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Abstract

In this licentiate thesis we consider a family of Hilbert spaces of holomorphic func-
tions on a bounded symmetric domain 2 = SO(2,n)/S(0(2) x O(n)) and cor-
responding holomorphic unitary (projective)representations of SO(2,n) on these
spaces. These representations are known to be irreducible. Our aim is to decom-
pose them under the subgroup SO(1,n) which acts as the isometry group of a
totally real submanifold X of 2. We give a proof of a general decomposition theo-
rem for certain unitary representations of semisimple Lie groups. In the particular
case we are concerned with, we find an explicit formula for the Plancherel measure
of the decomposition as the orthogonalising measure for certain hypergeometric
polynomials. Moreover, we construct an explicit generalised Fourier transform
that plays the role of the intertwining operator for the decomposition. We prove
an inversion formula and a Plancherel formula for this transform. Finally we con-
struct explicit realisations of the singular part appearing in the decomposition and
also for the minimal representation corresponding to the given family of Hilbert
spaces.

Keywords: Bounded symmetric domains, Lie groups, Lie algebras, unitary repre-
sentations, spherical functions, hypergeometric functions, Fourier-Helgason trans-
form.
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1 Introduction and background

One of the main problems in representations of Lie groups and harmonic analysis
on Lie groups is to decompose some interesting representation of a Lie group G
under a subgroup H C G. Among other things, this has lead to the discovery of
some new representations. This decomposition is also called the branching rule.

Since the work by R. Howe, M. Kashiwara and M. Vergne (cf [8]), it has turned
out to be fruitful to study the branching of singular and minimal holomorphic
representations of a Lie group acting on a function space of holomorphic functions
on a bounded symmetric domain.

In this licentiate thesis we will study the branching of a holomorphic rep-
resentation of SO(2,n) under the subgroup H = SO¢(1,n). The subgroup H
here is realised as the isometry group of a totally real manifold of the Lie ball
S0(2,n)/S(0(2) x O(n)). The branching for a general Lie group G of Hermitian
type under a symmetric subgroup H has been studied recently by Neretin ([14])
and Zhang ([21], [23],[22]). The branching rule for regular parameter and for some
minimal representations is now well understood. However there is still no complete
theory for the general case.

We find in this thesis the branching for arbitrary scalar parameter v in the
Wallach set and we give an explicit realisation of the discrete part appearing in
the decomposition.

2 The Lie ball as a symmetric space SO(2,n)/S(0(2) x O(n))
In this thesis we study representations on function spaces on the domain
9 ={z€C"|1—2(2,2) + |22"]* > 0,]2| < 1}. (1)

We will only be concerned with the case n > 2. (If n = 1 it is the unit disk, U,
and if n = 2, 2 = U x U). In this section we prove that 2 is the quotient of
S0(2,n) by S(O(2) x O(n)) by studying a holomorphically equivalent model on
which we have a natural group action induced by the linear action on a Grassma-
nian manifold.

Consider R"*t2 =~ R? @ R" equipped with the non-degenerate bilinear form

(zly) := T1y1 + T2y2 — T3Y3 — ... — Tni2Ynt2,

where the coordinates are with respect to the standard basis e;,--- ,e,q2. Let
S0(2,n) be the group of all linear transformations on R"*2? that preserve this
form and have determinant 1, i.e.,

S0(2,n) = {g € GL(2 +n,R)|(9z|gy) = (z]y), 2,y € R**" detg =1} (2)

Let Q(Jg n) denote the set of all two-dimensional subspaces of R?> @ R” on which
(-]) is positive definite. Clearly R? & {0} is one of these subspaces. It will be the



reference point in Q(Jg,") and we will denote it by V5. The group SO(2,n) acts
linearly on this set and we shall see that this action is actually transitive. Let
therefore V € gg;,n) and let V*denote the set of vectors that are orthogonal to V'
in the sense of (-|-). Since the form (-|-) is positive definite, we can construct an
ordered orthonormal basis, {v1,v2}, for V. Given z € V, x — (z|v1)v1 — (z|vz)vs is
in V1 and since VNV+ = {0} we have R**2 = V@ V<. Tt is now sufficient to prove
that the form is strictly negative on V', since in that case we can construct an
ordered orthonormal basis, {w1, ..., w,}, for V1 and by defining a linear mapping
that maps the standard basis onto {v1, v, w1, ..., wy}, we have found an element,
g in SO(2,n) that maps V5 to V.

Now we decompose the basis vectors for V as v = & + n1, v2 = & + 12 with
& € R p € R and ||&]) > |lmsll,é € {1,2}. A vector u + @ in V' satisfies
(u+ 1 | avy + Bva) =0, i.e. (u,a&s + B&) = (@, an + Bna2). Since {1, &2} forms
a basis for R2, we have

lu = sup  [u,ai +B&) = sup  [(G,am + Bne) <
a8 ER a,B ER
[lag14+-BE2||=1 lag1+BE2(|=1

sup  [laflllem + B2l < sup  [|@]l[[aés + Bl < ||l
a,f erR a,B ER
lla€14+BE2]|=1 €1 +B82]|=1

ie. (- | -) is negative definite on V+.

The element g constructed above is not unique. Indeed, g and h map V; to
the same element precisely when gh~! fixes V5. We denote by K the stabilizer
subroup of Vj, i.e.,

K = {g € 50(2,n)|g(Vo) = Vo}- ()

Any element g € SO(2,n) can be identified with a (2 + n) x (2 + n)- matrix of
the form

!

where A is a 2 x 2-matrix. With this identification, K clearly corresponds to the

matrices
A 0
0 D)’

where A and D are orthogonal 2 x 2- and n x n-matrices respectively, i.e., K 2
S(0(2) x O(n)). The space g;g n) Can be realised as the unit ball in M2 (R) with

the operator norm. Indeed, let V' € Q(J; ) If v =v; vy € V, then v; = 0 implies



that va = 0, i.e., projection onto the R?-component is an injective mapping. This
means that there is a real n x 2 matrix Z with Z!Z < I, such that

V ={(v® Zv)|v € R?}. (5)

Conversely, if Z € M,»(R) satisfies Z!Z < I, then (5) defines an element in Q(Jg )"
Using (2) to identify g with a matrix and letting V' correspond to the matrix Z,
then clearly

% {(Av+ BZv & Cv + DZv)|v € R?)}

{ve (C+DZ)(A+ BZ) 'v)v e R?)}.

In other words, we have an SO(2, n)-action on the set
M ={Z € Mn(R)|Z'Z < I}
given by
Z— (C+DZ)A+BZ) L

Since the elements of M correspond to the cosets of SO(2,n) modulo SO(2) x
SO(n), a smooth manifold structure is induced on M by this identification. The
matrix Z = (XY) can be identified with the vector X + ¢Y in C*. Thus we
have the almost complex structure J(XY) = (=Y X) which is equivalent with
multiplication with . We now have an action of SO(2,n) on the manifold M =
{Z € Mn2(R)|Z'Z < I,} (viewed as an open submanifold of R?™). In fact, the
action is holomorphic with respect to J. Moreover we have the following result by
Hua (see [7]):

Theorem 1. The mapping

¢
= ((E0 5ETY)(2))
is a holomorphic diffeomorphism of the bounded manifold
P9 ={z€C"|1 —2(z,2) + |22"]* > 0,]2] < 1}
onto M.

We will call this mapping the Hua transform and denote it by H. It allows us
to describe 2 as a symmetric space

2= 80(2,1)/S(0(2) x O(n)).

Remark. SO(2,n) has two connected components (cf [6] 10.2) and one can in fact
easily prove that the identity component SOq(2,n) acts transitively on 2 (cf the
proof of Prop. (5)). Therefore we can also desribe 2 as the symmetric space

S00(2,n)/(SO(2) x SO(n)).



3 Bounded symmetric domains and Jordan pairs

In this section we briefly review some general theory on bounded symmetric do-
mains and Jordan pairs. All proofs are omitted. For a more detailed account we
refer to Loos ([11]).

