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Introduction and overview of the thesis

At an early stage, the Yang-Baxter equation (YBE) appeared in sev-
eral different works in literature and sometimes its solutions even preceded
the equation. One can trace three streams of ideas from which YBE has
emerged: the Bethe Ansatz, commuting transfer matrices in statistical me-
chanics and factorizable S matrices in field theory. In the pioneering works
of the theoretical physicists C. N. Yang and R. J. Baxter, the YBE appears
in the following form:

RS (u — v) RY% (u) R (v) = RS (0) R () R (u — )
for a family of functions Rj? (u) on a complex variable u and depending on
four indices «, f, v, § that range from 1 to a natural number N.

One of the first occurences of YBE can be found in the study of a one-
dimensional quantum mechanical many-body problem with § function in-
teraction. By building the Bethe-type wavefunction, J. B. McGuire, F. A.
Berezin, V. M. Finkelberg and others discovered that the N -particle S -
matrix factorized in the product of two-particle ones. C. N. Yang treated
the case of arbitrary statistics of particles by introducing the nested Bethe
Ansatz. The YBE appears here as the consistency condition for the factor-
ization. In statistical mechanics, R. J. Baxter investigated the role of YBE
and its application for the eight vertex model on an arbitrary irregular lat-
tice. He found that the partition function was left unchanged upon parallel
displacement of the lines forming the lattice, a property which was called Z
invariance.

The topics concerning YBE began to be studied thoroughly in the 80’s
also by mathematicians like A. A. Belavin, V. G. Drinfeld, P. P. Kulish, E.
K. Sklyanin, L. D. Faddeev and others. This study was motivated by the
multitude of applications that YBE has in different areas of mathematics and
physics: quantum theory, integrable systems, inverse scattering problems,
group theory, algebraic geometry and statistical physics.

The classical Yang-Baxter equation (CYBE) was firstly introduced by E.
K. Sklyanin. Compared to YBE, CYBE represents an important and sim-
plified case since it can be formulated in the language of Lie algebras. The
form of CYBE is the one given in Definition 1.1.1. One of the directions of
study in this domain is the classification of solutions in the case of a simple
complex Lie algebra. In [1], A. A. Belavin and V. G. Drinfeld investigate the
nondegenerate solutions of CYBE for a finite-dimensional, simple, complex
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6 INTRODUCTION AND OVERVIEW OF THE THESIS

Lie algebra. The authors prove that the poles of a nondegenerate solution
form a discrete subgroup of the additive group of complex numbers. More-
over, with respect to the rank of this subgroup, one gives a classification
of nondegenerate solutions: elliptic, trigonometric and rational. Concerning
the first class, the authors reduce the problem of finding nondegenerate ellip-
tic solutions to the one of describing triples (g, A1, A2), where g is a simple
Lie algebra, A; and A are commuting automorphisms of g of finite order,
not having common fixed nonzero vectors. Moreover, they prove that if such
triples exist then there is an isomorphism g = si(n). Belavin and Drinfeld
also succeeded in classifying the trigonometric solutions using the data from
the Dynkin diagram. Regarding rational solutions, in [1] there are given
several examples associated with Frobenius subalgebras of g and some argu-
ments in favour of the idea that there are too many rational solutions to try
to list them. However, in [13], A. Stolin reduces the problem of listing “non-
trivial” rational solutions of CYBE to the classification of quasi-Frobenius
subalgebras of g which, in turn, are related to the so-called maximal orders
in the loop algebra corresponding to the extended Dynkin diagram.

In the first chapter of the thesis, we will be interested in the study and
computation of the trigonometric solutions of CYBE for si(2) and si(3). In
the sections 1.1-1.3, we make a survey of the main results concerning the
general properties of the nondegenerate solutions of CYBE. We remind the
method of Belavin and Drinfeld to determine the trigonometric solutions.
This method uses the important notions of Coxeter automorphism, Dynkin
diagram, simple weight and admissible triple. Section 1.4 is focused on the
determination of the trigonometric solutions correponding to the case si(3).
Firstly, we obtain the two Coxeter automorphisms, then the corresponding
Dynkin diagrams and admissible triples, and finally the form of the solutions,
given by (1.4.8), (1.4.12), (1.4.14) and (1.4.23).

In the next sections, we give another approach to trigonometric solu-
tions, based on the determination of certain Lagrangian subalgebras. This
approach is inspired by the method used in [13] for listing rational solutions.
We will deal with a slightly different type of solutions that we will call “quasi-
trigonometric”. These solutions have the form X(u,v) = 2t + p(u,v),
where ¢t denotes the quadratic Casimir element and p(u,v) is some poly-
nomial. Firstly, we describe the general form of the Lagrangian subspaces
of Vi @ V_, where V is a finite-dimensional linear space together with a
nondegenerate symmetric bilinear form denoted by <,>, V. = (V,<,>,),
V_ =(V,— <,>4) and the direct sum has a bilinear form induced by <, >:
< (a,b),(c,d) >= < a,¢c >y — < b,d >;. Then, given a simple, complex,
finite-dimensional Lie algebra g, the next step is to describe the Lagrangian
subalgebras of g, @ g_ with respect to the bilinear form induced by the
Killing form of the Lie algebra g. As it will be shown, this implies to de-
termine all subalgebras S of g that satisfy the condition St C S. After
reminding the notion of parabolic subalgebra, this problem is solved in the
cases g = sl(2) and sl(3). Taking into consideration that the purpose is
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to construct some quasi-trigonometric solutions for si(2) and si(3), one has
to determine a certain type of Lagrangian subalgebras. More precisely, in
Sections 1.8 and 1.9, we find the Lagrangian subalgebras W that verify the
property W N A = 0, where

S {((5 25 2)maec)

when g = sl(2) and respectively

~ A b A VY _ Lo
A_{((O —TrA)’(O —TrA))’AEgl(2)’b’b e(C},

when g = sl(3).

In Section 1.10, we give an overview of the basic results concerning Lie
bialgebras and classical r-matrices which will be used for the computation
of the quasi-trigonometric solutions. In Section 1.11, we explain the rela-
tionship between the quasi-trigonometric solutions and the Lagrangian sub-
algebras that are complementary to A. We consider the Lie algebra glu]
and a certain quasi-trigonometric solution of CYBE, Xo(u,v) = ;%.t +r,
where t denotes the quadratic Casimir element and r is the classical Drinfeld-
Jimbo r-matrix. Then X induces a 1-cocycle §: glu] — glu]Ag[v], §(a(u)) =
[Xo(u,v),a(u)®1+1®a(v)], which defines a Lie bialgebra structure on glu].
The main result that enables us to make a correspondence between quasi-
trigonometric solutions and Lagrangian subalgebras is Theorem 1.11.2. We
prove that the classical double of g[u], induced by the 1-cocycle §, is iso-
morphic to the direct sum g((u~')) @ g. In this way, one can find quasi-
trigonometric solutions of CYBE by looking at the Lagrangian subalgebras
of g((u!)) ® g which are complementary to A = {(a(u), a(0));a(u) € glu]}.
As it will be shown, in the situation g = sl(2) and sl(3) to determine “non-
trivial” quasi-trigonometric solutions (i.e. nonequivalent to Xo+const.) im-
plies exactly to find the Lagrangian subalgebras that are complementary to
A. This has already been accomplished in Sections 1.8 and 1.9. It seems
that there exists a correspondence between “nontrivial” quasi-trigonometric
solutions and Lagrangian subalgebras of g @ g that are complementary to A
(up to so-called gauge equivalence). In further work we will study the nature
of this correspondence.

The second chapter of the thesis concerns the computation of constant
solutions of the modified classical Yang-Baxter equation(mCYBE) for a cer-
tain class of Lie algebras that are not simple. We remind that, given a
finite-dimensional complex Lie algebra A, a solution of mCYBE is a tensor
s € A ® A which satisfies the following conditions:

[a,5" + 5?11 =0

for any a € A and
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[812,313] + [812,823] + [813,323] =0.

Our goal is to construct solutions of mCYBE for parabolic subalgebras
of a simple complex Lie algebra. We consider a finite-dimensional complex,
simple Lie algebra g, with root system R and a simple set of roots A, with
respect to a fixed Cartan subalgebra h. For any o € R, g® denotes the
corresponding root space. If we consider the Killing form K on g, for any
nonzero element e, of g% there exists an element e_, of g=* such that
K(eq,e—q) = 1. With these notations, we remind that one of the classical
Drinfeld-Jimbo r-matrices is the following:

r:Zea/\e_a_

a>0

Now let P, be the parabolic subalgebra of g corresponding to a simple
positive root a. P, is the Lie algebra generated by the root vectors corre-
sponding to the simple roots and their opposite except —a. Obviously, it is
spanned by all the linear spaces g? for 8 > 0 and g=# for 8 # a, > 0. We
consider the map 4, : g - g ® g defined by 4,(a) = [a®1+1Q®a,r]. In the
first section, we will prove that §, provides a Lie bialgebra structure for P,.
In this way, there exists a classical double D(P,) induced by the 1-cocycle 4.
In the next sections, we give a more precise description of D(P,). We start
with an example, g = sl(3), and we prove that the classical double of the

* ok k
parabolic subalgebra P = ¥ k% is isomorphic to sl(3) @ gi(2).
0 0 =«

This gives us an idea about what to expect in the general case. In the third
section, we show that if g is a complex, finite-dimensional, simple Lie algebra
and P, is the parabolic subalgebra corresponding to a simple positive root
a, then D(P,) is isomorphic to g ® Red(P,). Here Red(P,) denotes the
reductive part of P,. Finally, this description of the classical double will be
used to construct solutions of mCYBE in P,.

ACKNOWLEDGEMENT. I am grateful to my supervisor, Alexander Stolin,
who suggested the topic of the thesis and guided me carefully along the way.
I would also like to thank my colleagues at the Department of Mathematics
for their support. Last, but not least, I am grateful to my family and all my
friends for their love.



CHAPTER 1

On trigonometric solutions of CYBE

1.1. Preliminaries on the classical Yang-Baxter equation

Let g be a simple finite-dimensional Lie algebra over the field C of com-
plex numbers. Consider an associative algebra A with unit containing g
(for example, the universal enveloping algebra). Let 13, 12,9023 : g g —
A® A® A be the linear maps respectively defined by ¢13(a®b) =a®1®Db,
v12(a®b) = a®bR®1, po3(a®b) = 1®a®b. For a function X : CxC — gRg,
we consider X¥: CxC — A® A® A defined by X% (u;, uj) = @ij (X (ui, uj))-
Let [,] be the usual Lie algebra bracket on the associative and unital algebra
ARARA.

DEFINITION 1.1.1. The classical Yang-Bagzter equation (CYBE) for the
simple Lie algebra g is the functional equation

(1.1.1) [X12(u1, u2), X13(u1,U3)] + [X12(U,1, UQ), X23(U2,’U,3)]+

X (w1, u3), X (ug, ug)] = 0,
with respect to the function X : CxC—>gQRg.

REMARK 1.1.2. If X (uj,us) is a solution of CYBE and ¢(u) is a function
with values in Aut(g), then X (u1,u2) = (p(u1) ® p(u2))(X (u1,us2)) is also
a solution.

DEFINITION 1.1.3. The solutions X and X are called equivalent if X is
obtained from X as in the previous remark.

A second method to obtain a new solution can be given if one starts with
an invariant solution.

DEFINITION 1.1.4. The function X (u1,u2) is said to be invariant with
respect to ¢ € Aut(g) if (¢ ® ¢)(X(u1,u2)) = X(ui,u2). The set of all
such ¢ is a group called the invariance group of the function X (ui,us).
The function X (u1,us9) is said to be invariant with respect to h € g if
[h®14+1® h, X (ui,u2)] = 0 (i.e., it is invariant with respect to e*24" for
any t € C).

REMARK 1.1.5. If X (u1,u9) is a solution of CYBE, invariant with respect
to a subalgebra h C g, and a tensor r € h ® h satisfies

(112) [’1"12,7‘13] + [7,12’ 7‘23] + [7‘13, ’1“23] — O’

(1.1.3) r?t = —pl2,

9



10 1. ON TRIGONOMETRIC SOLUTIONS OF CYBE

then X (u1,us) = X (u1,uz) + r is also a solution of CYBE. If the algebra h
is Abelian, then (1.1.2) holds automatically.

