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Determinantal two-block-factors and Dynamical Percolation for some
Interacting Particle Systems

Erik Broman

Department of Mathematics
Chalmers University of Technology
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Abstract

In this thesis we first analyze a class of one-dependent trigonometric
determinantal processes and show that they are two-block-factors. We do
this by constructing the two-block-factors explicitly. We hope that this
description will enable one to use more standard probabilistic techniques
when studying this class of processes.

Second we investigate the dynamic stability of percolation for the stochas-
tic Ising model and the contact process. This is a natural extension of what
previously has been done for non-interacting particle systems. The main
question we ask is; if we have percolation at a fixed time in a time-dependent
system, do we have percolation at all times? A key tool in the analysis is
the concept of e—stability which we introduce here.

Keywords: Determinantal processes, k-dependence, k-block-factors,
percolation, stochastic Ising models, contact process.
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This thesis consists of the following papers:

Paper I: One-dependent trigonometric determinantal processes are two-
block-factors Annals of Probability (To Appear)

Given a trigonometric polynomial f : [0,1] — [0,1] of degree m, one can
define a corresponding stationary process {X;}icz via determinants of the
Toeplitz matrix for f. We show that for m = 1 this process, which is trivially
one-dependent, is a two-block-factor.

Paper II: Dynamical Stability of Percolation for Some Interacting Parti-
cle Systems and e—stability (Submitted)

In this paper we will investigate dynamic stability of percolation for the
stochastic Ising model and the contact process. We also introduce the no-
tion of downwards and upwards e-stability which will be a key tool for our
analysis.
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One-dependent trigonometric determinantal
processes are two-block-factors

Erik I. Broman*

September 29, 2003

Abstract

Given a trigonometric polynomial f : [0,1] — [0, 1] of degree m, one
can define a corresponding stationary process {X; }icz via determinants
of the Toeplitz matrix for f. We show that for m = 1 this process, which
is trivially one-dependent, is a two-block-factor.

AMS subject classification: 60G10

Keywords and phrases: Determinantal processes, k-dependence k-
block-factors

Short title: Determinants and two-block-factors

1 Introduction

We will start by defining a family of probability measures P/ on the Borel
sets of {0,1}% where f : [0,1] — [0,1] is a Lebesgue-measurable function
(see [9]). For such an f, define the probability of the cylinder sets by

Plip(er) =---=nlex) = 1] = Pf[{fl € {0,1}* inler) = -+ =nlex) = 1}]
= dct[f(ej — ei)]lﬁgidﬁk:

where e1, ..., e are distinct clements in Z and k > 1. Here f denotes the
Fourier coefficients of f, defined by

A 1 .
(k) :=/0 f(z)e 2oy,

In [9] it is proven that P/ is indeed a probability measure. In fact they
showed this for the more general case of f : T¢ — [0, 1] where T¢ := R?/Z%

*Research partially supported by the Swedish Natural Science Research Council

in this casc the resulting process is indexed by Z% This result rests very
strongly on the results in [8]. Except for the two definitions below, {X;}icz
will always denote a process distributed according to some measure P/.
Throughout this paper, equality in distribution will be denoted by =p . Let
the function f : [0,1] — [0, 1] be of the form

m

f(l‘)= Z akefiZﬂ'kz.

k=—m

It is then casily checked that the process {Xj }icz corresponding to the prob-
ability measure P/ is m-dependent according to the definition below.

Definition 1.1 A process {X;}icz is called m-dependent if {X;}icr is in-
dependent of {Xi}i>kym for all integers k.

We will also need the definition of an m-block-factor.

Definition 1.2 The process {X;}icz is called an m-block-factor if there
exists a function h of m variables and an i.i.d. process {Y;}icz such that
{Xiticz =p {h(Yi, .., Yigm—1) bicz-

We will as usual not distinguish between the process {X;}icz and the
corresponding probability measure P/.

Observe that an (m+1)-block-factor is trivially m-dependent. For some
time, it was an open question whether all m-dependent processes were in
fact (m+1)-block-factors (see [4],[5],(6],(7]). However, in (2] the authors
constructed a family of one-dependent processes which are not two-block-
factors, and in [3] the authors constructed a one-dependent process which is
not a k-block factor for any k. In [1] the authors construct a one-dependent
stationary Markov process with five states which is not a two-block-factor,
they also prove that this result is sharp in the sense that every one-dependent
stationary Markov process with not more that four states is a two-block-
factor. In view of the above it is a natural question to ask whether a certain
m-dependent process is an (m+1)-block-factor or not.

P/ as defined above is an m-dependent ”trigonometric determinantal
probability measure”. These probability measures are special cases of gen-
cral determinantal probability measures, see [10] or [8] for definitions and
results. Determinantal processes arise in numerous contexts e.g. mathemat-
ical physics, random matrix theory and representation theory to name a few.
For a survey see [10], for further results see [8] and for results concerning
the discrete stationary case, sce [9]. In [9], they ask whether PS above is an
(m+1)-block-factor. In that paper they say that if one can find sufficiently
explicit block factors for all trigonometric polynomials, then one can find




explicit factors of i.i.d. processes giving P/, where f is any function such
that f : T — [0,1]. This in turn would enable one to use more standard
probabilistic techniques when studying such a P/. We answer their question
positively for m=1 in Theorem (1.3), constructing an explicit two-block-
factor.

Theorem 1.3 If f:[0,1] — [0, 1] is given by
f(z) — b+ae—i27rz +ce121rac’

then the corresponding process {X;}icz is a two-block-factor.

2 Proof of theorem 1.3

Proof of theorem 1.3.
With f as in the statement of the theorem, it follows that @ = ¢, b > 0
and hence if a = a1 + ias

f(z) = b+ 2a1 cos(2nz) + 2ag sin(2nz) = b+ 2|a| cos(2rz — ¢), (1)

for some suitable choice of ¢. Let, as usual, P/ be the corresponding prob-
ability measure, and write

Dy, := det [f(5 — i)i<ij<ktt

where k£ > 0.

Note that the process {X;}icz distributed according to P/ is obviously
stationary. Since P/ is one-dependent, it is casily seen that it is uniquely
determined among the one-dependent processes by the values of

Pl =--=n(i+k) =1]=P/n1) =--- =91 +k) =1]

as k varies over the nonnegative integers.
We have that for k£ > 2

Dy = det [f(j —i)li<;jckri1 =

=bDj_1 — |a|*Dy_s,

where the determinant on the left-hand side of the third equality has size
(k+ 1) x (k+ 1), and the two on the right-hand side have size k X k.
Furthermore

b a
a b

3)

D; = =0 - |af’. (4)

The characteristic equation corresponding to equation (2) is
2 —br +a]? =0,

which has two roots

and so (since b, |a| > 0)

We have by equation (1) that

zr;l[:a’)i]f(:c) = zrf[%ﬁ](b+ 2|a| cos(2mz — ¢)) = b+ 2|a] = 2b

and since f :[0,1] — [0,1] we get < 1/2 and so |a| < 1/4.
With 7y = rg = r, it follows from the basic theory of difference equations
that the solution to equation (2) is

Dy, = (Cik + Co)rF Yk > 0,
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Figure 1: This figure shows A (the shaded arca).

for some constants C;,Cy yet to be determined. Using (3) and (4), we get
that Cy = Dy = b = 2r and using this we get (Cy +2r)r = Dy = b% —|a? =
b% — b2 /4 = 3r%. Hence C; = r and so
Dy, = (kr + 2r)rF Vk > 0. (8)

We will now construct a two-block-factor which we will show to be dis-
tributed according to P7. Let {V;}icz be i.i.d. uniform on [0,1]. Define
h:[0,1] x [0,1] = [0,1] by h = L4 where

A

11 1 3 3
§’§+T]U[0’Z] X [Z’Z+r]
11 11 11 11 11
U[Z’i] X [Z:Z+T]U[ZSE] X [§a§+T]U[Z;§] x [
11 3 3 3
§,§+T]U[ZJ] *[gog +rl
A is depicted as the grey area of figure (1). Observe that r = |a| < 1/4.

We will show that

P(h(Y;, Yit1) = -+ = h(Yik, Yipns1) = 1] = Dy VE > 0.

Since {h(Y;, Yi11) }icz is one-dependent, this gives us {h(Y;, Yiy1) }icz =p PY
as desired. We first observe that the size of the shaded arca of figure (1) is
81r =2r = b, so that P[h(Y;,Yi41) = 1] = Do.

=10, 1 % (0,710, 3] x

Uy o x [

K h(Y;,Yig1) =+ = h(Yiyk, Yirr1) = 1, then (Yiyy, Yigi1) must be in
one of the boxes marked 1 through 8 of figure (1) VI € {0,...,k}. If (V;, Yit1)
is in the box marked 1, then Y41 € [0, 7] and so (Y;41, Yit2) must be in one
of the boxes marked 1, 3 or 5 because otherwise (Yjy1,Yiy2) ¢ A. Similar
“rules” apply if (Y;, Yit1) is in one of the other seven boxes. We see that for
any w such that hA(Yj(w),Yit1(w)) =+ = h(Yitk(w), Yijgs1(w)) = 1 there
is a natural sequence jo7; -+ - jx(w) € {1,...,8}*! associated to it, where
the value of j; indicates that (Yj;(w), Yiy41(w)) is in the box marked with
that value. In any such sequence the number 1 can only be followed by
either 1, 3 or 5, as described above, while the number 2 can only be followed
by either 2, 4 or 6. Additionally any one of the numbers 3, 4 or 7 must be
followed by a 7, while any one of 5, 6 or 8 must be followed by an 8.

We claim that the number of sequences joji - - - ji described above is
(4k + 8). To sce this, observe that every such sequence with ji ¢ {1,2} can
be extended into a sequence joji - - - jx41 in only one way, while if ji € {1,2}
it can be extended in three ways. Observe also that there are only two
sequences joji - -+ jk ending in 1 or 2.

The set of w giving a specific sequence joj1 ---jx € {1,...,8}**" has
probability (1/4)7*+! since ¥; must be in an interval of length 1/4, while
Yit1,...,Yitg+1 all must be within intervals of length r. Hence the total
probability of having h(Y;,Yiy1) = -+ = h(Yijr, Yiget1) = 1 is (4k +
8)(1/4)r*+1 = (kr + 2r)r*. Comparing with equation (8) we sce that

P[a(Y;,Yip1) = --- = h(Yigk,Yigry1) = 1] = Dy

Vk > 0 and we conclude that {h(Y;,Yii1)}icz =p PS and so this case is
proved.

Case 2: It remains to consider r; # 79. According to equations (6) and

()

r+r9="b
and

Ty = \a\Z.
In this case the solution to equation (2) is, again, from basic difference
equation theory,

Dy = Cﬂ'lf + CzT‘éC Vk > 0,
for some constants Cj,Cy yet to be determined. Using this with equation
(3) we get
C1+Cy=Dg=r+r9,

and using equation (4) we get

Cir1 + Corg = Dy = b2 — \a\2 = ('!'1 + 7'2)2 —Triryg = T‘? —+ 7179 +r§.