Let D be a bounded open domain in C* and H?(D) be the Hilbert space of all
square integrable holomorphic functions on D,

H?(D) = {f, f holomorphic on D|/ |f(2)[2dm(z) < oo},
D

where m is 2n-dimensional Lebesgue measure. It is a closed subspace of L?(D).
For every w € D, the evaluation functional f — f(w) is continuous, hence H2(D)
has a reproducing kernel K (z,w), holomorphic in z and antiholomorphic in w such
that

fw) = [ 1R widm(e).
K (z,w) is called the Bergman kernel. It has the transformation property

K(p(2),0(w)) = Jo(2) K (2, w) Jp(w), (6)

for any biholomorphic mapping ¢ on D with complex Jacobian J,(z) = det dy(2).
Hereafter biholomorphic mappings will be referred to as automorphisms. The
formula

hz(uav) = 6u&v10gK(zaz) (7)

defines a Hermitian metric, called the Bergman metric. It is invariant under au-
tomorphisms and its real part is a Riemannian metric on D.

A bounded domain D is called symmetric if, for each z € D there is an in-
volutive automorphism s, with z as an isolated fixed point. Since the group of
automorphisms, Aut(D) preserves the Bergman metric, s, coincides with the local
geodesic symmetry around z. Hence D is a Hermitian symmetric space.

A domain D is called circled (with respect to 0) if 0 € D and e¥z € D for every
z € D and real t.

Theorem 2. FEvery bounded symmetric domain is holomorphically isomorphic
with a bounded symmetric and circled domain. It is unique up to linear isomor-
phisms.

From now on D denotes a circled bounded symmetric domain. G is the identity
component of Aut(D), K is the isotropy group of 0 in G. The Lie algebra g will
be considered as a Lie algebra of holomorphic vector fields on D, i.e., vector fields
X on D such that X f is holomorphic if f is.



The symmetry s,z — —z around the origin induces an invoulution on G by
g — sgs—! and, by differentiating, an involution Ad(s) of g. We have the Cartan
decomposition

g=top
into the +1-eigenspaces.

For every v € C", let &, be the unique vector field in p that takes the value v
at the origin. Then

o(2) =v—Q(2)v

where Q(z) : V = V is a complex linear mapping and Q : V — Hom(V,V) is a
homogeneous quadratic polynomial. Hence Q(z,2) = Q(z + 2) — Q(z) — Q(2) :
V — V is bilinear and symmetric in x and z. For z,y,z € V, we define

{zyz} = D(z,9)z = Q(=,2)y (8)

Thus {27z} is complex bilinear and symmetric in = and z and complex antilinear
in y, and D(z,7) is the endomorphism z — {z,52} of V. The pair (V,{ }) is called
a Jordan triple system. This Jordan triple system is positive in the sense that if
v € V,v # 0 and Q(v)v = Av for some X € C, then X is positive.

We introduce the endomorphisms

B(z,y) =1 - D(z,7) + Q(=)Q(®) 9)

of V for 2,y € V, where Q(@)z = Q(y)z-
We summarise some results in the following

Proposition 3. a) The Lie algebra g satisfies the relations

[(u;&] = D(u,?) — D(v, %) (10)
[lafu] = & (11)

foru,v eV andl €t
b) The Bergman kernel k(z,y) of D is

m(D)~! det B(z,y) " (12)
¢) The Bergman metric at 0 is
ho(u,v) = trD(u, ), (13)
and at an arbitrary point z € D
h(u,v) = ho(B(z,2) " u,v) (14)
d) The triple product { } is given by
ho({uvw},y) = 0,00,0ylog K (2, 2)|.=0 (15)



We define odd powers of an element x € V by
=z, 2 =Qx)T, - , 2! = Q(x)x2n1. (16)

An element © € V is said to be tripotent if z3 = =, i.e., if {zZz} = 2z. Two
tripotents ¢ and e are called orthogonal if D(c,€) = 0 In this case D(c,¢) and
D(e,€) commute and e + ¢ is a tripotent.

Every x € V can be written uniquely
T = Ac1+ -+ Ay,

where the ¢; are pairwise orthogonal nonzero tripotents which are real linear com-
binations of odd powers of z, and the \; satisfy

0< A <o < Appe

This expression for x is called its spectral decomposition and the \; the eigenvalues
of x. Moreover, the domain D can be realised as the unit ball in V' with the
spectral norm

[l#]] = max |Aq],
where the )\; are the eigenvalues of z, i.e.,
D= {zeV]||z| <1}.

Let f(t) be an odd complex valued function of the real variable ¢, defined for
|t| < p. For every x € V with |z| < p we define f(z) € V by

f@) = f(M)er + -+ f(An)en, (17)
where x = A1c1 +- - -+ Apcy is the spectral resolution of z. This functional calculus
is used in expressing the action on D of the elements exp &, in G:

exp &y (2) = u+ B(u,u)"*B(z, —u) ' (z + Q(2)u) (18)
and
d(exp &)(z) = B(u,u)/?*B(z, —u) ™", (19)

where 4 = tanh v, for v € C* and z € D.

4 The real part of the Lie ball
We consider the non-degenerate quadratic form

qz) =2+ 2, (20)



on V = C". In the following we will often denote ¢(z,w) by (z,w). Defining

Q(x)y = q(z,y)x — q(x)y, where g(z,y) = q(x +y) — qg(x) — q(y), we get a Jordan
triple system. The Lie ball 2 = {2z € C"|1 — 2(z,2) + [22!]*> > 0,]2] < 1} is
now unit open ball in this Jordan triple system. An easy computation shows the
following identity.

D(z,5)z =20} =r)z + 20D zx¥p)z — 203 zx2)y
k=1 k=1 k=1

Recalling that B(z,y) = I — D(z,y) + Q(2)Q(y). The Bergman kernel of 2 is
K(z,w) = (1 = 2(z,w) + |22"|*|wwt|?)~™. (21)

We will hereafter denote it by h(z,w) ™.

Consider the real from R"® in C*. Observe that 2 [ R" is the unit ball of R".
We will hereafter often denote it by X. On X we have a simple expression for the
Bergman metric:

B(z,z) = (1 - |z[*)7%I,z € X. (22)

X is a totally real submanifold of & in the sense that

To(X) +iTo(X) = To(92), To(X)()iTo(X) = {0}

This implies that every holomorphic function on & that vanishes on X is identically
zero. In fact, more is true

Lemma 4. X is a totally geodesic submanifold of 9, i.e., for every p € X and
v € Ty(X), the geodesic t — Exp,(tv) in P lies in X for all real t.

Proof. First we prove that complex conjugation is an isometry of the Riemannian
metric on 2. We let ¢(z) = Z. Clearly it is a smooth function with real differential
dy(z)v =v. Observe that h(z,z) = h(z,z). Hence

hop(z) (dip(2)u, dip(z)v) = Og0uh(Y(2),¥(2))™"
= 6u&vh(zaz)_n

Clearly
R(0uOzh(2,2)™") = R(Oz0ph(z,2)™ ™),

i.e., the real part of the Bergman metric is preserved.
Let p € X and choose neighbourhoods V' C T,,(2) = C*,U C 2 of 0 and p
such that

Exp,lv:V = U



is a diffeomorphism. Suppose that v € Exp, HUNX) and that Exp,(v) = z.
Since complex conjugation is an isometry, and fixes p and z, it also fixes the
geodesic from p to z, i.e., the geodesic is in X. This proves that Expzjl(U NX) is
an n-dimensional submanifold of V [1R". Hence it equals V [ R". O

We let G denote the identity component of Aut(2), K the isotropy group of 0
in G. We define the subgroup H as the identity component of

{h € Glh(z) € Xifz € X}
We will denote H (| K by L.

Proposition 5. H acts transitively on X and X = H/L as a symmetric space.

Proof. X is a Riemannian manifold with the Riemannian structure given by the
restriction to X of the Bergman metric. Since the geodesics of X are geodesics in
9, X is geodesically complete. Hence for any p, ¢ € X, there is a w € Tp(X) such
that

Exp,(tw) = q. (23)
Writing w = &,(p) with v € R, (23) can be stated as

exp &y (p) = ¢,

and hence the group action is transitive. Moreover the local symmetries s, for
p € X preserve X. Indeed, s,(z) = —x and clearly preserves X. The symmetry
s, at p is given by hsoh™! where h € H is chosen so that h(0) = p. Thus we have
proved the claim. O

We now study the image of X in the M,2(R)- model of the Lie ball. For
computational convenience, we now work with the transposes of these matrices.
Note that the letter X is used to denote both the real manifold in 2 and the first
column in the n X 2 matrix Z. In this section we will therefore temporarily denote
the real part of 2 by Xp.