Usually one considers solutions with additional conditions:

(1) the so-called unitary solution if X'2(uy,us) = — X2 (ug,u).
(2) the function X (ui,u2) depends only on u; — ug. In this case,
X (u1,us9) is denoted by X (u; — ug) and (1.1.1) can be written as
(11.4) [X2(w), X1 w4+ v)] + [X2(w), X2 (0)] + [X 1 (1 + 0), X5 (0)] = 0
and X (u1,us) is unitary iff X12(u) = —X2!(—u).

REMARK 1.1.6. The second condition is not restrictive. In [2] there was
shown the following result:

Let U be a domain in C. If X(uj,u2) is a meromorphic solution of
CYBE, defined on U x U, such that the determinant of the coordinates
is not identically zero, then there exist a domain V in C, a holomorphic
map ¢ : V — Aut(g) and a nonconstant function f : V' — U such that
(p(v1) ® p(v2)) X (f(v1), f(v2)) depends only on v; — vs.

In [1] there was proved the equivalence of the following three conditions,
under the assumption that X (u) was a meromorphic solution, defined on
some disk with center at zero:

A) The determinant of the matrix formed by the coordinates of the tensor
X (u) is not identically equal to zero;

B) The function X (u) has at least one pole and there does not exist a
Lie subalgebra g’ C g such that X (u) € g’ ® g’ for any u;

C) The function X (u) has for u = 0 a pole of the first order with residue
of the form ct, wherec € Cand t =) I,®1, , for {I,} an orthonormal basis
with respect to the Killing form on g (we will use the notation t = I, ® I,
meaning that we understand summation over identical indices).

DEFINITION 1.1.7. A solution X (u) of (1.1.4), in the class of meromor-
phic functions defined on some disk U C C with center at zero, and satisfying
one of the (equivalent) conditions from above is called nondegenerate.

1.2. Properties of nondegenerate solutions

Let X (u) be a nondegenerate solution of (1.1.4) defined on a disk U € C
with center at zero. We may assume that

2. lim uX (u) = .
(1.2.1) lim uX (u) = ¢

In the next proposition we collect some results given in [1]:

PropPoOSITION 1.2.1. The following properties hold:

1) X (u) satisfies the unitary condition X'2(u) = —X?'(—u).

2) X (u) can be extended to an entire meromorphic function.

3) Let T' be the set of poles of the function X (u). Consider v € I'. There
exists A, € Aut(g) such that X(u+y) = (4, ® 1) X (u).

More things can be said about the set of poles I', as it is shown by the
following statements from [1]:
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PROPOSITION 1.2.2. 1) T is a discrete subgroup of C;

2) A4y = Ay Ay, for any 71, 12€ T

3) X(u+7) =10 A,)X(u), foranyueC, yeT;

4) (A, ® A))X (u) = X (u);

5) Suppose that rankl’ = 2. Then there is no nonzero r € g such that
A (z) =z for any v € . There exists a subgroup of finite index I'C T such
that Ay =1 for any v € I,

The proof of all these properties is based on some results concerning
quasi-Abelian functions. We remind the following

DEFINITION 1.2.3. A meromorphic function ¢ on a complex linear space
L of dimension n is called quasi-Abelian if there exist a system of coordinates
Z1,---, 2 in the space L and p,q,7 € N, p+qg+ 7 =n and 71, ..., 72, € C*
such that the following statements hold:

1) for zp4g+1,---, 2n fixed, @(21,...,2y,) is a rational function of zi, ..., zp,
e+l . efrta;

2) ~; are periods for ¢;

3) the vectors 7; € C* formed by the last r coordinates of the vectors ~;
are linearly independent over R.

REMARK 1.2.4. 1) This is a generalization of the notion of Abelian func-
tion. We recall that a function ¢ on C" is called Abelian if it has 2n periods,
linearly independent over R. It corresponds to the case p = ¢ =10, r = n.

2) For n = 1, there are three types of quasi-Abelian functions: elliptic
(p=¢qg=0,r=1); rational (p =1, ¢ =r = 0) and rational on €* (p = r =0,
qg=1).

By a Weierstrass-type theorem which involves quasi-Abelian functions,
[[1], Th.2.1], one proves

PROPOSITION 1.2.5. Let X (u) be a nondegenerate solution of (1.1.4).
Then there exist a natural number n, a vector a € C* and a quasi-Abelian
function X : C" — g ® g satisfying (1.1.4) such that X (u) = X (ua).

Consequently, one obtains the following classification theorem for non-
degenerate solutions of CYBE:

THEOREM 1.2.6. 1) If rankI’ = 2 then X (u) is an elliptic solution, i.e.
a meromorphic double periodic function; _

2) If rankD’ = 1 then X (u) is equivalent to a solution X (u) = f(e**),
where f is a rational function. Such a solution is called trigonometric;

3) If T' =0 then X (u) is equivalent to a rational solution.

Concerning the first class, in [1] one reduces the problem of finding non-
degenerate elliptic solutions to the one of describing triples (g, A1, A2), where
g is a simple Lie algebra, A; and Ay are commuting automorphisms of g of
finite order, not having common fixed nonzero vectors. Moreover, the au-
thors prove that if such triples exist then there is an isomorphism g = sl(n).
Belavin and Drinfeld also succeed in classifying the trigonometric solutions
using the data from the Dynkin diagram. We will remind their method in the
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following section. Regarding rational solutions, in [1] there are given several
examples associated with Frobenius subalgebras of g and some arguments
in favour of the idea that there are too many rational solutions to try to list
them. However, this problem was solved by A. Stolin in [13].

1.3. Trigonometric solutions

According to [1], in the description of the trigonometric solutions of
CYBE, the notions of Coxeter automorphism and simple weight are very
important. Let g be a finite-dimensional, simple, complex Lie algebra. We
denote by Aut’g the connected component of the identity of the Lie group
Autg. The elements of Autg are called inner automorphisms. In other
words, Aut’g is the subgroup generated by {ezp(adh);h € g}. It is known
that Autg/Aut’g = AutA, where A is the Dynkin diagram of g. The order
of the group AutA can be only 1, 2 or 6 (the last possibility is obtained for
g = 0(8)). If 0 € AutA, let K, be the corresponding coset in Autg/Aut’g.
We will now remind the notion of Coxeter automorphism:

DEFINITION 1.3.1. The automorphism A € K, is called a Cozeter auto-
morphism if the following statements hold:

a) the algebra g4 = {z € g; Az = z} is Abelian;

b) A has the smallest order among the automorphisms A’ € K, such
that gA' is Abelian.

According to [7], for any pair (g, o), there exists a Coxeter automorphism
C € K, which is unique up to conjugation by inner automorphisms. The
order of the automorphism C is called the Cozeter number of the pair (g, o).
We denote this number by h. From [1], a method to construct a Coxeter
automorphism is to choose a system of Weyl generators {X;,Y;, H;}, where
i runs through the set of vertices of A and let C' € Autg such that C(H;) =
H, iy, C(X;) = ezm/th(i) and C(Y;) = 6_2“/”Y0_(i). One verifies that C is
a Coxeter automorphism.
It is useful to remind the form of the Coxeter automorphisms in the case
of simple Lie algebras, given in [1]. The following notations are made: C'is a
Coxeter automorphism corresponding to the pair (g, o), m is the order of o, h
is the Coxeter number of the pair (g,0), w = e2mi/h and S is the matrix with
1 on the auxiliary diagonal and 0 elsewhere. The Coxeter automorphisms of
the classical simple Lie algebras are the following:
(1) g=sl(n),m=1=>h=n,C(X)=TXT ', T = diag(1,...,w"1);
2)g=sl2n+1), m=2=h=4n+2, C(X) = -TX'T"}, T =
S - diag(1, w, ...,w*");
B)g=sl2n), m =2 =h=4n—-2, C(X) = -TX'T 1, T =
S - diag(1,w, ...,w?"2);
(4) g =sp(2n) = h=2n, C(X) =TXT ', T = diag(1,w, ..., w*"1);
(5) g =0(2n+1) = h =2n,C(X) =TXT™', T = diag(1, ...,w? 1, 1);
6) g=02n),m=1=h=2n—-2 C(X)=TXT, T = diag(1,...,
w2nf3’1);
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(7) g = o(2n), m = 2 =h = 2n, C(X) = TXT™', T = (t;) given
by t11 = w, tog = w?,.., tnin—1 = WL tppopge = W'
tonon = w21, thn+1 = tny1n = 1 and the rest are zero.

The second notion that has to be reminded in order to study the trigono-
metric solutions of CYBE is simple weight. Let ¢ € AutA be fixed and
consider a Coxeter automorphism C € K,. Let h = {z € g;Cz = z} be
Abelian subalgebra of g. Put w = €2™/P. If one considers the subspaces
g = {r € g;Cz = wiz} for j =0,...,h — 1, then g = ®jez/nz8j- For any
a € h*, consider g = {z € gj;[a,7] = a(a)z, for any a € h}. From [7], it
results that the direct sum of these subspaces is g; and their dimension is
<1 for @ # 0. The elements of the set I' = {a € h*; g{ # 0} are called

simple weights. Also, 0 ¢ T and dimg$ = 1 for any a € T
Having defined the simple weights, the next step is to construct the
so-called Dynkin diagram of the pair (g,C). Let us denote by ( , ) the
bilinear form on h* induced by the Killing form K of g. It is known that the
restriction of the Killing form to h is nondegenerate and therefore it induces
an isomorphism between h and h*. The Dynkin diagram is a graph whose
vertices are in 1-1 correspondence with the simple weights and the nature of
the connection of two vertices A and B, corresponding to the simple weights

a and f, is determined by the following rules:

(1) the number of lines that connect A and B is %;

(2) if (o, @)(B,B) > 1, the arrows of these lines are pointed towards B.
Using these notions, one constructs a particular solution of (1.1.4). Let t =
I,®1,, where {I,} is an orthonormal basis with respect to the Killing form.
One verifies that (C' ® C)t =t and this implies that ¢ € @jez/n2(8; ® 8-;)-
Let t; be the projection of ¢ on g; ® g—;. Denote

t 1 =
-0, _ - VA
(1.3.1) EN =5+ ;:%tj)\ ;

(1.3.2) X(u) = £(e*/M).
We will remind the following result due to [1]:

PROPOSITION 1.3.2. The function X (u), defined by (1.8.1) and (1.3.2),
is a solution of (1.1.4) with set of poles 2miZ and the residue at zero equals
t.

This result gives a particular solution of (1.1.4), but we are interested
in describing the general form of a nondegenerate trigonometric solution.
Let X (u) be a nondegenerate trigonometric solution of (1.1.4). Because the
rank of the set of poles of X (u) equals 1, we may assume that the set of
poles is 27iZ. Let A € Autg such that X (u + 27i) = (A ® 1) X (u) (such an
automorphism is given by Prop.1.2.1). Denote by ¢ the automorphism of A
induced by A. One says that the solution X (u) corresponds to o.
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If X(u) is replaced by an equivalent solution, then A is replaced by
T1AT2_1, where T7 and T» are in the same connected component of Autg.
Thus, the class of conjugation of ¢ remains the same.

We will describe, according to [1], the general form of the trigonometric
solutions corresponding to o € AutA. Let us consider a Coxeter automor-
phism C corresponding to a pair (g, o) and let I be the set of simple weights.

DEFINITION 1.3.3. A triple (I'1, T, 7), where I';, 'oC T'and 7 : T’y — I's
is a bijective map, is called admissible if the following properties hold:

a) for any a, 8 € I't, (7(),7(B)) = (e, B);

b) for any a € Ty, there exists k& € N*such that 7(a),...,7¥"!(a) € T';
and 7%(a) ¢ T'y.

Let (I'1,T9,7) be an admissible triple. One considers the following sys-

tem:
(1.3.3) r'? % = to;
(1.3.4) (r(e) ® 1)(r) + (1 ® a)(r) = 0,a € Ty,

where 7 € h ® h and the following notations are made: if r = ) h; ® k; and
a € h*, then (a®1)(r) = > a(hi)k; and (1®a)(r) =D alk;)h;. According
to [1], the previous system is consistent. The skew-symmetric tensors which
belong to hy ® hy, where hy = {a € h; a(a) = 7(a(a)), for any o € T'; }, are
the only solutions of the corresponding homogeneous system.