A straightforward calculation yiclds

and therefore for & > 1,
k2 _ k42 k42 _ k+l k41 k+1
Dy = ritE — okt _ R A T o T G — 4Dy .
TL—T2 TL— T2

(9)
Assume that b < % so that 2(r; +rq) < 1. We will now construct a two-block-
factor which we will show to be distributed according to P/. Let {Y;}icz be
i.i.d. uniform on [0,1] and again take h : [0,1] x [0,1] — [0,1] to be the
function h = T4 where A is now

A

=[0,Cr] x [0,71] U [0,Cr] x [2C71,2C7) + 19]
U[0,Cr1] x [2Cr1 + Cr9,2CT1 + Cra + 1]
U[Cr1,2Cr] % [Cry,Cry + 7]

U[Cr1,2Cr] x [2C71,2C7T1 + 19]

U[Cr1,2Cr] x [2Cr1 4 Cre,2Cr1 + Cra + 9]
U[2CT1,2CT + Crg] x [2C7r1,2CT1 + 149]

U[2Cry + Cra,1] x [2CT1 + Cre,2Cr1 4+ Cra + 14],

and C = 5 T11+7‘2 > 1. A is the shaded arca of figure (2).

Again we will show that
P(Y;,Yit1) =+ = h(Yiik, Yigrtr) = 1] = Dy Vk > 0.

Since again {h(Y;, Yi11) }icz is one-dependent this gives us {h(Y;, Yi11) }iez =p
P/. We observe that the size of the shaded area of figure (2) equals

2Crir +4Crirg + 2Crorg = 2C(T1 =+ 7‘2)2 =ri+17r

by our choice of C, and so P[h(Y;,Y;41) = 1] = Dy.

For any w such that h(Y;(w), Yi11(w)) = -+ = b(Yiyr (@), Vigpr1(w)) = 1
there is a natural sequence joji - - jr(w) € {1,...,8}*+! associated to it
as before. Let {w : joji---jk(w)} denote the set of w giving a specific
sequence joji - - - j, and for convenience we will write P[joj; - - - jx] instead
of P[{w : joj1-- - jk(w)}]. Assume that j,_, € {3,4,5,6,7,8}, we get

Pljoj1 -+ ji] = r2Pljosr -+ Jr—1]

1
2Cr1 + Cra + 79

2Crq, + Cry
2Cr1 + 712

2Cry
Cr1+r

Crq 2Cry 2Cr1 4+ Cry 1

Figure 2: This figure shows A (the shaded arca).

since ji is either 7 or 8 (depending on the value of jx_1). If instead jx_1 =1
then ji must be either 1,3 or 5 and of course j;, = 1 for alll < (k—1). Hence
in this case

Pljoj1 -~ jk] = r2Pjog1 - - dk—1] = roP[1L- - 1] = Ot
k
if jg is equal to 3 or 5 and
Pljoji -+ ji] = P[11:-- 1] = Crf*?
kt1

if jx = 1. Similarly if jx_; = 2 then jr must be cither 2,4 or 5 and of course
j1=2foralll < (k—1). Hence

Pljoji -+~ je] =m2Pljoji - - jrk] = 2P[22: - 2] = ryCrit!
k

if j is equal to 4 or 6 and

Pljojr--jk] = Pl22---2] = Crit?
kt1




Let Ay be the set of all sequences jgj - - - jx corresponding to the event
h(Y;, Yit1) = -+ = h(Yiyk, Yizn+1) = 1. We have that

Ph(Y;,Yit1) = = h(Yitk Yigri1) = 1]
= "Pljosr -Gl
Ap
= > Plji--gkl+ Y. Plioji---ikl
Ag Ag
Jk—1#{1,2} Jk—1€{1,2}

=ry > Pljoji--Gro1] +4roCrf T 4 2005
A

k-1
Jk—1#{1,2}

=ry > Pliogi---dk 1] +PUL 1]+ P22-- -7
k

Ak -1 k
Jr—1¢{1,2}
+2ryCri Tt 4 20782
=79 Z Pljogi - dr—1] + 2075 (11 +19)
Ap_1
= raP[A(Y;, Yi1) = -+ = h(Yippo1, Yiep) = 1] + 01"
Comparing this to equation (9), and using P[h(Y;, Yit1) = 1] = Dg we sce
that
P[h(YiaYHl) == h(YHk;YHkH) = 1] = Dy

for all £ > 0, and so this case is also proved.
Finally the case b > % remains. Take

g(x) =1— f(z) =1—-b—2|a|cos(2rz — ¢) = 1 — b+ 2|a| cos(2nz — ¢'),

for some suitable choice of ¢'. Since 1 —b < %, it follows from above that we
can construct a two-block-factor {h(Y;, Yit1)}iez such that

{h(Yi: Yz‘+1)}ieZ =D PI.

With A = 1 — h, we get a new two-block-factor {E(Yl,Yzﬂ)}leZ with ones
and zcros flipped. Lemma 2.4 in [9] then shows that {A(Y;,Yit1)}icz has
distribution P9, which in turn is P/.

QED

When trying to generalise theorem 1.3 to the case where f is a trigono-
metric polynomial of degree m, one must consider not only the values of

Plip(t) =--- =n(1+k) =1],

but also the values of
Pllp(er) =1--- = nlex) = 1]

where e; € ZVi € {1,...,k} but where e; is not necessarily equal to e;_; +1.
Analysing these new cylinder events adds to the complexity of the problem
and therefore, in our opinion, the generalisation of theorem 1.3 (if indeed
the generalisation is true) does not seem to be trivial.
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One-dependent trigonometric determinantal
processes are two-block-factors
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Abstract

Given a trigonometric polynomial f : [0,1] — [0, 1] of degree m, one
can define a corresponding stationary process {X; }icz via determinants
of the Toeplitz matrix for f. We show that for m = 1 this process, which
is trivially one-dependent, is a two-block-factor.

AMS subject classification: 60G10

Keywords and phrases: Determinantal processes, k-dependence k-
block-factors

Short title: Determinants and two-block-factors
1 Introduction
We will start by defining a family of probability measures P/ on the Borel

sets of {0,1}% where f : [0,1] — [0,1] is a Lebesgue-measurable function
(see [9]). For such an f, define the probability of the cylinder sets by

Pller) = =n(ex) =1] = PI[{ne{0,1}" :nler) = =nlex) = 1}]
= det[f(e; — ex)hi<ii<ks
where e1, ..., e are distinct clements in Z and k > 1. Here f denotes the

Fourier coefficients of f, defined by

A 1 .
(k) :=/0 f(z)e 2oy,

In [9] it is proven that P/ is indeed a probability measure. In fact they
showed this for the more general case of f : T¢ — [0, 1] where T¢ := R?/Z%
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Interacting Particle Systems and e-Stability

Erik I. Broman* and Jeffrey E. Steiff
Chalmers University of Technology

August 18, 2004

Abstract

In this paper we will investigate dynamic stability of percolation for
the stochastic Ising model and the contact process. We also introduce
the notion of downwards and upwards e-stability which will be a key
tool for our analysis.

AMS subject classification: 82C43, 82B43, 60K35

Keywords and phrases: percolation, stochastic Ising models, con-
tact process,

Short title: Dynamical Stability for IPS

1 Introduction

Consider bond percolation on an infinite connected locally finite graph G,
where for some p € [0,1] each edge (bond) of G is, independently of all
others, open with probability p and closed with probability 1 — p. Write =,
for this product measure. The main questions in percolation theory (sce [9])
deal with the possible existence of infinite connected components (clusters)
in the random subgraph of G consisting of all sites and all open edges. Write
C for the event that there exists such an infinite cluster. By Kolmogorov’s
0-1 law, the probability of C is, for fixed G and p, cither 0 or 1. Since m,(C)
is nondecreasing in p, there exists a critical probability p. = p.(G) € [0,1]

such that
_J 0 forp<pe.
wp(C)—{ 1 for p > pe.

*Research supported by the Swedish Natural Science Research Council
TResearch partially supported by the Swedish Natural Science Research Council and
in part by NSF grant DMS-010384

At p = p. we can have cither m,(C) =0 or 7,(C) = 1, depending on G.

In [14], the authors initiated the study of dynamical percolation. In
this model, with p fixed, the edges of G switch back and forth according to
independent 2 state Markov chains where 0 switches to 1 at rate p and 1
switches to 0 at rate 1 —p. In this way, if we start with distribution mp, the
distribution of the system at all times is 7,. The general question studied in
[14] was whether there could exist atypical times at which the percolation
structure looks different than at a fixed time.

The point of the present paper is to initiate a study of dynamical per-
colation for interacting systems where the edges or sites flip at rates which
depend on the neighbors. We point out that in a different direction such
questions in continuous space but without interactions related to contiuum
percolation have been studied in [2].

Ising model results. Precise definitions of the following Ising model
measures and the stochastic Ising model will be given in Section 2. Fix a
graph G = (S, E). Let pt#" be the plus state for the Ising model with
inverse temperature 8 and external field kA on G; (this is a probability mea-
sure on {—1,1}5). Let ¥*#" denote the corresponding stochastic Ising
model; (this is a stationary continuous time Markov chain on {~1,1}" with
marginal distribution p#). Tet Ct (C~) denote the event that there ex-
ists an infinite cluster of sites with spin 1 (—1) and let ¢, (C, ) denote the
event that there exists an infinite cluster of sites with spin 1 (—1) at time ¢.
It is known that the family pt+#+% is, for fixed B3, stochastically increasing
(to be defined later) in h.

Theorem 1.1 Consider a graph G = (S, E) of bounded degree. Fiz 8 > 0
and let he = he(B) be defined by

he == inf{h : p*Bh(Ct) = 1}.
Then for all h > he,
‘~Il+’5’h(CtJr occurs for every t) =1
and for all h < h,
WA > 0: CF occurs ) = 0.
If we modify h. to be instead
b, := sup{h : ptPMCT) = 1},

the same two claims hold with C;" replaced by C; and with h < h}, and h > hl,
reversed.




This result tells us what happens in the subcritical and supercritical
cases (with respect to h with 8 held fixed). It is the analogue of the easier
Proposition 1.1 in [14] where it is proved that if p < p. (p > pc), then, with
probability 1, there is percolation at no time (at all times).

The following casy lemma gives us information about when A, is non-
trivial.

Lemma 1.2 Assume the graph G has bounded degree and let B be arbitrary.
Then he > —oo. If pc(site) < 1, then he < co. Similar results hold if h. is
replaced by h!..

