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ABSTRACT

This work addresses the problem of hierarchical decision-making under
uncertainty and, more specificaly, its applications in mechanical engineer-
ing. The motivation for this study comes from the need to build cost-
effective structures that are robust under varying conditions; failure to
take uncertainty into account may lead either to very expensive or very
inefficient designs.

We are primarily concerned with the robust design (including the pos-
sibility of modifying the topology) of truss-like structures in unilateral
contact and/or including members that are able to sustain only tensile
forces. The problem is formulated and studied as a stochastic bilevel pro-
gramming problem, which allows us to take both the randomness and
the hierarchical nature of design optimization problems into account.
Three particular questions are studied: (i) the approximation of the non-
differentiable topology optimization problems with a sequence of sim-
pler, differentiable, sizing optimization problems; (ii) the robustness of
the optimal designs with respect to errors in the modelling of uncer-
tainty; and (iii) the discretization of the infinite-dimensional stochastic
structural optimization problems, or approximation with a sequence of
finite-dimensional optimization problems.

Within (i), we generalize the known approximation results to the
stochastic setting, but the main contribution is a new approximation
method for stochastic stress constrained weight minimization problem
based on the idea of penalty functions. With respect to (ii), we show
the robustness of the optimal solutions to the stochastic compliance min-
imization problem, and we propose a relaxation of the stress constrained
weight minimization problem which in contrast to the original formu-
lation possesses robust solutions. In (iii) we prove the convergence of
the discretizations for the approximate problems constructed in (i) un-
der rather general assumptions about the random variables, defining the
problem.
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INTRODUCTION AND OVERVIEW

Bilevel programming

Hierarchical decision-making problems are encountered in a wide vari-
ety of domains in the engineering and experimental natural sciences, and
in regional planning, management, and economics. These problems are
all defined by the presence of two or more objectives with a prescribed
order of priority or information. In many applications it is sufficient to
consider a sub-class of these problems having two levels, or objectives.
We refer to the upper level as the objective having the highest priority
and/or information level; it is defined in terms of an optimization with re-
spect to one set of variables. The lower-level problem, which in the most
general case is described by a variational inequality, is then a supplemen-
tary problem parameterized by the upper-level variables. These models
are known as generalized bilevel programming problems, or mathemat-
ical programs with equilibrium constraints (MPEC); see, for example,
Luo et al. [LPR96].

Structural optimization problems have an inherent bilevel form. The
upper level objective function measures some performance of the struc-
ture, such as its weight or stiffness. This objective function is optimized
by selecting design parameters, which may express the shape of the struc-
ture, the choice of material or the amount of material being used. Fur-
ther, the structure may be subject to limits on the amount of available
material, and to behavioural constraints, such as bounds on the displace-
ments, stresses and contact forces. The lower level problem describes the
behaviour of the structure given the choices of the design variables, pos-
sible contact conditions with foundations or boundaries, and the external
forces acting on it. The behaviour is for linear elastic structures given
by the equilibrium law of minimal potential energy, which determines
the values of the state variables (nodal displacements) at the lower level.
Equivalently, the equilibrium law can be expressed as a (dual) principle
of the minimum of complementary energy, determining the stresses and
contact forces.

In applications relating to Stackelberg game theory, economics, and
decision analysis, a number of the problem inputs will often be subject to
uncertainty. This is true in particular with respect to costs, demands, and
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system capacities, which are subject to fluctuations and/or are difficult to
measure. In hierarchical models of engineering design and physical phe-
nomena, external conditions and measurement or manufacturing errors
introduce uncertainty into the problems. In both of these cases, the un-
certainty can be included explicitly by generalizing some of the problem
parameters to random variables. However, this generalization complex-
ifies the model significantly; resolution strategies will in many cases re-
quire some approximation methods to solve the resulting stochastic pro-
grams.

In the simplest case, the expected values of the random variables
could be substituted for their stochastic counterparts and a determinis-
tic model then solved. However, in a nonlinear problem subject to con-
straints, the effect of this simplification can be quite costly. Indeed, not
only will the optimal cost of the expected value solution not necessarily
represent the average of the possible optimal costs, but the solution may
not even be feasible with respect to the realized values of the random
variables.

To take into account explicitly the variability of the random inputs, as
well as the possible infeasibility, we consider a stochastic programming
extension of the mathematical programming problem with equilibrium
constraints.

Let (Ω, S, P) be a complete probability space. The stochastic MPEC
is:

min Eω[f(x, ξ(ω), ω)] :=

∫

Ω

f(x, ξ(ω), ω) P(dω)

s.t.

{(
x, ξ(ω)

)
∈ Z(ω), P-a.s.

ξ(ω) ∈ S(x, ω), P-a.s.

[SMPEC − Ω]

where ξ : Ω → R
m is a random element in (Ω, S, P), Z : Ω ⇒ R

n ×R
m is

a point-to-set mapping representing the upper-level constraints, and S :
R

n ×Ω ⇒ R
m is a set of solutions to a lower-level parametric variational

inequality problem:

S(x, ω) := { ξ ∈ R
n | −T (x, ξ, ω) ∈ NY(x,ω)(ξ) }.

The lower-level problem is defined by the mapping T : R
n×R

m×Ω →
R

m and a feasible set mapping Y : R
n × Ω ⇒ R

m having closed convex
images, and NY(x,ω) : R

m
⇒ R

m denotes the normal cone mapping to
the set Y(x, ω).

A special case of [SMPEC-Ω] is bilevel programming, which is ob-
tained when the lower-level variational inequality problem reduces to
the optimality conditions for an optimization problem, that is, when
T (x, ξ, ·) = ∇ξt(x, ξ, ·) for some function t : Z × Ω → R. Usually, bilevel
programming is formulated in terms of the corresponding optimization
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problem, thus leading to the formulation

min Eω[f(x, ξ(ω), ω)] :=

∫

Ω

f(x, ξ(ω), ω) P(dω)

s.t.