The defining equation of the Hua-transform can be written as

(e e an(2)

In coordinates, this identity takes the form

1
2p = 5( (22" + D)y + i(z2" — 1)yp)- (25)

This gives
dzz' = (22")*(X +4V)(X +iY)" + 2(X X! + VX !) 22! (26)
+(X —iY)(X —iY)t, (27)



which is a quadratic equation in zz! with unique solution

o 2— (XX'+YYY) -2/ A -XXHA - YY) - (Y X))’

(X +iV)(X +iY)t (28)

zZz

From (25) we see that if z is real, then y; = 0 for all k. On the other hand, if
Y = 0, then (28) shows that zz! is real and therefore z is real by (25). Hence the
image of X € 2 under the Hua-transform is the set

H(Xp) = {Z = (X 0)|X € M (R)}. (29)

For an element Z = (X 0), the condition that Z*Z < I, is clearly equivalent with
|X| < 1.

Recall that the real n-dimensional unit ball can be desribed as a symmetric
space SOg(1,m)/SO(n) by a procedure analogous to the one in the first section.
One first considers all lines in R'*™ on which the quadratic form 23 —23 —---22
is positive definite and identifies these lines with all real n x 1-matrices with norm
less than or equal to one. If we write elements g € SO(1,n) as matrices of the

form

a — b -
9= L D ’ (30)
|
the action is given by
X+ (c+DX)(a+bX)L. (31)

The group SO(1,n) can be embedded into SO(2,n). Indeed, the equality

1 0 — 0 - 1 0 - 0 -
0 a — b -— 0 ad - b -—
| [
c 0 D d 0 D'
| (.
1 0o - 0 -
0 aa’ — ab' +bD'
= | |
c+Dd 0 DD'
|



shows that we can define an injective homomorphism 6 : SO(1,n) — SO(2,n) by
0O — 0 -
a — b -
|
0
|

——o ~
!

This subgroup acts on H(Xp) as
(X0)~ ((c+DX)(a+bX)"" 0)

and the action is transitive. Suppose now that h € SO(2,n) preserves H(Xp).
Let p = h(0). We can choose a g € SOq(1,7n) such that g(0) = p (here we identify
g with 8(g)). Then g~!'h(0) = 0 and hence we can write it in block form as

L, 0

—1p _ 2

with D € SO(n). This is an element in §(SO(1,n)) and hence h € §(SO(1,n)).
We have now proved the following theorem

Theorem 6. The Hua transform H : 9 — M maps the real part Xp diffeomor-
phically onto

H(Xp) ={Z = (X 0)|X € Mn(R)} (32)

by z — 1+2|_le2 Moreover, the induced group homomorphism h — HhH™! is an
isomorphism between the groups H and SOq(1,n)

Remark. The model H(X) of SO¢(1,n)/SO(n) is the real part of the complex
n-dimensional unit ball SU(1,n)/SU(n) with fractional linear group action. It
is therefore equipped with a Riemannian metric given by the restriction of the
Bergman metric of the complex unit ball. If z € H(X),z # 0, we decompose
R* = Rz @ (Rz)*-. We let v = v, + v,1 be the corresponding decomposition of a
tangent vector v at z. In this model, the Riemannian metric at z is (cf [15])

900 = TPy - Py
We recall from equation (22) that if z € X, then the Riemannian metric at z is

_ L P
) B T e

The Hua transform thus induces an isometry (up to a constant) of the real n-
dimensional unit ball equipped with two different Riemannian structures.

10



4.1 Iwasawa decomposition of h
The Cartan decomposition g = € @ p induces a decomposition h = [ g.
Proposition 7. h has rank one.

Proof. Take u and v in R" and assume that [£,,&,] = 0. Then, for any z € R” we
have

D(u,v)z = D(v,u)x.
A simple calculation shows that this amounts to
(u, z)v = (v, z)u,
which can only hold for all real z if u = v. O

We can thus choose a maximal abelian subalgebra a = R, in q. (Henceforth
we will denote the vector e; by e.) The vector e is a maximal tripotent in the
Jordan triple system corresponding to 2.

Proposition 8. The roots with respect to a = R, are {a, —a}, where a(&1) = 2.
The corresponding posive root space is

Ja = {51} + %(D(e,’l)) - D(v,e))|v ERes ©--- D Ren}

Proof. Suppose that [£., &, +1] = a(&e) (& +1). Identifying the ¢- and I-components
yields

D(ea ’U) - D(’U, e) = a(é-e)l (33)
—&e = a(&e)gv (34)

From (34) it follows that le = —a(&.)v and, thus, applying both sides of (33) to e
gives

D(e,v)e — D(v,e)e = —a(&)*v,
ie.,
D(e,e)v — D(e,v)e = a(&.)*v,
An easy computation gives
4 — 4(e,v)e = a(,)?v.
Hence e is orthogonal to v and a(&.)? = 4. O

We shall fix the positive root «. Elements in ag are of the form Ao and will
hereafter be identified by the complex numbers A. In particular, the mean value
of the positive roots (with multiplicities), p, will be identified with the number

(n=1)/2.

11



4.2 The Cayley transform

The Cayley transform is a biholomorphic mapping from a bounded symmetric
domain onto a Siegel domain. We describe it for the domain & and use it to
express the spherical functions on 2 in terms of the spherical functions on the
unbounded domain.

We fix the maximal tripotent e. Then C" equipped with the bilininear mapping

(z,w) > zow = %{zew} (35)

is a complex Jordan algebra. Observe, that since e is a tripotent, it is a unity for
this multiplication. The Cayley transform is the mapping ¢ : C* — C" defined by

c(z) = (e+2)o(e—2)7", (36)
where (e —z) ! denotes the inverse of (e — z) with respect to the Jordan product.
Proposition 9. The Cayley transform is given by the formula

1— zzt + 22
= —e ,
1 — 22 + (22%)? 1— 22 + (22%)?

c(2) 37)

for z = ze + 2" € 9. Moreover, it maps X onto the halfspace
{(z1,--- ,zn} € R*|z1 > 0}.

Proof. We first find the inverse for an element x. Suppose therefore that e =
H{zez} = 1D(z,e)z, ie.,

e=(zr,e)z + (z,€)x — (r,2)e =12 + 210 — (1, 2)e
Identifying coordinates gives

1=2z121 — (x,2)

0=ux12"+ 2z
These equations have the solution

2 = z1/(z,72)

2 = —i'/(z,x).

If we apply this to the expression (e — 2)~! in the definition of ¢, we get

].—Zl 2z

(=22 +(h2) A=)+ ()

(e—2) "=

Now the formula (37) follows by an easy computation. Moreover, we observe that
the inverse transform is given by

w = (w—e)o(w+e)™ ' =—c(—w).

12



Hence both ¢ and ¢! preserve R* and therefore
c(X) =c(2) ﬂR".

We now determine this set. From ([11]) we know that (since e is a maximal
tripotent)

c(?) = {u+ivlu € At v e A}, (38)
where A is the real Jordan algebra
{2 € VIQ(e)Z = 2}

and AT is the positive cone {z 0 z|z € A} in A. By a simple computation we see
that
A =Re @ Ries @ --- D Rie,.

Since we have the identities

z+ Q(e)Z = 2u,
z—Q(e)z = 2iv
and
Qle)z =2z —Z,
we get expressions for 4 and v:
2u= (21 +7Z1,22 — %2, "+ ,2n — Zn)
2iv= (21 —Z1,220+ %2, ,2n + Zn)

The condition that x = u + 4v is real thus implies that
u = (xlaoa"' )0)5

w= (0,22, ,Ty).

Moreover we require that
u=wow = 2ww— (w,w)e,

for some
w = c1e + catey + - - - cplie,.

This yields

2 2 . .
(@1,--+,0) = (c] +---+cp,iciC2,- - ,ic1C).
Hence
] =Zx1,c3 = =c, =0,
and thus
2
U—I-Z’U—(CI,IEQ, ;mn)

This proves the claim. O
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Recall the expression for the spherical functions on a symmetric space of non-
compact type (cf [5] Thm 4.3)

(pl\(h)z/e(i/\-i-p)A(lh)dl,
L

where A(lh) is the (logarithm) of the A part of [h in the Iwasawa decomposition
H = NAL. The integrand in this formula is called the Harish-Chandra e-function.
For the above Siegel domain it has the form ey(w) = (wy ) (cf [17]). Hence we
have the following corollary.