The following theorems, where we restrict to Z¢% will only discuss the
case h = 0. However, this will in many cases give us information about the
“critical” case (8, hc(B)) since in a number of situations, h.(8) = 0. For
example, this is true on all Z¢ with d > 2 and B sufficiently large. We
also mention that while the relationship between A, and A, in Theorem 1.1
might in general be complicated, for Z% one casily has that h, = —h’; this
follows from the known fact that the plus and minus states are the same
when b # 0. When h = 0, we will abbreviate pt#9 by 8 and o+:0 by
T+,

We first study percolation of —1’s and then percolation of 1’s. Let

oo
Bp(2) :=1inf{B: Zl3l71€7251 < oo} = 1053.
=1

We will refer to 8,(2) as the critical inverse temperature of the Peierls regime
for Z2. The choice of B,(2) might at first look quite arbitrary, but it is
exactly what is needed to carry out a contour argument (known as Peierls
argument) for Z2. For d > 3, there is a f,(d), such that for 8 larger than
Bp(d), a similar (although topologically more complicated) argument works
for Z%. As a result of this “contour argument”, it is well known and casy to
show that for 8 > f,(d), we have that

wHAe) =o. (1)

Our next result is a dynamical version of equation (1) and we emphasize
that this corresponds to the critical case as it is casy to check that for these

B’s, he(B) =0.

Theorem 1.3 For Z% with d > 2 and 8 > B,(d)

OHA(3t > 0: C occurs) = 0.

It is well known that SB,(d) > Bc(d), the latter being the critical inverse
temperature for the Ising model on Z% For d = 2, Theorem 1.3 can be
extended down to the critical inverse temperature S.(2). First, it is known
(see [4]) that on Z2, for all B

ut(c) =0 2

Our dynamical analogue for 8 > S, is the following where we again point
out that this is also a critical case as it is easy to check that for these £’s,
we also have h.(8) = 0.

Theorem 1.4 For the stochastic Ising model UHP on 72 with parameter

B> Bes
wHA(3t > 0: ¢ occurs) = 0.

Interestingly, equation (1) is not always true for 8 > S.(d) although, as
stated, it is true for Z2 or A sufficiently large. In [1], it is shown that for Z¢
with large d, there exists 8% > B.(d) such that the probability in equation
(1) is in fact 1 for all B < 8. Moreover, they show that for these 3, there
exists b > 0 with

phhher) =1.

For such §’s, this means that Al > 0 and hence it immediately follows from
Theorem 1.1 that

T8¢, occurs for every t) = 1.

Note that for these values of 3, the case h = 0 is a non-critical case.

We next look at percolation of 1’s under 4. In the above results, we
have not discussed the case of percolation of —1’s when 8 < B.. However,
by symmetry, this is the same as studying percolation of 1’s in this case and
so we can now move over to the study of CT.

First, it is well known (see for example [3]) that for any graph of bounded
degree when p 80 o£ =Bk +.8h(CH) = 1. In particular, for any graph G
of bounded degree and for 8 > B.(G),

utet) =1. ®3)

Our next result is a dynamical version of equation (3) for Z¢. We mention
that this result sometimes corresponds to a critical case and sometimes not.
For B > By(d) in Z% or B > B.(2) in Z2, we have scen that h, = 0 and so,
in these cases, this next result covers the critical case. However, as pointed
out, for d large and B just a little higher than f,, the result in [1] gives us
that h. < 0 and hence in this case, this next theorem alrcady follows from
Theorem 1.1.




Theorem 1.5 For the stochastic Ising model U8 on Z¢ with parameter

B > Bc(d),

THB(CH occurs for every t) = 1.

(The proof we give actually works for any graph of bounded degree). We
mention that while 8 > . is a sufficient condition for equation (3) to hold,
it is certainly not necessary. For example, on Z3 we have that pt0(Ct) = 1
since pt0 = m /2 and the critical value for site percolation on 73 is less than
1/2. The reason S, appears is the connection between the Ising model and
the random cluster model; S, corresponds to the critical value for percolation
in the corresponding random cluster model.

We are now left with the case f < .. We will not be able to say too
much since it is not known in all cases whether one has percolation at a
fixed time. We first however have the following easy result for d > 3. We
do not prove this result since it follows easily from the fact that the critical
value for site percolation on Z is less than 1/2 for d > 3 as this gives casily
that h.(8) < 0 for 8 sufficiently small and hence Theorem 1.1 is applicable.

Note that the case 8 = 0 follows from the result in [14] mentioned above.

Proposition 1.6 For d > 3, there exists B1(d) > O such that for all 8 <
B1(d), we have that

UHB(C occurs for every t) = 1.

Finally, due to work of Higuchi, we can determine what happens with
B < B for Z2. 1t is shown in [15] that for Z2, for all B < S, we have that
he(B) > 0. The following result follows from this fact and Theorem 1.1.

Theorem 1.7 For d =2, for all § < B¢, we have that
A3 > 0:CF occurs ) = 0.

We note that cven though it is known that for Z2, u*f(C*) = 0, we
cannot conclude as above that

THPe(3¢ > 0: ¢ oceurs ) =0

since it is known (see [16]) that h.(8:) = 0. We finally mention that it is
also interestingly known (sce again [16]) that for 8 < B, pTP"B)(CT) = 0.

Contact process results. Precisc definitions of the following items
will be given in Section 2. Fix a graph G = (S, E). Consider the contact
process on a graph G = (S, E) with parameter A. Denote by p), the stochas-
tically largest invariant measure, the so-called “upper invariant measure”;
(this is a probability measure on {0,1}%). Let U* denote the correspond-
ing stationary contact process; (this is a stationary continuous time Markov
chain on {0,1}% with marginal distribution py). If 0 < X\ < Ay, it is well
known that p), is stochastically smaller than p),, denoted by

B 2 Mg

(see Section 2 for this precise definition).

Theorem 1.8 Consider the contact process U* on a graph G = (S, E), with
initial and stationary distribution py. Let A\, be defined by

Ap :=inf{X : pr(C*) =1}
We have that for all A > Xp,
TNC;E oceurs for every t) = 1.

In order for this theorem to be nonvacuous, we need to know that A, < oo
for at least some graph. While this scems to be an open question for Z4, the
fact that there exists A such that py(C*) > 0 for T¢ with d > 2 follows from
[11]. Here T¢ is the unique infinite connected graph without circuits and in
which cach site has exactly d + 1 neighbours; T¢ is commonly known as the
homogenous tree of order d. Combined with a 0-1 law which we develop,
Proposition 4.2, we obtain that X, < oco.

When we prove Theorem 1.1, we will in fact, prove a more general the-
orem which holds for a large class of systems. However, this proof will only
work for models satisfying the so-called FKG lattice condition (which we
call “monotone” in this paper.) We now point out the important fact that
for A > 2, in 1 dimension, the upper invariant measure for the contact pro-
cess, while having positive correlations, is not monotone (see [19]). These
terms are defined in Section 2. One would also believe it is never monotone
whenever the measure is not dg. Hence Theorem 1.8 does not follow from
the generalization of Theorem 1.1 which will come later.

e—stability. We now introduce the concepts of upwards and down-
wards e—stability. While we mainly introduce these as a technical tool to be
used in our main results, we believe that they are of independent interest.
Let S be a countable set. Take any probability measure p on {—1,1}% and




let X be a {—1,1}% valued random variable with distribution p. Let Z be
a {—1,1}" valued random variable with distribution 7; . and be indepen-
dent of X. Define X(—¢ by letting X (9 (s) = min(X(s), Z(s)) for every
s € 8, and let x(—9 denote the distribution of X (7). In a similar way,
define X(+:¢) by letting X (+:€)(s) = max(X(s), Z(s)) for every s € S, where
Z has distribution 7, and is independent of X. Denote the distribution of
X (+:€) by 'u(-%—,e)_

Definition 1.9 Let (i1, po) be a pair of probability measures on {—1,1}5,
where S is a countable set. Assume that

H1 =2 pa.
If there ezists an € > 0 such that

238 = u(27’€)>
then we say that this pair of measures is downwards e-stable. If the pair is
downwards e-stable for some € > 0, we say that the pair is downwards stable.
Analogously, if there ezists an € > 0 such that

#(1+’€) = p2,

then we say that the pair (u1,p2) is upwards e-stable and that it is upwards
stable if the pair is upwards e-stable for some € > 0.

For probability measures on {0, 1}57 we have identical definitions.

The relevance of downward (or upward) e—stability to our dynamical
percolation analysis will be explained in Section 5. In Section 3, we will
prove e—stability for general monotone systems which will eventually lead
to a proof of Theorem 1.1 (and its generalization). We now state a similar
and key result for the contact process.

Theorem 1.10 Let G be a graph of bounded degree, 0 < A < Ay and
Hxpy M, be the upper invariant measures for the contact process on {0, 1}8
with parameters A1 and Ay respectively. Then (jy,, pty,) is downwards stable.

Remark: We do not know whether (py,, py,) is upwards stable.

We finally mention how the above questions that we study are related
to classical Markov process theory. Let (€2, F,P) be the probability space
where a stationary Markov process { X; }¢>0 taking values in some state space
§ is defined. Letting p denote the distribution of X; (for any t), consider an
event A C 8 with p(A) = 1. Let A; be the event that A occurs at time ¢.

We say that A is a dynamicaly stable event if P(A; Vt > 0) = 1. In Markov
process terminology, this is equivalent to saying that A° has capacity zero.
All the questions in this paper deal with showing, for various models and
parameters, that the event that there exists an infinite connected component
of sites which are all open is dynamically stable.

The rest of this paper is divided into 9 sections. In Section 2, we
will give all necessary preliminaries and precise definitions of our models.
Sections 3 and 4 will deal with the concept of e-stability. In Section 3, we
develop what will be needed to prove Theorem 1.1 and its gencralization.
In Section 4, we will prove Theorem 1.10 (which is the key to Theorem
1.8) as well as give a proof that A\, < oo for trees. In Section 5, we prove
2 clementary lemmas which relate the notion of e-stability to dynamical
questions. In the remaining sections, proofs of the remaining results are
given. We note that the proof of Theorem 1.4 will use the proof of Theorem
1.5 and hence will come afterwards.

We end with one bit of notation. If y is a probability measure on some
set U, we write X ~ g to mean that X is a random variable taking values
in U with distribution .

2 Models and definitions

Before presenting the interacting particle systems discussed in this paper we
will present some definitions and results related to stochastic domination.
Let S be any countable set. For 0,0’ € {~1,1}% we write 0 < o' if o(s) <
o' (s) for every s € S. An increasing function f is a function f : {-1,1} = R
such that f(o) < f(o') for all o < ¢’. For two probability measures pu, y'
on {—1,1} we write 4 < p' if for every continuous increasing function f
we have that pu(f) < p'(f). When {—1,1}° is replaced by {0,1}°, we have
identical definitions.

A very useful result is the so called Holley’s inequality, which appeared
first in [17]. We will present a variant of the theorem by Holley; it is not
the most general but is sufficient for our purposes.

Theorem 2.1 Take S to be a finite set. Let p, y' be probability measures on
{=1,1}" which assign positive probability to all configurations o € {—1,1}5.
Assume that

u(o(s) =1|o(S\ s) =€) < p'(a(s) =1lo(S\s) =€)
for every s € S and € < ¢ where £,¢" € {=1,1}5\5. Then pu =< p'.
Proof. Sece [8] or [12] for a proof.




