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MULTIDIMENSIONAL CAYLEY TRANSFORMS AND
PROJECTIVE OPERATORS

HAKAN SAMUELSSON

Abstract

Let a be a closed operator on a Banach space X and let o(a) be the set of
complex numbers z such that z — a is not a bijection from its dgmain to X.
If ¢ is a Mobius transformation of the extended complex plane C = CU{c0}
such that ¢~!(c0) ¢ o(a) then the operator ¢(a), given by formal substi-
tution of @ in ¢, is bounded and ¢(o(a)) = o(¢p(a)). The operator ¢(a) is
called a general one-variable Cayley transform of a. This thesis consists of
the paper Multidimensional Cayley Transforms and Projective Operators.
We give a generalisation of the one-variable Cayley transform to tuples
of closed operators on X and characterise the set of tuples which can be
transformed into tuples of bounded commuting operators via such a 'multi-
dimensional Cayley transform’. Mobius transformations in several complex
variables are naturally transformations of complex projective space. Our
approach will be to define projective operators, which will have an invariant
spectrum in projective space and which will be naturally transformed by
these Mobius transformations. We will use the coordinate free approach to
the analytic functional calculus described by Eschmeier and Putinar and we
will construct an analytic functional calculus for the projective operators.
We will also provide integral representations for this functional calculus.

Keywords: Cayley transform, closed operators, Taylor’s functional calcu-
lus, n-dimensional complex projective space CP”, integral representations
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ABSTRACT. We construct a multidimensional Cayley transform of tu-
ples of closed operators into tuples of bounded commuting operators.
To achieve this we define projective operators. Projective operators
will have a natural spectrum in CP"™ and they will admit an analytic
functional calculus. We provide an integral representation for this func-
tional calculus.

1. INTRODUCTION

The Cayley Transform is a one to one correspondence between the self-
adjoint operators and the unitary operators such that 1 is not in the point
spectrum. The correspondence is given by

a— (a+i)(a—i)t

Slightly more generally, one can consider closed operators with nonempty
resolvent sets on a Banach space X. Given such an operator a and assuming
A ¢ o(a) one can form the bounded operator (a + u)(a — A\)~! where p is
any complex number. Transformations of the form

(1) ar (a+p)la—N""

from the closed operators on X, denoted € (X), to the bounded ones will
be called general one-variable Cayley transforms. In Section 2 we review
the basic theory of these transformations. See also e.g. [12] and [8]. One
possible generalisation to higher dimensions, i.e. to several operators, is
to Cayley transformation each of the operators. Given n closed operators

(a1,...,an) with nonempty resolvent sets such that their resolvents com-
mute, i.e. the operators are commuting in the strong sense, this construction
makes it possible to define o(aq,...,a,); transform the tuple (aq,...,a,)

into a commuting bounded tuple, compute the Taylor spectrum for this
tuple and apply the inverse transformation to this spectrum. This makes
o(ay,...,ay) a subset of the product of n copies of CP!. This technique
has been used for instance by Vasilescu in [12] to prove spectral theorems
for unbounded self-adjoint operators. In a more general setting this has re-
cently been studied by Andersson and Sjostrand in [3]. In particular they
provide integral formulas for the functional calculus for tuples of operators
with real spectra.

This paper is concerned with another generalisation of the general one-
variable Cayley transforms. We note that the one-variable Cayley trans-
forms are Mobius transformations, or rational fractional transformations, of
C in which we substitute an operator. Rational fractional transformations
in several complex variables are transformations on C" of the form

Ao+ D01 Az Mo+ SN, 2
(2) (21, 20) > ( 1,0 23711 1,9. J."”’ n,0 Z}L n,]. ] ’
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where (J; ;) is an invertible matrix. We characterise those tuples of closed
operators that can be transformed to bounded commuting tuples via map-
pings of the form (2). Transformations of this type will be called multidi-
mensional Cayley transforms. Note that (2) is only defined for z outside the
affine hyperplane Ao o+ Y1 Ao j#j = 0 and its image is not all of C* but only
C™ minus some other affine hyperplane. The appropriate way of looking
at transformations like (2) is as transformations of n-dimensional complex
projective space, CP™. In the homogeneous coordinates [z, z1, . - ., 2] the
transformation takes the form

n n
(3) [Z(),...,Zn] = [Z )\o,ij,... ,Z)\n,jzj],
0 0

and it is a biholomorphic mapping from CP” onto CP". We will begin
our study by defining equivalence classes of bounded commuting operators,
called projective operators, which can be substituted into (3). This is not
covered by Taylor’s functional calculus, constructed in [10] and [9], because
we do not have a mapping between domains in C" and C”™. However, our
construction will rely on Taylor’s construction. Let us therefore give a short
review of Taylors analytic functional calculus.

Let b = (b1,...,b,) be commuting operators on a Banach space X and
let APX be the space of X-valued (p,0)-forms in C*. We denote by 6,_,
the operation on @ZZO APV X of interior multiplication with the operator-

valued vector field > 7 (z; — bj)aizj. Since b is commuting we have d, 5 o
d,—p = 0 and we get the Koszul-complex K,(z — b, X):

5, 5, 5,
(4) O%AO’OX'%I)ALOX'%I)“'QA”’OX'%O

Taylor defines in [10] the spectrum o(b) as the complement in C* of the set
of points z such that the Koszul-complex (4) is exact. We have a natural
continuous algebra homomorphism &(C") — L(X) given by

o0 o0
(5) Z Ca2® Z cob®.
0 0

In [9] Taylor proves that this homomorphism can be extended to a homo-
morphism &(U) — L(X) for any neighbourhood U of o(b).

Theorem 1.1 (Taylor, 1970). There is an extension of the homomorphism
(5) to a continuous algebra homomorphism

[ fb): O(U) = L(X)
for all open sets U such that o(b) C U. If f = (f1,-.-,fm) € OU,C™),

then
f(o(b)) = o(f (b)),
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where f(b) = (f1(b), -, fn(D)).

The statement f(o(b)) = o(f(b)) will be referred to as the Spectral
Mapping Theorem. Taylor’s first proof was based on Cauchy-Weil type
integrals. Soon after he gave a proof by homological methods, see [11].

To handle functions between complex manifolds we need the coordinate-
free approach to the functional calculus described by Eschmeier and Putinar
in [5]. One key observation is that each continuous algebra homomorphism
U : 0(U) — L(X) corresponds to a unique continuous &¢'(U)-module struc-
ture ® : O(U) x X — X on X. In fact, given the algebra homomorphism ¥
we define the &'(U)-module structure ® on X by letting ®(f,z) = ¥(f)z.
Conversely given ® we get the algebra homomorphism by ¥(f)z = ®(f, z).
We reformulate Taylor’s Theorem in this terminology: The natural &(C")-
module structure on X given by

o o
(Z ca2®, ) — Z co bz
0 0

extends to a & (U)-module structure for each neighbourhood U of o(b). In
[5] Eschmeier and Putinar show more generally that given a Fréchet &(N)-
module .# where N is a Stein space of finite dimension, there is a notion
of spectrum o(N,.#) C N such that the &(N)-module structure of .#
extends to a &(o(N,.#)) module structure. In the case that .# is the
natural &(C")-module obtained from an n-tuple of regular operators b on
a Fréchet space then o(N, #) = o(b) and the abstract extended module
structure is precisely the module structure corresponding to the &'(o(b))-
functional calculus. Moreover if N’ also is a Stein space and h : V D
o(N,.#) — N' is holomorphic then

ho(N, M) = o(N', (Mez)")

where .#,,; is the extended module and (.#.,;)" is the &(N')-module ob-
tained by composing with h.