Corollary 10. The spherical function ¢\ on X = H/L is

_ 9 iAtp
o= (i) o 9

where o is the O(n)-invariant probability measure on S™ !,

5 A family of unitary representations of G

5.1 The function spaces /7,

The Bergman space H2(2) has the reproducing kernel h(z, w)~™. This means in
particular that the function h(z,w) ™ is positive definite in the sense that

m
z aia_jh(ziazj)_n 2 07

ij=1

for all z1,- -2, € 2 and a1, -+ ,a, € C. It makes sense to ask for which real
numbers v the function h(z,w) " is positive definite. It has been proved by
Wallach ([19]) and Rossi-Vergne ([18]) that h(z, w)™" is positive definite precisely

when v in the set 5 5
n— n—
{0, U= 00)

This set will also be referred as the Wallach set (cf [3]). For v in the Wallach
set above, h(z,w)™" is the reproducing kernel of a Hilbert space of holomorphic
functions on 2. We will call this space %, and the reproducing kernel K, (z,w).

Proposition 11. The mapping g — 7, (g), where

v

T (9)f(2) = Jy-1(2)~ f(g™"2)
defines a unitary projective representation of G on J,.

Proof. Comparison with the Bergman kernel shows that h(z,w)™" transforms un-
der automorphisms according to the rule

B2

h(gz, gw) ™" = Jo(2) "7 h(z,w) ™" Jy(w) - (40)
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Recall that for functions f1 and fa of the form

ZakK z,w), fa(z Zﬂk (2, wi),

k=1
the inner product is defined as
(f1, f2) V_ZalBJ v(wi, w ) (41)
7]

Equation (40) implies that

Hence
! [
z) = Zang—l(wk) " Ky (2, gwk)

(2) =Y BTy (w)) " Ko(z gu)

The unitarity

(mu(9) f1,m0(9) f2)v = (f1, f2)v

now follows by an application of the transformation rule (40) in the definition (41).
Since functions of the form above are dense in %, it follows that each 7, (g) is a
unitary operator and it is easy to see that g — 7, (g) is a projective homomorphism
of groups. O

In fact, m, is an irreducible projective representation, see [2]

5.2 Fock-Fischer spaces

It can be shown that for » > (n — 2)/2 all holomorphic polynomials are in .7, and
that polynomials of different homogeneous degree are orthogonal. In this context,
the spaces 7, are closely linked with the Fock-Fischer space, %, which we will
now desribe.

The basis vector e; is a maximal tripotent which is decomposed into minimal
tripotents as e; = %(1,@',0,--- ,0) + %(1,—z’,0,--- ,0). (We omit the easy com-
putations.) In order to expand the reproducing kernels K, into a power series
consistent with the treatment in ([2]), we need to introduce a new norm on C" so
that the minimal tripotents have norm 1, i.e., the Euclidean norm multiplied with

V2. Then

1 1
{fi,-= 5 fa} ::{Eel’m ’ﬁen}

15



is an orthonormal basis with respect to this new norm. We write points z € 2 as
z=wy fi + -+ wnfn}. For polynomials p(w) =} aqw®, we define

p*(w) = Z Gaw®.
«
The Fock-Fischer inner product is now defined as

(r,9)7 = p(0)(q")|w=0,

where p(0) is the differential operator }_ aa(;?u—aa, for p as above. The space &
is the completion of the space of polynomials with respect to this norm. It is
easy to see that polynomials of different homogeneous degree are orthogonal in .%#.
Moreover, the representation of SO(n) on P™, the polynomials of homogeneous
degree m can be decomposed into irreducible subspaces as (cf [16])

Pm = @ Em72k ® (C(wwt)k, (43)
m—2k>0

where E; are the spherical harmonic polynomials of degree i (cf [16]. The following
relation holds between the Fock-Fischer - and the ,-norm on the space E,;,_o ®
Clww)* (cf [2]).

llpll%

@)mr(v — 252

for p € Epy_or ® Clww?)*. We have the following decomposition of %, under K:

lplly = (44)

Proposition 12. (Faraut-Koranyi, [2]) a) If v > "52, then

Hlk = Y Em-o® (22"), (45)

m—2k>0

where E,_op are the spherical harmonic polynomials of degree m — 2k. Moreover,
we have the following expansion of the kernel function:

Wew) = Y s (u—”;Q)kK(m_k,k)u,w), (46)

m—2k>0

where K (k) s the reproducing kernel for the subspace Ep 2 ® C(zz2)* with
the Fock-Fischer norm. The series converges in norm and uniformly on compact
sets.

b) If v =152, then

Ak =Y En (47)
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We will later need the norm of (zz%)* in J%,.

Proposition 13.

ke M),
6" = o 2 ay. (48)

Proof. A straightforward computation shows that
62 62 2 2\k 2 2 Ik—1
(a_,zg+"'+ﬁ)(zl ot 22 = (22k(k — 1) + n2k) (22 4 - + 22)F
n

Proceeding inductively, we obtain
& ”\" nk _ T
(a—z%'i"i‘a?) (2’1+"'+Zn) = jl;[12j(2(j—1)+n)

e (3)

The Fock-Fischer norm is computed in the w-coordinates w; = v/2z;, 5o

(zzt)k — 2—k(,wwt)k

and
02 2\ 82 \*
(g ram) =7 Gt am)
Hence
=411 = k1 (3),
and an application of Prop (44) gives the result. O

6 Branching of 7, under the subgroup H

6.1 A decomposition theorem

Recall the irreducible (projective)representations m, from the previous section.
Our main objective isto decompose these into irreducible representation under the
subgroup H . We saw that X is a totally real submanifold and this fact is reflected
in the restrictions of the representations 7, to H.

Proposition 14. The constant function 1 is in 5, and is an L-invariant cyclic
vector for the representation m, : H — U (J4,).

17



Proof. First note that

K,(2,h0) = Ju(h™'2)™/"K,(h™'2,0)J,(0)~¥/n
= Ju(0) /Ty (2)"/" K, (2,0)
= Ju(0)~/nm,(h)1(2)

Suppose now that the function f € ., is orthogonal to the linear span of the
elements 7, (h)1,h € H. By the above identity we have

= 0.
Since H acts transitively on X, f is zero on X. Hence it is identically zero. O

We want decompose the representation of H into a direct integral of irreducible
representations. For the definition of a direct integral over a measurable field of
Hilbert spaces we refer to Naimark ([13]). The following general decomposition
theorem is stated in several references, but the author has not been able to find
a proof of it in the literature. The proof we present below is based on Gelfand-
Naimark representation theory for C*-algebras.

Theorem 15. Let 7w be a unitary representation of the semisimple Lie group, H,
on a Hilbert space, 7. Suppose further that L is a mazximal compact subgroup and
that the representation has a cyclic L invariant vector. Then m can be decomposed
as o direct integral of irreducible representations,

e / mdp(N), (49)
A

where A is a subset of the set of positive definite spherical functions on H and for
A € A,y is the corresponding unitary spherical representation.

