eventually
has to hold.

IV. CONVERSION FROM EFA TO NUSMV

Let E1...El be l EFA with n shared variables V 1...V n.
Then NuSMV will require m = l + n state-keeping variables
to represent it.

Si = Qi, i = 1..l (8)
Ui = Vi, i = 1..n (9)

Events in the system can be represented by one input
variable event with the domain

⋃
k=1..l Σk:

InpV ar = {event} (10)

Initial predicate will be just a conjunction of expressions
stating that the state variables should have values that corre-
spond to the initial locations of the automata and initial values
of the EFA variables:

init =

(∧
i=1..l

(si == qi0)

)
∧

(∧
i=1..n

(ui == vi0)

)
(11)

For each transition, it is possible to define one non-state
keeping variable, that will be true iff the transition is taken
at the current step. List of all definitions for transitions of
automaton k, denoted by transitionsTakenk, can be defined
as following:

transitionsTakenDefk =

{tranIsTakenjk := (s == p) ∧ (event == σ) ∧ g
| (p, σ, g, a, q)jk ∈→k} (12)

where →k denotes transition relation for automaton k.

4

During synchronization there could be a situation when
event do not belong to the alphabet of the automaton, and the
automaton should keep its location. We will add extra variables
that will indicate this situations:

stayIsTakenDefk =(
stayIsTakenk :=

∧
e∈Σk

event 6= e

)
(13)

Transition constraint expression specifies that either one of
the transitions is taken and automaton changes its location
to the target state of the transition, or that automaton should
keep its location. This can be defined with the help of macro
definitions as following:

tranConstrk = ∨
(p,σ,g,a,q)j∈→k

tranIsTakenjk ∧ (next(sk) == q)


∨ (stayIsTakenk ∧ (next(sk) == sk)) (14)

It is necessary to specify that on each step each automaton
take only one transition. Boolean variable can be seen as
an integer variable, with 1 indicating true and 0 indicating
false. Having that, it is possible to do summation over them.
Condition is that the sum of all transitions that are taken at
the current step and indication to keep the location should
be exactly one. (In the following equation only, symbol Σ
will stand for the mathematical summation and not for the
automaton alphabet).

singleTranConstrk =

1 ==

stayIsTakenk +
∑
j

tranIsTakenjk

 (15)

Updates of the EFA variables are more complicated than
the ones for automata locations, since variable can have don’t
care updates. With such an update, the EFA variable should
keep its value, but if some other automaton overrides this due
to the synchronization, the variable should take the new value.
That is why it is necessary to check on each step if there is
an automaton that “cares” about the update of the variable.
It is possible to introduce one define-variable for each pair
of automaton and EFA variable that will indicate that the
automaton Ek cares about the update of the variable vi on the
current step. We will call this variable desirei,k. This variable
can take value 0 to indicate don′t care, and 1 to indicate that
the automaton wants to update the variable on the current step.
We will reserve value 2 to indicate conflicts.

desireDef i,k = (desirei,k := case(

{(tranIsTakenjk, 1) | (p, σ, g, a, q)jk ∈→k, a 6= Ξ}
∪ {(true, 0)})) (16)

Note that we added one element to the end of the case ex-
pression that covers all don’t care updates and stay transitions.

It is also necessary to have variables for desired values,
which can be defined similarly:

desiredV alDef i,k = (desiredV ali,k := case(

{(tranIsTakenjk, a(ui)) | (p, σ, g, a, q)jk ∈→k, a 6= Ξ}
∪ {(true, ui)})) (17)

Having desires and desired values for all pairs of automata
and EFA variables, it is necessary to combine all desires to
get a single one for each EFA variable. Rule for combination
of two desires is simple. If none of automata cares about
updating, result is don′t care. If only one of automata cares,
the result is care. If both automata wants to update EFA
variable to the same value, the result is care. And if two
automata wants to update the variable to two different values,
the result is conflict.

We define a function that will map three pairs of desire
and desired value variables to two macro definitions. This will
specify that the third pair of desire and desired value is a
combination of the first two desires and desired values:

combine((d1, dv1), (d2, dv2), (dr, dvr)) =
dr := case({
(d1 == 0, d2),
(d2 == 0, d1),
(d1 == 2 ∨ d2 == 2, 2),
(d1 == 1 ∧ d2 == 1, case({(dv1 6= dv2, 2),

(dv1 == dv2, 1)})
})
∪
dvr := case({(dr == 0 ∨ dr == 2,Ξ),

(dr == 1, case({(d1 == 1, dv1),
(d2 == 1, dv2)}))}) (18)

Here we used Ξ to indicate that the value should not be
changed. In programming language we can model Ξ as Nil
or null, since it will not be necessary to check for the desired
value if the desire is different from care.