QED

Two properties of probability measures which are often encountered
within the field of interacting particle systems are the monotonicity property
and the property of positive correlations presented below.

Definition 2.2 Take S to be a finite set. A measure p on {—1,1}° which

assigns positive probability to every configuration o € {—1,1}% is called
monotone if for every s € S and & 3 ¢ where £,¢' € {—1,1}5\s,
pu(o(s) =1lo(S\ s) =€) < plo(s) = 1|o(8\ s) = ¢).

We point out immediately, that it is known that this is equivalent to the

so-called FKG lattice conidition.

Definition 2.3 A measure yu on {—1,1}° is said to have positive correla-
tions if for all bounded increasing functions f,g: {—1, 1}5 — R, we have

1(fg) = u(fr(g)-
The following important result is sometimes known as the FKG inequality
(see [6]).

Theorem 2.4 Take S to be a finite set. Let p be a monotone probability
measure on {—1, 1}5 which assigns positive probability to every configura-
tion. Then p has positive correlations.

Proof. Sce [8] for a proof.
QED

In this section and also later in this paper we will talk about convergence
of probability measures. Convergence will always mean weak convergence,
where {0,1}® is given the product topology.

2.1 The Ising model

Take G = (S, E), where | S| < co. The Ising measure g on {-1,1}° at in-
verse temperature S > 0, external field 2 and with free boundary conditions
is defined as follows. For any configuration o € {—1,1}%, let

H' o)== ) o(s)o(t) =h)_a(s). (4)

{s;t}€E s€8
5,tES

HP" is called the Hamiltonian. Define p#* by assigning the probability

—HBh(o)
Bh(y) = €
o) =" (5)

to any configuration o € {—1,1}% where Z is a normalization constant. Of
course Z depends on the graph and the values 8 and h, but this will not be
important for us and thercfore not reflected in the notation.

Take S, = A1 = {-n—1,...,n 4+ 1}¢ and E, to be the set of all
nearest neighbor pairs of Sy,. Given a configuration £ on {-1, I}Zd\A", let,
for o € {-1,1}5,

HYPMo)=—B Y o(s)o(t) =h Y a(s)=B D a(s)é(t) (6)
{s,t}€E SEAn {ié;\iE
t€A,41\An

s,tEAR

be our Hamiltonian. Here ¢ is called a boundary condition. Again we
define a probability measure using equation (5) but using the Hamiltonian
of equation (6) instead. This Ising measure will be denoted by ui’ﬂ’h. The
cases £ = 1 and £ = —1 arc especially important and the corrcspondinﬁ
Ising measures are denoted by u:[’ﬁ’h and p;’ﬂ’h respectively. We view u,f’ﬁ’
(u;’ﬂ’h) as a probability measure on {-1, 1}Zd by letting, with probability
1, the configuration be identically 1 (-1) outside Ap. It is known (sce [18],
page 189) that the sequences {pn**"} and {un"®"} converge as n tends to
infinity; these limits arc denoted by pt:8:" and p—8:h,

The same kind of construction can be carried out on any infinite con-
nected locally finite graph G = (S, E). One defines a Hamiltonian analogous
to the one in equation (6) but with A,, replaced by any A C S where |A| < oc.
With £ =1 or £ = —1, one then considers the corresponding limits of Ising
measures as A 1.5, the limit being independent of the particular choice of
sequence. See for instance [8] for how this is carried out in detail. Fix h =0
and abbreviate p™#0 and p—80 by pt# and p—f. It is well known ([7],
[8]) that for any graph, there exists 8. € [0, 00] such that for 0 < 8 < S,
we have that p=f = u+# (and there is then a unique so called Gibbs state)
and for 8 > B, p~f # ptP. For Z% with d > 2, and many other graphs,
Be € (0,00). B is sometimes referred to as the critical inverse temperature
for phase transition in the Ising model. Furthermore in [13], the author
shows that if G is of bounded degree, the condition 3. < oo is equivalent to
the condition p, < 1, where p, is the critical parameter value for site percola-
tion on G. It is easy to see that for any graph of bounded degree p. > 0 (see
the proof of theorem 1.10 of [9]). This in turn implies via the connection
between the random cluster model and the Ising model, described below,
that 8. > 0 for any graph of bounded degree.

2.2 Spin Systems.

A configuration ¢ € {~1,1}° can be scen as particles on a discrete set S
having onc of two different “spins” represented by -1 and 1. To this we
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will add a stochastic dynamics, and assume that the system is described
by “fip rate intensities” which we will denote by {C(s,0)}scs, oef 1,135
C(s, o) represents the rate at which site s changes its state when the present
configuration is o. Of course C(s,0) > 0 Vs € S,0 € {—1,1}", and we
assume that the interaction is nearest neighbour in the sense that the flip rate
of a site s € S only depends on the configuration o at sites ¢ with {s, ¢} € E.
We will limit ourselves to only allow one site flip in every transition and we
will only consider flip rate intensities such that

sup C(s,0) < oo.

8,0
In many cases we will consider translation invariant systems and then this
last condition will hold trivially. Furthermore we will always assume the
trivial condition that for every s € S

sup C(s,0(s)) >0, sup C(s,0(s)) >0
o:0(s)=0 o:0(s)=1

We will call such an object a spin system (see [18] or [5] for results concerning
general spin systems). Given such rates, one can obtain a Markov process
U on {—1,1} governed by these flip rates; see [18]. Such a Markov process
with a specified initial distribution g on {—1,1}% will be denoted by UK.
Given a Markov process, g will be called an invariant distribution for the
process if the projections of U# onto {—1,1}° at any fixed time ¢ > 0 is
p. In this case, U# will be a stationary Markov process on {—1, 1}5 all of
whose marginal distributions are p. Of course the state space {—1,1}% can
be exchanged for cither {0,1}° or {0,1}.

Sometimes we will work with two different sets of flip rates
{C1(5,0)bacs, et 115 and {Ca(5,0)}acs, g 11)5» governing two Markoy
processes ¥y and Uy respectively. We will write C; < Cy if the following
conditions arc satisfied;

Ca(s,02) > Ci(s,01) Vs € S, Vo 2 09 s.b. 01(s) = 02(s) =0, (7)

Ci(s,01) > Ca(s,09) Vs € S, Vo, 2 o9 s.t. 01(s) =o09(s) =1.  (8)

The point of C; < Cs is that a coupling of ¥; and ¥y will then exist for
which {(n,d) : n(s) < d(s)Vs € S} is closed for the process; see [18].

2.3 Stochastic Ising models

We will now briefly discuss stochastic Ising models. We will omit most
details; for an extensive discussion and analysis sce again [18]. Consider

11

Gpn = (Sp, Ep) defined in the subsection 2.1. Given § and h, it is possible

to construct flip rates Cp, on {—1,1}* for which u'"*"ﬁ’h is reversible and

invariant. We denote by \I'I’ﬂ  the corresponding stationary Markov process
with initial distribution p, Ak One possible choice of flip rate intensities are

that for every s € A, and o € {—1,1}5,

Cals,0) =exp[-B( 3 oo+ 3 o) —h Y als).
{t,;s}eE {tis}ep s€A,
tEAn s€An
t€A, 11\ An
8’s in Apy1 \ Ay are kept fixed at 1. Observe that if s € A,_1, the second
sum is over an empty set. A straightforward calculation gives

Cn(syo')/‘:’ﬂ’h(a) = Cn(syﬂs)llz’ﬁ’h(ﬂs): (9)

o(t) if t#s
o5(t) = { —o(t) if t=s.

This shows that indeed ,u:[ #h s reversible and invariant for Cp. Any spin
rates satisfying equation (9) is called a stochastic Ising model (on our finite
set). One can show that there exists a limiting distribution W5 of ,} Bk
when n tends to infinity; see [18], Theorem 2.2, page 17 and Theorem 2.7,
page 139. Furthermore U8+ is a stationary Markov process on {—1, 1}Zd
with marginal distribution p+#" governed by flip rate intensities

C(s,0) =exp(—B Y o(s)a(t) —h Y o(s)); (10)

{t:s}ek sezZd

sce [18] Theorem 2.7 page 139. Tt is also possible to construct ¥*# directly

on {-1, I}Zd without going through the limiting procedure. Furthermore
there are several possible choices of flip rate intensities that can be used
to construct a stationary and reversible Markov process on {—1, I}Zd with
marginal distribution 8. Tn [18], a stochastic Ising model is defined to be
any spin system with flip rate intensities {C(s,0)}sc 5,0 1,1}s satisfying
that for cach s € S

C(s,0)exp(B Y o(s)o(t) +hY_ o(s)) (11)

{t,s}eE €8

is independent of o(s). Therefore, when we refer to a stochastic Ising model
U+B with marginal distribution ut# we will have this definition in mind.
It is particularly easy to see that equation (11) (or the condition of detailed
balance as it is often referred to) is satisfied for the flip rate intensities of
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equation (10) but there are many other examples. It is known that the set of
so called Gibbs states are exactly the same as the class of reversible measures
with respect to the flip rates satisfying equation (11); see [18] page 190-196.
Note also that for S finite the condition of equation (11) is equivalent to
that of equation (9).

While we defined above stochastic Ising models on {—1, I}Zd, this con-
struction can be done on more general graphs (see [18]).

2.4 The random cluster model

Unlike all other models in this paper, the random cluster model deals with
configurations on the edges E of a graph G = (S, E). We will review the
definition of the regular random cluster measure on general finite graphs
and the “wired” random cluster measure on A, C Z% We will also recall
the limiting measures and in the next subsection the connection between
the random cluster model and the Ising model. In doing so we will follow
the outlines of [8] and [12] closely.

Take a finite graph G = (S, E). Define the random cluster measure v
on {0,1}¥ with parameters p € [0,1] and g > 0 as the probability measure
which assigns to the configuration n € {0,1}¥ the probability

k(m)
vgtn) = L= T "0 - p)t e, (12)

eck

Here Z is again a normalization constant and &(n) is the number of connected
components of 7. From now on we will always take ¢ = 2 and therefore we
will suppress q in the notation.

Take Gy, = (Sp, Bn), where S, = Apyy C Z% and E, is the set of all
nearest neighbour pairs of A, 1. Write v for vgn, and define

DP(-) = VB(:| all edges of Ey with both end sites in Ay 41 \ A, are present).

(13)
This is the so called “wired” random cluster measure. It is called “wired”
since all edges of the boundary are present. It is immediate from the defining
equations (12) and (13) that for e € B, and any ¢ € {0,1}#n\e

p, if the endpoints of e are
2(n(e) = 1n(En \€) =€) = connected in &, (14)

52— otherwise.

2-p

One can show (see [8] or [12]) that when n tends to infinity, the measures
{8 }nen+ converge to a measure 7. Furthermore, the construction of 7,
on {0, l}E" can be done on any finite graph by connecting all sites of the
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boundary of the graph with each other. As a consequence, we can also define
random cluster measures on more gencral graphs than 74, see for example
[10].