Proof. Recall that the representation 7 extends to a representation of the Banach
algebra L'(H) by

fr—)/Hf(x)ﬁ(;v)dx

We will also denote this mapping of L'(H) into %(s#) by n. This representation
will also be cyclic. Indeed, if £ is the L-invariant cyclic vector for H, vectors of
the form

() (w(h)E + -+ + 7 (hn))E

are dense in # and since

m()mw(h)E + - - +7(hn)§) = 7((Lny + -+ + Ln, ) S,

18



we see that the vectors 7(f)& form a dense subset in J#

Consider now the subalgebra, L' (H)#, consisting of all L'-functions that are
left- and right L-invariant, i.e.,

Llelesz

for all I in L. If we denote by s, the subspace of L-invariant vectors in ., the
following calculation, in which f is in L1(H)#

v—/f la:vdx—/f x)vdz

shows that #Lis invariant under all the operators 7(f), f € L'(H)#. We claim
that the subrepresentation of L!'(H)# is also cyclic. To see this, suppose that
v € T is orthogonal to all 7(f)¢, f € L*(H)#. Then we have for an arbitrary f
in L'(H)

((f)Ev) = /H f(@)(m (), v)da

/H /L /L f(lizly)dlydly ()€, v)dz = 0,

since f# := [, [, f(ly - L)dlydl, € L*(H)#. Hence v = 0.
The function ¢ defined as

w(f) = (n(f)&:€) (50)

is a state on the commutative C*-algebra generated by 7(L' (H)#) and the identity
operator (we may assume that £ is a unit vector). It is a well known fact from the
theory of C*-algebras that the norm-decreasing positive functionals form a convex
and weak* compact set (cf [12]). For a C*-algebra with identity, its extreme points
are the pure states. In the case when the algebra is commutative, these coincide
with the characters. Therefore, ¢ can be expressed as

P = / padp, (51)
X

where X is the set of characters and u is a regular Borel measure on X. We recall
the Gelfand-Naimark-Segal construction of a cyclic representation of a C*-algebra
associated with a given state. In this duality, the irreducible representations cor-
respond to the pure states. So each ¢, in (51) parametrises an irreducible repre-
sentation of w(L!(H)#) on some Hilbert space E,. On the other hand, we know
that ¢, om : L'(H)# — C is a homomorphism of algebras and is therefore of the
form (cf [5] ch.4)
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fe /H F()a(h)dh, (52)

where ¢, is a bounded spherical function. Since this mapping also preserves the
involution *, it is a positive linear functional, i.e.,

| 1memiz >0, (53)
H

for every f € L'(H)#, such that f = gxg*, for some g € L*(H)#. In fact, (53) will
still hold if we allow f and g to be in L*(H). Indeed if f = gx*g*, then a simple
computation shows that f# = g; * g}, where g1(z) = |, . 9(lz)dl. This function

is not in L' (H)#, but considered as operators on %L, 7(f#) and 7((g7)*(¢7)*)
coincide, as can be seen from the following calculation, where u and v are vectors

in L
(m(f#)u,v) =

/H F()és(h)dh = /H F# () (h)dh > 0 (54)

Lemma 16. Suppose that ¢ is a bounded spherical function such that [, f(h)e(h)dh >
0 for all f € L*(H) of the form f = g*g* for some g € L*(H). Then ¢ is positive
definite.

Proof. For any f = g * ¢* as in the statement, we have

/Hf(h)SD )dh = // g(h=Yy)dyp(h)dh
= [ ) / g Tg)p(h)dhdy
// yz~Vdzdy

Pick any complex numbers ¢y, ...,c¢, and elements x1,...,z, in H and fix € > 0.
We can choose a compact set K C H, containing all x; in its interior, and a
neighbourhood U of the identity such that
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lo(zy ) —p(a'y" ") <€

(55)

for all (z,y) and (z',y') in K x K such that (zz'~!,yy' ') € U x U. We now choose
disjoint neighbourhoods E; of z; such that E; C K and z; E; c U for all i. Next,
we choose an L!-function g in such a way that its support lies in |J E; and g has

the constant value ¢;/|E;| on E;, where

|E;| = / dh.
E;
Now we have

/H/Hg(y)@w(yz*l)dzdy= Z/ [Ej 9(v)9(2)p(yz V) dzdy

= 9(wi)g(y;)e(yiy; ")dh(E;)dh(E;),
¥
for some y; in F;. The choice of g implies that the sum in (56) equals
> citgo(yiy; ).
3,
This yields

|/H/Hg(y)ﬁso(yz’l)dzdy—chjcp(wix;l)l

%,J

<Y leillejlle(iy; ) — el@izy )| < n®sup |cile.
.. k3
z’]

This shows that

> egp(ziz; ') >0,
i

and hence ¢ is positive definite.

O

Since every positive definite spherical function defines an irreducible, unitary,
spherical representation of H, it also gives rise to a representation L'(H)#. Tts
restriction to the subspace of L-invariant vectors will be irreducible and one-
dimensional (cf [5], ch. 4). If the character ¢, corresponds to the spherical function
®,, we denote by (7, F;) both the representations of H and of L'(H)# that it
induces. Corresponding to this cyclic representation of L'(H)# with cyclic unit

vector ¢, we have the state f — (7 (f)dz, Pz)z
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(o) bar b = /H () (s (B b, b2) ol
- / F)(Lnds, b0)odh
H
- / (W) (h)dh
H

/ (W) ga(R)dh
H

Therefore this representation of L' (H)# is unitarily equivalent to the one given by
the Gelfand-Naimark-Segal correspondence, i.e., we can regard the representation
as coming from a representation of the group H. We now want to define a unitary
operator T : # — [, E,dy that intertwines the actions of L'(H)#. We let

w(£)€ = {ma(f)8a}, f € L' (H)*. (57)
To see that this is well-defined, suppose that 7(f)¢ = 0. Then we have
(m(f)&m(£)E) = (m(f* = £)§€) =0 (58)
ie.,
¢(f**f)=0 (59)
By (51) we have
S D)= [ s 5 D)a,€)edn =0, (60)
H

Therefore 7, (f)¢, = 0 for almost every = and hence T is well defined on a dense
set of vectors. Note that (60) also shows that T is isometric on this set and it
therefore extends to an isometry of £ into J,, Bzdp. We now prove that it is
onto. Suppose that the vector ¢ = {¢, } is orthogonal to the image of T. Since each
E, is one-dimensional, ¢ = {¢(z)@, }, where ¢(z) is a complex valued function. We
have now

[ o)l =0 (61)
This can be stated as

/ w(f)(@)e@)dpu = 0,

where 7(f) is the Gelfand transform of «(f), which is a continuous function on
X, defined by 7(f)(z) = pz(7(f)). Recalling that this is an isomorphism of the
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involutive Banach algebras m(L'(H)# and C(X), we have that the function c(z)
is orthogonal to all the continuous functions in L?(X, ) and therefore it must be
equal to zero. This establishes the claim that T is a unitary intertwining operator.
Each E, is the space of L-invariant vectors of a Hilbert space H, on which H
and L'(H) act. We would like to extend T to a unitary operator from J# onto
Jx Hzdp that intertwines these actions. The natural attempt is

w(£)€ = {ma(f)ds}, f € L' (H). (62)

To see that is well-defined, suppose that 7(f)é = 0 and observe that we can
assume that f is in L'(H)# and use the earlier argument. This also proves that
T is isometric on a dense subspace. To prove surjectivity, suppose that ¢ = {c,}
is orthogonal to T'(w(L*(H)). The following equality

[ @) meesadn = [ (malLios oo
x x

shows that ¢ is L-invariant, and hence it equals zero. Thus 7T is a unitary iso-
morhism and intertwines the L' (H) actions. Thefore it also intertwines the group
action of H. O

Remark. The measure p in the above theorem is called the Plancherel measure for
the representation .

6.2 The Plancherel measure

In this section we find an explicit formula for the Plancherel measure p for the
representations m, when v > (n—2)/2. We express it as a orthogonalising measure
for some hypergeometric polynomials. In this context, we will use the mapping
R: #, — C*(X) defined by

(Rf) (@) = h(z,2)"* f(2),2 € X

(see [21]). When v > n — 1, R is in fact an H-intertwining operator onto a dense
subspace of L?(X,d.) and the principal series representation gives the desired de-
composition. This is a heuristic motivation for studying the functions R~1pj,
where @, is a spherical function on X.

Theorem 17. The function R~1px(2) is holomorphic on 9 and has the power
series erpansion

R! _ Y (zzt)k
oa(z) = ;pk( )m;

where the coefficients pr(\) is a polynomials of degree 2k of A and satisfy the
orthogonality relation
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a) If v > "T_l, then

Puk(N)pui(N)dX

2 T'(2i))

1 [T +iNT(EE +iANT (v — 5L i) |
27T 0

b) Ifv < ”T’l, then

2

> Ny n-1 4 ; S
% 0 ‘r(2 +iNI ("3 FJE;?A))F( L +i)) oo (02
F(v)T(v — 252)C(n — 1 —v)[(% —v)

F(n—1-2v)

XD (F (,,_ ";1)2> Do (ﬁ (u— ";)2) =T (g) r (,,_ ";2) T(v)dw

Proof. Recall the root space decomposition for . Let (, ) denote the inner product
on ac that is dual to the restriction of the Killing form to a. Let ag denote a/{(a, a).
In this setting the spherical function ¢, is determined by the formula (cf [5], ch.
4, exercise 8)

cp)\(exp(tge)O) = 2F1 (al7 bl7 CI; - Sinh(a(tge))2)7 (63)
where
1/1 1/n-1
12 _ - - . _ = .
a = 2<2ma+m2a+(z)\,ag)> 2( 5 +z)\>,
1/1 1/n-1
/ = — — — {1 = — —1
b = 2<2ma+m2a (z)\,ag)) 2( 5 M),
C= (et 1) = L (2
¢ = 3|3matma =3 3 .