Using this rule, we will combine desires for all automata
that are related to the EFA variable. A set of all automata that
are related to the EFA variable vi can be defined as following:

relatedAutomatai =
{E|E ∈ E1..En,∃(p, σ, g, a, q) ∈→k: a(v) 6= Ξ} (19)

Before we can specify a combination of desires, we will
need two more functions. One will map a pair of EFA variable
and automaton to the pair of desire and desired value variables
for them:
varPair(vi, automatonk) = (desirei,k, desiredV ali,k)

5

Another function will map a pair of an EFA variable and a
list of automata to a pair of desire and desired value variables
of that list concerning the variable:
varPairForList(vi, L) = (desirei,L, desiredV ali,L) .
Now it is possible to specify a function that will map a pair

of a list of automata and a variable to another pair. Resulting
pair will contain a pair of desire and desired value for the list,
and a list of definitions of extra variables.

combM(L, vi) =

(pairr, varsr), where
pairr = varPairForList(vi, L),
pairhead = varPair(vi, head(L)),
pairtail = varPair(vi, head(tail(L)),
varsr = combine(pairhead, pairtail, pairr),

if length(L) = 2
(pairr, varsr), where
pairr = varPairForList(vi, L),
pairhead = varPair(vi, head(L)),
(pairtail, varstail) = combM(tail(L), vi),
varsr = combine(pairhead, pairtail, pairr) ∪ varstail,

if length(L) > 2
(20)

where head stands for the first element of the list, and tail
stands for the rest of the list without the first element.

tail(L) = L \ head(L) (21)

Then resulting desire and desired value for variable vi can
be obtained by the following formula:

((desirei, desiredV ali), extraV arsDef i) =

combM(relatedAutomatai, vi),
if length(relatedAutomatai) ≥ 2

(varPair(head(relatedAutomatai)), ∅),
if length(relatedAutomatai) = 1

((0, ui), ∅)
if length(relatedAutomatai) = 0

(22)

Final transition constraint for the variable vi have to be
adjusted to deal properly with conflicts:

tranConstrForV ari = next(ui) == case({
(desirei == 0 ∨ desirei == 2, ui),

(desirei == 1, desiredV ali)}) (23)

Complete predicate for transition constraints will combine
all constraints for automata transitions and for EFA variables
updates:

t =
∧

k=1..l

(transConstrk ∧ singleTranConstrk)

∧
∧

i=1..n

transConstrForV ari (24)

Complete set of define variables will contain definitions of
all transitions, including stay transitions, and all desire and
desired value variables:

D =⋃
k=1..l

(transitionsTakenDefk ∪ stayIsTakenDefk)

∪
⋃

i=1..n,k=1..l

desireDef i,k

∪
⋃

i=1..n,k=1..l

desiredV alDef i,k

∪
⋃

i=1..n

extraV arsDef i

(25)

To specify non-blocking, the following CTL formula can be
used:

AG EF

 ∧
i=1..n

∨
qm∈Qm

i

si == qm


∧

 ∧
i=1..l

∨
vm∈Vm

i

ui == vm

 (26)

The formula specifies that on all pathes eventually the system
will have a state that is marked.

To specify controllability it is necessary to introduce extra
define-variables. For each event for each automaton this vari-
able will be true if the event is enabled, and false otherwise:

enabledkσ :=
case({((si == p) ∧ g, 1)|(p, σ, g, a, q) ∈→k} ∪ {(1, 0)})

if σ ∈ Σk
1 otherwise

(27)

Then controllability can be expressed as following: for all
uncontrollable events, if it is enabled in all plants automata,
it have to be enabled in all specification automata. In other
words, each uncontrollable event should be either disabled
in any of the plant automata or enabled in all specification
automata. Let Eplants, Especs ⊆ E1...El be two disjoint sets
of plants automata and specifications automata. Let Σu ⊆⋃
i=1..l Σi be a set of all uncontrollable events. Then the

property that Especs are controllable with respect to Eplants

and Σu can be expressed as following:

AG
∧
σ∈Σu

(
∨

Ei∈Plants

(enablediσ == 0)

∨
∧

Ej∈Specs
(enabledjσ == 1)) (28)

V. EXAMPLE CONVERSION

To illustrate the conversion we will use two automata that
share one variable, see Fig. 1. Automaton E1 have locations

6

{q11, q12} with initial location q11. Automaton E2 have loca-
tions {q21, q22} with initial location q21. Variable v can take
values 0 or 1 and have initial value 0.