One denotes by a; the subalgebra of g generated by the subspaces gf,
a €Ty , where i € {1,2}. Because g = @, g7, the algebra a; is the sum of
some subspaces g7. From this it results that there is a unique projector P :
g — a; such that P(g}) = 0 if g is not included in a;. For a € I'y, we fix

an isomorphism of linear spaces gt = gI(O‘) (both have dimension 1). This
isomorphism can be extended to a Lie algebras isomorphism 6 : a;— as.
Define then a linear operator 6: g — g by 6(z) = 6(P(z)). This operator
is nilpotent and one considers 1/ = 6/(1 — 8) = 6 + 62 + .... With these

notations the following general theorem can be proved:

THEOREM 1.34. [[1], Th.6.1] 1) Let r € h ® h satisfy the system of
equations (1.3.3) and (1.3.4). Then the function
(1.3.5)

1 =

X(u) =
(u) r~|—eu_1j_

1 h—1 h—1
e — N e @ )t + Y e (1Y)t
0 j=1 j=1
is a solution of (1.1.4) with set of poles 2miZ and residue t at zero. In
addition, X (u + 2mi) = (C ® 1) X (u).

2) Any trigonometric solution of (1.1.4) with set of poles 2miZ and

residue t at zero, corresponding to the automorphism o € AutA, is equivalent
with a solution of the form (1.8.5).

REMARK 1.3.5. 1) The particular solution from Prop.1.3.2 corresponds

to the case P1:P2:®,T:t70.
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2) It can be shown that the solution (1.3.5) is hg-invariant. Hence,
adding to this solution any skew-symmetric tensor from hg ® hgy, one obtains
a new solution of (1.1.4). Thus one can get by this method all solutions
corresponding to a fixed triple (I'1,T'2,7), starting from one solution. It
is easy to show that 6, ¢ and hence X(u) depend on the choice of the

isomorphisms gff = gI(a), a € T'y; and the change of them leads to the
replacement of X (u) by (e29% ® €29%)X (u), a € h. Therefore one obtains
an equivalent solution. From the previous theorem, it results that, up to
the methods of propagation of solutions and such trivial transformations
as multiplication by a number and replacement of u by cu, the number of
nondegenerate trigonometric solutions of (1.1.4) is finite.

3) One can show that if the solutions X (u) and X (u) of the form (1.3.5)
are equivalent, then X(u) = (¢ ® ¢)X(u), ¢ € G, where G is the set of
automorphisms of g that commute with C.

4) From 3), it follows that:

i) if the solutions X (u) and X (u) of the form (1.3.5), corresponding to the
triple (I'1,T2,7) and (fl,fg,?) are equivalent, then (fl,fg,ﬂ is obtained
by applying to (I'1,'9,7) some automorphism of the Dynkin diagram of the
pair (g, C);

i) if (T'y,T,7) is obtained by applying to (I';,T's,7) an automorphism
of the Dynkin diagram of the pair (g, C), then a solution corresponding to
(T'1, T2, 7) is equivalent to some solution corresponding to (fl, Ty, 7).

ExAMPLE 1.3.6. We will apply the general procedure in order to compute
the trigonometric solutions for s/(2). If we consider g = sl(2), the Dynkin
diagram of g has only one automorphism, the identity. It results that the
Coxeter number of the pair (g,id) equals 2 and the Coxeter automorphism

is given by : C(X) = TXT~!, where T = é 0
h={X €sl(2);C(X) =X} = {( 8 _Oa ) ja € (C}. Consider g1 = {X €
0 =z

0
us take the canonical basis in sl(2) : {ei2,e21,€11 — €22} and define oy € h*
by ai(e1; —eg) = —2 and put as = —aq. It is obvious that g = Ceg; and
g1? = Cejz. The set of simple weights is I' = {1, ag}.

and w = €™ = —1. Let

sl(2);C(X) = —X} = 1T,y € (C} which is 2-dimensional. Let

There exist two admissible triples (I'1, [, 7) :

a) [y =Ty = 0;

b) I'y = {a1}, T's = {a2}, 7(@1) = as (which coincides with the case
I = {ao}, Ty = {ar}, T(a2) = ).

The next step is to find ¢, ¢ty and ¢;. In order to do this, we construct
an orthonormal basis in s/(2) with respect to the Killing form. Let us take

I; = 612+%621, I = 1e19— %621 and I3 = %(611 —622) which is orthonormal.
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We obtain the following:

1
(1.3.6) t= 5(611 —eg2) ® (e11 — e22) +e12 ® ea1 + €21 ® e1;
1
(1.3.7) to = 5(611 — 622) ® (611 — 622) eh® h;
(1.3.8) 11 =e2®ez +e ®er2 €81 B

Counsider the first situation:
a) 't = Iy = 0. The system (1.3.3), (1.3.4) becomes the following
equation:

(1.3.9) ri? + r2l = (611 - 622) ® (611 — 622),’1“ €h®h.

1
2
The only solution of (1.3.9) is r = 2. In this case, the trigonometric solution
is given by (1.3.1) and (1.3.2):

e’ +1 €12 ® €21 + €21 ® €12
m(ell —e22)® (e11 —e2)+ Y R—
b) I'y = {a1}, T's = {aa}, 7(@1) = a2. The system (1.3.3), (1.3.4) is
formed by (1.3.9) and the following equation:

(1.3.10) Xi(u) =

(1.3.11) (2 ®1)(r) + (1 ® 1) (r) = 0.

Again, the only solution of this system is r = %0 According to the
notations that have been introduced in this section, we have that a; = Ceo;
and ap = Ceio. Because different isomorphisms between a; and as lead to
equivalent solutions, we may choose € such that 6(es;) = e12. Considering
the projector P : sl(2) — Ceg; and 6 = 0P, it results that O(e;2) = 0,

O(e21) = e12 and 6(e11 — ex2) = 0. Thus, 62 = 0 and 1 = . In conclusion,
by (1.3.5), the trigonometric solution corresponding to (I'1, T, 7) is:

(1.3.12) Xo(u) = X1 (u) + (672 — €/2)(e12 @ e12).
1.4. Trigonometric solutions of CYBE for si(3)

The aim of this section is to construct all nonequivalent trigonometric
solutions for the simple Lie algebra s/(3), using the method of Belavin and
Drinfeld presented in the previous section. Let us consider g = sl(3). In
this situation, the Dynkin diagram of g has two automorphisms. According
to the classification given in the third section, the corresponding Coxeter
automorphisms are:

(1) form =1 = h =3, w = /3 and C(X) = TXT !, where
1 0 0
T=|0 &3 0 |
0 0 e47rz/3
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(2) for m =2 = h = 6, w = €3 and Cy(X) = —TX'T~", where

0 0 627ri/3
T=|0 e/ 0
1 0 0
0
In (1), h = {X € sl(3); C1(X) = X} = 0 ;a,0€ C o
—a—b

g1 = {X € sl(3); O1(X) = e2™/3X} =

ST oo
O OO0 o>

a
0 |;a,b,ceC) and
0

alsog_; = {X € sl(3); C1(X) = e 2M/3X} = ja,b,c € C

o OO

a
0
0

S o O

We make the remark that go = g_1and g_o = g1. The set of simple weights
I' and the form of the subspaces g can be easily found. Let us define
a; € h* i =1,2,3 by a1(A) = b — a; as(A) = —a — 2b and respectively

a 0 0
az(A) =2a+b,forany A=1| 0 b 0 € h. It is obtained that
0 0 —a—b»

I = {041,042,043} and gllll = Cezl, gtlxz = (C€32, glll3 = (C613.

We now determine t, tg, t1, t2, with the notations introduced in the previ-
ous section. An orthonormal basis for s/(3), with respect to the Killing form,
‘/_(612 +eg1), Iy = Z‘/_(612 —eg), Iz = @(613 + e31),
I, = Z‘[(613 —e31), Is = f(623 + e3), Is = #(623 —e32), It = e11 — e3s,
Ig = eg9 — e33. It results that

1

is the following: I; =

(1.4.1) t= 3 Z(e” —ej;) ® (eii —ej5) + Z €ij & €j3;
1
(1.4.2) to = 3 Z(eii —€j;) ® (e —ejj) €hQh;
1<j
(1.4.3) 11 = e Q@ept+e3®@e31 +e3aVRersz €81 QE_1;
(1.4.4) lo =e12®eg +e31®e13 +ea3Desy €8a®G2.

Because the Dynkin diagram of the pair (g, C1) is a triangle with vertices
in «;, there exist three admissible triples (I'1,I'y,7): 1) Iy = Ty = 0; ii)
'y = {a1}, e = {a2} and 7(a1) = ag; i) ' = {a1, a2}, T2 = {9, a3}
and 7(a1) = a9, T(ag) = as.

In the situation i), we have to find 7 € h ® h such that

(1.4.5) 2 42 = ¢
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Let us denote ¥ = e11 —es3, F' = eg9 — e33 the canonical basis in h. A simple
computation gives the following:

1 1
(1.4.6) r:aE®F+bF®E+§E®E+§F®F,
with a + b = —%. The trigonometric solution corresponding to i) is:
(1.4.7) Xi(u) =

By replacing r,tg,%1,t2 we obtain:

3
(1.4.8) Xi(u) = Z pijei ® ej; + Y (u),
2,j=1
where
(1.4.9) Y (u) — 32 eii—e;jj)® e,i—ejj)+eu/3 Z €i; e+
i<j i—j=1(mod3)
+e2u/3 Z eij ® ejil
i—j=2(mod3)
% a b
and (pij)=| b 3 a | ,a+b=—3.
a b %

In the situation ii), the system (1.3.3), (1.3.4) becomes (1.4.5) and the
following:

(1.4.10) (2 ®1)(r) + (1 ® a1)(r) = 0.

We know already that the general solution of (1.4.5) is (1.4.6). It results
that @ = 0 and thus

(1.4.11) :—§F®E+3E®E+ lrer=1 ereu(@eﬂ,
=1
1 0 -1
where (r;5) = -1 1 0
0 -1 1

Let us consider now the subalgebra generated by gi*, a; = Ceg; and the
subalgebra generated by g}, ag = Cesq. Take the Lie algebras isomorphism
0 : a; — ap given by 6(e91) = eze. Since other choice of  would lead to
an equivalent solution, we may take 6 in this way. Take the projector P:
g—a; and 0: g — g defined by 6 = OP. It results that 0(621) = e3o and the
images of the other elements of the canonical basis in g are zero. It follows
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that 62 = 0 and thus P = 6. By (1.3.5), the following trigonometric solution
is obtained:

1
(1.4.12) Xo(u) = 3 Z Tij€i Q €55 + Y(u)— eu/3632 ®eig + 67u/3612 ® e39,
ij=1
where Y (u) is given by (1.4.9) and (r;;) by (1.4.11).
Finally, we consider iii). The system (1.3.3), (1.3.4) is equivalent to
(1.4.5), (1.4.10) and

(1.4.13) (a3 ®1)(r) + (1 ® a2)(r) =0,
which has the solution given by (1.4.11).

Let a; be the subalgebra generated by gf' and g9 ; ay the subalgebra
0 0O
spanned by g and g{**. It results that a; = a 0 0 |;a,bceC
c b 0
0 ¢ b
and ag = 0 0 0 |;a,b,ceC) . We choose the Lie isomorphism 6:
0 a O
0 00 0 c b B
a; >aggivenby 8| a 0 0 = 0 0 0 |. The map 6 obtained
c b 0 0 a O
_ air a2 a3
from @ verifies #3 = 0 and we obtain that ¥ | as1 a9 ao3 =
azr azz —ail — a2
0 a3 a3z +ax
0 0 0 . The trigonometric solution corresponding to our
0 a1 0
triple is:

(1.4.14) X3(u) = Xo(u) — eu/3613 ® (e12 + e93) — eQu/3612 ® e13+

+e "3 (e1n + e23) ® €13 + e 72 Pe13 @ exa.
Now we will do the computation of the trigonometric solutions corre-
sponding to (g,C2). In this situation, go = {X € sl(3); Co(X) = X} =
C(e11 — e33)- Analogously,

g1 = {X €5l(3); Co(X) = €™/3X} = Clerz — e23) ® Cesi;
go = {X € sl(3); Ca(X) = >™/3X} = Clear + e32);

g3 = {X € sl(3); C2(X) = =X} = C(e11 — 2ex2 + e33);

g1 = {X €51(3); Co(X) = —e"3X} = Clerz + e3);

g5 = {X € 81(3), CQ( ) = 627ri/3X} = (C(621 — 632) @ Ceq3.
We remind that ¢ is given by (1.4.1) and it follows that

1
(1.4.15) to = 5(e11 — e33) ® (en1 — e33) € 8o ® &o;
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1
(1.4.16) i1 = 5(612 —e23) ® (€21 — €32) + €31 ® €13 € g1 ® &5
1
(1.4..17) to = 5(621 + 632) ® (612 + 623) € g X g4;
1
(1.4.18) t3 = 6(811 — 2e99 + e33) ® (€11 — 2e22 + €33) € g3 ® g3;
1
(1.4.19) ty = 5(612 + 623) ® (621 + 632) € g4 go;
1
(1.4.20) ts = 5(621 —e32) ® (e12 —e23) +e13 ®e31 € g5 ® g1.