We will see that the projective operators have a natural spectrum in
CP™ and that, for any f holomorphic in a neighbourhood of this spectrum,
we get a pairing (f,z) — ®(f)z. In Section 7 we provide integral for-
mulas representing this module structure by generalising the ideas in [1],
where Andersson derives integral formulas for Taylor’s functional calculus.
If we denote a projective tuple by [b] and its spectrum by o[b] C CP",
and assume that o[b] does not intersect the hyperplane [A], we get that
Py = (p1,---,pn), a projection from the hyperplane [A] onto C", is holo-
morphic in a neighbourhood of o[b]. Then Py([b]) = (c1,-..,c,) will be a
tuple of bounded commuting operators and Py(c[b]) = o(c). Even if [}] is
not disjoint with o[b], Py([b]) might still have meaning; not necessarily as a
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tuple of bounded commuting operators but as a tuple of closed operators.
We say that a hyperplane is admissible for [b] if Py(o[b]) has meaning as
a tuple of closed operators. In Section 4 we characterise those tuples of
closed operators arising in this way. It turns out that being a projection of
a projective operator corresponds to a certain commutation condition on
the closed tuple. Tuples of closed operators satisfying this commutation
condition will be called affine operators. It follows that the affine operators
are precisely those which can be Cayley transformed to tuples of bounded
commuting operators. In fact, given an affine operator a = (ay,...,ay)
there is a projective operator [b] such that Py([b]) = a. Choosing a hyper-
plane [\] which does not intersect o[b] we get a multidimensional Cayley
transform of a as the bounded commuting tuple P;([b]).

The disposition of the paper is as follows. In Section 2 we review the
basic theory about general one-variable Cayley transforms. In Section 3 we
define projective operators and prove that a projective operator has a well
defined spectrum in CP" and that it admits an analytic functional calculus.
In Section 4 we study the behaviour of projective operators under various
projections from CP" to C". We define affine operators as tuples of closed
operators satisfying a certain commutation condition and show that these
are precisely the closed tuples arising as such projections. Section 5 deals
with the Taylor spectrum of affine operators and we show that a Spectral
Mapping Theorem holds for the projections of projective operators to the
affine ones. In Section 6 we apply our theory to Cayley transforms from C*
to C" and show that a tuple of closed operators is affine if and only if it is
a Cayley transform of a bounded commuting tuple, and that the Spectral
Mapping Theorem holds. In Section 7 we provide an integral representation
of the analytic functional calculus obtained in Section 3.

2. THE ONE VARIABLE CASE

Let X be a Banach space and let ¥(X) be the set of closed, but not
necessarily densely defined operators on X. For any linear operator a on X
the spectrum of a o(a) is the complement in C of the set of points A such
that A—a is a bijection Z(a) — X. The point spectrum o,(a) C o(a) is the
set of A € C such that A — a is not injective. For a € ¥(X) we have by the
Closed Graph Theorem that A ¢ o(a) if and only if A\ — a has a bounded
inverse. We let C denote the extended complex plane; C U {oc} and we
define the extended spectrum 6(a) as o(a) if a is bounded and o(a) U{oc}
if @ is not bounded. N

Let ¢ be a Mobius transformation of C. We claim that ¢(a) has meaning
as an element in ¢ (X) if ¢~1(c0) ¢ 0,(a). Given the Mobius transforma-
tion ¢ we let My € GL(2,C) be the corresponding 2 x 2-matrix. The matrix
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M, acts naturally as a homeomorphism of X x X. If My = {m;}i1<jr<o
and ¢~1(00) ¢ op(a) we may put

(6) ¢(a) = (mi1a +mi2)(maia+moo) "

We have to show that ¢(a) is closed. From (6) we see that Z(¢(a)) =
H(ma1a+ma2) = #(a— ¢~ (00)), where 2 and Z denote the domain and
range respectively, (excluding the case that ¢(oco) = oo in which case a and
#(a) have the same domain). Now if z € Z(a) then y = (mg 10+ maop)x €
9(¢(a)) and

(7) My(z,az) = (y, #(a)y).

Conversely if y € P(¢(a)) then z = (mo1a + mao) ™'y € P(a) and (7)
holds. Hence we have that MyGraph(a) = Graph(¢(a)). Since Graph(a) is
closed and My is a homeomorphism we obtain that Graph(¢(a)) is closed
as claimed. Moreover ¢(a) is bounded if and only if ¢~ 1(cc) ¢ &(a). In
fact, if ¢ 1(00) ¢ &(a) then either ¢ !(c0) # oo in which case Z(d(a)) =
Z(a — ¢~ (o)) = X or ¢~'(c0) = co. In the latter case a has to be
bounded and ¢(a) = m1 1a+m; 2. Therefore, in both cases ¢(a) is bounded.
Conversely, assume that ¢(a) is bounded. If ¢~!(c0) = oo then Z(a) =
P9(¢(a)) = X so a is bounded. If ¢~ (c0) # oo then Z(a — ¢~ (00)) =
P(¢(a)) = X and hence a—¢p~!(00) is surjective. By assumption ¢~!(c0) ¢
op(a) and so a — ¢ 1(oc0) is injective as well. Thus ¢ 1(oc0) ¢ 6(a). We
conclude that the closed operators on X which can be Cayley transformed
into bounded operators are precisely those which have nonempty resolvent
sets. We finally prove a spectral mapping theorem for the general one-
variable Cayley transforms.

Theorem 2.1. Let a € €(X) and let ¢ be a Mébius transformation such
that $~1(c0) ¢ op(a). Then

$(5(a)) = 6(¢(a)).

Proof. Assume that A ¢ 6(a). We look at the possible cases. If A = ¢ (00)
then we know from above that ¢(a) is bounded, that is ¢(A) = oo ¢ G(¢p(a)).
If A # ¢~1(c0) then, in the case A = co we have

®) (0 = g(a) = LMoy )0 - 7 (00))

ma1

and if A # oo then instead we have

- detMy
$(A) — p(a) = ma,1(m2, 1A + ma2)

(A —a)(a—¢ (o)

In either case ¢(A) — ¢(a) is an injective and surjective mapping Z(é(a)) —
X and hence ¢(\) ¢ 6(¢(a)). Thus 6(¢(a)) C ¢(6(a)). But ¢! is also
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a Mobius transformation and from (8) it has the property that ¢(oco) ¢
op(¢(a)). From what we have proved this far we conclude that

(a) = 6(¢ ™" ¢(a)) C ¢~ (6(4(a)))-
Hence ¢(6(a)) € 6(¢(a)). U

The preceding discussion suggests that the closed operator a defines some
invariant object on CP' = C if 0o ¢ 0,(a). In the canonical affine part of
C this object becomes the operator a and in some other affine part, cor-

responding to a Mo6bius transformation ¢ of the canonical one, it becomes
¢(a) and has spectrum ¢(é(a)).

3. PROJECTIVE OPERATORS AND ANALYTIC FUNCTIONAL CALCULUS

In this section we define projective operators as the equivalence classes
of an equivalence relation on a subset of the n + 1-tuples of bounded com-
muting operators on a Banach space in such a way that the equivalence
classes have well defined invariant Taylor spectrum in CP". We will also
show that the projective operators admit an analytic functional calculus.

Definition 3.1. Let b = (by,...,b,) and b = (by,...,b,) be tuples of
bounded commuting operators on a Banach space X. We define b ~ b if
there are finitely many bounded commuting tuples b/, j = 1,...,m such
that o' = b and b™ = b and for j = 1,...,m — 1 we have b = ¢;b/ for
some invertible ¢; € (), the commutant of &/.

Lemma 3.2. The relation ~ of definition 3.1 is an equivalence relation.