2.5 The random cluster model and the Ising model

Take Gy, = (S, Ey) as in Section 2.4. As in [12], let P} be the probability
measure on {—1,1,}% x {0,1}*» defined in the following way.

1. Assign each site of A, 1 \ Ap and every edge with both endpoints in
Ani1 \ Ap the value 1.

. Assign cach site of A, the value 1 or -1 with equal probability, assign
cach edge with not more than one endpoint in Api; \ Ay, the value 0
or 1 with probabilities 1 — p and p respectively. Do this independently
for all sites and edges.

. Condition on the event that no two sites with different spins have an
open edge connecting them.

One can then check that P, (0, {0,1}#n) = p,f’ﬁ(o) with 8 = —log(1—p)/2,
and that P5({-1,1}%",9) = #4(n). The same kind of construction can be
carried out on any finite graph G = (S, E).

2.6 The contact process

Consider a graph G = (S, E) of bounded degree. In the contact process the
state space is {0,1}5. Let A > 0, and define the flip rate intensitics to be

1 if o(s)=1
C(s,0) =14 X Z o(s") if o(s)=0.

(s',s)eE

If we let the initial distribution be ¢ = 1, the distribution of this process
at time ¢ which we will denote by §;T)\(¢) is known to converge as ¢ tends
to infinity. This is simply because it is a so called “attractive” process and
o = 1 is the maximal state and {17 (t)} is stochastically decreasing; sce [18]
page 265. This limiting distribution will be referred to as the upper invariant
measure for the contact process with parameter A and will be denoted by
px- We then let U denote the stationary Markov process on {0,1}° with
initial (and invariant) distribution py.




3 e-stability for monotone measures

In this section, we prove stability results for classes of monotone measures.
The finite case is covered by Lemma 3.2, while the countable case is discussed
in Proposition 3.3.

For any S| < o0, s € 8, £ € {0,1}5\* and probability measure z on
{0,1}5 write p*9(i€) for pt9(a(s) = ilo(S \ s) = &), p*9(iN¢) for
u9({o(s) = i} N{o(S\s) = £}) and u(€) for u)(o(S\s) = €). Here,
* can represent cither + or — and i € {0,1}. Note that s is suppressed in
the notation and so should be understood from context.

We begin with an easy lemma whose proof is left to the reader. The
idea is that if the configuration outside of s is ¢ under x(~+9, it must have
been at least as large under p “before flipping some 1’s to 0°s”; then use
monotonicity.

Lemma 3.1 Assume that p is a monotone probability measure on {0,1}5
where |S| < oco. Take s € S and let £ € {0, 1}5\5. Then, for any e > 0, we
have that

pCO(1€) > (1 — epu(1]é)
and that
PO 018) > (1 — €)p(0]8).

Lemma 3.2 Let yq, g be monotone probability measures on {0,1}% where
|S] < 0o0. Assume that

A= i [ua(o(s) = (S \ ) = &) — pi(o(s) = 1o(S \ 5) = £)] > 0.

£e{0,135\s
Then for any choice of € > 0, such that

1
A>— -1
>1—5 ’

we have

=,
and

H(1+’E) = po.

Hence (p1,p2) is both downwards and upwards stable.

Proof. We prove only the first statement; the second is proved in the same
way. Monotonicity of p9, Lemma 3.1, the definition of A and our choice of

€ give us that for any s € S and ¢ € {0,1}5\

us 9 (11¢)
> (1 - Qua(1lé) > (1 e)(A + i (1]6))

> (10U — )

Since 41 is monotone, we get

m(1€) < m(1)¢) V€ < ¢,

and therefore that ~ ~
(L) < uh (1) ¥ < €.
The proof is completed by the use of Holley’s inequality, Theorem 2.1.

QED

Remark: Observe that if we could show that ugf’é) is monotone, the as-

sumption that g1 is monotone would not be needed for the result p; < ;tgf’f).
Proposition 3.3 Let S be any finite or countable set and consider (Sp)pen+,
a collection of sets such that |S,| < co Vn € NT and Sp 1 S. Let (41,n)nen+ s
(B2 )nen+, be two collections of measures, where py y, plo,, are measures on
{0, 1}5" for every n € N*. Furthermore, assume that all these measures are
monotone, that 11, — p1 and that pon — po. Set

An:= inf  [pan(o(s) =1|o(S\s) = &) — pin(o(s) = Lo (S \ s) = ¢)].

s€Sn
£€{0,1}5n\s

If

inf A, >0,
neNt
then (1, p2) is both upwards and downwards stable.

Proof. Take € > 0 such that

1
inf A, > -1
nl&I]l\H " 1-—¢

With this choice of €, Lemma 3.2 says that (11, 12,n) are both downwards

and upwards e—stable. Since p1, — g1 and poy, — pe we casily get that

(=) (=€) (+:€) (+€)

Mo —pg " and pg ~ — py . Furthermore since the relations

Hip = uéf,f)
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and
l‘(lj;f) = Hon

are easily seen to be preserved under weak limits, we get that

1 =y and p{H < gy

QED

4 e—stability for the contact process and a 0-1 Law

The conditions in our next proposition might seem overly technical; however,
these represent the essential features of the contact process (after a small
suitable time rescaling) and therefore we feel it is instructive to highlight
these features. In Proposition 4.1 and Lemmas 5.1, 5.2 and 8.1 we will
use the so-called graphical representation to define our processes; see for
instance [18] page 172.

Proposition 4.1 Let py and pa be two measures defined on {0,1}%, where
S is a countable set. Assume that g =< po and that there ezists two
stationary Markov processes W, and Uy, governed by flip rate intensities
{C1(s.01)}sesmeqonys and {Ca(s,02)}ses,0meq0,1)s Tespectively, and with
marginal distributions i and po. Assume that Ci < Cy (conditions (7)
and (8) of the introduction). Consider the following conditions;

1. There exists an €; > 0 such that

Ca(s,09) = Ci(s,01) > €1
Vs € S, Yoy = 01 s.t. 03(s) =0 and Cy(s,01) # 0.

2. There exists an eg > 0 such that

Ci(s,01) — Ca(s,02) > e
Vs € S, Yoy = o1 s.t. 01(s) =1 and Cy(s,02) # 0.

3. There exists an €3 > 0 such that

Ci(s,01) > €3 Vs € S, Vo s.t. o1(s) =1,

4. There ezists an e4 > 0 such that

Cs(s,09) > €4 Vs € S, Yogq s.t. o9(s) =0.
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If conditions 1 2 and 3 are satisfied, then (u1, ps2) is downwards stable.
If conditions 1 2 and 4 are satisfied, then (p1, ps2) is upwards stable.

Proof. We will prove the first statement, the second follows by symme-
try. Define

A= sup  Cy(s,02)+ sup  Ci(s,01).

s,02:02(s)=0 s,01:01(s)=1

Our aim is to construct a coupling of the processes {X1}t>0 ~ ¥ and
{Xa,}t>0 ~ Uy such that 1 ~ X1; < Xoy ~ pg Vi > 0 in such a way
that we prove the proposition. Before presenting the actual coupling we will
discuss the idea behind it. For every site s € S associate an independent
Poisson process with parameter A. Next, let {Us x}sesk>1 and {Ul  Fscsp>1
be independent uniform [0, 1] random variables also independent of the Pois-
son processes. If 7 is an arrival time for the Poisson process at site s, we
write Uy, for U, x where k is such that 7 is the kth arrival of the Poisson
process at site s. Now, let 7 be an arrival time for the Poisson process
associated to a site s. For i € {1,2}, let X, .- and X, -+ denote the config-
urations before and after the arrival. We will let the outcome of Uy, decide
what happens with the {X5;}¢>0 process at time ¢ = 7, and then we will let
U;’T together with U ; decide what happens with the {X1;}4>0 process at
time ¢ = 7. As we will see, we will do this so that X;; < Xy, for all ¢ > 0.
Furthermore, we will do this in such a way that there cxists an e € (0,1)
such that if U] . > 1 — ¢, then X, +(s) = 0 regardless of the outcome of
Uy, 7. Consider now the process {X{};>0 we get by taking X§(s) = 1 for ev-
ery s € S and letting {X{(s)}>0 be updated at every arrival time 7 for the
Poisson process associated to s, and updated in such a way that X¢,(s) =0
ifU;, >1—¢ and X, (s) = 1if Uj, <1 — e Of course the distribution
of X§ will converge to 71_.. Observe that whenever Xf(s) = 0 we have that
X1,4(s) = 0. Therefore we can conclude that

Xl,t j min(Xz’t,Xf) Vt Z 0. (19)

Furthermore since the process {Xf};>o does not depend on any U, , we
have that X{(s) is conditionally independent of X ; if there has been an
arrival for the Poisson process associated to s before time . Let s;, 7 €
{1,...,n} be distinct sites in S and let A; be the event that all Poisson
processes associated to s; through s, have had an arrival by time ¢. Of
course P(A;) = (1 — e~ and so we get that

P(X2,Xf(s1) = = X9 X{(sn) = 1)
=P(Xo X (s1) =+ = X4 X{(sn) = 1| A))P(Ay)
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HP(Xo Xf(s1) = -+ = Ko, X (sn) = 1[A5)P(AS)

= P{Xo(s1) =+ = Xos(sn) = 1} N A)(1 — )"
HP(Xo X (51) = -+ = Xoy X{ (50) = 1LAS)P(AS)

> (P(Xog(s1) = -~ = Xog(sn) = 1) — P(AD)(L — &"
+P(Xo,1 X (s1) = = X2 X[ (sn) = 1] A7) P(Af)

=uo(s1) = =0o(sn) = 1)
HP(AG) (P(Xo g X§(51) = -+ = Xou X (sn) = 1145) — (1 - ")

ZF b Vo(s1) =+ = o(sa) = 1)
In addition

P(Xo4(s1) = --- = Xo(sn) = 1N A)(1 —€)"
<P(Xg4(s1) =+ = Xoy(sp) =1)(1 —¢)"

=iy Vo) =+ =o(sn) = 1).

Hence, by inclusion exclusion, we have that the distribution of min(Xy 4, X7)

approaches ué_’e) as t tends to infinity. So by first taking the limit in equa-

tion (19), we get that pi < ué_’e), as desired.