The set of simple weights is I' = {1, B2}, where §; € g are defined by
B1(e11—es3) = 1 and respectively Ba(ej;—es3) = —2. Also g|' = C(e12—ea3),
g?z = Ces1. Because (f1,81) # (B2,32), there exists a unique admissible
triple I'1 = I's = (). We consider the equation

(1.4.21) 2 42t = ¢,

with 7 € go ® go and #g given by (1.4.15). The only solution is
1

(1.4.22) r = 1(611 - 633) ® (611 — 633).

The trigonometric solution is therefore the following:

(1.4.23) Xy(u) =

NI

1
(e11 —e33) ® (e11 —es3) + i1 Zeju/ﬁtj,
7=0
with t; given by (1.4.15)-(1.4.20).

REMARK 1.4.1. The solution X4(u) is the classical r-matrix for the
Zhiber-Shabat equation, [16].

Finally, we can conclude that the only nonequivalent trigonometric solu-
tions of CYBE for sl(3) are X;(u), 7 € {1,2,3,4}, given by (1.4.8), (1.4.12),
(1.4.14) and (1.4.23). The nonequivalence of these solutions folows from
Remark 1.3.5.

1.5. Lagrangian subspaces of V, @ V_

Our aim is to compute “quasi-trigonometric” solutions of CYBE for si(2)
and sl(3) using some special Lagrangian subalgebras. In this section, we will
give a result concerning Lagrangian subspaces that will be used later. Let V'
be a finite-dimensional linear space, together with a symmetric nondegener-
ate bilinear form denoted by <,>,. Consider also the bilinear form given
by

(1.5.1) <a,b> =—-<a,b>;.
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Let us denote Vi = (V,<,>4) and V_ = (V,<,>_). A nondegenerate
bilinear form can be introduced on the linear space V; @ V_ in the following
way:

(1.5.2) < (a,b),(c,d) >=<a,c >y +<bd>_.

We are interested in finding the linear subspaces W C V, @ V_ such that
W = W with respect to the bilinear form on V; @ V_ introduced in (1.5.2).
Such a linear subspace is called Lagrangian. Their description is given in the
following

THEOREM 1.5.1. If W is a Lagrangian subspace of Vi @ V_, then there

exist two subspaces W C Vi and W_ C V_ such that Wi D Wj:, W_D

WLand an isomorphism ® : Wj — Vuvfl which preserves the bilinear form.

Conversely, if W, W_ and ® are given satisfying the above properties, then
~ W-

W=WieWwh)+{7e®7)7c W—+

+

is a Lagrangian subspace of Vo @ V_.
REMARK 1.5.2. Because W_IJ: c wg, % can be identified with the
+

subspace of W, which is complementary to Wi

Proor. We will construct W, W_ and ®. Consider W a Lagrangian
subspace of V, @ V_. If m.: V., ®@V_ — V. and n_: V. @ V_ — V_ are the
canonical projections, then let us take the linear subspaces W, = (W) C
Vi and W_ = n_(W) C V_. These linear spaces verify the conditions

(1.5.3) WiCcw, wtcw_,

where the orthogonals are considered with respect to <, >4 and <,>_. In
order to check this, let us take x € Wi It results that < z,y >4 = 0 for any
y € W. For all pairs (y4,y_) € W, < (z,0), (y4+,y-) >=< z,y+ >4+=10. It
follows that (x,0) € W+. Because W is a Lagrangian subspace, (z,0) € W
and thus x € W, . Therefore WJJ; C W,. Similarly one gets the second
property.

It is possible to consider now the linear spaces % and W‘ . The bilinear
forms <, >4 and <, >_ induce two nondegenerate+b111near forms on these
spaces:

W.
(1.5.4) <a,b>=<a,b>4,a, beWi,
(1.5.5) <TZY>=—-<z,Y>_,T,y € —

W
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Obviously, W C W, @ W_. This implies that W+ D Wf ® W=, Let us
consider

W WeeWw. W W

1.5.6 W = > " tg_ .
(1.5.6) WLaW: S Wiaws wiowr
It is easy to check that W is a Lagrangian subspace in VVI[:—E &) % Let
us prove now that % ~ Wo put dim 2% = n; and dimII//VV—; = ng.

+ —
It is enough to show that m; = mg. Assume for instance that n; > na.
Then dimW = 212 < n; (here we used the nondegerency). Consider the

projections 7, : W — % and 7_: W — % .
+ —

results that 74 is not an epimorphism, which is false because for any z € W_,

there exists (z,y) € W and thus 74 ((z,y) + Wi @®W21) = 2+ W3 Therefore

n1 = no and there exists an isomorphism @ : % — %, D = %,%;1. We
+ —_

make the remark that both 7 and 7_ are isomorphisms. We finally notice
that ® preserves the bilinear form,

From our assumption, it

(1.5.7) < ®(z2),2(y) >=<7,¥ >,
for any z,y € %

For the second part of the theorem, it is enough to show that W C W=.

Since Wf: C W, , W+ C W_ and & preserves the bilinear form, for any
Uu,v € Wi, z,t € Wtand 7,7 € % we have :
+
(1.5.8)
<(u+7,2+2(7)), (v +7,t+ 2(Y) >=<7,y > — < 2(z),2(y) >=0.

Thus W is a Lagrangian subspace and this ends the proof. O

1.6. Lagrangian subalgebras of g, ©g_

Let us consider a simple, finite-dimensional, complex Lie algebra g and
let K be the Killing form on it. Let g4 = (g, K) and g_ = (g, —K). In this
section we will be interested in describing the Lie subalgebras W C g, ®g_
which are Lagrangian subspaces with respect to the bilinear form on g4 ®g_
induced by K:

(161) Q((a'a b),(C,d)) :K((J,,C) _K(bad)

According to Theorem 1.5.1, a Lagrangian subspace W is determined by two
subspaces W, C g, and W_ C g_, which satisfy the properties W, D Wi,
W_ D W, and an isomorphism & : % — % which preserves the bilinear

form. Following the proof of the theorem, one can see that if W is a Lie
subalgebra, then W, and W_ are also subalgebras and ® must be a Lie
algebras isomorphism too. We will now give a sufficient condition for a
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subalgebra S of g to satisfy S+ C S. In order to do this, we have to remind
the notion of parabolic subalgebra.

DEFINITION 1.6.1. A parabolic subalgebra is a subalgebra of a complex
Lie algebra such that it contains a Borel subalgebra (i.e. a maximal solvable
subalgebra).

REMARK 1.6.2. If P is a parabolic subalgebra then P+ C P.

EXAMPLE 1.6.3. In the algebra gl(n) of all n X n- matrices over C,
the parabolic subalgebras are all the algebras of the form p(u), where p =
(my, ma, ..., ms) is an arbitrary choice of natural numbers with the sum equal
to n, and p(p) consists of all block matrices which are upper-triangular and
the diagonal blocks are m; x m;- matrices, 1 = 1, ..., s.

Let g be the simple Lie algebra from the beginning. It is possible to
describe all parabolic subalgebras of g. Consider R the root system of g, with
respect to a Cartan subalgebra g°, A the set of simple roots and {g}acr
the root spaces. For any ¥ C A | let us denote by II(¥) the set of all x € R
such that if z = )" kqa, then for any a € ¥, k4 > 0. It can be proved that
any parabolic subalgebra can be transformed by an inner automorphism in
one of the subalgebras:

(1.6.2) pe=g"+ > g
a€ll(¥)

In this way, the number of classes modulo the conjugation of parabolic
subalgebras of g is equal to 2", where r =| A |. If ¥; C Uy then py, D py,.
In particular, py = g and pa is the minimal parabolic subalgebra of g.

EXAMPLE 1.6.4. i) If g = si(2) then » = 1 and there exist only two
parabolic subalgebras (up to conjugation) : py = g and pao = By =
{ g _ba>;a,b€(C )

ii) If g = sl(3), then 7 = 2 and there exist 4 parabolic subalgebras (up
to conjugation). We have: A = {aj,as} the set of simple roots, where a;:

a 0 0
g’ —» Cisdefinedbya; [ 0 b 0 =a—band ay: g° — Cis given
0 0 —a—0»
a 0 0
byas | 0 b 0 = a + 2b. It follows that g = Ceiz, g*> = Ceys
0 0 —a—-0»

and g®1 722 = Cey3. For ¥ C A we have the following possibilities:
A V=0=>py=g;
a b c
b) U =A=par =B, = 0 d e ja,b,¢,d,e € C
0 0 —a—d
a b c
c) U={a1} = pla) = 0 d e ;a,b,c,dye, f € C oy
0 f —a-—d
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a b c
d) ¥ ={a2} = pla,) = fd e ;a,b,c,de, f €C
0 0 —a—-d

1.7. Lagrangian subalgebras of g, ® g_, for g = sl(2), sl(3)

As we have seen in the previous section, the determination of the La-
grangian subalgebras implies to find the subalgebras S of g satisfying S+ C
S. In this section, we will do this for g = s/(2) and sl(3).

(1) g = s1(2). The only subalgebras S that verify the condition S+ C S
are the parabolic ones (up to conjugation): py = sl(2) and pa = By.
(2) g = sl(3). We distinguish two situations:
i) Assume that S is a subalgebra containing B (therefore S is parabolic). It
follows that S is (up to conjugation) one of the subalgebras given in Example
1.6.4 from the previous section :

(1.7.1) sl(3), B+,P{a1}> Pias}-

ii) Assume that S does not contain B, and S+ C § . After a suitable
conjugation, we may suppose that N C S, where N, denotes the subset
of By with zero entries on the diagonal. Moreover, the inclusion is strict.
Indeed, if one supposes that S = N, it follows that N JJ; C S and therefore
B, C S, which is a contradiction. If, for example, es; € S, we may assume
that S is generated by ej; — eas , e12, e13, €21, es3. Particularly, A =
e11 + ez — 2e33 € S+ and it follows that B, C § , contradiction. Thus
eo1 ¢ S. Similarly, e31 ¢ S and e3s ¢ S. In this way one obtains that

)\115 a b
N, C S C B;. Therefore any matrix of S has the form 0 Xt ¢ |,
0 0 st

where t, a, b, ¢ € C and Ai, A2, A3 will be determined by the condition S+ C S.
This implies that )\% + )\% + /\g = 0. We have also A\{ + As + A3 = 0. Thus,

Mt a b
(1.7.2) S = 0 Xt ¢ ;t,a,b,c € C) |
0 0 Ast

where ); verify the conditions A\; + X2 + A3 = 0, A2 + A2 + A% = 0 and )\
# 0. It follows that A? + X2+ X\ Ao = 0 and thus Ay = Aje ; A3 = €2)q, where
€2 + e+ 1=0. We may assume A\; = 1 and one obtains

t a b
(1.7.3) S = 0 et ¢ ;t,a,b,c € C
0 0 €%t

Our aim is to compute “quasi-trigonometric” solutions of CYBE for g =
sl(2) and sl(3). These solutions correspond to certain types of Lagrangian
subalgebras of g @g_. Therefore, we are not interested in the determination
of all Lagrangian subalgebras for sl(2) and sl(3), but only in finding the
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special ones that satisfy certain properties which will be presented in the
next sections.

1.8. Special Lagrangian subalgebras for the case g = si(2)

Let us denote by h the usual Cartan subalgebra of sl(2), B the set
of upper-triangular matrices and B_ the set of lower-triangular matrices of

sl(2). We will find all Lagrangian subalgebras W C g, @ g_ such that
W N A =0, where

w3 {((3 5)-5 L))meed)

REMARK 1.8.1. A is exactly the Lagrangian subalgebra obtained for
W, =W_ = B; and ® = id}, (here id}, denotes the identity automorphism
of h).

According to Section 1.7, a Lagrangian subalgebra W is determined by
a triple (W, W_, ®), where W and W _ are conjugated to sl(2) or Byand
P : W—E — Il//VV_:L is an isomorphism preserving the bilinear form. We will
consider the following situations:

1) Wy = W_ = B_. An isomorphism ® of the Cartan subalgebra h
that preserves the Killing form is idy, or —idp.

i) if ® = idp, then

(1.8.2) W:{((Z _Oa)<‘i _Oa ));a,b,a@@};»WﬂZ;éo.

ii) if ® = —idp, then

(1.8.3) W:{((‘; _Oa),<_ca 2));a,b,c€@}:>WﬂZ:0.