Proof. We note that the relation R on bounded commuting n + 1-tuples
defined by bRb if b = cb for some invertible ¢ € (b)" is reflexive and symmet-
ric. Reflexivity is obvious since e € (b)'. It is symmetric because if b = cb
for some invertible ¢ € (b)' then b = ¢~'b and letting b = (bo, ..., b,) and
b= (bo,-..,b,) we see

17 _ ~13. 3 _ 7z =1 _ 2 —1_ 5 -1
¢ bj=c cbj =bj =bjccT =cbjcT =bjc

so ¢! € (b)'. The relation ~ is defined as the transitive closure of R so
it is by definition transitive and it inherits reflexivity and symmetry from
R. O

Remark 3.3. We will see later on, Remark 4.6, that for the tuples we
will be interested in here there is a simpler description of the relation ~.
For these tuples it will also turn out, see Remark 4.5, that even though
~ is defined as the transitive closure of R, any two representations for an
equivalence class are not more than two steps from each other.
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We denote the equivalence class containing b by [b] and we let 7 denote
the canonical mapping C**! — CP".

Proposition 3.4. Let b = (by,...,b,) be a commuting tuple of bounded
operators on X and let ¢ € (b)' be invertible. If 0 ¢ o(b) then 0 ¢ o(cb) and

wo(bo,...,bn) = wo(chy, ..., chy).

Proof. Define 4 and ¢ : C"*2 — C**! by

(2,20, .y 2n) = (220, - -, 22n)

and
D(2,20,- - y2n) = (205---,2n)

respectively. We claim that o(c, by, ..., by,) avoids the hyperplane in C"*2
orthogonal to the vector (1,0,...,0). In fact, we have
(9) 06,00, bn) € () X (b0, bn)
see [10] and since c is invertible the claim follows. Moreover from (9)
and the assumption that 0 ¢ o(b) we see that o(c,by,...,b,) also avoids
the coordinate axis (z,0,...,0). Hence we may take a neighbourhood U

of o(c,bg,...,by) such that U does not intersect neither the hyperplane
orthogonal to (1,0,...,0) nor the coordinate axis (z,0,...,0). Then the
images V1 and Vs of U under 1 and ¢ respectively do not contain the origin
and so the diagram

(10) U Vi
d |
Va CP™

™

must commute. By the Spectral Mapping Theorem
o(bo,...,bp) =0 d(c,by,...by) = dpo(c,bg,...,by)
o(cbg,...,cby) = o (e, by,...by) =Y a(c,bg,...,by)
and since the diagram (10) commutes we conclude

wo(chy,...,cby) =mo(bg,...,bn).

Corollary 3.5. Let b ~ b and assume 0 ¢ o(b). Then 0 ¢ o(b) and

wo(b) = wo(b).
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Proof. From the definition of ~ we get commuting tuples {b7}™ such that
b' = b and b™ = b and B! = ¢;b’ where ¢; € (V) is invertible. From
Proposition 3.4 we get 0 ¢ o(b?) and

7o (b) = no(b?)

so inductively we obtain 0 ¢ o(¥’), j =1,...,m and
7o (b) = 1o (b?) = --- = 1o (™ 1) = 7o (b).
O
It follows from the corollary that if 0 ¢ o'(b) then 0 ¢ o (b) for any b € [b]

and wo(b) = mo(b). Hence we can make the following definitions.

Definition 3.6. Let b be a commuting tuple of bounded operators on a
Banach space X such that 0 ¢ o(b). We define the projective operator [b]
as the equivalence class containing b.

Definition 3.7. Let [b] be a projective operator. The spectrum o[b] C CP"
for the projective operator [b] is defined by
o[b] = wo(b).

We now use the coordinate free approach to functional calculus described
in [5] to construct an analytic functional calculus for the projective tuples.
The main theorem of this section is the following.

Theorem 3.8. If[b] is a projective operator, then there is a unique O (o[b])-
module structure on X given by
O(ofb]) x X = X (f,2) = f([b])
and if f = (f1,.-.,fm) € O(c[b],C™) then
a(f([6]) = f(olb])
where f([b]) = (f1([6]), -, fm([8]))-

Proof. We construct the module-structure as follows. Given some f €
O (o[b]) we consider the lift f of f that makes the following diagram com-
mute.

Cn+1

| N

n
cF f

Then f is holomorphic in a neighbourhood of ¢(b) for any representative
b € [b] and f is constant on the complex lines through the origin (with
the origin deleted). From Taylor’s analytic functional calculus we get for
each b € [b] an operator f(b) € L(X). We will see that in fact f(b) is

C
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independent of representative b and our desired pairing &(o[b]) x X — X
will be (f,z) — f(b)z where b is any representative of [b].

Let b be a representative of [b] and let ¢ € (b)' be invertible. Put b =
cb and let ¢ and ¥ be the mappings defined in Proposition 3.4. Let U
be a neighbourhood of o(b) in which f is holomorphic and let V be a
neighbourhood of o(c) such that D(0,r) NV = () for some 0 < r < 1. Since
c is invertible 0 ¢ o(c) and such a neighbourhood exists. Put

U= U A\U;.

A¢D(0,r)

Then f o ¢ and f o4 are holomorphic in V x U. Moreover since r < 1 we
have o(b) C U and so o(c,b) C o(c) xo(b) C V xU. Now since f is constant
on the complex lines through the origin we have f o ¢ |yxu= f o % |vxv
and we conclude from the composition rule

fO)=Fodlvuw (eb) = for lvuv (¢,b) = f(cb) = F(B).
If b and b are any two representatives of [b] we have bounded commuting
tuples {§/}7 with b = b', b = b™ and B! = ¢;b/, j = 1,...,m — 1 for

invertible ¢; € (¢’)". Inductively we obtain
fo) = f(0*) =--- = F(6™") = F(b).

Thus f is well defined on [b] and we write f([b]) for the operator f(b).

To prove the Spectral Mapping property we proceed as follows. Since f
is constant on the complex lines through the origin f(o (b)) is the same for
all b € [b] and so from the Spectral Mapping Theorem (see e.g. [5]) we get

F(ab]) = f(a(b)) = o(f(b)) = a(F([B))-
Uniqueness follows from the Spectral Mapping Property. See [5]. O
Let M be a complex manifold and assume f : U D o[b] — M is holo-
morphic. We obtain a &(M)-module structure .# on X by
OM)x X - X (g9,z) — g o f([b])=.

In [5] Eschmeier and Putinar defines the spectrum o(M, .#) C M of the
module .#Z and shows that the &(M)-module structure extends uniquely
to an O(o(M, .#))-module structure on X. Moreover they show a Spectral
Mapping Theorem which in our case implies

o(M,.#) = f(o[b])-

It is shown that if M = C™ we can realise the extended module structure
as the analytic functional calculus for an m-tuple of commuting bounded
operators ¢ on X by choosing coordinates on C™ and that the spectrum
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of the abstract module is precisely o(c). The Composition rule in Taylor’s
functional calculus is therefore built into the construction.

To stress the independence of coordinates in our study of projective
tuples we adopt an invariant notation. For a subset M of CP"™ we denote
by M* the dual complement of M. That is

M* = {[\] € CP™; (z,\) # 0 V[2] € M}.

Geometrically M* is the set of hyperplanes in CP" which do not intersect
M. The correspondence between hyperplanes in CP” and points in CP™
is the usual duality correspondence. To [A] € CP™ we associate the hyper-
plane {[z]; (z,A) = 0}. We will not make any distinction between points in
CP™* and their corresponding hyperplanes and we will freely allow ourselves
to speak about ’the hyperplane [A] if [\] € CP™*.

Lemma 3.9. Let [b] be a projective operator. Then

ob]* = {[A\] € CP™; (b, A) is invertible}.

Proof. Since any two representatives of [b] differ by an invertible operator
we see that the statements in the lemma only depend on [b]. For the
inclusion C assume [u] € o[b]*. Then from the definition we have (z, u) # 0
for all [z] € o[b]. Thus the function z + 1/{(z,u) from C**! to C is
holomorphic in a neighbourhood of o(b). Hence from the functional calculus
we see that (b, ) is invertible.