Letting x = exp(t&)0 = tanht, (63) takes the form

t
rxr
pa(z) = 21V s T—3) (64)

By Euler’s formula (cf [4]) we have

xat

oa(z) = 2 Fi(a', b, ¢ m) = (1—az")¥ 2 F(d, ¢ =V, c;zat) (65)

For the function R~'¢, we thus get the expression

R'ox(2) = (1 — 22"ty Fi(d', ¢ =V, c; 22) (66)
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Expanding (66) into a power series yields

R7'oa(2) = i i = CE;),LW__Z(G I (67)

!
o DIAC)

Next, we use the following simple identities:

’ _ (V_al)m _ (V_al)m
(v—a)m = (v—a+m=0) (-D)(=(v—a+m-1)); (68)
m!
(=0t = =i+ “

Substitution of these in (67) yields

e i m ! ! !
_ - = b)i(=m)
R 1 — (V a )m (a’ )l(c t m. 70
(P)\(Z) Z m! Z (cl)l _(y —a +m— 1))l (zz ) ( )
m=0 =0
The inner sum in (70) can be recognised as a hypergeometric function, i.e., we
have

o~ (a)i(d = b)i(—m);
2 (e"u(

(—w—d+m-1) sBa(a’,d =V, —m;c/, (v —d +m—1);1).

c
1=0
Now we use Thomae’s transformation rule (cf [4]) for the function 3F5:
sby(a',c — b, —-m;c,—(v—a' +m —1);1)
(—v=d+m-1)—( =0))m
(—v=a"+m-1)pn
x sh(d —d,d=b,-m;1+(-b)+w—d +m—-1)—m;1)

We finally obtain the following expression:

R_l(p,\ (Z) = z Cn,l/,k()‘) (Zzt)ka
k=0

where

(v - 232)

k!

141 l—i/\.ﬁy n—2.1)
2 7 2 92 2’

k
cn,u,k()\) = 3F2(_ka
Recall the continuous dual Hahn polynomials (cf [20])

Sk(.’L'Q;aq b; C) = (a/ + b)k(a + C)k (71)
x3Fy(—k,a +iz,a —iz;a+b,a+c;1)
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We can thus write

) -2
_ (v —252) A1 n—-1 n—2
R l(p)\(z) = n i, Sk (_)2; Y Vv — (zzt)k
g(g)k(y——zz’)kk! 2772 2 2
- (22%)*
= P k(N T

2 por N e,

For the orthogonality relation in the claim, we refer to [20]. O

6.3 The principal series representations 7, on L?(S"71)

We will now construct an explicit realisation of the decomposition in Thereom 15.
For this purpose, we consider a canonical realisation of the irreducible, unitary
spherical representations of H as representations. on L2(S™1).

Lemma 18. If g € H, then g transforms the surface measure, o, on S™ ! as

do(g¢) = J, ()" do(n)

Proof. Clearly it suffices to prove the statement for automorphisms of the form
exp &,,v € R”. Moreover we can assume that ( = e;, since any ( € S~ ! can be
written as le;, where [ € L, and

exp &, (ler) = (exp &l)(er) = (7 exp &l)(er) = (lo-1 (exp &))(er)
= lexp (Ad(I7")&)(e1) = lexp &;-1,(ex)

Consider now the tangent space of R” at e;. We have an orthogonal decomposition
Te,(R") = Te, (S"7") © Rex -
At ge; we have the corresponding decomposition
Tye, (R™) = Ty, (S" ') @ Rhey
Since H preserves S™ 1, dg(eq) Te, (S™ ') = Ty, (S™ 1), and by completing eq

and he; to orthormal bases for their respective tangent spaces, dg(e1) corresponds
to a matrix of the form

c 0

| % % x
V% % %
| * * =x

Hence Jgrr(e1) = cJgn-1(e1), where ¢ = (dg(e1)e1,ge1). Now (dg(ei)er,her) =
lim,_,1(dg(rei)res, grer). For fixed r < 1 we have

exp & (re1) = u+ B(u, u)l/ZB(rel, —u)"(re; + Q(re1)u) = u + dh(rei)(res + Q(rei)u),
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where u = tanhv. Since Q(re1)u = 2(u,rer)rer — u, we get

(dg(re1)rer, g(rer)) (72)
= (14 2(u,re1))|dg(rer)rer|® + (dg(rei)rer,u — dg(re; )u)

For any z € Z[R" and v,w € R", we have

(dg(2)v,w) = (B(gz,92) ' B(g2,92)dg(z)v,w)

= %hgz(B(gz,gz)dg(z)an))

= g% 07) 5 has (dg(2)0, dg (2)dg (=) ™)

= h(g2,92)5,hs (v, dg ()" w)

2
= h(gz,92)(B(z,2) ‘v, dg(z) 'w))

P29 (0, dg(2) ) (73)

Applying (73) in the cases z = re;, v = re;, and w = dg(re1)re; and
w = u — dg(req)u, repectively, yields

hig(rei), g(re1)) o (74)

(dg(re1)rei,dg(rer)rer) = h(rei,rer)

and

h(g(re1), g(re1))

h(rey.rer) (req,dg(rei) ‘u —u) (75)

(dg(rer)rer,u — dg(re;)u) =

Next we find an expression for dg(re;) ! :

dg(re1)™ = (B(u,u)?B(rei,—u)"")"! = B(rey, —u)B(u,u)”/?

1
= 1_7|U|ZB(T61, _u)

An elementary computation shows that
B(rey, —u)u = (1 — [ul*)u + (2|u|?*|ul?(u, re1))re; .

Therefore (75) can be written as

(dg(rei)rer,u — dg(re;)u) =

h(g(re1),g(re1)) 1

2 2
h(rei,rey) 1—|u|2(rel’(2|“| + 2Ju|*(u,re1))rer) (76)
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Comparing (72) and (76)gives us

h(g(re1), g(re1))

(dg(rei)rer,g(rer)) = Wrz (1+ 2(u,rer)
1 2 2
+ T |u|2(2|u| + 2|ul*(u,re1)))
— h(g(rel)’g(rel)) 7'2 1+ 2(“57‘61) + |U|2 (77)
h(rey,re1) 1—ul?
By the transformation rule for the Bergman kernel
h(g(rer),g(re1)) = |Jy(re1)|* " h(res, rey).
Moreover,
2
lim 2 1+2(UJT61)+ |u|
r—1 1-— |u‘2
1+ 2(u,e1) + |ul?
1—|ul?
h(ela —U)
h(u,u)l/2
Jh(el)—l/n
Letting » — 1 in (77) gives
(dg(er)er, gler)) = Jy(er)™,
and this proves the claim. O
Proposition 19. For any real number A, the map h — 7x(h), where
ixtp _
mA(h) f(0) = Jp-1(b) = f(h™'D)
defines a unitary representation of H on L?(B).
Proof. We have
iAtp _ 2p
/B |Tn-1(0) = PIf(h10)Pdb = /BJh—l(hb) ™ |£(b)]*d(hb)
= [ B F PR @
B
S AR
B
where the last equality follows by lemma 18. O
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It is well known that the representations 7 above are unitarily equivalent to the
canonical spherical representations associated with the corresponding functionals
Aon ac (cf [9], ch. 7).

We will now consider a family of Hilbert spaces indexed by parameter A\ €
A. Fach of these will be L?2(S™"1), but we equip them with the inequivalent
representations my. Moreover we will follow Helgason and in this context denote
S™~! by B. The measure ¢ will be denoted by db. We thus have a family of spaces
{L?>(B)A|X € A}. Recall the expression (10) for the spherical functions. In this
setting we write it as

oa(T) :/Be,\,b(x)db,

where
h(z,z)'/?

h(z,b)
by Cor 10. For fixed z € 2 and A € R, R~'ej(2) is a function in L?(B). More-

over, 7, (H) makes sense as a group of mappings on O(2), the set of holomorphic
functions on 2. We have a relationship between these representations.