Now to the construction. Take X1 ~ p1, Xog ~ pg, such that X; o <
Xs,0. Let 7 be an arrival time for the Poisson process associated to s. Take
U, and U;)T. The following transition rules apply:

X2 T X2,7'+ if

i

0 1 Ug,‘r <
10 Ug>

Ca(s,:X, )

A
A=Cils,X, =)
L

It is casy to check that the process {X3;}¢>0 thus constructed will have

the right flip-rate intensities. The construction of {X,;};>¢ is slightly more

complicated. If Cy(s, Xy ,-) = 0 and X, ,-(s) = 0 then it follows from
Ci(8,X, -

equation (7) that Cy(s, X; ,-) =0, and in that case we interpret %’—;
; Ky

as 0. Observe that Cy(s, X ,-) can be 0 when Xy .—(s) = 1 but it will

not cause any problems. With these observations in mind, these are the

transition rules we apply:

(Xl,‘l'*aXQ,T*) (X1,7'+>X2,‘r+) if

Ca(s,. X, ) , Ci(s: X, )
Usr < —*—and Uy, < G %, )

Ca(s,X, . —) ’ Ci(s:X; ,-)
Usy £ —5*— and Uy, > GG %,

otherwise
A—Ca(s,X,
Us,‘r > %f)

sup  Cy(s,09)
Us,r < s,ag:az(s):g and
Ci1(s,. X, )
1< 1,7
Usr < sup  Cy(s,09)
s,02:02(s)=0
otherwise
A—Ca(s,X, _
Us,T > 2(s 2,7 )

= A
©,1) Uyr < 200Kaz)

nd

A—C1(s,X, )
/ i ¥
US;T 2 A=Ca(s,X, )

(1,1) (1,1) otherwise
It is not difficult to check that all flip rate intensitics are correct and that
X1, = Xoy for all £ > 0. [Observe that by the definition of A the events
sup  Cs(s,09)

(s)=0

8 H o« 0.
and ¢ U, < mf are disjoint when

{0, > 225

(X1,7*1X2,T*) = (07 1)]

We now want to show that there exists an € > 0 so that U], > 1 —
€, implies that X, ,+(s) = 0. Note that if (X;,-,X,,-) = (0,0) and
Ci(s,X1 .-) > 0 (= Ca(s,X5,-) > 0) then

Ci(s, X1 -) < Cs(s,X,-) — €1 1 €1
Ca(s, Xor-) = Ca(s,Xo,-) — sup  Cy(s,09)
8,02:02(s)=0

and if (X, ,-, Xy ,-) = (0,0) and Ci(s, X; ,-) =0 then

Cl(szX1,1'_)

02(57X2,T*)

Furthermore if (X ,-, X5 .-) = (0,1) and Ci(s, X; .-) > 0, then
Cl(syxl,‘r—) <1— €1

sup  Ca(s,02) ~ sup  Cy(s,02)

s,02:02(s)=0 5,02:02(s)=0

<1

=0.

<1
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while again if (X, .-, X,-) = (0,1) and Ci(s, X; ,-) = 0, then the 0 never
changes to a 1. Finally if (X ,-,X5,-) = (1,1) and Cy(s, X5,-) > 0
(= Ci(s, X1,,-) > 0), then

A— Cl(S,Xl,T—) < A - Cz(S,XQ’T—) — €2 <1-
/\_CQ(S:XZJ_) - /\_CQ(SzXQ,T_) - A_Cz(szXZ,T_) -
and if (X, -, X5 ,-) = (1,1) and Cy(s, Xy ,-) =0,
}‘_01(57X1,‘r*) < A—e3 —1_ €3 <1
A= Co(s, Xarm) = A X

Therefore, whenever

€1 1 €9 1
sup  Ca(s,09)’ 2’ A

s,02:02(s)=0

U;’T >max | 1 —

we have that X .+(s) = 0 regardless of the outcome of Us,. Therefore
(p1, p2) is downwards e—stable where

€1
sup  Ca(s,09)’

s,02:02(s)=0

e: = l—max|1-—

€1 €9 €3
sup  Cy(s,09)" A’ A
5,02:02(8)=0

QED

Proof of Theorem 1.10. Take 6 > 0 such that A\;(1 4+ 6) < Ag and
consider the process {X;};>0 constructed in the following way. Take X = 1
and let the process evolve with flip rate intensitics

144 if o(s)=1
Ci(s:0) = ¢ M(1+0) Y o(s)) if o(s)=0. (20)
sl~s
Denote the limiting distribution of X; as ¢ tends to infinity by p144,x,(144)-
It is easy to see that this process is just a time-scaling of the contact process
constructed in Section 2.6 with parameter A;. Recall that that process had
limiting distribution py,, the upper invariant measure for the contact pro-
cess. Thus we have piy, = py45x,(146)- By Proposition 4.1 with C as above
and Cj as in Section 2.6 with parameter \g, there exists an € > 0 such that

PLysan (148) = us, .

Hence (py,, 4,) is downwards stable.
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QED

The following is a 0-1 law for the upper invariant measure for the contact
process.

Proposition 4.2 Let A C {0,1}T" where d > 2 be a set which is invariant
under all graph automorphisms on T¢. Then, for X > 0, we have that

#a(A) € {0, 1}

Proof. Let € > 0. By clementary measure theory, there exists a cylinder
event B depending on finitely many coordinates such that

pA(AAB) < e (21)

Let suppB denote the finite number of coordinates with respect to which
B is measurable. Letting {T)(t)};>0 denote the Markov semigroup for the
contact process with parameter A, we have that 6,7 () — p) and also that
px = 01T)\(t) for every ¢ > 0. Choose ¢ so that for all (equivalent some) sites

S
€

S TA(t)(n(s) =1) < pa(n(s) =1) + suppB|’

It follows casily that if m is any coupling of §; T (¢) and p which is concen-
trated on {(n,d) : n < &}, then for any finite set S of sites

. _18le__
m({(n,d) : n(s) # d(s) occurs for some s € §) < SsuppB|’

In particular, if E is any event depending on at most 2|suppB]| sites, then
BTA(B)(E) — ua(E)) < e (22)

For this fixed ¢, Theorem 4.6 page 35 of [18] shows that there exists an
automorphism v € AUT(T%) such that

[0: T2 (t)(B NyB) = 51 Tx(¢)(B)&1 T () (vB)] < e. (23)
Furthermore, since g is invariant under automorphisms (21) implies that
A(YAAYB) < ¢,
and since 4 = A, we have

pur(AAYB) < e.




It follows that
Hx(BAYB) < px(AAYB) + pa(AAB) < 2e.
Next, Equation (22) implies that
I TA()(BAYB) — un(BAB)| < e,
and so
01T\ (t)(BAYB) < 3e.
We get that

Al = [ia(A) = pa(A)pa(rA)|
— A(B)ua(¥B)| + 4e

la(A) — pa
< pa(B
<0 TA()(B) = S 1A (H)(B)01 Th (8)(vB)| + 8e
<0 T\(8)(B) — 61 Ta(8) (BN yB)| + 9¢
< 6T\ (t)(BAYB) + 9e < 12e.

(
)

Where we used (21), (22) and (23) for the three first inequalities and (24)
in the last. Since € > 0, was choosen arbitrarily we get that

a(A) = pa(A)®
and so py(A) € {0,1}.
QED

Remarks: The above proof works for any transitive and even quasi-
transitive graph. For the case of Z?, this was proved in Proposition 2.16
page 143 of [18]. It is mentioned there that while §;T(t) is ergodic for
each ¢, one cannot conclude immediately the ergodicity of p) because the
class of ergodic processes is not weakly closed. We point out however that
there is another important notion of convergence given by the d—metric
(see [22] page 89 for definition) on stationary processes. Convergence in
this metric is stronger than weak convergence and weaker than convergence
in the total variation norm. It is also known that the ergodic processes
are d—closed and that weak convergence together with stochastic ordering
implies d—convergence. In this way, one can conclude ergodicity of py using
the d—metric giving an alternative proof of Proposition 2.16 of [18]. In
fact, the proof of Proposition 4.2 is essentially based on this idea. However,
because of the open question listed below, it is not so easy to formulate
the d—metric for tree indexed processes and so we choose a more hands
on approach. Observe that the crucial property of d—convergence which is
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essentially used in the above proof is that for each fixed k, one has uniform
convergence of the measures (in say the total variation norm) over all sets
which depend on at most & points. (The point is that the & points can lie
anywhere and hence this is much stronger than weak convergence).

Open Question related to defining the d—metric for tree in-
dexed processes: Assume that p and v are two automorphism invariant
measures on {0, 1}Td such that p < v. Does there exist a T¢—invariant cou-
pling (X,Y) with X ~p, Y ~vand X XY?

Proposition 4.3 On T4, d > 2 there ezists a Ap such that for all XA > Ay
mc) =1

Proof. By Theorem 1.33(c), page 275 in [18], for sufficiently large A,
uxa(n(s) = 1) > 2/3. By [11] we have that if py(n(s) = 1) > 2/3, then

pa(Ch) > 0.
Finally, Proposition 4.2 then implies that
m(Ch) =1.

QED

5 Relationship between e—stability and dynamics

In the general setup we have a family of stationary Markov processes para-
metrised by one or two parameters, e.g. the contact processes ¥* (X is here
the only parameter) or a stochastic Ising model -4 (8 and h being the
parameters). Many of the proofs in this paper will involve comparing the
marginal distributions of these Markov processes for two different values of
one of the involved parameters. Let p be the parameter and let p1 < po.
Assume that the marginal distributions are pp, and gy, respectively and
that pp, < pp,. Lemmas 5.1 and 5.2 shows that there is a close connection
between showing that (pp,, pp,) is downwards e—stable and that the infimum
of the second process over a short time interval is stochastically larger than
the first process.

Let U# be a stationary Markov process on {0, 1} with marginal distri-
bution y and let {X;};>0 ~ ¥#. For § > 0 and s € S define

Xinf,5(8) := t&i[r(l)fé] Xy(s),
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and denote the distribution of Xinr s by fing,s. Similarly define

Xsup,i(s) 1= sup XL(S)
te[0,d]

and denote the distribution of Xqups by psup,s-

Lemma 5.1 Take S to be the sites of a bounded degree graph. Let
{C(5,0)}scs, oe{-1,1)5 be the flip rate intensities for a stationary Markov
process U* on {—1,1}5 with marginal distribution p. Let

A :=sup C(s,0).
(s:0)

—AT

For any ™ > 0, if we set € := 1 — e ", we have that

H(i’e) = Hinf,T-

Similarly, we get that
psup,r < .