For the other inclusion assume (b, u) is invertible. We shall show that
o(b) does not intersect the hyperplane p. If p = (1,0,...,0) we have to
show that if by is invertible then o(b) does not intersect the hyperplane
orthogonal to (1,0,...,0). But if by is invertible then 0 ¢ o(bg) and since

U(b) C O'(b()) X O'(bl,...,bn)

(see [10]) o(b) can not intersect the hyperplane in question. For the general
case let L be an invertible linear transformation sending u to (1,0,...,0).
By the Spectral Mapping Theorem, to show that o(b) does not intersect u
is equivalent to show that o(L*~'b) does not intersect Ly = (1,0,...,0).
But the first component in L* !5 is

(L*~'b, L) = (b, )
which is invertible by assumption and so the lemma follows. O

Remark 3.10. From now on we will always assume that o[b] avoids some
hyperplane in CP". We will do this because it will make it possible to realise
the projective tuple as an ordinary n-tuple of bounded operators. Since
the objective of this paper is to make multidimensional Cayley transforms
of tuples of unbounded operators into tuples of bounded operators the
assumption is natural.
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If we fix some [A] € o[b]* then the function
(%)
A e
is holomorphic in a neighbourhood of ¢[b] if also [A\] € o[b]*. Theorem 3.8

then implies that we get a well defined mapping in &'(a[b]*, Ny (b)) given
by

(b, A)

(b, A)

This is the Fantappie transform of the L(X)-valued analytic functional
O(o[b]) — L(X), f— f([b]) given by Theorem 3.8.

[A] =

4. AFFINE OPERATORS

We extend the Fantappie transform to a larger set o[b]7 ., called the set
of admissible hyperplanes, and get a % (X)-valued mapping instead. We
will also define affine operators to be tuples of closed operators with certain
commutation properties. We will show that affine tuples are precisely the
tuples obtained by projecting a projective tuple from an admissible hyper-
plane. In order to keep track of the various domains of definition that turn
up we start with some technical results.

In what follows we will often make implicit use of the following fact.

Proposition 4.1. Let a be any closed operator on X and let b be bounded.
Then, the operator ab with domain Z(ab) = {z € X;bz € P(a)} is closed.

Proof. Assume that {z;}° is a sequence in Z(ab) such that z; = = and
abz; — y. Since b is bounded we have br; — bz and since a is closed we
must have bz € Y(a), i.e. z € P(ab), and abz = y. O

The following lemma generalises the fact that if b and ¢ are bounded
operators and b is invertible, then bc = ¢b if and only if b=tc = cb™ 1.

Lemma 4.2. Let b and ¢ be bounded operators on X and assume b is
injective. Then bc = cb if and only if cb™' C b~'c. If this condition is
fulfilled and in addition c is invertible then actually cb=' = b~ lc.

Proof. Assume bc = cb and let z € Z(cb~') = 2(b~'). Then z = by for
some y € X. Since b and ¢ commute we get cx = cby = bcy and so we must
have cx € 2(b~1). Hence 2(cb™!) C 2(b'c) and

btz =cb by = cy = b lbey = b by = b e,
It follows that cb~! C b~'c. Conversely assume cb~! C b~'c. Note that if
r € P(b ') then cz € 2(b~!) and so b 'cb € L(X). By assumption

b lebDeb lb=c
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and because ¢ € L(X) we must have equality. Multiplying by b from the
left we obtain cb = be.

For the last statement assume c is invertible and commutes with b. Then
¢ ! also commutes with b. To show cb ! = b !c it is enough to show
Db~ tc) C PD(cb™!) by the proof this far. Take x € 2(b~lc), that is
cx € 2(b71). Then cx = by for some y € X. We get £ = ¢ lby = bc™ 1y so
€D =D(cb7h). O

The next lemma and the remarks following it shed some light on the
equivalence classes [b].

Lemma 4.3. Let [b] be a projective tuple and assume that [A] € o[b]*. Then
there is a representative b’ for [b] such that

n
B0 = N\ =e.
0

Proof. If A € o[b]* Lemma 3.9 says that B = (b,A) is invertible. Then
clearly [B~1b] = [b] and b’ = B~'b is the desired representative. O

Remark 4.4. There is no loss of generality in assuming that Ay # 0 because
we may perturbate [A] a little and still belong to o[b]*.

Remark 4.5. We have defined the equivalence relation on commuting tu-
ples as the transitive closure of a symmetric and reflexive relation R. The
proof of Lemma 4.3 shows that given a class [b] such that o[b]* is nonempty,
any representative is not more then one step from the representative b’ with
(b, \) = e. Hence if b and b are any two representatives for [b] then they
are not more then two steps from each other.

Remark 4.6. Lemma 4.3 also enable us to to give an alternative descrip-
tion of the equivalence relation ~ if we restrict ourselves to look at com-
muting n + 1-tuples of operators with the additional property that their
spectrum avoid some hyperplane through the origin in C**!'. In fact for
such tuples, b and b, we have b ~ b if and only if b = cb for some invert-
ible ¢. The only if part is clear. Conversely assume that b = ¢b for some
invertible ¢. The assumption on the spectrum for b says precisely that
o[b]* is nonempty and so from Lemma 4.3 we see that we may assume that
(b, \) = e for some [\]. Hence (b,\) = ¢~ so ¢ € (b)’ and therefore [b] = [b].
Definition 4.7. Let [b] be a projective tuple. We define o[b]%, , the set
of admissible hyperplanes for [b], by [a] € o[b]*, if

adm
(b, )
(b, A)

is injective, where [)] is some hyperplane in o[b]*.
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_ The definition clearly does not depend on the choice of [A] because if
[A] € o[b]* is some other choice, then

(b,a) _ (b,a) (b;A)

B, (B A) (b, A)

(5,2)

and 2%+ is invertible by the functional calculus.

(b,X)
Remark 4.8. Observe that o[b]?,  is not defined as the dual complement
of something. It is defined directly as a subset of CP™*. However, in the
one variable case o[b]” , = corresponds to the point spectrum in the following
sense. If [\] € o[b]* C CP! and P, a projection from the hyperplane [)]
onto C then

0lblsam = (P "op(PA([E])) -
Proposition 4.9. Let [b] be a projective operator and let [\] € o[b]* and

(@] € o[bl’,,,- Then (b,a)~1(b,\) is a closed operator which does not depend
on the particular representative b € [b]. Moreover

(b, )~ (b, X) = (b, A)(b, )

and we denote this operator 22 )‘g. The domain of definition

(b, A)
(b, )

does not depend on the choice of [\] € o[b]*. Finally if [B1],---,[Bn] are
any points such that [a], [B1], ..., [Bn] are in general position then

9( )::904

a-ﬂ@ba (b, B;))-

Proof. Tt is clear that (b,a)~1(b, \) is a closed linear operator on X. Since
[A] € o[b]* we have that (b, \) is invertible and so it follows from Lemma
4.2 that

<b’ a>_1<ba A) = (<ba )\><b7 a))_l

From this we immediately obtain that

) = (5)

in the set theoretical sense and hence H oes not depend on the repre-

sentative b € [b] since the right hand side of (11) does not. Moreover since
2((b,\)(b,a)™") = D((b,\)(b, )™ ") for any other [\] € o[b]* the domain
P, can not depend on the choice of [A] € o[b]*. For the last statement we
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first assume that [o] = [1,0,...,0] and ;] = [0,...,1,...,0] where the 1
is in the j:s position. Then what we have to show is

b\ = _
S =205,

But from Lemma 4.2 we see
Db "bj) 2 D(bjby ") = 2((b,\)bg )
and so @(%) C N 2(by 'b;). On the other hand

A

ﬁ P(by'b;) C D(b5 (b, A))
0

so we are done. We reduce the general case to this one by considering the
projective transformation P defined by

[Z] = [(Z, a)a <Z,,81), RN <Z’ﬁn>]
Then P*~![a] = [1,0,...,0] and P*1[3;] = [0,...,1,...,0]. We want to
show the equality

) =) 2((b,a) (b, 55))

but this is equivalent to

(Pb, P*1)) ~ s—1 \—1 *—1
— ) = Pb, P Pb, P i))-
9( <Pb, P*fla)) JQ 9(( ba a) < ba ﬂ]))
Hence the proposition follows from the special case above. d

Remark 4.10. We saw in the proof that there was no loss of generality
in assuming that the hyperplanes were of a special kind because we could
reduce to this case by a projective transformation of CP". In order to sim-
plify calculations in the proofs below we will often make such assumptions
and it is supposed to be understood that there is no loss of generality in
doing it.