Alphabet of automaton E1 is Σ1 = {a, b}. Automaton has
transitions q11

a−→v==0/v:=1 q12 and q12
b−→ q11. Alphabet

of automaton E2 is Σ2 = {a, c}. Automaton has transitions
q21

a−→ q22 and q22
c−→true/v:=0 q21.

Initial predicate will be as following:

init = (s1 == q11) ∧ (s2 == q21) ∧ (v == 0) (29)

Define-variables for transitions for each automaton will be:

transitionsTakenDef1 = {
tranIsTaken1

1 := (s == q11) ∧ (event == a)∧
∧ (v == 0),

tranIsTaken2
1 := (s == q12) ∧ (event == b)} (30)

transitionsTakenDef2 = {
tranIsTaken1

2 := (s == q21) ∧ (event == a),

tranIsTaken2
2 := (s == q21) ∧ (event == c)} (31)

Definition of stay variable will be as following:

stayIsTakenDef1 =
{stayIsTaken1 := (event 6= a) ∧ (evnet 6= b)} (32)

stayIsTakenDef2 =
{stayIsTaken2 := (event 6= a) ∧ (evnet 6= c)} (33)

Transition constraints will be:

tranConstr1 =
(
tranIsTaken1

1 ∧ (next(s1) == q12)
)

∨
(
tranIsTaken2

1 ∧ (next(s1) == q11)
)

∨ (stayIsTaken1 ∧ (next(s1) == s1)) (34)

v=1
v==0

q_12

q_11

b
a

(a) Automaton E1

v=0

q_22

q_21

ca

(b) Automaton E2

Fig. 1. Example automata

tranConstr2 =
(
tranIsTaken1

2 ∧ (next(s2) == q22)
)

∨
(
tranIsTaken2

2 ∧ (next(s2) == q21)
)

∨ (stayIsTaken2 ∧ (next(s2) == s2)) (35)

Single transition constraints:

singleTranConstr1 =

(tranIsTaken1
1 + tranIsTaken2

1 +stayIsTaken1 == 1)
(36)

singleTranConstr2 =

(tranIsTaken1
2 + tranIsTaken2

2 +stayIsTaken2 == 1)
(37)

Desire definitions for automaton E1 will contain only two
elements, since only one transition modifies the variable.
Desired value during update is set to 1 :

desireDefv,E1 = (desirev,E1 := case({
(tranIsTaken1

1, 1), (true, 0)})) (38)

desiredV alDefv,E1 = (desiredV alv,E1 := case({
(tranIsTaken1

1, 1), (true, v)})) (39)

desireDefv,E2 = (desirev,E2 := case({
(tranIsTaken2

2, 1), (true, 0)})) (40)

desiredV alDefv,E2 = (desiredV alv,E2 := case({
(tranIsTaken2

2, 0), (true, v)})) (41)

Both automata are related to the variable, that is why
relatedAutomatav = {E1, E2}. Combined desire and de-
sired value for the variable, as well as extra definitions, could
be obtained as following:

7

((desirev, desiredV alv), extraV arsDefv) =
= combM({E1, E2}, v)

= (pairr, varsr)
= (varPairForList(v, {E1, E2}),

combine(varPair(v,E1), varPair(v,E2),
varPairForList(v, {E1, E2})))

= ((desirev,{E1,E2}, desiredV alv,{E1,E2}),

combine((desirev,E1 , desiredV alv,E1),

(desirev,E2 , desiredV alv,E2),

(desirev,{E1,E2}, desiredV alv,{E1,E2})))

= ((desirev,{E1,E2}, desiredV alv,{E1,E2}),

{desirev,{E1,E2} := case({(desirev,E1 == 0, desirev,E2),

(desirev,E2 == 0, desirev,E1),

(desirev,E1 == 2 ∨ desirev,E2 == 2, 2)

(desirev,E1 == 1 ∧ desirev,E2 == 1, case({
(desiredV alv,E1 6= desiredV alv,E2 , 2),

(desiredV alv,E1 == desiredV alv,E2 , 1)}))}),
desiredV alv,{E1,E2} := case({

(desirev,{E1,E2} == 0 ∨ desirev,{E1,E2} == 2, v),

(desirev,{E1,E2} == 1, desiredV alv,E1)})}) (42)