2) Wy = W_ = sl(2). Obviously W = {(X,®(X)); X € sl(2)}, where
® € Aut(sl(2)) which preserves the Killing form. But any automorphism of
sl(2) is inner, so there exists S € GL(2) such that ®(X) = SXS~!for any
X € sl(2). In order that W N A = 0, we will find S such that the equation

(184 s(o 2)s=(5 %)

has only the solution a = b = ¢ = 0. Let us consider S = (s;;) € GL(2).
(1.8.4) is equivalent to a linear homogeneous system which has only the
solution a = b= ¢ = 0 iff s9; # 0. Thus

(1.8.5) W ={(X,8XS71); X €sl(2)},
where S = (s;;) € GL(2), so1 # 0, is a Lagrangian subalgebra verifying
WnNA=0.

Simple computations show that other situations will not lead to a La-
grangian subalgebra that is complementary to A.



26 1. ON TRIGONOMETRIC SOLUTIONS OF CYBE

1.9. Special Lagrangian subalgebras for the case g = si(3)

In this section, we consider g = si(3). Let h be the usual Cartan sub-
algebra of sl(3), By the set of upper-triangular matrices and B_ the set
of lower-triangular matrices. We are now interested in finding Lagrangian
subalgebras W such that W N A = 0, where

(1.9.1) Z:{((‘g _;TA>,<‘3 _;Z;A ));AEgl(2),b,b’6(C2}.

REMARK 1.9.1. A is a Lagrangian subalgebra.

According to the results in Section 1.7, for the determination of a La-
grangian subalgebra, one has several choices. We will analyse the following
cases:

1)W+:B+,W,:B,i%:%%hand%:%%h. Consider

® € Aut(h) which preserves the Killing form. We take the canonical basis
in h formed by F = e11 —e33 , F = eas — e33 and set (I)(E) =a1F + aoF ,
®(F) = b1 E + boF. Obviously, ® preserves the Killing form iff the folowing
conditions hold:

(1.9.2) < ®(E),®(F) >=< E,F >;

(1.9.3) < ®(F),®(E) >=< E,E >;

(1.9.4) < ®(F),®(F) >=< F,F > .

These are equivalent to the following:

(1.9.5) 2a1b1 + a1by + aoby + 2a9b9 = 1;

(1.9.6) a2+ a3+ ajay = 1;

(1.9.7) b2 + b2 4 biby = 1.

The corresponding Lagrangian subalgebra is

(1.9.8)
o T % a1z + by 0 0
W = 0 vy * , * a2z + boy 0

0 0 —z—y * * —(..))

Obviously, (e13,0)€ W NA and thus W N A # 0. o
2) W, = W_ = B_. Similar computations show that (ez1,e21) € WNA.
* x 0

W, =W_ = x * 0 . it results that Wi - W =
* % %

0 00 _ _ x *x 0

0 0 0 | andthus 2 =22 = [ % % 0 |. Any automorphism

* x 0 Wi o Wo 0 0 =
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d of % which preserves the Killing form is given by f € Aut(gl(2)) that

verifies J‘Ehe identity:
(1.9.9) Tr(f(A)f(B))+Tr(f(A)Tr(f(B)) =Tr(AB) +TrATrB.

The corresponding Lagrangian subalgebra is

(1.9.10) 1W={((f 4%A>’(fg)—T£bﬂ>)}

where f € Aut(gl(2)) satisfies (1.9.9). Because any such f has at least one
nonzero fixed point, it follows that W N A # 0.

* 0 0 0 00
HW, =W_ = (* * % ,Wi':WJ__: * 0 0
* % % x 0 0
_ _ 00
andK—I:K—I: * * | = W is given by
+ W * ok

0
0
aoany  w={((7TA ) (Y0

where f € Aut(gl(2)) satisfies (1.9.9). It is easily seen that (es1, e21) € WNA
for any f.

* 0 00
5 Wy = ( * 0 S W_ = * ok . In this case,
* * ok
- x x 0 _ *x 0 0
% = x *x 0 and % = 0 * = |. A Lagrangian subalgebra
+ 0 0 =« - 0 * =

is given as usual by W, W_ and an isomorphism & : K—I — % which

preserves the bilinear form. We will construct @ such that the corr_espond—
ing Lagrangian subalgebra W satisfies the condition W N A = 0. Let us

a b 0
write every matrix from K—j in the following way: c d 0 =
W 00 —a—d
a b 0 0 0 0
c —a 0 |+ 0 a+d 0 . We may suppose that
0 0 0 0 0 —a—d
a b 0 00 O
(1.9.12) @l ¢c —a 0 |]=102a D
0 0 0 0 ¢ —a

for all a, b, c € C. We are allowed to do this because if we take instead
an inner automorphism of sl(2), this will lead to a Lagrangian subalgebra
which is “gauge equivalent” to the one that we obtain now. Let us put
D(ega — e33) = afer; — es3) + Blexr — e33), where a and S will be found
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such that W is complementary to A. First of all, because ® preserves the
bilinear form, it follows (*) a? + 82 + a8 = 1. The Lagrangian subalgebra
corresponding to @ has the following form:

(1.9.13)

a b 0 ala+d) 0 0
W = c d 0 , * 1+B)a+pd b

x * —a—d * c —(...)

The condition W N A = 0 is equivalent to the fact that the linear system
a=cala+d), d=a+ f(a+ d) has only trivial solution a = d = 0. In other
words, 2a + 8 # 1. From the relation (*), it results that («,3) # (0,1) and
(1,-1).

In conclusion, the Lagrangian subalgebra given by (1.9.13), where o? +
B%2+aB =1and (o, B) # (0,1); (1, —1), has the property W N A = 0.

At % o pu ok
6) Wy = 0 Aot % , W_ = 0 pou , as
0 0 Mgt 0 0 psu

in (1.7.2). In this case, W, = Wi, W_ =W~ and thus W = W,oW_.
It is easy to see that (e13,0) € W N A and therefore W N'A # 0.

Alt * * H1U 0 0
Wy = 0 Xt ,Wo = ¥ pou O and
0 0 Mgt * * 43U

again W =W, @ W_. For example, (e13,0) € WnA.
8) Wy =W_=5sl(3) > W = {(X,®(X)); X €sl(3)}, ® € Aut(sl(3)).
The condition W N A = 0 is equivalent to the fact that the equation

A b A ¥
(1.9.14) ‘I’( 0 —TrA ) - ( 0 —TrA )

admits only the solution A = 0, b = b = 0. We will determine ® €
Aut(sl(3)) that satisfy this property. We make the remark that if & €
Aut(sl(3)) verifies the above condition, then ®~! also does.

Let us denote by Aut®(sl(3)) the set of inner automorphisms of sl(3).
One knows that Aut(sl(3))/Aut®(sl(3)) = AutA , i.e. the set of automor-
phisms of the Dynkin diagram of s/(3). Because there are only two auto-
morphisms of the Dynkin diagram, it results that any ® € Aut(sl(3)) has
one of the forms:

i) ®(X) = SXS1, for any X € sl(3);

ii) ®(X) = —SX'S~! for any X € sl(3), where S € GL(3).
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In the first situation, i), if S = (s;5), the linear system represented by
(1.9.14) admits only the trivial solution iff the following condition holds:
(1.9.15)

0 —8921 S12 0 0 0 —S831 0
—S12 811 — 822 0 812 0 0 —s3 0
—2513 —893 0 —s13 811 S12 —s33 0
S91 0 s2—s11 —s21 0 0 0 —s3
rank 0 S921 —S812 0 0 0 0 —8392 = 8.
—893 0 —513 —2893 821 S22 0 —s33
2531 0 532 831 0 0 0 0
532 S31 0 2532 0 0 0 0
0 0 0 0 831 832 0 0

For example, (1.9.15) holds in one of the following situations:

(1) s31 =0, 532 #0, so1 # 0, 511522 — s12521 # 0 (and detS # 0);
(2) 832 =0, 531 #0, s12 # 0, 511502 — 512521 # 0 (and detS # 0);
(3) s31832 # 0, 811802812521 7 0, 831832(811—822) — 81253, + 821859 # 0.

110
But there are also other possibilities. A concrete exampleisS=| 1 1 1
0 11
0o 1 -1
andalso S~'= 1 —1 1 | verifies (1.9.15).
-1 1 0

In the second situation, ii), the matrix of the linear system representing
(1.9.14) is the following:

(1.9.16)
—2811 —S812 — 821 0 0 -s13 0 —s31 0
—512 —599 =811 —812 0 —s13 —s32 0
0 —893 0 513 0 0 —833 0
—891 —599 =811 —S91 —823 0 0 —s3
0 0 —S91 — 812 —2822 0 —so3 0 —s32
§93 0 —S813 0 0 0 0 —833
0 —S832 0 831 —S833 0 0 0
$32 0 —S831 0 0 —833 0 0
533 0 0 533 0 0 0 0

and we can prove that the rank of this matrix is at most 7. Let us consider
the following situations:

a) s33 = 0. One can compute the only minor of order 8, without a null
line, by using Laplace’s rule, and obtain that this minor also vanishes.
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b) s33 # 0. By suitable elementary transformations applied to the matrix
from (1.9.16), we get

(1.9.17)

0 0 —s13 0 —s31 —s812— 821 0 2511
0 —s13 S23 831 —S32 0 0 0
0 —s23 0 —s3 0 0 —S12 — 821 —2829
0 0 —s93 —s31 0 —892 —811 0
0 0 0 0 —S833 —893 0 513
0 0 0 —S833 0 0 —S813 —S8923
0 0 —833 0 0 —S832 0 831
0 —s33 0 0 0 0 —831 —839

S33 0 0 0 0 0 0 0

and one can check that the columns of the equivalent matrix are linearly
dependent and therefore the rank of the matrix cannot be 8. We conclude
that, in case i), W N'A # 0.

One can check easily that other choices of the triples (W, W _,®) do
not lead to a Lagrangian subalgebra that satisfies the condition W NA = 0.

1.10. Lie bialgebras and classical r-matrices

In this section we will give an overview of the basic results concerning
Lie bialgebras and classical mmatrices. These will be used in the last section
for the computation of the “quasi-trigonometric” solutions.

Firstly, let us remind the notions of Lie bialgebra and classical double
associated to it. Let A be a complex Lie algebra and A* its dual vector space.
Suppose that A*has also a fixed Lie algebra structure. Let ¢ : A* @ A* —
A*be defined by the rule: (1 ® l2) = [l1,l2]. Then ¢*: A - A ® A satisfies
the following conditions:

(1) Img™* C ANA;
(2) Per(p* ® 1)p*(a) = 0 for any a € A, where Per(a ® b® ¢) =
a®b®c+c®a®b+b®c® a (co-Jacobi identity).
The following result was given in [4]:

THEOREM 1.10.1. ([4/,Th.2) The following conditions are equivalent:

1) The map ¢*: A = A®A is a I-cocycle, being understood that A acts on
A®A by means of the adjoint representation, i.e. for any a,b € A, ¢([a,b]) =
a.p(b) —b.p(a), where a.(b®c) =[a®14+1Qa, bQc| = [a,b]@c+ bR [a,].

2) There is a Lie algebra structure on A & A* inducing the given Lie
algebra structures on A and A*which is such that the bilinear form @ given
by the formula

(1.10.1) Q((.’El,h), (332 + lz)) = l1($2) + l2(.’171)

for any 1,20 € A and l1,ls € A*, is invariant with respect to the adjoint
representation of A@ A*. Moreover, such a Lie algebra structure on A® A*is
unique if it exists.
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DEFINITION 1.10.2. The Lie algebra structure on A @ A*satisfying the
second condition is called the classical double of A and it is denoted by
D(A, ) or simply D(A). The pair (A, ¢) is called a Lie bialgebra.

REMARK 1.10.3. D(A) is not generally speaking unique for a given A
because there are many different Lie algebra structures on A*and some satisfy
the conditions of the previous theorem.

DEFINITION 1.10.4. Two Lie bialgebra structures (A, ¢1) and (A, ¢2) on
A are called equivalent if there exists a Lie algebra isomorphism f : D(A, ¢1)
— D(A, p2), which preserves the canonical forms @; on D(A, ¢;), and such
that fj1 = jo, where j; and respectively jo are the embeddings of A in the
two doubles.