Let us fix an [o] € o[b]},,, and [B1],...,[Bn] € CP™* such that [], [B1], ...,
[Bn] are in general position. We denote the closed operator (b, o)~ (b, 5;)
by a;.

Proposition 4.11. With the hypothesis of the preceding proposition, if
z € Y(aj) N D(ay) then we have

a;z € Y(ay)

if and only if
QT € .@(aj).
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If any of these conditions are satisfied then also
axa;T = a;aLT.

Proof. We may assume [a] = [1,0,...,0] and [B;] = [0,...,1,...,0] and
hence a; = by 'b;. Suppose z € P(by'b;) N D(by 'by). Then from Lemma
4.2 we get
brby 'bjz = biby by
Hence by 'bjz € (b 'by) precisely when by 'byz € 2(by'b;) and
by 'brby 'bjz = by biby by
O

Definition 4.12. A tuple (ai,...,a,) of closed operators on X is said to
be affine if
(1) it exists a [A] € CP" such that the operator

n
[ )\0 + Z )\jaj
1

with domain Z(ag) =[] Z(a;) is closed, injective and surjective,
(ii) the operators ag, a1, ...,a, satisfy the following commutation con-

ditions; if € Z(a;)NZ(ajar) then z € P(ara;) and ajarr = ara;x

for j,k=0,1,...,n.
Remark 4.13. Definition 4.12 says that a tuple of closed operators is affine
if some affine combination of them, called ag, with domain N} Z(a;), is
closed, injective and surjective and that the tuple ag, a1, ..., a, satisfies the
commutation conditions (ii). In the one variable case this means precisely
that o(a) is not all of C because Ao + Aja; is injective and surjective iff
—Xo/A1 ¢ o(a) and the commutation conditions are clearly satisfied. Hence
from Section 2 we see that one closed operator is affine if and only if it can
be Cayley transformed to a bounded operator.

Remark 4.14. Morally what condition (ii) should mean is that no matter
how we define spectrum of a, the hyperplane [A] should avoid the closure
in CP" of it. For instance if [A\] = [1,0,...,0], that is spectrum of a does
not intersect the hyperplane at infinity, then one should expect that all
the a; are bounded. In fact if [1,0,...,0] works as [A] in Definition 4.12
then condition (i) says that the domain of the identity is (] 2(a;), that
is Z(a;) = X for all j and so all the a; are bounded by the Closed Graph
Theorem.

Remark 4.15. Observe that we do not demand that the a; have nonempty

resolvent sets. We will see in Example 4.18 that there are affine tuples such
that some of the components have all of CP! as spectrum.
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Remark 4.16. Condition (ii) of Definition 4.12 implies that the opera-
tors aq,...,a, commute with the bounded operator a; L'in the sense that
aglaj C ajag'. In fact, let = € P(a;). Then clearly ay'z € P(a;) N
9(ajag) and so condition (ii) implies that ay 'z € P(aga;) and agajay'z =
ajapay 'z = ajz. Hence ajay 'z = ay tajz for all 7 € P(a;).

The operators we get when we project a projective operator from an
admissible hyperplane are affine, in fact these are the only affine operators
as we now show.

Theorem 4.17. A tuple a = (a1, ... ,ay,) of closed operators on X is affine
if and only if there is a projective tuple [b] with o[b]* nonempty, an [a] €
o[b]% g and [Bi], ..., [Bn] € CP™ in general position together with [a], such
that

aj = <b’a)_1<b7/8j)7 .7 = 1, , M.

Proof. We may assume that a = [1,0,...,0], 8; = [0,...,0,1,0,...0] where
1 is in the j:s place. First assume that a; = (b,a) 1(b,8;), j = 1,...,n
for some projective tuple [b], that is a; = b, 'b;. Let [\] € o[b]* so that
B = (b, \) is invertible. From Proposition 4.9 we get that by 'B = Bby*
and so we see that

ap = balB = balejbj = Z)\jbalbj =X +Z)‘jaj
0 0 1

has domain Z(ag) = 2(b;"') = N} 2(a;) by Proposition 4.9, is closed,
injective and surjective. Hence a satisfies condition (i) in Definition 4.12.
Moreover Proposition 4.11 implies that if € Z(a;) N Z(aja;) then z €
Y(araj) and ajarxr = agajz for j,k = 1,...,n. To see that this is also
satisfied for 7 = 0 and k = 0 respectively we first assume that x € P(ay) N
P(apar). Then since z € P(apay) we have that by'brz € 2(b;') and
since also 2 € 2(b,') Lemma 4.2 implies that b, 'byz = byb, 'z. Hence
beby 'z € D(by 1), that is z € D(agao), and by 'by 'bez = by b, 'z that is
apars = agaor. Now assume that z € P(aj) N P(ajag) which just means
that z € 2(b,") and bjby'z € P(b,'). From Lemma 4.2 we see that
biby 'z = by bz so by'bjz € P(by") and by by 'bjz = by 'bby 'z Hence
z € Y(apa;) and apa;z = ajapx so a also satisfies condition (ii) and thus a
is affine.

Conversely assume that a is affine and take [A\] € CP" such that the
operator ag = Ao + Y7 Aja; satisfies the requirements of condition (i) in
Definition 4.12. Then

n n
bo:= (Ao + Y Nay) h bj=ai(o+ ) Nag) Tt j=1,...,m
1 1
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are bounded operators by the Closed Graph Theorem. We claim that
b= (bo,---,bp) is commutative, that (b, \) is invertible and that a; = b, 'b;.
We start by showing commutativity. In Remark 4.16 we saw that it followed
from condition (ii) that aalaj - ajaal, that is bpa; C ajby for j =1,...,n.
Hence for any z € X we have aibiz = bparboz € (] Z(a;)- So we see from
condition (ii) that for any z € X we have

arbparbyr = alakbgaf; = akalbgm = agbpaibyzx.

Thus b is commutative. To see that ap = balbk we assume z € Y(ay), then
condition (ii), via Remark 4.16, implies that azboz = boagz € ] 2(a;).
Hence aja,box = ara;box for all [ by condition (ii), and we obtain balakbow =
apz. Thus a; C balbk. To show equality it suffices to show Q(balbk) C
9 (ay). Therefore assume = € (b, 'b;), that is agbpz € 2(b, ') and so,
again by condition (ii), we have aqjarbox = ara;bpr. Hence ajbpx € P (ay)
for all [ and this gives us z = by 'byz € P(ay,). Finally we observe

n n n
<b, )\) = Z Ajbj = Aobo + Z)\jajbo = ()\0 + Z)\ja]’)bo = €.
0 1 1

Hence o(b) avoids the hyperplane A through the origin in C**! and hence
[b] is a projective tuple with o[b]* nonempty. O

Example 4.18. Let K be the compact subset of C* defined by
K = {(172110); |Zl| < 1} U {(l/zla 15 1/'21); |2‘1| > 1} U {(0’ 110)}

Let X = C(K) be the Banach space of continuous functions on K and let
b; denote the operator on X of multiplication with the coordinate function
zj, § = 0,1,2. Then b = (by, b1,bo) defines a projective operator [b] and
o[b] = w(K), the projection of K on CP3. Moreover, one checks that
the hyperplane [2,1,—3/2] avoids o[b]. Clearly by is injective and so the
hyperplane [1,0,0] is admissible. We get the affine operator (ai,a2) =
(bg'b1,by'b2). We claim that o(a;) = C. Let w € C be arbitrary and
take a point (zp,z1,22) € K such that z1/20 = w. If f € C(K) is such
that f(zo,21,22) # 0 then f is not in the range of w — a; and therefore
w € o(ay).