Proof. We will prove the first statement, the second statement follows
by symmetry. Take 7 > 0. For every s € .S associate an independent Poisson
process with parameter X. Define {(X}, X?)};>0 in the following way. Let
X} = X2 ~ p, and take ¢’ to be an arrival time for the Poisson process
of a site s. For i € {1,2}, let X} _ and X}, denote the configurations
before and after the arrival. We let X}, (s) # X} _(s) with probability
C(s, X} _)/X and we let X2 ,(s) = 0 and finally we let X} (S \s) =
X} _(S\s), X2.(5\s)=X2_(S\s). Do this independently for all arrival
times for all Poisson processes of all sites. Observe that once X7 (s) is 0, it
remains so. Note also that X! ~ p, X2 ~ u(=9). Furthermore if X} (s) = 0
for some ¢ € [0, 7] the construction guarantees that X2(s) = 0 and therefore
X-,z— = Xilnfﬂ— ~ Hinf,r-

QED
Lemma 5.2 Take S to be the sites of any bounded degree graph. Let

{C(5,0)}ses, se{—1,1)s be the flip rate intensities of a stationary Markov
process U* on {—1,1}% with marginal distribution p. Define

A= inf C(s,0).

s,0:0(s)=1

If A > 0 then for any 0 < e < 1, if we set 7 := —log()\%l, we have that

Hinf,r = N(_’e)-
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Similarly, defining Ay == il’(lf C(s,0), if A\a > 0, then for any 0 < e < 1,

8,0:0(5)=0

if we set T :=

—log()‘;e), we have that
2

/J(Jr’é) = Hsup,r-

Proof. We will prove the first statement, the second statement follows
by symmetry. For every s € S associate an independent Poisson process
with parameter A := sup C(s,0). Next, let {Usx}scsx>1 be independent

8,0

uniform [0, 1] random (var)iablcs also independent of the Poisson processes.
If ¢ is an arrival time for the Poisson process at site s, we write U,y for
U, x where k is such that ¢ is the kth arrival of the Poisson process at site
s. Define {(X},X?)}>0 in the following way. Let X = XZ ~ p, and
take ' to be an arrival time for the Poisson process of a site s. We let
X;54(s) # Xp5_(s) if Uy < C(s, X, _)/A. Furthermore we let X2 4 (s) =0
if Ugp < Ai/Xor X2 _(s) =0, and finally we Iet X, (S\s) = X, _(S\s),
X2 ,(S\s)=X2_(S\s). Do this independently for all arrival times for all
Poisson processes of all sites. Clearly X} ~ p and X2 ~ £, Furthermore,
if X2(s) = 0, then cither X}(s) = X2(s) = 0 or there exists a ¢ € [0,7]
such that ¢ is an arrival time for the Poisson process associated to s and
Usy < A1/ Since Ay < C(s, X,_) if X}_(s) =1, we get that either X}, (s)
or X/_(s) is 0 and therefore X\ =< X2,

inf,7

QED

To illustrate why the condition A\; > 0 of Lemma 5.2 is needed, consider
the case p = 7, for some p > 0. With € > 0, if we assume the trivial dynamics
C(s,0) =0 for all 5,0, we will of course not have that pins, < (€ for any
7> 0.

6 Proof of Theorem 1.8

Proof of Theorem 1.8. Take A > ), and let X' = (A +);)/2. By Theorem
1.10 there exists an € > 0 such that (py, py) is downwards e—stable. Lemma
5.1 gives us that there exists a 7 > 0 such that uf\f’e) = l)inf,> and hence
that gy < pixint,r- Therefore, since C* is an increasing event and X' > X,
we have that
1=py(C") < prmer(Ch)
and so
TNCF vt e [0,7]) = 1.

The theorem now follows from countable additivity.




7 Proof of Theorem 1.1

In this section we will deal with stationary distributions for interacting par-
ticle systems which are monotone in the sense of Definition 2.2.

Let G = (S, E) be a countable connected locally finite graph and let
A C S be connected and |A| < co. Let {gh }per, where I C R be a family of
measures on {—1,1}" such that

uil =< /LT Vp1 < po.

Assume that there exist stationary Markov processes \I!ﬁ governed by flip
rate intensities {Cp,A(s; 0) }sen oe {1,134 and with marginal distributions e
Furthermore assume that there exists limiting distributions ¥? of ¥4 and
pP of pf as A 1 S. Assume that p} are monotone for every p and A. For
p1 < pa2, let

Apprpn = inf - [ (o(s) =1o(A\s) = &) —u} (o(s) = Lo (A\s) = ¢)]

sEA
ge{—1,1}A\s

and assume that for all p; < py

inf A > 0.
ACS A,p1,p2

For fixed p; < p9 there exists by Proposition 3.3 an € > 0 such that (uP?, uP2)
is both upwards and downwards e—stable. Next, by Lemma 5.1 there exists
a 7 > 0 such that
) <l
and therefore
P2 iy (25)

inf,7*
Theorem 7.1 Consider the setup just described. Let A be an increasing
event on {—1,1}5 and let A; be the event that A occurs at time t.
(1) Let a € R. If
H(A) =1
for all p € I with p > a, then
UP(A; occurs for every t) =1

for all p € I with p > a.
(2) Let a € R. If
HP(A) =0
for all p € T with p < a, then
WP (A, occurs for some t) =0

for all p € T with p < a.

Proof. We prove only (1) as (2) is proved in an identical way. Take p > a
and let po = (p + a)/2. By the argument leading towards equation (25),
there exists 7 > 0 such that

uP2(A) < e (A)-
By using pP2(A) =1 and
l‘fnf,T(A) < UP(A; occurs for every ¢ € [0,7]),
we get by countable additivity that
WP(A; occurs for every t) = 1.
QED

We will now be able to prove Theorem 1.1 easily.

Proof of Theorem 1.1. We prove only the very first statement; all the
other statements are proved in a similar manner. We fix § > 0 and then A
will correspond to our parameter p in the above set up. For any A C S, any
s €A and any € € {—1,1}*\%, we have that

1

+:8:h — — ¢ —
/‘A (U(S) - 1|U(A \ 'S) - 5) - 1 + e—Qﬂ(an f(t))—?h’

(26)

where we let £(t) = 1 if ¢t € A® in order to take the boundary condition into
account. It is obvious from equation (26) and the definition of monotonicity
that uxﬁ’h is monotone for any h and A. Letting h < hg, it is immediate
that

1 1
[1 Fe 28( s €0) 202 1 o 2B(X0ns 6(D) 2k

A/\,In,hz = inf ] >0,

sEA
ge{—1,1}A\s

where again £(t) = 1 for all ¢ € A°. It is not hard to see that this strict
inequality must hold uniformly in A; i.e.,

inf A , > 0.
ACS Ahyha

It follows that all of the assumptions of Theorem 7.1 hold and part (1) of
that result gives us what we want.

QED




Proof of Lemma 1.2. Fix 8 > 0. Given any p € (0,1), it is easy to see
that there exists a real number hy such that for all A > hg, for s € S and
for all £ € {-1,1}5\

ptPh(a(s) = 10(S\s) = &) > p

and hence 7, < p#. Tt is also easy to sce that there exists a real number
hy such that for all k < hy, for s € S and for all £ € {—1,1}5\s

ptPh(a(s) = 1o(S\s) = &) < p

and hence /fr’ﬁ’h = mp. The statements of the lemma easily follow from
these facts.

QED

8 Proof of Theorem 1.3

In this section we will use a variant of the so called Peierls argument to prove
Theorem 1.3. We prove this only for Z2; the proof (with more complicated
topological details) can be carried out for Z¢ with d > 3.

We will write 0 <_—t> OAy, for the event that there exists a path of sites
in state —1 connecting the origin to dAf := Ay \ AL at time ¢ and we

will write 0 <% oo for the event that there exists an infinite path of sites

in state —1 containing the origin at time ¢{. We will also write 0 &b OAp

and 0 <% oo for the obvious analogous events. We will first need Lemma
8.1 and the concept of a dual graph. The dual graph Gdua! = (Sduel, pdual)
of Gp = (Sy, E,) consists of the set of sites S&a .= {-n - 1,...,n+ +}?
and E;‘f“‘” which is the set of nearest neighbor pairs of Sfﬂi““’. In this paper
we will only work with the edges of the dual graph. An edge e € Edu
crosses one (and only one) edge f € E, and the end sites of this edge f will
be called the sites (of G,) associated to e. For a random spin configuration

X on {-1,1}%" define a random edge configuration ¥ on {0, I}Ezm' in the
following way:
[0 X(t) = X(s)
Yie)= { 1if X(1) £ X(s), @)

where s,¢ are the sites associated to edge e € E4Ue!, In figure (1) we have

drawn a configuration o € {—1,1}1 and the induced edge configuration on
dual

{0, 1}£5*,

Figure 1: S; and the edges of it’s dual graph. A solid circle marks a site
with spin 1, while an empty circle has spin —1. A solid line is a present edge
of the dual graph, and a dashed line is an absent edge of the dual graph.

Assume that the sites evolve according to the flip rate intensities
{Cn(8,0)}scs,, oef—1,1}5n- Consider v, a (finite) path of edges in the dual
graph. Take 7' to be a subset of . Assume that all edges of ¥ are absent and
all edges of v\ ' are present at ¢ = 0. We want to estimate the probability of
the event that all edges of 4 are present at some point (not necessarily all at
the same time) during some time interval [0, 7]. In other words we want to es-
timate the probability of the event {Y5,p -(7') = 1|Yo(7') =0,Yo(v\Y') = 1}

Lemma 8.1 Let {Cn(s,0)}scs,, oe{-1,1)5- be the flip rate intensities for a
stationary Markov process on {—1,1}%" and let Y; be defined as above. Let

A := sup Cp(s,0) (< o0).
(s:0)

For any 7 > 0 and any ' C Eual,
P(Yaup,r(7) = 1[¥p(7') = 0, Yo (B ' \ 7)) < (4(1 — e X)),

Proof.
Take 7 > 0. For every s € Sy, associate an independent Poisson process
with parameter . Define {X;};>¢ in the following way. Let Xy ~ p and
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take #' to be an arrival time for the Poisson process of a site s. We let
Xy.+(s) # Xp-(s) with probability C(s, Xy.-)/A. Do this independently
for all arrival times for all Poisson processes associated to the different sites.
It is immediate that X; ~ p. Let s;, ¢ € {1,...,1} be distinct sites of S,.
The event {Xinsr(8i) # Xsup,r(si) Vi € {1,...,1}} is contained in the event
that every Poisson process associated to the sites s;,¢ € {1,...,1} have had
at least one arrival by time 7. The probability that a particular site has had
an arrival by time 7 is 1 — e *7. Furthermore this event is independent of
the Poisson processes for all other sites. Therefore
P(Xing,r(5i) # Xoup,r (si) Vi € {1,...,1}) < (1 —e M) (28)
Given ', consider the set of all sites associated to some edge of 4 and
let n be the cardinality of that set. Observe that n,, < 2|4'| and that
in order for the event {Yaup (') = 1|Yo(y') = 0, Yo(ELe \ v')} to occur,
at least |y'|/4 of the sites associated to 7' must flip during [0,7]. This is
because one site is associated to at most 4 edges. Denote the event that
at least |y'|/4 of the sites associated to o' flips during [0,7] by A .. Take
S to be a subset of the sites associated to ' such that |S| > |y'|/4. By
equation (28), the probability that all of these sites flips during [0, 7] is less
than (1 — e *)I5I < (1 — e27)1"1/4, To conclude, observe that the number
of subsets of the sites associated to 7' is 221" Hence, the probability of the
event Ay must be less than (1 —e=7) 71/42217" | and so

P (Yaup(7) = 1%(7) = 0, Yo (B! \ o))
<SP(Ary) < ((1—e ) Hag)ll,
QED

Proof of Theorem 1.3. We will prove the theorem for d = 2. For
B > Bp, choose & > 0 so that 8’ := 62’2‘51 > B, and hence

o0
S 1e ! < oo,
=1

Next, choose N and € < 1/2 such that % < 41, and e% < e P2-81) and let
7 be such that e = 4(1 — e *7)1/4. Let § > 0 be arbitrary and choose L so
that

o0
3y 13 le <.
=L

Let €1+ be the event that 0 PN OAp, for some ¢ € [0,7]. Let T8 be
defined as in Section 2.3. We will show that

UA(ELy) < ¥n > L.
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Since U2 (€1, 1) — UHA(EL ), (see Section 2.3) we get that UHB(Er ;) < 6.