We recall a result due to A. Stolin and E. Karolinsky:

THEOREM 1.10.5. Two Lie bialgebra structures (A, ¢1) and (A, p2) on A

are equivalent if and only if o2 = p1 +ds, where s EANA and < s,5 >=
Alt(p ®id)(s), where Alt(z) = z'?3 + 221 + 2312 for x € A®3.

The Lie bialgebras are closely related to the so-called classical r-matrices.
We will remind the following proposition from [9]:

ProposITION 1.10.6. (/9], Prop.4.1.1) Let A be a Lie algebra and r €
A NA. Consider the linear map ¢ : A — A ® A given by

(1102) (p(a) — [a ® 1 _I_ 1 ® a,,r]’
for any a € A. Then (A, ) is a Lie bialgebra if and only if the tensor
(1.10.3) <rr >=[r2 e8] + 112,02 4 [r13, 7

is ad-invariant. Here we use the usual notation: > =r®1, r® =1@r
and 3 = Dk ®@1®by ifr =), ap ®by. The commutators on the right-
hand side are taken in (UA)®3, where UA denotes the universal enveloping
algebra.

DEFINITION 1.10.7. A tensor r that satisfies the condition < r,r > is
ad-invariant is called classical r-matriz. The equation (1.10.3) is called the
modified classical Yang-Bazter equation (mCYBE).

Let us recall the following result:

PROPOSITION 1.10.8. (/9/, Prop.2.3.6) Let A be a Lie bialgebra and D(A)
the classical double associated to it. Suppose that {I,} is a basis in A and
{I*} is the dual basis of A*. Let us identify I, with (I,,0) € D(A) and I*
with (0,I%) € D(A). Then the cobracket in D(A) is given by (1.10.2) for
any a € D(A), where

(1.10.4) r=> I,®I*€ D(A) & D(A).
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1.11. Quasi-trigonometric solutions

In this section we will give some suggestions about the construction of
“quasi-trigonometric” solutions of CYBE for sl(2) and sl(3) using the La-
grangian subalgebras W that satisfy the condition W N A = 0.

Let us now consider C[[u!]] the ring of formal power series in u ! and
C((u™1)) the field of its quotients. For an arbitrary simple, complex, finite-
dimensional Lie algebra g, we set glu] = g ® Clu], g[[u!]] = g ® C[[u"1!]]
and g((u™")) =g @ C((u™)).

Let us take {I,} an orthonormal basis in g with respect to the Killing
form K and t = I,,®1I,, (with summation over identical indices). For any root
a let us choose e, such that K(eq,e_q) = 1. Also, we take hy = [€q,€_q].
The classical Drinfeld-Jimbo r-matrix defined by

1

1 t
(1111) T:EZeaAe_a_FE
a>0

satisfies the following equations:

(1.11.2) r+r?t =t

(1.11.3) (12, 7 13] 4 [112, 23] 4 [r13,123] = 0

Let us consider the function Xy defined by Xo(u,v) = 2.t +r, for
any u,v € C. Obviously, Xo(u,v) + XZ'(v,u) = 0. Let us check that
Xo(u,v) verifies CYBE. Firstly, because K([I;,I;],1;) = K(I;,[1;,1;]) for
any 4, j, k and {I;}i=1,.n is orthonormal with respect to the Killing form K,
it results that [t'2,¢13] = —[t12,#23] = [t13,423]. Secondly, it is known that
[t,a®1+1®a] =0 for any a € g. This implies that [r'2 + r!3,#?3] = 0,
[r13 4723 $12] = 0 and [r?' 4723, ¢13] = 0. Therefore Xg(u,v) satisfies CYBE.

REMARK 1.11.1. If u = e}, v = e#, then )’(VO()\,M) = Xo(e)‘,e“) — etk i+

Tl-ern
r is a solution of CYBE which depends only on A — . In addition, Xy is
trigonometric.

We will say that a solution is quasi-trigonometric if it has the form
X (u,v) = 7%t + p(u,v), where p(u,v) is some polynomial. Two solutions
X1 and Xy will be called gauge equivalent if there exists (u) € Aut(glu])
such that Xa(u,v) = (p(u) ® ¢(v))(X1 (u,v)).

Let us define the map d:g[u] — g[u] Ag[v] by d(a(u)) = [Xo(u,v),a(u)®
1+1®a(v)]. Because [-1-,a(u) ® 1 + 1 ®a(v)] = —[t,1 ® W] €
glu] A glv], 6(a(u)) is indeed an element of gu] A g[v]. The map d is a 1-
cocycle and therefore it defines a Lie bialgebra structure on the Lie algebra
g[u]. The following theorem gives a description of the double D(g[u]) of this
Lie bialgebra as the direct sum g((u~!)) ® g, where we have considered the
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following invariant bilinear form

(1.11.4) Q((f(u),a), (g9(u),b)) = K(f(u)g(u))o — K(a,b).

Here the index zero means that we have considered the free term in the series
expansion.

THEOREM 1.11.2. Suppose that D(g[ul]) is the classical double of glul
induced by the 1-cocycle 6. Then D(g[u]) is isomorphic to g((u™')) ® g.

PROOF. The algebra g[u] is embedded in g((u!)) @& g in a natural
way : the image of a(u) is (a(u),a(0)). Let us consider the set A =
{(a(u),a(0));a(u) € g[u]}. In order to prove the theorem, we will construct
a Lagrangian subalgebra Wy of g((u™!)) @ g (with respect to the bilinear
form @) that is complementary to A. A basis of A is given by the following
elements: (I;u*,0) fori =1,..,n and any k& > 0, (eq, €,) for any root «, and
(hg, hg) for any simple root 8. Let us consider the linear space Wy spanned
by the elements: (I;u=*,0) for i = 1,..,n and any k > 0, (e_q,0), (0, —eq)
for any positive root «, and (hg, —hg) for any simple root 3. It can be easily
seen that Wy is a Lagrangian subalgebra such that W @ A = g((uv™!)) @ g.

Let us choose two dual bases in A and respectively Wy. We have only
to replace (hg, —hg) in order to make them dual to (h,, hy). Let us consider
hs = " agahy and impose the condition Q((hg, —hg), (hy,hy)) = 1if f =
v and 0 otherwise. It follows that 3" agr\K(hy,hy) = £ if B = v and 0
otherwise. Because the Cartan matrix (K (hy,h,)) is nondegenerate, the
unknown agy can be found precisely.

We consider now the tensor built from these dual bases

ro(u,v) = > (L1u*,0) @ (Liv™,0) + Y ((€ar€a) ® (6, 0)+
k>0 a>0

+D (e—ae—a) ® (0, ~€a) + D apa(hs, hg) ® (hx, —h»).
a>0 B
If p is the canonical projection of g((u 1)) ®g on g[u] then (p&p)(ro(u,v)) =
Xo(u,v) and therefore D(g[u]) can be identified with g((u™!)) @ g. O

REMARK 1.11.3. This result enables us to reduce the problem of listing
the quasi-trigonometric solutions of CYBE to the one of finding the La-
grangian subalgebras W of g((u~!)) @ g that are complementary to A and
such that W D u Ng[[u~1]] for some N > 0. If W is a Lagrangian subalge-
bra that satisfies these conditions, let us consider two dual bases {E;(u)} in
A and respectively {F*(v)} in W. The tensor r(u,v) = >, E;(u) @ F'(v) sat-
isfies CYBE and 7'?(u,v) + 7?*(v,u) is ad-invariant. The tensor X (u,v) =
(p®p)(X; Ei(u) ® F'(v)) has the form X (u,v) = Xo(u,v) + p(u,v), where
p(u,v) is a polynomial.

Let us restrict our interest to g = sl(n) and make the following

REMARK 1.11.4. If T € GL(n, Clu]), Xo(u,v) and X (u,v) =Ad(T(u) @
T'(v))(Xo(u,v)) are equivalent solutions. Here T'(u) acts on si(n,Clu]) by
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conjugation. According to Theorem 1.10.5, it results that Xy(u,v) and
X (u,v) induce the same classical double D(g[u]) of g[u]. A simple calculus
shows that )Af(u,'u) = Xo(u,v) + p(u,v), where p is a polynomial.

Now we will give the correspondence between the quasi-trigonometric so-
lutions and the Lagrangian subalgebras that we have determined in Sections
1.8 and 1.9. We consider the following two situations:

A. Suppose that g = sl(2). From [13], it results that any Lagrangian
subalgebra W of g((u~!)) @ g which is complementary to A and such that
W D uNsl(2,C[[u"']]) can be embedded (up to gauge equivalence) in L =
diag(1,u)sl(2,C[[u1]])diag(1,u ) ®sl(2) or in L' = sI(2,C[[u"']]) @ sl(2).
Here “gauge equivalence” between two Lagrangian subalgebras Wi and Wy
means that there exists 7' € GL(2,C[u]) such that (AdT(u), AdT(0))W;=
Ws. Let us prove that L% = sl(2) @ sl(2) (the orthogonal is considered
with respect to the bilinear form Q). Firstly, let us make the remark that
sl(2,Cl[u=]))t = u~tsl(2, C[u~!]]) where the orthogonal is in si(2, C((u1)))
with respect to the bilinear form < f(u),g(u) >=T7(f(u)g(u))o. It follows
that
L diag(1,u)sl(2,C[[u!]])diag(1,u 1)

(1.11.5) LY ™ diag(u=1,1)sl(2, Cllu 1] diag(1,u1)

R

@ sl(2).

—a c —a
therefore the quotient that appears on the right-hand side is isomorphic to
sl(2).

On the other hand, a straightforward computation shows that

(1.11.6) LﬂA:{(( b_fcu _Oa><‘g _Oa )),a,b,cec}.

The image of this set via the canonical projection 7 : L — L% = sl(2) e sl(2)

is A = {((a 0 )’(a 0 >>;a,b,c€C}. If W is a Lagrangian
c —a b —a

subalgebra of D(g[u]) which is complementary to the diagonal, then 7(W)
is a Lagrangian subalgebra of sl(2) ® sl(2) complementary to A. We remind
that in Section 1.8 we have determined the two Lagrangian subalgebras W
in s(2) @ sl(2) which verify the condition WNA = 0 (A is conjugated to the
one written in Section 1.8). These Lagrangian subalgebras will lead to two
quasi-trigonometric solutions (equivalent or not).

Let us consider the case when W is embedded in L’. It is obvious that
LLT’L & 51(2) @ sl(2). If o' denotes the canonical projection of L' onto sl(2) ®
sl(2), then 7'(W) is a Lagrangian subalgebra of s/(2) ® sl(2) complementary
to {(z,z); x € sl(2)}. It is known that there is only one (up to equivalence)
such Lagrangian subalgebra, which is related to the unique solution (up to
equivalence) of mCYBE in sl(2) (see Theorem 4.2.2. in [9]). Therefore W
leads to one of the two trigonometric solutions obtained in Section 1.3.

-1
One identifies the class of the matrix c(; bu with a b ) and
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B. Suppose that g = si(3). Again it follows from [13] that any La-
grangian subalgebra W of g((u™!)) ® g, complementary to A, and such that
W D u=Nsl(3,Cl[ut]]) can be embedded (up to gauge equivalence) in L =
diag(1,u,u)sl(3, Cl[ut]]))diag(1l,u !, u " 1)®sl(3) orin L' = si(3,Cl[u"t]])®
sl(3). Since sl(3,Cl[u']])* = u'sl(3,C[[u"']]), the orthogonal being con-
sidered with respect to the form < f(u),g(u) >= Tr(f(u)g(u))o, we have
that

(111.7) % ~ c?iag(l_,u,U)Sl(?’,C[[u*i]])diég(l,fi,u*i o 1(3).
L diag(u=1,1,1)sl(3, Cl[ut]])diag(l,u=1,u"")
a bul cu! a b c
One identifies the classof | du e f with | d e f
gu h —a—e g h —a—e
and therefore one obtains that L% = sl(3) @ sl(3).
A simple calculus shows that
(1.11.8)
a 0 0 a 0 0
LNA= bou+by d e , by d e
cu+c f —a—d ¢ f —a—d
The image of this set via the map 7 : L — L% =~ sl(3) @ sl(3) is
a 0 0 a 0 0
(1.11.9) A= by d e | b d e
c [ —a-—d ca f —a-—d

Then 7(W) is a Lagrangian subalgebra of sl(3) @ sl(3) complementary to
A. In Section 1.9, we have found two Lagrangian subalgebras W which have
this property (A written in (1.11.9) is conjugated to the one from Section
1.9). These will lead to two “nontrivial” quasi-trigonometric solutions. Con-
sequently, it seems to exist a 1-1 correspondence between “nontrivial” quasi-
trigonometric solutions and Lagrangian subalgebras W such that WNA =0
(up to gauge equivalence). A more detailed analysis will be done in future
work.