Corollary 4.19. If (a1,...,an) s affine then affine combinations of the a;
are closable.

Proof. To any affine map of C" it corresponds a projective transformation
of CP™. Substituting a projective operator, representing (a1, ...,a,), into
this map and projecting the result back to C* we obtain a closed extension
of the affine combination. O
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The correspondence between affine tuples and projective tuples is one to
one in the following sense.
Theorem 4.20. Fiz [a],[B1],-..,[Bn] € CP" in general position. Then
to any affine tuple (ai,...,a,) it corresponds a unique projective tuple [b]
with nonempty o[bl* and with [o] € o[b]%,,, such that a; = (b, )~ (b, B;)
forj=1,....n.

Proof. We have already seen that if [b] is a projective tuple with [a] €
albl 4, and [a],[B1], ..., [Bn] in general position then we get a well defined
affine tuple
(B, ) 1B, Bu)s -+ (b, )71 (B, B)).-

For the converse we assume o = [1,0,...,0], 8; = [0,...,0,1,0,...,0].
Theorem 4.17 says that there is a projective tuple [b] with the desired
properties. We have to show that if [B] is another projective tuple with these
properties then [b] = [b]. So we assume that byb; = by'b;, 7 = 1,...,n.
We may assume that b is a representative for [b] such that e = (b, \) by
Lemma 4.3. From Proposition 4.9 we get

9(b;") = N2 (by 'b;) = N2(b5 ') = D (b ).

Hence ¢ := 50_ by is an invertible bounded operator. Moreover from Lemma
4.2 and the assumption we see

bjc = Ejbalbo = i)ali)]’bo = balbjb() == bj
s0 b = be. Tt remains to show that ¢ € (b)'. But e = (b,\) = 3.5 \;b; so
¢! =30 A\jb; and hence c € (b)'. O

Definition 4.21. Let [o], [81],...,[Bn] € CP" be fixed in general position.
We define p, g to be the mapping

[Z] = (<27 Ol)71<Z,,81>, ) <Za O‘)il(za;@n))'
The one to one correspondence can now be stated as: The mapping
Pass {8 16" £ 0, [0] € o[bf2gm } — {aa is affine}

is one to one and onto.

5. SPECTRA OF AFFINE OPERATORS

We define the spectrum of an affine operator a, corresponding to a pro-
jective operator [b] via p,g([b]) = a, and show that p,g(o[b]) = o(a).
Throughout this section we will assume that o = [1,0,...,0] and 3; =
[0,...,1,...,0] in the proofs.
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Let a = (aq,...,a,) be an affine operator. For z € C" we let §,_, denote
interior multiplication with ) 7 (z; — aj)a%j and the domain of definition
P(6,—q) for this operator is all forms with coefficients in (7 Z(a;).
Definition 5.1. Let a = (ay,...,a,) be an affine operator. We define
o(a) € C" by specifying its complement: z ¢ o(a) if and only if for all
ke N (6,_4) it exists a k+1-form f¥*! with coefficients in N} k=1 Z(ajar)
such that f¥ =g, _,f*t1.

Remark 5.2. There are other definitions of the Taylor spectrum for un-
bounded operators, see e.g. [6] and [12].

We denote the set of all forms with coefficients in ﬂ?,k:l Y(ajay) by 2%
Lemma 5.3. Let [b] be a projective operator and assume that [1,0,...,0] is
an admissible hyperplane and that o[b]* is nonempty. Put b’ = (by,...,b,)
and let a = (balbl, .. ,balb”). Then Ko(0y,X) is exact if and only if for
all f¥ € N (8,) it exists an fEF1 with coefficients in D(by?) = Z(b3) such
that f* = 6o fF+1.

Proof. Note that 2(by*) = 7 2(b; 'b;) by Proposition 4.9. Assume that
K.(0y,X) is exact and let f¥ € 4(6,). Then dyby ' f¥ =0 and so there is
an f¥+1 such that by ' f* = 6y f¥+1. But then

fk — 6blb0fk+1 — 5abgf7k+1_
Thus f*1 := B2 f*+! has coefficients in (b, 2) and f* = 5, f*+1.
Now assume that if f¥ € 4 (d,) it exists an Jian with coefficients in
2 (by?) such that f* = §,f*¥+1. If 6 f¥ = 0 then clearly by f* € 4 (d,) and
so there is an f**1 with coefficients in 2(b;?) such that

boft = 85 = Byby FEH.
Hence f* = 6yby2 f*+! and so K. (dy, X) is exact. O

Theorem 5.4. Let a be an affine operator and [b] a projective one with
nonempty o[b]* and [a] € o[b]’,,, such that a = p, g([b]). Then

o(a) = pa,s(cb])-

Proof. Under our assumptions on [« and [$] we have that p, g is the map-
ping [z] — (21/z0,...,2n/20). We will show that [1,0,...,0] ¢ o[b] if
and only if 0 ¢ o(a). By the Spectral Mapping Theorem we get that
the line through the origin and (1,0,...,0) in C**! does not intersect
o(b) if and only if 0 ¢ o(by,...,b,). Thus what we have to show is that
0¢ o(bi,...,b,) if and only if 0 ¢ o(a). But this is exactly the statement
in Lemma 5.3 and so the only thing left in order to prove the theorem is to
check that 2(b;?) = 41 Z(ajax). Since ajar = by 'biby ‘b D bjbrby”
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the inclusion C is clear. Conversely assume z € (;,_, Z(ajax). Then, at
least = € N} Z(a;) = 9(by ') by Proposition 4.9. Thus x = byy for some
y. The assumption on z now implies that byy = by 'byz € N} 2(a;) =
P(by"') for k = 1,...,n. Since we may assume that e = g A\pby, we get
y =30 M\bey € D(by"). Thus z = byy € P(by2) and we are done. O

Theorem 4.20 implies that to an affine operator ¢ we have a unique
projective operator [b] such that a = p,g([b]) for some fixed choice of
[a], [B1],---,[Bn] in general position. So applying Theorem 5.4 we see that
o(a) has a well defined, invariant and closed extension &(a) C CP" defined
by

&(a) = olb).

6. CAYLEY TRANSFORMS

We summarise our results to see that the affine tuples are precisely those
tuples which are Cayley transforms of bounded ones and that the Spectral
Mapping Theorem holds.