6,\,1,(.'13) =

Lemma 20. For every g € H,

T, (9)mA(9) R erp(2) = R™'en(2). (78)
On the Lie algebra-level, we have the relation
T (X)R texp(2) = —ma(X)R ters(2), (79)
for X €
The proof is straightforward by applying the transformation rules for the func-

tion h(z,w).

6.4 The Fourier-Helgason transform

In this section we let u (=p,,) be the finite measure on the real line that orthog-
onalises the coefficients px(\) in (63). Let A, be its support. As we saw above,
p can, depending on the value of v, either be absolutely continuous with respect
to Lebesgue measure or have a point mass at A = i(v — (n — 1)/2), i.e., we either

have
Ay = (0,00) [ J{iv — (n = 1)/2)}, v > (n — 1)/2

> A, =(0,00), v < (n—1)/2.

The results in this section apply to both cases and we will therefore suppress the
index v and simply denote the support of u by A.
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Any holomorphic function, f, on 2 has a power series expansion
= faz®, (80)
«

where f, = %(0). We can collect the powers of equal homegeneous degree

together and write
2) =Y f(2), (81)
k

where f, is of homogeneous degree k.
We now consider the mapping (+,), : P x O(2) — C defined as

(f;g)u = Z(f)gk>1/' (82)

k

Observe that the definition makes sense since every polynomial is orthogonal to
all but finitely many g

Definition 21. If f is a polynomial in J7,, its generalised Fourier-Helgason trans-
form is the function f on A x B defined by

f()‘a b) = (f: R_le)\,b)u (83)

Proposition 22. If the polynomial f is in Y, then f is L-invariant and

”f”l/ = ||f||L2(A><B,du><db)

Moreover, the Fourier-Helgason transform extends to an isometry from J£F into
L2(A,dp), and the inversion formula

2) = / FOVR " ox(2)du(N) (84)
A

holds.

Proof. Writing
e,\b—zca)\b Ze,\bk

and

k:

Z):an( Zpk zzt ”
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we see that the coeflicients and polynomials of homogeneous degree k are related
by

Cra = /B ¢, b)db (85)
and
(229 _
pk(/\)m —/Be)‘7b7k(z)db (86)

respectively. Therefore we have

FA0) D (frenpn)

k

Y / o (D) fdl, ex i)

3 L

= S [ mlDernad,

3 L

Z(f; /L ma()exp,edl)y

k
= (f; Ril@)\)u

This proves the L-invariance. Moreover, we have

(F, B o)s = S eV (f, i

Hence

||f||2L2(AxB,duxdb) = Z I{f, 6k)v|2 = ||f||‘2/
k

This proves the first part of the claim.

To prove the inversion formula, we now let f be an L-invariant polynomial and
z be a point in 2 [ R™. Since we have the estimate

[R™ oa(x)] < (1 — |2f*)% (87)

independently of A, the integral

/A FOVR " ox(@)du(N)
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t\k
makes sense. In the following we let e denote the unit basis vector ﬁ%ﬁ in
HF. We then have

/A PR er@dn) = 3 /A (F, ex)o DRV R o () du(N)

S (e [ 3B Oes @)y
2 AT
= f@)

Now let f € #F be arbitrary. We choose a sequence of polynomials f, € -
such that

f=1lim f,.

Since the evaluation functionals are continuous, we have

f(x) = lim f,(z) = lim Afn(A)R_lm(w)du(A)

n—oo n—oo

for every real point . By Jensen’s inequality and (87)

< p(A) /A IFO) = FaIP (1 = [2*) ™" du().

/A (FO) = Fa ()R or(@)du()

Hence
f(z) = /A FOVR " ox(@)du(N).

Thus the inversion formula holds for real points, z. To see that the formula holds
for arbitrary points, we note that both the left hand- and the right hand side of
the formula define holomorphic functions on &. Since they agree on the totally
real submanifold X, they are equal. O

Proposition 23. The Fourier-Helgason transform intertwines the action of the
group H, i.e.,

™y (h)f(A,0) = mA(R) (A, D), h € H. (88)

Proof. We consider the corresponding representations of the Lie algebra h. These
will also be denoted by m, and 7y respectively. Since the representations are
unitary, we have the following equalities (on the respective dense spaces of analytic
vectors):

my (exp(X)) = e™ ) (89)
ma(exp(X)) = e™ %), (90)
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for X € h. It therefore suffices to prove that the action of h is preserved. Let
X €h. If fis a polynomial in %, then differentiation of the mapping

t = Jexpix (2)"/" f((exp tX)z)
at t = 0 shows that 7, (X)f is also a polynomial, and

—~—

7T,,(X)f()\,b) = Z(WV(X)J() e)x,b,k)t/

k

— Z(f, —1u(X)expk)v

k

Z(fa 7T/\(X)e/\,b,k>u

%
= (fa WA(X)R_IG)\,I))V
™ (X)(f, R exp)w

O
Theorem 24 (The Inversion Formula). If f is a polynomial in J,, then
1= [ [ FODR erp()dbau(y (91)
Proof. Take h € H. Define
1@ = [ mommsEa
L
This is a radial function, and we have that
f1(0) = Jp-1(0)= f(R10). (92)
Prop 22 gives
£10) = [ ROVR Hea(@)du(y (93)
A
fN‘l()‘) = (f17R_1(10)\)V = (/L WV(Z)WV(h)fdlaR_l‘p/\)u
= (m(h)f, R_ISOA)V
(94)
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By Prop. (23) we have
(WV(h)fJ Ril(p)\)ll = (f,”rV(hil)Rilsok)V
= (fa‘/;ﬂ'u(h_l)R_le/\,b db)u
= (fa/;ﬂ-u(h’_l)R_le)\,b db)u

= (f)/ 7T/\(h‘)R_le)\,b db)l/

idtp

B
= /B Jnes (0) 2 RVep pory db)y

The integrand above has a power series expansion where the coefficients are func-
tions of b. If we integrate, we obtain a holomorphic functions for which the coeffi-
cients in the power series expansion are obtained by integrating the aforementioned
coefficients over B. Hence we can proceed as follows.

i —i\ P
(f,/ Jh—l(b)_"JrﬂR_le,\,h—lbdb)u = /Jh—l(b) w (f, R e p-15)vdb
B

Z/Jhl

- /Jh L (BD) ™52 F(N, b) T (b) "= db

* F(\, b b)db

/B FOuB)Ju(0) 5 b (95)

It is easy to see that

M+ﬂ

Jh(0) " = Jp-1(0)» R 'er 5 (h710), (96)

and so combining (92), (93) and (95) finally yields

h7t0) = //f,\b ~Lers(hTT0)dbdp (97)

Thus the inversion formula holds for real points, hence for all points by the same
argument as in the proof of Prop. 22. O

Theorem 25 (The Plancherel Theorem). If f is a polynomial in J%,, then

1712 = /A /B |70 b) 2dbdp. (98)

Moroever, the Fourier-Helgason transform extends to an isometry from
J, onto f)‘ (L2(B))rdp
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Proof. If we write
= Z faz®,
then, according to the Inversion Formula, we have
fo= [ | FDeau )b du()

Therefore

(£, F)w =Zf_a(f,z°‘),,
Z//Hbcmbxf, *)vdb dp(X)

//f)\b (A, b)db dp.

This shows that the Fourier-Helgason transform extends to an isometry from J%,
into f A (L2(B))adp. To see that it is surjective, note that by Propositions 22 and 23

1115

mP1 1= [ I, T
for f € L'(H)#, i.e., we can write the positive functional

e m ()L, 1),

as an integral of pure states with respect to some measure. By uniqueness, it is
the measure in theorem 15. Since the Fourier-Helgason transform intertwines the
group action, it is the intertwining operator constructed in theorem 15. Thus it is
surjective. O

Remark. One can now use the Plancherel theorem to prove the inversion formula
for arbitrary functions by the same argument as for L-invariant functions.