We consider now the case when the Lagrangian subalgebra W is em-
bedded in L'. Obviously, ij—l = sl(3) @ sl(3). One can easily check that
©'(A) = {(z,z); = € sl(3)}, where 7’ denotes the canonical projection
of L' onto sl(3) @ sl(3). Therefore n'(W) is a Lagrangian subalgebra of
sl(3) @ sl(3) complementary to {(z,z); z € sl(3)}. The Lagrangian subal-
gebras in sl(3) @ sl(3) which are complementary to the diagonal are in 1-1
correspondence with solutions of mCYBE (see Theorem 4.2.2. in [9] and
[5]). These Lagrangian subalgebras will provide two trigonometric solutions
that have been obtained in Section 1.4, corresponding to trivial triples.






CHAPTER 2

On the classical double of parabolic subalgebras

2.1. Basic Lie bialgebra structure for a parabolic subalgebra P,

In this chapter we will be interested in the computation of constant
solutions of the modified classical Yang-Baxter equation(mCYBE) for a cer-
tain class of Lie algebras that are not simple. We remind that, given a
finite-dimensional complex Lie algebra A, a solution of mCYBE is a tensor
s € A ® A which satisfies the following conditions:

(2.1.1) [a,5"2 + 5% =0
for any a € A and

(212) [812,313] + [812,823] + [813,323] =0.

Our goal is to construct solutions of mCYBE for parabolic subalgebras of
a simple complex Lie algebra. Let g be a finite-dimensional complex, sim-
ple Lie algebra, with root system R and a simple set of roots A, with re-
spect to a fixed Cartan subalgebra h. For any a € R, let us denote by
g® the corresponding root space. If we consider the Killing form K on g,
for any nonzero element e, of g® there exists an element e_, of g~ such
that K(eq,e_q) = 1. Indeed, assuming the contrary, it would follow that
K(eq,ep) = 0 for any eg € g?, no matter what §, and then the natural
bilinear form K would be singular. With these notations, let us remind that
one of the classical Drinfeld-Jimbo r-matrices is the following:

(2.1.3) r = Z ea Ne_q.

a>0
It is well-known that r satisfies the following conditions:

(2.1.4) r? 42 = 0;
and the tensor < r,r >defined by

(2.1.5) <ryr >=[r2 rB) 4 [p12 3] 4 [p13, 023

is ad-invariant.

Now let P, be the parabolic subalgebra of g corresponding to a simple
positive root a. P, is the Lie algebra generated by the root vectors cor-
responding to the simple roots and their opposite except —a. Thus, it is

37
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spanned by all the linear spaces g? for 8 > 0 and g=# for 8 # a , B > 0.
We consider the map d, : g = g ® g defined by é,(a) =[a® 1+ 1Qa,r].
In this section, we prove that &, provides a Lie bialgebra structure for P,.
Therefore we will have a classical double D(P,) induced by the 1-cocycle ;.

PRrROPOSITION 2.1.1. The map 6, endows the parabolic subalgebra P, with
a Lie bialgebra structure.

PRrROOF. Because §, is a 1-cocycle that satisfies the co-Jacoby identity, it
is enough to show that é,(P,) C Py A P,. For all v € R, choose e,€ g” such
that K(ey,e—y) = 1. It is known that {ey},>0 is a basis for n* = 3>°__,g”
and {e_y }y>0 is a basis for n™ = 7 . ,g~7. Therefore it is enough to show
that é,(e,) € Py A P, for any v > 0 and v < 0 which does not contain
—a. Define N, g by the formula [eq,eg] = Ny geasrp for o8, + 8 € R.
If o, R and o+ B ¢ R we set Nog = 0. The number N, _, remains
indefinite. Consider v > 0. We have:

(2.1.6)

Sr(ey) =ley®14+1®eqy, > eghegl =Y (ley,ep] Ae_p+eg Aley,e_g)).

£>0 B>0

We make the following remarks: If 5 does not contain « then [e,,eg|Ae_g =
N, geyyp/Ne_g or it equals zero or belongs to hA Py, in any case is an element
from P, A P,. If v — [ is not a root or a positive one or is a negative root
but does not contain —c, then eg A [e,,e_g] = N, _geg Aey_g € Py AP,
or it equals zero or belongs to P, ® h. Thus the terms that remain to be
considered are N, ge,45 Ae_g when 8 =a+w, w>0and N, _geg Aey_g
when y—f=—-a—0,0>0. Let A4,y ={w>0:a+w,a+w+vy€ R}
Consequently,

(217) 67-(6/-)/) - Z (ny,a—}-w + Nf)/,_a_fy_w)ery+a+w /\ e_a_w E PO( /\ Pa.

wWEAa,y
Similarly, for v > 0 which does not contain «,
(2.1.8)
or(e—y) = [e—,R1+1®e_,, Zeﬂ/\e_g] = Z([e,v,eg]/\e_5+eg/\[e,7,e_g])

>0 B>0
and the only “problematic” terms are N_, ge_,,gAe_gfor B = a+w,w >0
and N_, _geg Ae_y_g for 8 +v=a+46, 0 > 0. Therefore
(2.1.9)
6r (6_7) — Z (N_ry’a_H,J + N—’y,—a—l—’y—w)e—’y—l—a—l—w Ne_q—w € Pa VAN Pa-
WEAL, —~
The following lemma will prove that the two sums that appear in (2.1.7) and

respectively (2.1.9) cancel and thus é,(e,) for v > 0 and §,(e_y) for v > 0
not containing « are elements of P, A P,. [l

LEMMA 2.1.2. Suppose that a, B, v € R satisfy the relation a+ 4+~ = 0.
Then Nony + Ng, = 0.
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PRrROOF. We have the following:
Noy = NoyK(e_g,e5) = K(Nyy€atvy,e3) = K(lea,e4],e5) =
= K(ea’ [67’ eﬁ]) = K(ea’ N’Y:ﬂe_a) = N'y,/B = _Nﬂﬂ'
O

In the next sections we will try to give a description for the classical dou-
ble of the parabolic subalgebra P,, for different simple complex Lie algebras

g.

2.2. Example: g = si(3)

* %
Consider g = sl(3) and the parabolic subalgebra P = * ok
00
a 0 0
corresponding to the root « defined by a| 0 b 0 =a+ 2b. We
0 0 —a—0»

put r = %(612 Neo1+ea3 Aesa+e13Aesr) and take the Lie bialgebra structure
on P induced by ¢,. We intend to prove the following result:

THEOREM 2.2.1. The classical double D(P) is isomorphic to sl(3)®gl(2)
(as Lie algebras).

Because they have the same dimension, the two linear spaces are ob-
viously isomorphic. We will prove in several steps that the bracket is the
same.

LEMMA 2.2.2. Let Q be the symmetric bilinear form on sl(3) @ gl(2)
defined by

(2.2.1) Q((A,B),(C,D)) =Tr(AC) — Tr(BD) — TrBTrD.
Then @ is nondegenerate and invariant.

PROOF. On sl(3) let us consider the symmetric bilinear form @1 defined
by Q1(4,C) = Tr(AC). For gl(2) let us take Q2 given by Q2(B,D) =
Tr(BD)+ TrBTrD. It is known that @, is nondegenerate and invariant.
It can be easily check that ()2 has the same properties. We make now the
remark that Q((A4,B),(C,D)) = Q1(A,C) — Q2(B, D) and the conclusion
follows immediately. O

Consider now the map d : P — sl(3) @ gl(2) defined by d(z) = (z,7(z)),
. A b

for any z € P, where 7w : P — gl(2) 1sg1venby7r< 0 —TrA) =A¢e€

gl(2). Let us make the following remark: if P is the orthogonal of P with

respect to Q1 and Red(P) denotes the reductive part of P, then P+ =
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0 0 = * % 0
0 0 = and Red(P) & P%: x x 0 = ¢l(2). The next
0 00 0 0 =«

step is to find a Lagrangian subalgebra W C sl(3)®gl(2) (with respect to the

nondegenerate bilinear form @ from the previous lemma) that satisfies d(P)N
W = 0. Or, equivalently, the linear spaces W and d(P) are complementary
in sl(3) ® gl(2).

LEMMA 2.2.3. There is at least one Lagrangian subalgebra W C sl(3) &
9l(2) satisfying d(P) N W =0, namely

a 0 0 —a
W = x b 0 ,
0 -b
* % b

PROOF. Consider the canonical projections 71 : sl(3) & gl(2) — si(3)
and my : sl(3) @ gl(2) — g¢l(2). Suppose that W is a Lagrangian subal-
gebra. It follows that W; = m;(W) satisfies VVZ-J- CW;,i= 1,2, where
the orthogonal is considered with respect to @; introduced in the previ-

ous lemma Because Wit @ Wi-C W, we can consider the linear space

W ng - C W AR @ 2 which is also Lagrangian. It follows from the construc-
W

tion that there ex1sts an isomorphism @ : W_) Wi

1 2

bilinear form induced by Q. Thus W = Wi- @ Wi+ + {(f,@(i)) 1T E %}
1

Because Wi D Wi, Wi is one of the following (up to conjugation): si(3) ,

which preserves the

* k% t a b
B, ,B_,P P = 0 * = and 0 e ¢ it,a,b,c e Ch |
0 * = 0 0 €%
€24+€+1 = 0. On the other hand, W, must satisfy the conditon W5 D Wj-and
be a subalgebra of gi(2). We choose for example Wy =B, = 3 : )}

It follows that W5t = {(g 3)} and thus WL = {(; 2)} Tak-
2

ing into consideration that % and Wi must have the same dimension, it
1

follows that the only interesting 51tuat10ns are:

a) Wiy = By, Wy = B+:> VV[‘//i ~h N;’VVZ In this case, it is easy to see
2
that d(P) N W # 0 for any ct choice of .

b) Wi = B_, Wy = B+ Consider the Lie isomorphism & : Wi —

a 0 0 —a 0
Wo defined by [ 0 b 0 = . The corresponding
0 -b
0 0 —a—0
a 0 0 P
Lagrangian subalgebra W is * b 0 , < 0 —b ) and
*x % —a—>b

verifies d(P) N W = 0. O
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Our aim is to prove that W and P*can be identified as Lie algebras.
Because they have the same dimension, they are obviously isomorphic as
linear spaces. Let us construct now two dual bases in d(P) and respectively
W. The canonical basis of P is formed by eio, €13, €21, €23, €11 — ess,

e — eg3. Consider the following basis in d(P): e; = (e1o, 8 (1) ),
00 00 00

€= (6137 < 0 0 ))7 €3 = (6215 ( 1 0 ))7 €4 = (6237 < 0 0 ))7 €5 =

1 0 00 . ..

(e11 —ess, 00 ), es = (€22 —e33, 01 ). Take the following basis in
0 0 0 0 -1

ol 4 _

W:h _(6215( 0 0 631,( 0 ) (05 ( 0 0 ))ah -

0
0
0 0 0 0 0
(632,(0 0)),h5=(611—€33,( ) 622—633,<0 _1 >)-

Trivial computations show the following: Q(e;,h*) = 1 for i = 1,2,3,4,
Q(65,h5) = Q(665h6) = 4, Q(65,h6) = Q(667h’5) 2 and Q(ela ) =0
if i # j and (i,7) # (5,6),(6,5). In other words, we have to modify the
elements k% and h® in order to obtain a dual basis to the one chosen for
d(P). Take f> = ah® + Bh% and f® = yh5 + §h° and we impose the duality
conditions. It follows immediately that o = § = 5 and 8 =y = —z. Thus
we have proved that the basis {h!,h2 h% k%, f° f6} in W is dual to {ei},
i = 1,6 of d(P). For symmetry, let us also denote h’ by f%, i = 1,4.

LEMMA 2.2.4. The Lie algebras W and P*are isomorphic.