Let a = (a1,...,a,) be affine and let [A\] € CP™ be such that that con-
dition (i) in Definition 4.12 is fulfilled. Then if ag = Ao + Y_; Ajaj, the
projective operator

[b] = [aalaalaala .- aanaal]
projects to a and [A] ¢ o[b]* by Theorem 4.17 and its proof. Let [f1],. .., [5n]
be points in CP" such that [A], [81],...,[Bn] are in general position. Apply-

ing the projection py g to [b] we get the bounded commuting tuple

prs([B]) = ((Bro+ D Brjaj)ag s (Buo + Y Bnjaj)ag ')
1 1

and

a(pas([b]) = pas(a(b])

by Theorem 3.8. Hence if ¢ is the corresponding rational fractional trans-
formation we see that ¢(a) = px g([b]) is a bounded commuting tuple and
by Theorem 5.4 we have o(¢(a)) = ¢(6(a)) naturally interpreted.
Conversely assume that a tuple of closed operators a = (a,...,a,) is
the Cayley transform of a bounded commuting tuple (by,...,b,), that is

n n
ar = (Moo + Y Ajbi) " ko + D Akjby),
1 1
where (\;x) is an invertible matrix and Ao + D7 Ao ;b; is injective, i.e.

the affine hyperplane {z € C";(z, o) = 0} is admissible. Then clearly
[e,b1,...,b,] is a projective operator and [1,0,...,0] € ole,by,...,b,]*.
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Moreover, the hyperplane [, ..., o] has to be admissible and so a
is the projection of a projective operator from an admissible hyperplane.
Since the spectrum of the projective operator also has a nonempty dual
complement it follows from Theorem 4.17 that a is affine.

7. INTEGRAL FORMULAS FOR THE ANALYTIC FUNCTIONAL CALCULUS OF
PROJECTIVE TUPLES

We provide integral formulas realising the functional calculus described
in Section 3. Analogously to [1] we will construct a d-closed (n,n —1)-form,
wlz, with values in X ® L™, defined in U\ o[b], where L™ is the tautological
line bundle and U is CP" minus some hyperplane, such that if f € &(c[b)),
then (b2

f((b)z - f PE
where A € o[b]* and D is a suitable neighbourhood of o[b].

We let ¢, denote contraction with the vector field ) ¢ zjaizj' Letting f
be a k-homogeneous (p, 0)-form in some cone in C**! then f is the pullback
of an L*-valued (p, 0)-form in the projection of the cone in CP" if and only
if §,f = 0. The statement is local and we may verify it when 2y # 0. If
f is the pullback of an L*-valued (p,0)-form then f is k-homogeneous and
can be written as:

f= ijd(zh/zo) A -+ Nd(zr,/20)-
I

Wy T

Since 0,d(zi/20) = 8,(dzi/z0 — 2i/72dz0) = 2i/z0 — z02i/7 = 0 we have
d,f = 0. Conversely, a straight-forward calculation shows that if f =
> frdzy is any k-homogeneous (p, 0)-form then
—1)P
f= ngfId(zh/zo) A--- Nd(zr,/20) + %(@f) A dz.
0¢I 0

So if §,f = 0 then clearly f is the pullback of a (p,0)-form which has to
have values in L* since f is k-homogeneous. In what follows we will identify
the space of X ® L* valued (p,0)-forms on some subset of CP" with the
space of k-homogeneous X-valued d,-closed (p,0)-forms on the cone over
this subset in C**1.

We let &, denote interior multiplication with ) g bja%j. This operator
commutes with d, so it maps J,-closed X-valued forms to d,-closed X-
valued forms. However, &, reduces the homogeneity one step and therefore
dp maps k-homogeneous k-forms to k — 1-homogeneous k — 1-forms. More-
over b is commuting so we have d; o d, = 0, and we get the complex

(12) Ko (X ® L* @ A*°T*CP},, &)



22 HAKAN SAMUELSSON

The operator d, depends on the choice of representative for [b] but nev-
ertheless we have the following proposition.

Proposition 7.1. Let [b] be a projective tuple and b any representative.
Then [z] ¢ o[b] if and only if the complex

K.(X ® L* ® AT*CP},, 6)
18 ezxact.

Proof. We may assume that [z] = [1,0,...,0]. We first claim that [1,0,...,0]
¢ o[b] if and only if 0 ¢ o(b1,...,b,). Actually, if 0 ¢ o(by,...,b,), that
is (b1, ..., by) is nonsingular, then (29 — by, b1, ... ,by) is nonsingular for all
zy9 € C, see [10]. Hence (20,0,...,0) ¢ o(bo,--.,by) for all zp € C, which
means that [1,0,...,0] ¢ o[b]. On the other hand, if [1,0,...,0] ¢ o[b] then
(20,0,...,0) ¢ o(bo,...,b,) for all zp € C. From the projection property
for the Taylor spectrum, see [10], we conclude that 0 ¢ o(b1,...,by).

To finish the proof we show that 0 ¢ o(by,...,b,) if and only if the
complex (12) is exact for [z] = [1,0,...,0]. Note that for any f € X ® LF ®
AROT™ FI,O,...,O] we have d1 ¢, o f = zO%f = 0 so f does not contain any
dzy. Hence 6, acts just as interior multiplication with Y 7 bjaizj’ which we
denote by dy, and we can identify the complex (12) with the complex

Oy Oy Oy
0 A°X A'X e A"X 0.
However, by definition, this complex is exact precisely when 0 ¢ o(b1,...,by,),
and we are done. O

Assume [1,0,...,0] € o[b]* and let ((1,...,(n) = (21/20,---,2n/20) be
local coordinates round [1,0,...,0]. In these local coordinates dj is interior

multiplication with
n

0
bo > (b5 'b; — qj)a—cj

1
and we abbreviate this b05551 b

Proposition 7.2. Let [b] be a projective tuple with o[b]* nonempty and let
U be a neighbourhood of o[b] which does not intersect a hyperplane. Then
for any q the following complex is exact:

Ko(Eag(U \ o[b], X ® L*), 5).

Proof. We may assume that U does not intersect the hyperplane [1,0,...,0].
We know that pointwise for [z] € U \ o[b] the complex

K (XQ®L*® A"OT*CIP@], )
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is exact. In the local coordinates ((i,...,(n) = (21/20,...,2n/20) this
means that the complex

Ko(X @ AY'T*C", body-1, )

is exact for ¢ € U \ o[b]. From the theory of parametrised complexes it
follows that

Ko(Eap(U \ ofb], X), b()(sbalb_c)

is exact, see e.g. [12]. But this is the statement in the proposition (in local
coordinates) for ¢ = 0. Taking exterior products with barred differentials
does not affect exactness since §, commutes with this operation. Hence the
statement is true for any q. d

We now construct the integral representation of the functional calculus.
Let f € ¢(U) where U is a neighbourhood of o[b] that avoids a hyperplane.
Let z be the function which is identically z in U \ o[b]. From Proposition
7.2 we see that there is a form wjz € & (U \ o[b], X ® L') such that z =
5bwgw. Now &, and 0 anti-commute and so 5b5w,}x = —00 wg:c =—0z=0.
Hence by Proposition 7.2 there is a form w? € £ 1(U \ o[b], X ® L?) such
that 5wga: = Spwiz. Continuing in this way and successively solving the
equations éng = 5bwg+1:v we finally arrive at a form wj'z € &, n—1(U \
o[b], X®L"). This form is 0-closed because, as above §,dwlz = 0 and since
dp is injective on this level we must have dwj'z = 0. If we start with another
solution z = 5(,&1;,7; and solve the equations 5(:1‘2.’1) = 5;,&1‘2“:5 then wy'z and
&Pz define the same d-cohomology class. In fact, since & (wiz — @lz) =
O(wjz — @iz) and &(wjz — @jz) = 0 we get from Proposition 7.2 that
Sp(wiz — @iz) = 06yw' = —6,0w', that is Sp(wiz — Wiz + ow') = 0, for
some w'. Inductively we obtain & (wl'z — @'z + Gw"™ ') = 0 and since d
is injective on that level we get wj'z — @'z + Ow™ ! = 0. Hence we get a
well defined mapping (depending on the representative b)

z = (wpzly.
From the construction it is clear that this map is linear in .

Proposition 7.3. Let b be a projective tuple and assume [\ € o[b]*. Then

[ 5mte]

does not depend on the representative for [b].