Letting L — oo and § — 0, we get that
THBELe[0,7]: 0 <5 00) =0,
and then by countable additivity
THB(T > 0:0 <5 00) =0.
It is well known (see [7]) that if all sites in Ap41 \ Ap takes the value +1,

s (29)
C {3y C E®e t € [0,7] : |y] > L, 7 surrounds the origin, Y;(y) = 1}
C{3y C Eff“‘” :|v| > L, -y surrounds the origin, Yy, -(v) = 1}.

To prove Ui# (£, ) < &, consider y with |y] = I a contour in EZue!
surrounding the origin. By Lemma 8.1, P(Yyyp - (7') = 1|Y0(y') = 0, Yo(v \
4" =1) < e whenever 4’ C . We get

P(Ysupr(v) =1) (30)

!
=Y ) PM()=0Ye(y\7)=1)

k=0 ~'Cy
19! 1=k

XP(Yaup (7)) =1|Y0(7) =0, Yo(y \¥) =1)

> P(M() =0,Yo(v \v) = 1)ék

0 y'Cy
1o 1=k

1

P({all edges except k of v arc present at t = 0})e®
0

k=

P({all edges except k of « are present at ¢ = 0})e
N
+ Z P({all edges except k of « are present at ¢ = 0})e".
k=l/N+1

Obviously, I/N need not be an integer, but correcting for this is trivial and
is left for the reader.

We need to estimate P({all edges except k of «y are present at ¢ = 0}).
For this purpose, define T: {~1,1}%" — {-1,1}", by
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_ [ o(s) if snot insidey
(TU)(S) - { —g(s) if s inside 7y

for all ¢ € {~1,1}%». Let Ex = {o : all edges except k of vy arc present}.

Since Hy*# of equation (6) gives a contribution of —f for adjacent pairs

of equal spin and +f for adjacent pairs of unequal spin, we have that for

o € By, Hi*(To) = Hi P (0) —2B(]7| - k) + 2Bk = Hy** (0) — 2B|n| + 4Bk.
Hence, for o € Ej,

e HIP0)  —HIP (1) -28]1|+48k

N:’ﬂ(g) = 7 = 7 ’

1 (Bx)
~H}B(T0)

— e
- 5 ey =t 3 <00

oCEy o Ey
~HFB(Ta)
e Hn
< e—zﬁz+4ﬁk

— e—2ﬂl+4ﬁk:
ge{—1,1}5n
where the last equality follows from T being bijective. We then get that
I/N

Z P({all edges except k of « are present at ¢ = 0})ek (31)
k=0

I/N a1 I/N 51
< Z e 2BlHABk ko ~2BLH ! Z k< 9= 2B F
k=0 k=0

< 9e B2l _ 9,28l

Furthermore

!
Z P({all edges except k of 7y are present at £ = 0})€ (32)
k=l/N+1

!
< é/N Z P({all edges except k of v are present at ¢ = 0})
k=l/N+1
< N < B0 _ o261

where we use that {all edges except k of y are present at ¢ = 0} are disjoint
events for different k. Hence equations (30), (31) and (32) combined gives
us

P(Yaupr(7) = 1) < 37"

and so by equation (29), for all n > L,

\p:’ﬁ(‘gL,T)
< UHB(Fy C EMeL: |y| > L,  surrounds the origin, Yaup - (7) = 1)
oo
< i 3e W< g,
=L

where the second to last inequality follows from the fact that the number of
contours around the origin of length ! is at most 13!, (sce [7]).

QED

Remark; For Z¢ the proof is gencralized by noting that the number of
connected surfaces of size I surrounding the origin is at most C(d)!, for some
constant C(d). The arguments are the same but the “topological details”
are messier.

9 Proof of Theorem 1.5

We will start this subsection by presenting a theorem by T.M. Liggett, R.H.
Schonmann and A.M. Stacey ([20]).

Theorem 9.1 Let G=(S,E) be a graph with a countable set of sites in which
every site has degree at most A > 1, and in which every finite connected
component of G contains a site of degree strictly less than A. Let p,a,r €
[0,1],g = 1 — p, and suppose that

(-a)l-n>" > g
(1-a)e®! q.
If u € G(p), then may = pr. In particular, if ¢ < (A—1)2"1/A%, then Tp =2 by

where
1/A

p= (1 - m) (1= (g(Aa —1))'/2).

Here G(p) denotes the sct of Borel-measures on {—1,1}% such that if y €
G(p), X ~ p then for any site s € S

P[X(s) = lo({X () : {s,t} & E] > p a.s.
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Observe that when p -+ 1 = ¢ — 0 and so p — 1. The above theorem
is stated as the original in [20]. However, by considering the line-graph of
G = (S, E) it can be restated in the following way;

Corollary 9.2 Let G= (.5~',E~) be any countable graph of degree at most A.
For each 0 < p < 1 there exists a 0 < p < 1 where p = p(A,p) such that
if Y ~ v where v is a measure on the edges of G such that for every edge
ec E

PIY(e) = oY (f) i e 4 F1)] 2 p as.

we have that ﬂf <

By e # f we of course mean that the edges e and f does not have any
endpoints in common. Here, wf is the product measure with density p on
the edges of G.

Consider a graph G = (S, F) and a subgraph G’ = (S, E') where §' = S
and E' C E. Let X ~ mp on S. We declare an edge e € E' to be closed if any
of the endpoints takes the value 0 under X. Corollary 9.2 gives us that for
any p < 1 there is a p < 1 such that this method of closing edges dominates
independent bond percolation with density p on E’. Obsecrve that we can
choose p independent of E' since the maximal degree of E' is bounded above
by the maximal degree of E.

Let (X,Y) ~ Ph, defined in Section 2.5. Close every e € E, such
that Y (e) = 1 independently with probability e thus creating (X,Y(_")).
Compare this to closing every site in S, independently with parameter €
(creating X(—€)) and defining

€y —
Yile) = 0 otherwise.

/ { 1 if Y(e) =1 and ncither one of the endpoints of e flips

By the arguments of the last paragraph we see that for a fixed e there exists
an € (that we can choose independent of (X,Y) and n) such that the first
way (i.c. independent bond percolation) of removing edges is stochastically
dominated by the latter. Hence

Pr((X,Y9)) € ({-1,1}5 )|(X,Y))
SPR((X YY) € ({-1,1}5 (X, V).

By averaging over all possible (X,Y), the next lemma follows.

Lemma 9.3 With notation as above, for any ¢ > 0 there exists € > 0
independent of n such that

PL((X, Y9 € ({=1,13%,)) < PR((X9, YY) € ({-1,1}5, ).
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Observe that
P2((X,Y~9) € ({=1,1}5",)) =p s2:(=9)()
and that
PL((XC, YY) € (- {=1,1}")) =p it #C().

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. For any choice of 8 > f. take p =1 —e 2%
and let § € (0,p — p.). Equation (14) and Holley’s inequality implies that
P8 < PP ¥n e NF.

Since by cquation (14) both 7% ® and # arc monotone, there exists by
Lemma 3.2 (it is casy to check that all other conditions of that lemma are
satisfied) an e > 0 such that

20 <529 yp e N, (35)

In [12] they show that the limit lim 72790 «— 9A,,) exists and that
n
1151175*5(0 s 0A,) > 0. (36)

Here {0 +— JA,} denotes the event that there exists a path of present
edges connecting the origin to dA, := A4 \ A,. Since {0 +— 9A,} is an
increasing event on the edges, Lemma 9.3 guarantees the existence of an
€' > 0 such that
(=0 — dA,)
=PL(X, Y 9) € ({-1,1}%,0,¢— 9A))
<P (X5, Y¢) € {~1,1}°",0 +— OA,)) Vn € NF.
If there exists a path of present edges connecting the origin to the boundary
OA,, under Y, all the sites of this path must have the value 1 under X.
Similarly for (X (=€, Y"), if there exists a path of present edges connecting
the origin to the boundary dA, under YE,, all the sites of this path must
have the value 1 under X(¢), Hence
PL(XC,Y9) € ({=1,1}%,0 +— 0A,))
=P((X,Y) € (0 8,0 +— 0A,,))
<PL((XTD,¥7) € (055 0A,,{0,1}))
= P00 5 aA,).
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Of course
pbP 0 s aA,) < A (0 < OAL) VI < n.
Therefore, for any L we have that
0 < lim 2790 «— dA,)

< lim A (0 2 0AL) = B (0 s 9AL),
n

0< li]{n/ﬁ’ﬂ’(”él)(o 5 0AL) = p A (0 2 o0).

The limit in L exists since {0 PN OAr,} C {0 PN OAp,} for Ly < Lo.
Since pt# is ergodic (sce [18] page 143 and 195) it follows that pt8:(—¢)
must also be ergodic. We conclude that

ptB ety = 1. (37)
By Lemma 5.1, there exists a 7 > 0 such that
b= <
and therefore
inir(C) = 1.

Therefore
THB(C} occurs for every ¢ € [0,7]) = 1.

Finally using countable additivity

\I/J“ﬂ(C;r occurs for every t) = 1.

10 Proof of Theorem 1.4

The aim of this section is to prove Theorem 1.4. For that we will use
Theorem 1.5 and Lemma 10.1. We will not prove Lemma 10.1 since it
follows immediately from the proof of Lemma 11.12 in [9] due to Y. Zhang.
A probability measure p on {-1, 1}5 is said to have the finite energy
property if all conditional probabilities on finite sets are strictly positive.

Lemma 10.1 Take p to be any probability measure on {—1, 1}Zz which has
positive correlations and the finite energy property. Assume further that p
is invariant under translations, rotations and reflections in the coordinate
azes. If u(C*t) =1, then p(C~) =0.

Proof of Theorem 1.4. Fix 8 > fB.. By equation (37), there exists
€ > 0 such that
phP=a ety = 1.

Since pt# and 7 _, both have positive corrclations, it follows (sce [18],
page 78) that phP(—9) has positive correlations. Also, the finite energy
property is casily seen to hold for ,u+’5’(_=5). Using this we can by Lemma
10.1 conclude that

ptP 9y =o.

+.8

inf.r and hence

By Lemma 5.1 there exists a 7 > 0 such that ptf:(—¢ <

M;f‘r (Ci) =0.

It follows that
B3t € [0,7] : C; occurs) = 0,

and by countable additivity, we conclude

UHA(3t > 0:C; occurs) = 0.
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