PRrROOF. We firstly remind that P* has a Lie algebra structure [,]p-,
induced by the 1-cocycle §,. Because W and P* are already identified as
linear spaces, it is enough to show that the structure constants for two suit-
able bases are the same. For W let us take the basis {f*},i = 1,6 that we
constructed above. Simple computations show the following: [f1, 5] = 1 f1,
[f2f5]:2f2 [flf]— 2f1 [f4 ]—2f4 [f3f5]:2f3 [f3f]_

f3 If we consider ¢ given by [f?, fI] = c” f* then we have obtained:

31 16 1 25 1 35 1 36 146

G = 3,6 = 2,02 = 3,06 = 35,6 = 73, ¢ Z—andtherest
are zero (of course ck = —c”) On the other hand, d,(e12) = %612 A
(e11 — e22),0r(e13) = 613 A (e11 — e33),0r(e21) = %(622 —e11) Aear,or(e23) =

%623 A (e — 633),6r(€11 —e33) = 0r (€29 — e33) = 0. We identify each e; to its

first component and we consider dg k given by 6,(e;) = dgkej Qe . It follows

that d{k = cfk for every 4, j, k . By considering f?,i = 1,6 as elements of P*,

we obtain

(2:22) [, e (e) = 0107, 1) (ed) = (19 @ ) (deu ) = i
Thus [f7, f¥]p. = d/*f' = " f' = [7, f*] and W = P*. O
This lemma shows that the Lie algebra structure on the linear space

sl(3) @ gl(2) induces the Lie brackets on P and P*. This actually proves the
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theorem announced in the beginning, that D(P) and si(3) & ¢l(2) can be
identified as Lie algebras.

As a consequence of the theorem, we will construct a solution of mCYBE
in P.

COROLLARY 2.2.5. Let s = e1o Q@ eo + %(611 —e33)® (e11 —es3) + %(622 —
e33) ® (ez2 — e33) — %(611 —e33) ® (e22 — e33) — %(622 —e33) ® (e11 — e33).
Then s is a solution of mCYBE in P.

PROOF. We consider the projection p : sl(3) @ gl(2) — P defined by

i w(d ) w(2 )

We remind that we have constructed two dual bases {e;} and {h}, i = 1,6
in d(P) and respectively W. We take

(p ®p)(e; ® h').

NE

(2.2.4) F=

=1

A simple computation shows that s = s. According to Prop.1.10.8 and
because D(P) is isomorphic to sl(3) @ gl(2), the tensor ) e; ® h* is a solution
of mCYBE in D(P). Therefore s satisfies mCYBE in P. O

2.3. The general case

In this section we consider a simple, complex, finite-dimensional Lie al-
gebra g with root system R, with respect to a Cartan subalgebra h. Denote
by g* , u € R the root spaces. For a simple positive root «, we take the
parabolic subalgebra corresponding to it, P,. We will give a description for
D(P,). The classical double is considered with respect to the 1-cocycle 4,
introduced in the first section, and we have replaced r by %r. As suggested
by the result obtained in the previous section, the classical double will be
isomorphic to g @ Red(FP,). We remind that Red(P,) denotes the reduc-
tive part of P, and it is isomorphic to %. This holds because P;-coincides

Po

with the nil radical of P,(the maximal nilpotent ideal) and therefore 5t is

a reductive (but not semisimple) Lie algebra.

LEMMA 2.3.1. Let « be a simple positive root and Ay = {p € R : pu does
not contain o or —a}. Then

(2.3.1) Red(P,) =he Y  g"
HEAL

ProOF. We know that P, is generated by the root vectors corresponding
to all simple roots except —a. We determine P;-(with respect to the Killing
form K on g). Because K(g”,g’) = 0 when v + & # 0, it results that
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K(g”,g%) = 0if § > 0 contains o and ~ does not contain —a. Put B, =
{6 > 0: 0 contains a}. Thus

(2.3.2) Pr=>¢g

0€E By

The conclusion follows now immediately. O

This lemma allows us to compute the dimension of Red(P,) and we get
that the linear spaces D(P,) = P, ® P} and g ® Red(P,) have the same di-
mension. Thus they are isomorphic as vector spaces. Consider now the map
d: P, — gdRed(P,) defined by d(z) = (z,n(z)), where 7 : P, — 5—‘1 is the
natural projection. Red(P,) is equipped with the Killing form of g, which is
nondegenerate on Red(P,). Therefore we can define a nondegenerate sym-
metric bilinear form @ on g®Red(P,) by Q((a,b), (¢,d)) = K(a,c)—K (b, d).
We are interested in finding a Lagrangian subalgebra W of g @ Red(P,)
which satisfies the additional condition W N d(P,) = 0. We give its con-
struction in the next lemma:

LEMMA 2.3.2. There exists a Lagrangian subalgebra W in g @ Red(P,)
(with respect to the bilinear form Q) such that W Nd(P,) = 0.

PROOF. Suppose that for all v € R we have chosen e, € g7 such that
K(ey,e—,) = 1. Put [ey,e_,] = hy € h. The canonical basis of P, is
formed by hg for all B € A (set of simple roots) and e, for v € R which
does not contain —a. We make the following remarks: i) if v > 0 con-
tains o then w(e,) = 0; ii) if ¥ > 0 does not contain a or v < 0 does
not contain —e, then w(e,) = e,; iii) for any g € A, w(hg) = hg. Con-
sider W the linear subspace of g & Red(P,) generated by the following
elements: F7which denotes (e_-,0) if ¥ > 0 and (0, —e_,) for v < 0, which
does not contain —a , and H? = (hg,—hg) for all B € A. In fact, W
is a Lie subalgebra. We will prove that W is a Lagrangian subalgebra.
Firstly, dim W = dim P, = 3 dim(g ® Red(P,)). It is enough to show that
W C W+, We have: Q((e—,0),(e_,0)) = K(e—_y,e_g) = 0 for ,6 > 0;
Q((0, —e—y), (0, —e_5)) = —K(e—y,e_5) = 0 for v, < 0 which do not con-
tain —o; Q((e—y,0),(hg, —hg)) = K(e—y,hg) = 0 for v > 0 and 8 € A;
Q((0, _e—’y)a (hﬂa _hﬁ)) = _K(e—’yah’ﬂ) = 0 and Q((hﬂa _hﬁ), (ho, —hg)) =
0 when 3,0 € A. In conclusion, W is a Lagrangian subalgebra.

On the other hand, the canonical basis in d(P,) is formed by the ele-
ments: ., representing (e,,0) for v > 0 which contains ¢; (e, ey) for v € R
which does not contain a or —a; Gg = (hg, hg) for all § € A. Now it follows
immediately that W Nd(P,) = 0. This ends the proof. O

In order to get to the main result of this section, we will build a basis in W
which is dual to the canonical basis of d(P,) written in the previous lemma.
Firstly we notice that Q((ey,0),(e—5,0)) = K(ey,e—5) = 1if v = ¢ and
0 otherwise; Q((e’ya 67), (6—55 0)) = K(e’ya 6—5) and Q((e’)’a e’y)a (Oa _6—5)) =
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K(ey,e_5). We only have to change the elements (hg, —hg), 8 € A in order
to make them dual to (hg, hg),0 € A. For any 8 € A take

(2.3.3) he =Y agrha.

AEA
By imposing the condition (*) Q((hg,hg),(i/;/;,—ﬁ/;)) =1if 8 =80and 0
otherwise, we will determine ag). We have

(2.3.4) Q((ho, ho), (hp, hp)) =2 aprK (ho, ).
AEA

Because the restriction of K to the Cartan subalgebra h is nondegenerate, the
matrix (K (hg,ha))prca is invertible and thus the linear system equivalent
to condition ( ) has an unique solution for any fixed f € A. Let us denote

HB = (hg, —hﬂ) (which we determined above). We have proved the following
result:

LEMMA 2.3.3. The systems (E.,,Gpg) and (F”Y,I-?//B) are dual bases in
d(P,) and respectively W .

The last step that we need in order to prove that the Lie algebras D(P,)
and g ® Red(P,) are isomorphic is:

LEMMA 2.3.4. The Lie algebras W and P} are isomorphic.

PROOF. We remind that P} has a Lie algebra structure induced by the
1-cocycle d,. The linear spaces W and P} have the same dimension, so they

are isomorphic. Let us consider the dual basis (E,,Gg) and (F7, H8) from
the previous lemma. Take v > 0. We have the following computations:

(2.3.5)
[F7, Hﬂ = [(e—4,0 Z agaha, — Z agrha)] = Z aga([e—y, hal; 0)-

AEA AEA AEA

But [e_,, hy] = v(hx)e—y = K(hy, hy)e_ because of the following compu-
tations:
(2.3.6)

K(hy, h'y) = K(hy, [e'ya 377]) = K([hx, 67]a e,,y) = 'Y(h'A)K(e"ra e,,y) = y(hy).

Thus we have obtained

(2.3.7) [FY, HB = (Y~ apaK (hy, ) (e, 0).
AEA

On the other hand, if we write h, = )" c,9hg (after all § € A) and we
take into consideration that the constants agy verify the conditions
1

(2.3.8) Z agrK (hg, hr) = ok

AEA
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(2.3.9) > aprK(hg, hy) = 0,0 # B,
AEA
we conclude that
— 1
(2.3.10) [F7,HP] = () cypaprK (hg, hy))FY = 5CBF"-

MOEA

Analogously, when v > 0 does not contain «, reminding that F~7 =
(0, —e,), we obtain the following

—~ 1
(2.3.11) [F=), HP) = ZeypF 7.

Now we have to analyse the bracket induced by 4, on P}. By using the
computations from the second section, it results that for any v > 0,

1 1
(2.3.12) 0r(ey) = 267 ANhy = 3 Z cy0ey A hg
e
and for any v > 0 which does not contain «,

1 1
(2.3.13) or(e—y) = 267 Ah, = 2 Z cype—ry A hg.
feA

We can consider F? and HBas elements of P (because the linear spaces
W and Pjare already identified). Because the Lie algebra structure on P}
is induced by the 1-cocycle é,, we have the following computations

(2314) [P, HP)p(ex) = 55 (F7, HP)(ex) = (F ® HP)(6,(e)).
Suppose that v > 0. By construction, the bases (E.,,Gpg) in d(P,) and
(F”,I?TB) in W are dual. Thus, if X\ # 7, then [F”Y,I-ﬂlvﬂ]p&«(e)\) = 0. Other-
wise, [F7, Iﬁ]p{; (e4) = 3¢,p. In this way we see that

-~ 1
(2.3.15) [F7, HP)p; = 5e,5F.

If ¥ > 0 and does not contain ¢, we obtain analogously that
N T 1 _
(2.3.16) [F~7,HPpx = EcﬁyﬁF 7.

It is not necessary to consider brackets between other type of elements

from the system (F,, H?) because they are zero.
In conclusion, we have proved that the Lie bracket is in fact the same
and thus W = P} as Lie algebras. d

We can now state the main result of this chapter. The proof is straight-
forward from the previous lemma.
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THEOREM 2.3.5. Let g be a complezx, finite-dimensional and simple Lie
algebra. Let P, be the parabolic subalgebra corresponding to a simple positive
root a. Then the classical double D(P,), considered with respect to the 1-
cocycle &, is isomorphic to the Lie algebra g @ Red(P,).

As a consequence of the theorem, we will construct a solution for mnCYBE
in P,.
COROLLARY 2.3.6. Let B, = {7y > 0 which does not contain o} and

(2.3.17) s = Z ey Qe_y+ Z agrhg ® h.
Y€EBa B,AEA

Then the tensor s is a solution of mCYBE in P,.

PrROOF. Put C, = {y € R such that e, € P,}. Let p denote the projec-
tion of g ® Red(P,) onto P,. We take the dual bases that we constructed

before, (E,,Gg) in d(P,) and respectively (F”,fﬂfvﬁ) in W. Consider the
following tensor:

(2.3.18) 5=(pep)( Y (B,oF)+Y (G HP)).
YECq BEA

A simple computation shows that § = s. Because we have identified
D(P,) with the Lie algebra g ® Red(FP,), from Prop.1.10.8 it results that s
constructed as above is a solution of mCYBE in P,. This ends the proof. [

REMARK 2.3.7. In principle, the theorem allows us to compute more
solutions of mCYBE in P,. In the previous corollary, we have constructed
only the solution corresponding to a certain Lagrangian subalgebra W. In
general, it is known that there is a correspondence between the solutions of
mCYBE and Lagrangian subalgebras in D(P,) which are complementary to
the diagonal (up to gauge equivalence) (see [5]). The classical double is now
known. Therefore we have reduced the problem of computing solutions of
mCYBE to that of finding Lagrangian subalgebras in g @& Red(P,), with
respect to the bilinear form ). Once determined a Lagrangian subalgebra,
we have to find a basis in it which is dual to (E,,Gg) and then to construct
the tensor s as in the proof of the corollary.
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