7]

Proof. Clearly (2, A){b, A\) 18, does not depend on the representative. Let
@/, j = 1,...,n be solutions to the equations x = (z, A\)(b, ALy @l
007 = (z,A\){b,\) 16, &t in U \ o[b]. Then @’ can not depend on the
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representative. Moreover_wj_' = (z,.)\)j(b, AN I@, §=1,...,n must satisfy
the equations z = Sw!, Ow’ = §wt! in U \ o[b]. Hence we have

[g: ;\\i: w,?:c]g = [@"]5- O

Theorem 7.4. Let [b] be a projective tuple with [A] € o[b]*. If f € O(c[b])
and D is a neighbourhood of o[b] whose closure is contained in an open set,
which avoids some hyperplane and in which f is holomorphic. Then

A
FE)e= |

Proof. After a projective transformation we can assume that [A\] = [1,0,...,0]
and since the d-cohomology class of (b, \)"(z, \) "wllz does not depend on
the representative we may assume that b is the representative such that
e = (b,\) = by given by Proposition 4.3. We recapitulate the definition of
£([b]). Let f be the function that makes the following diagram commute:

(Cn+1

| N

P f

C.

Then f([b])z = f(b)z. Let p denote the mapping V = {z € C"'1;z #
0} — C™ given by (2q,...,2n) — (21/20,--.,2n/20) and let ¢ be the local
chart (¢1,...,¢n) — [1,¢1,.--,Cn]- Then

lp\

n
¢ o f

C

must commute. From the Composition Rule in Taylors functional calculus
we get that

We will show that

/ fw,?x:qﬁ*f(bl,,bn)x
oD
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In the local chart ¢, & is the operator dy_ where ¥’ = (b1, ...,b,) because
of our choice of b. So our solutions wga: to the dp-equations must satisfy

= by_c¢*(wyx)
99" (wpz) = Sy (wp)

0¢* (wp~'z) = Oy (whn)
in ¢ (U \ o[b]). But from the Spectral Mapping Theorem ¢ (U \ o[b]) =
¢~ (U) \ o(t'). Hence [¢* (w}'z)]5 must be the same 0-cohomology class as
the resolvent class Andersson defines in [1] corresponding to b'. Moreover it
is shown in [1] that integrating against this resolvent realises the functional
calculus. Thus we obtain

6 F(bry... bo)a = / 5 4" (wpz) = / & (fupz) = / fopz. O

We have seen that the resolvent, that is the d-cohomology class deter-

mined by

(b, \)"

Ao
does not depend on the representative for [b] and that the functional cal-
culus is realised by integrating against it. Actually, the resolvent is even
independ on the choice of [A\] € o[b]* in the following sense.
Theorem 7.5. Let [b] be a projective tuple and assume that [A], [\ €
o[b]*. Let U be a pseudo convez neighbourhood of o[b] such that none of
the hyperplanes [A] and [\ intersect U. Then

YL
(A 0"

and

(b, 5:)”(.0":10
(e )
are 0-cohomologous in U \ o[b].

In order to prove Theorem 7.5 we have to look more closely at the relation
between the homological construction of the functional calculus and the
integral construction. We recapitulate the homological construction. Let
¢ = (c1,...,¢y) be a commuting tuple of bounded operators on X. We let
Epq(U, X)) denote the set of smooth X-valued (p, ¢)-forms in U C C"* and
we pub

LU, X) = P £4(U,X).

q—p=k
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The operator V,_. = §,_. — 0 is an anti-derivative on D, Z*(U, X) and
maps .Z*(U, X) to ZL*¥T1(U, X). Moreover V,_.oV,_. = 0 and we get the
complex Tot.Z (U, X):
Ve gkl x) Ve k(U X)) T oy, x) e

This complex is exact if U is disjoint with o(c) since the Koszul-complex
is exact outside of o(c). The crucial part of the homological construc-
tion of the functional calculus for ¢ is to show that for any neighbour-
hood U of o(c) we have that X and Hy(Tot.Z (U, X)) are isomorphic as
O(C")-modules. Since Hy(T0t.Z (U, X)) has a natural &(U)-module struc-
ture, which extends the &(C")-module structure, the isomorphism yields a
0 (U)-module structure on X extending the &(C")-module structure. Fur-
thermore one shows that if U’ C U are neighbourhoods of o(c) then the
O (U')-module structure on X extends the &(U)-module structure. Hence
we get a &(o(c))-module structure on X and this is our functional calcu-
lus. Given a function f € €(U) (U a neighbourhood of o(c)) the X-valued
function z — zf(z) determines an element in Hy(T0ot.Z (U, X)) and the
isomorphism maps this element to f(c)x by definition. This construction
is due to Taylor see [10] and [9].

The integral construction of f(c)z is first to solve the equation V,_.w,_.x
=z in U\ o(c), then identifying the component, w}_ .z, of w,_ .z of bidegree
(n,n — 1), and put

f@a= [ jeur .

Note that for bidegree reasons, solving V,_ .w, . = z is exactly the
same as solving the equations z = 5z_cw;,cm, ﬁwf,ca: = Jz_cwffg:c,

k=1,...,n—1. In [1] Andersson shows that the two definitions of f(c)z
coincide. The crucial step in proving Theorem 7.5 is the following lemma.
Lemma 7.6. Let ¢ = (c1,...,¢,) be bounded commuting operators on X
and let U be a pseudo convex neighbourhood of o(c). If f € O(U) and
f(c) =0 then
[f(2) wi_czls = 0,

where w}_.x is the component of bidegree (n,n — 1) of a solution w,_.z to
Vicewz—ex =z in U\ o(c).

Proof. Clearly we have V,_, f(z)w,—cx = f(z)z in U \ o(c). From the
homological construction we see that zf(z) must be V,_.-exact in U since
f(e)z = 0. Hence zf(z) = V,_.u(z) for some u € £~1(U,X). Thus
u— f(2)w,—cx is V,_c-closed in U \ o(c). Since Tot.Z (U \ o(c), X) is exact
there is a v € £~2(U \ o(c), X) such that

u(z) — f(2)wr—ex = V,_cv(2)
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in U \ o(c). Identifying terms of bidegree (n,n — 1) we see that
(13) Upp 1~ f(2)Wl_ox = Ovpp o

in U\ o(c). Moreover, V,_.u = zf(z) so for bidegree reasons Oun -1 =0.
S_ince U is pseudo convex uy, ,—1 is actually O-exact and letting u,,—1 =
00pn—2 we get from (13) that

f(z)w?,cw = 8(6n,n—2 - 'Un,n—2)

in U \ o(c) which is what we wanted to show. O
We proceed and prove Theorem 7.5.

Proof of Theorem 7.5. From Theorem 7.4 we know that both the forms
(b, )™ (2, \) ""wPx and (b, \)"(2, \) "w}z represent the functional calculus.
We have to show that they are d-cohomologous in U \ o[b]. We let p
be a projections from [A]. From the proof of Theorem 7.4 we see that
P« ({0, A)"(z, \) "wyx) defines the resolvent class w¢_,((5) corresponding to
p([b]) if we choose b € [b] such that (b, \) = e. Hence in the local coordinates
¢ = p([z]) the difference between the two forms has to be on the form

(1= F(O)we—p)

where f is holomorphic in p(U). Now since both of the forms realise the
functional calculus we must have f(p([b])) = 0. Hence from Lemma 7.6 we
see that in the local coordinates, the two forms has to be d-cohomologuos

in p(U) \ o (p([b]))- O

The function f(¢) is the function (b, A)"(z, \) ™" in the local coordinates
(. Hence we see that making a change of variables by a rational fractional
transform of C", computing the resolvent in the new coordinates and pulling
it back, we get (b, A)"(z(¢), \)™™ times the resolvent we get if we compute
it directely. Theorem 7.5 implies that the two forms are 9-cohomologuos
in suitable domains.
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