7 Realisation of the discrete part of the decomposition

Definition 26. For "2— <a< 2 E, is the Hilbert space completion of the
C*°-functions with respect to the norm
ke, = [, [ HOT@E G do(don)

Using the action of H on S™~!, we can define a unitary representation of H
on %, of the form

wt frr I ()P F(W"),h € H,
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where § = —a + (n — 1)/2. The unitarity follows from

/9n—1 /Sn_1 Tn=1(C)? f (R ¢) Tp=1 ()P F(h="0) K (¢, m)*do (¢)do ()
= /S /S IO P Q) Tn() P F VK (B, k) Tn(Q) " T () do(¢)da ()

B /s /S Tn(Q) ot T Ty () TP F(O VK (Cm)*do(¢)do ()

In fact, this representation is irreducible (cf [1]). We denote this representation by
0q- The following theorem states that o, /,, is the representation corresponding to
the singular point in the decomposition theorem.

Theorem 27. The operator T, ,, defined by the formula

(T,)nf)(2) = / FOKo (2, Q)do ()

Sn—1

is a unitary H-intertwining operator from €, ,, onto an irreducible H-submodule

of H,.

Proof. First of all we note that T}, /,, maps functions in ), /, to holomorphic func-
tions on 2 and thus 7, has a meaning on the range of 7,,/,. We start by showing
that T/, is formally intertwining. We have

Tl @) = [ e Q7 H 0K Qo)
= /sn—1 Tn ()" (O K, (2, RO Tn ()™= do(¢)
= /S"—l Jh(()y/nf(C)Ku(h_IZ,C)Jh(h_lz)_%Jh(C)—%da(C)

T @F [ HOK 2, 0o ),

ie.,
Tu/nou/n = WVTV/n-
The next step is to prove that the constant function 1 is mapped into %, and

that its norm is preserved. Note that for @ = v/n, K(z,{)* = K,(z,(), and by
lemma 12 we have an expansion

K,(C,e1) = Z Cmk (V) K(m—k,k)(C, €1),

m—2k>0

where the coefficients ¢, (v) are given explicitly in Prop. (12). Now, since
K,((,e1) is SO(n — 1)-invariant and the action of SO(n — 1) is linear, each
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K(m k) (¢,e1) must also be SO(n — 1)-invariant. Hence, K, »)({,e1) can be as-
sumed to be ¢ _ar (€)(C¢H)*, where ¢p_op is the unique element in E,,_o; that
assumes the value 1 in e;. Therefore

[ KCwrao©) = [ KuGteod [ Ko (99)
= Y ) / (IO i 17 C)d1100)
m—2k>0 L
- i) [ Smoe@™Odl (101)
m—;kzo ’ /L *

Since SO(n) acts irreducibly on Ep,_s and the function [; ¢m_2x(I7'2)dl is an
SO(n)-invariant element in E,, o it must be identically zero unless m — 2k = 0.
Since

s, = [ [ KelCndo Qoo

the computation above implies that

1%, = car,k (V) (CCH)*do (Q)
_ o~ (v = 252k
= ;C2kk l;) ” zzt k||2
= Wl = 252 X
= AL L 02
2 RN (102)

On the other hand, the equalities (99)-(101) also show that

N (V)e(v — 252,

Tu/nl(z) = Z k'(ﬂ)k (zzt)k:
k=0 2
R (O e DR
- /;) (KN B)k)1/? 1z, (103)

If we compare (102) and (103), we see that 7,,/,1 € J%, and that ||1]|s,,, = [|1]|-

Recall that
%, /n = @ E,,(Sn1)

and that the representation of h on the algebraic sum @,, Em (S™ ") is irreducible.
Hence

P En(S™ ) = Spanc{oy/n(X1) -+ 00 /m(Xi)1|X; € b,1 < i < k}
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Since T, interwines the representations of h, we have that 7, is an irreducible
representation of h on the space T, (@D,, Em(S"™')) C 4. By Schur’s lemma
([10], ch.4)

(Tv/nf7 Tu/ng)u = C(f; g)‘gy/na

for some real constant ¢. Putting, f and g equal to the constant function 1 and
applying, we see that ¢ = 1. Therefore, T, /,, extends to a unitary operator

Tu/n : %u/n - TV/TL(@ Em(Snil))
m
and we have proved the theorem. O

8 Realisation of the minimal representation 7,_9) />

In this section we show that the representation m(, )/ of H is irreducible by
realising it as a complementary series representation.

We recall the space 4/, from the previous section and the corresponding
operator T /p.

Theorem 28. T(,,_2)/2, is a unitary H-intertwining operator from €(_2)/n onto
j/ﬁn—ﬂ/n

Proof. Recall that

(g(n—2)/n = @ Em(Snil) (104)

and that the sum is a decomposition into SO(n)-irreducible subspaces. If we let
P(n—2)/n denote the set of all finite sums in (104), 6(,_2),, defines a representation
of [ on P(,_9)/n- The polynomial ({; + i¢2)™ is a highest weight vector in E,,
for this representation. Moreover, the power series expansion of K(;,_s)/, shows
that T, _)/2 is a polynomial in Ey,. Since T{,_2)/2, intertwines the [-actions,
T(n—2)/2n((C1 +1i¢2)™) is a highest weight vector space for 7(,_2)/2(l), i.e.,

(T(n—2)/2n (G +i¢2)™)(2) = Cm(z +i2)™, (105)

for some constant C),. We now determine C,,. Choose z = w%(l, —1,0,--+,0),
where w is a complex number with |w| < 1. In this case 22! =0, (z +i2)™ = w™.
We now compute (T(,_2)/2((¢1 +9¢2)™)(2).

/Sn_l K(n—2)/n(2, Q) (¢ + i¢2)™
- /Sn—l(l —w((y —i¢2))""I/M(( +id)™do ()
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This integral only depends on the first two coordinates and can hence be converted
to an integral over the unit disk, U (cf [15] Prop 1.4.4).

/S (= w(G =) NG+ iG) M do ()
r (")

T (3) | =0y =nem (1= ) ().
2

We have the power series expansion

(1= w()~ /2 = i(";z)k@k

k=0

Recall that (1 —w()~"/? is the reproducing kernel for the weighted Bergman space
H3,2(U), defined as

HoalU) =S € OW) | L L) Doy [ 1HOF =GP0 2am(0) < oo}
Polynomials of different degree are orthogonal in J77,/5(U) and hence we have

/ (1- wZ)—(n—Z)/nCm(l _ |C|2)(n_4)/2dm(C)
U

- x5

k=0

n_? (0" C™ (1= ¢3) " dm(Q)
/U 2 0( ) &),

) (20)F¢™ (1 — [¢P) ™D dm(¢)

where the last equality follows from the reproducing property in J#,/2(U). Sum-
ming up, we have

n—2

(Ttn—2)/2(C1 +1i6)™)(2) = 55

From this and the intertwining of the [-action, it follows that

T(n-2)/2n (@ Em(5"1)> CPEn (107)

To compute the norm of T{;,,_2)/2n(p) wWhere p € Ep(S™1), we first fix r < 1 and
consider the polynomial T(,_2)/2,(p(r2)). By definition

(21 +iz9)™ (106)

T(n—2)/2n(p) (TZ) = K,,(’I‘Z, C)p(C)dO(C)

Sn—1

Ky (z,m¢)p(¢)do () (108)

Sn—1
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The integral (108) can be approximated by a sequence of Riemann sums

. Ky (2,rQ)p(Q)do(¢) = lim Ry, (109)
ki
Ri=) K,(z,7G)p(G)o(4s) (110)

i=1

It is not difficult to see that the sequence Ry is bounded in %%, and hence has a con-
vergent subsequence. We can therefore assume that R; converges to T(,,—2) /20 () (r2).
Hence

ITtn—2)/2n () (r2)Il; = lim. || Ry[}
—00

The functions R; are in the dense subspace on which we have an explicit formula
for the norm

IRI} = ZP(Cz’)p(—Cj)U(Ai)U(AJ’)Ku(rCiaTCJ') (111)

The sequence (|| R;||2); is also a Riemann sum; letting I — co we get

ITonyan@ e = [ [ pOpKL G rndo(Qdot)  (112)

Finally, we let r — 1 and obtain

T2 @IE= [ [ sOpKAC oot (13

From this and the orthogonality of the spaces E, it follows that T, _9)/2, maps
(@D,, Em(S™!) isometrically onto (€p,, Em). Hence it extends to a unitary op-
erator from %, _3) /2, ONto Yy _2)/2- O
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