From this direct calculation, we obtained definitions of
two extra variables, desirev,{E1,E2}, desiredV alv,{E1,E2},
and found out that this variables should be used in the
transition constraint for the variable:

tranConstrForV ari = (next(v) == case({
(desirev,{E1,E2} == 0 ∨ desirev,{E1,E2} == 2, v),

(desirev,{E1,E2} == 1, desiredV alv,{E1,E2})})) (43)

Automaton E1 has location q11 as a marked location, and
automaton E2 have q21 marked. Then non-blocking property
can be specified as following:

AG EF (s1 == q11 ∧ s2 == q21) (44)

VI. EXPERIMENTAL RESULTS

The method was implemented and compared with the
conversion of EFA to ordinary automata and verification.
Example was taken from IEC 61499 program verification. EFA
model consisted of 112 automata and variables. Conversion
to ordinary automata took more than 15 minutes on Pentium
IV 2.4 GHz with 2 GB RAM. The system had 108 potential
states, but only 249 reachable states. Verification of ordinary
automata system was done in a fraction of a second. With
the proposed method conversion from EFA model to NuSMV
model was done in less than a second, and NuSMV verification
was done in a fraction of second again. This shows that on
some examples there is a few orders of magnitude speed-up.

VII. CONCLUSIONS

Proposed method gives a possibility to convert expressive
EFA models to the models that can be verified by the state-of-
the-art symbolic model verification tools. This conversion can
be done much more efficiently than the conversion to ordinary
finite state automata. Possible disadvantage of this approach is
that it is not possible to do supervisory synthesis on NuSMV
models that was possible with ordinary automata.

REFERENCES

[1] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[2] S. Balemi, G. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. Franklin,
“Supervisory control of a rapid thermal multiprocessor,” Automatic
Control, IEEE Transactions on, vol. 38, no. 7, pp. 1040–1059, July
1993.

[3] M. Fabian and A. Hellgren, “PLC-based implementation of supervisory
control for discrete eventsystems,” in Decision and Control, 1998.
Proceedings of the 37th IEEE Conference on, vol. 3, Tampa, FL, USA,
1998, pp. 3305–3310.

[4] X.-R. Cao, G. Cohen, A. Giua, W. M. Wonham, and J. H. van Schuppen,
“Unity in diversity, diversity in unity: Retrospective and prospective
views on control of discrete event systems,” Discrete Event Dynamic
Systems, vol. 12, no. 3, pp. 253–264, 2002.

[5] Y.-L. Chen and F. Lin, “Modeling of discrete event systems using finite
state machines with parameters,” in Proceedings of the 2000 IEEE
International Conference on Control Applications, Anchorage, Alaska,
USA, September 2000.

[6] Y. Yang and P. Gohari, “Embedded supervisory control of discrete-event
systems,” in Proceedings of the 2005 IEEE international conference on
automation Science and engineering, Edmonth, Canada, August 2005.

[7] B. Gaudin and P. Deussen, “Supervisory control on concurrent discrete
event systems with variables,” in American Control Conference, 2007.
ACC ’07, July 2007, pp. 4274–4279.

[8] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, pp. 231–274, 1987.

[9] M. Sköldstam, K. kesson, and M. Fabian, “Modeling of discrete event
systems using automata with variables,” in Proceedings of the 46th IEEE
Conference on Decision and Control, 2008, pp. 3387–3392.

[10] E. Clarke and E. Emerson, “Synthesis of synchronization skeletons
for branching time temporal logic,” in Logic of Programs: Workshop,
Yorktown Heights, NY, May 1981, ser. Lecture Notes in Computer
Science. Springer-Verlag, 1981, vol. 131.

[11] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang, “Symbolic model checking: 1020 states and beyond,” in Logic
in Computer Science, 1990. LICS ’90, Proceedings., Fifth Annual IEEE
Symposium on the, 1990, pp. 428–439.

[12] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An OpenSource
tool for symbolic model checking,” in Proceeding of International
Conference on Computer-Aided Verification (CAV 2002), Copenhagen,
Denmark, July 2002.

[13] T. Amnell, G. Behrmann, J. Bengtsson, P. R. D’Argenio, A. David,
A. Fehnker, T. Hune, B. Jeannet, K. G. Larsen, M. O. Möller, P. Pet-
tersson, C. Weise, and W. Yi, “UPPAAL: now, next, and future,” in
Modeling and verification of parallel processes, ser. Lecture Notes In
Computer Science. New York, NY, USA: Springer-Verlag New York,
Inc., 2001, pp. 99–124.