{(
x, ξ(ω)

)
∈ Z(ω), P-a.s.

ξ(ω) ∈ argminz∈Y(x,ω) t(x, z, ω), P-a.s.

[BP − Ω]

With the proper identification of mappings f , Z , Y , and t, most stochastic
structural optimization problems can be formulated as [BP-Ω].

The problem [SMPEC-Ω] is treated in detail in Paper 1. Even in the
non-stochastic case the analysis of the problem is quite an intricate one.
The feasible set of the problem is not in general closed or connected, and
standard assumptions made in nonlinear programming (constraint quali-
fications) are necessarily violated. Not much more than the existence of
solutions to this problem can be established without further supposing,
e.g., that the set S(x, ω) is a singleton for all x and almost all ω. How-
ever, in the case of structural optimization problems such an assumption
is necessarily satisfied, which allows us to develop approximation results
for such problems.

Structural optimization

Structural optimization is a scientific discipline that is concerned with the
assemblage of materials to carry prescribed loads as efficiently as pos-
sible. It has long been recognized that when determining the design
of a mechanical structure it is vital to take into account the uncertain
character of some of the parameters that will determine the ultimate
design. Traditionally however, engineering models in shape, sizing and
(more generally) topology optimization often ignore the presence of un-
certainty in the data, such as random properties of the material used and
conditions that will affect the structure once it has been built, such as
varying weather conditions and external forces acting on it. This may
result in the construction of designs that are unstable under varying con-
ditions. There are three main approaches to the modelling of uncertainty
in the area of structural optimization: probabilistic (stochastic), worst-
case, and empirical multi-load approaches. (There exist a few minor al-
ternatives, such as fuzzy sets based models and combinations of the ap-
proaches listed.)

The stochastic programming based models offer the richest modelling
capabilities and at the same time require considerable effort for their nu-
merical solution. There exists a subclass of stochastic programming prob-
lems (so called two-stage problems, or problems with recourse), which
is very well studied from both theoretical and numerical points of view.
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Therefore, one direction of research in the area concentrates on sim-
plified probabilistic structural optimization models, which are approx-
imable by stochastic programming problems with recourse (for example,
see [Mar97]).

On the other hand, owing to the anticipated fact that the “real” prob-
ability model is never known, and the reported high sensitivity of so-
lutions to stochastic structural optimization problems with respect to
small changes in probability measure (e.g. [BHE90, pp. 20–22]), many
probability-free worst-case (“pessimistic”) models of uncertainty have
been developed as an alternative to probabilistic ones [BHE90, BTN97].
Such an approach does yield stable structures but does not take into ac-
count the probability of occurrence of the different scenarios, thereby of-
ten resulting in unnecessarily costly designs. Furthermore, such models
are unable to capture the essential properties of the underlying uncer-
tain reality (such as the correlation between two events), which results in
a very simplified prototype of reality. Nevertheless, the question of the
stability of the optimal designs with respect to the errors in the modelling
of uncertainty is not studied at all, which makes it even harder to estimate
the quality of designs obtained.

Another approach is the multi-load design ([SvG68], [Ben95, p. 8]).
In such an approach, an engineer picks up a few loading scenarios, em-
pirically assigns them some “weights” and then solves, essentially, the
stochastic optimization problem with a discrete probability measure,
where each scenario has a probability proportional to its “weight”.

In the Papers 2–4 of the present thesis, we advocate the stochastic
approach to robust structural topology optimization by
Paper 2 ◦ formulating the problems of robust topological design of

trusses as stochastic bilevel programming problems;
◦ extending the classic topology optimization results to the

stochastic case;
◦ analyzing the continuity of optimal designs with respect to

changes in the probability measure;
Paper 3 ◦ proposing approximation schemes suitable for stochastic

topology optimization problems;
◦ interpreting stochastic optimal designs as limits of multi-load

designs as the number of load cases goes to infinity;
Paper 4 ◦ presenting an alternative formulation of the stochastic stress

constrained weight minimization problem whose optimal so-
lutions are continuous with respect to changes in probability
measure;

◦ extending the results of Papers 2–3 to this reformulation.
In contrast with existing formulations of stochastic structural opti-

mization problems, which focus on the optimization of statistical relia-
bility properties of the structure, such as the probability of the failure,
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the primal focus in this study is the maximization of the structural perfor-
mance while keeping the design reasonably robust.

Example: stochastic topology optimization of a truss

By a truss we mean a structure consisting of a finite number (denoted by
m) of bars [Mic04]. The design of a truss can be determined by assigning
the volume xi ≥ 0 of structural material to the bar i, xi = 0 meaning
that the bar is removed from the structure. A design x and a force vector
f(ω) uniquely determine the distribution of stresses σi(ω) in structural
members, if the structure can carry the given load. To prevent the damage
of bars it is often desirable to constrain the admissible values of stresses
for the bars, which are present in the structure (i.e., xi > 0). Therefore,
we can formulate the general stochastic topology optimization problem
for a truss as follows:

max
x

the expected mechanical performance of the truss

s.t.





the structure determined by the design x can carry

the loads {f(ω)}, with probability one, (∗)

stress constraints are satisfied for all bars present

in the structure (i.e., xi > 0), with probability one. (∗∗)

It can be immediately noticed that by allowing topological modifications
(i.e., allowing the values xi = 0 for some i) we make the problem inac-
cessible for the standard nonlinear programming techniques, because the
number of constraints (∗∗) changes with the design.

ε-perturbation

Although this may seem a paradox, all exact science is dominated
by the idea of approximation.

Russell, Bertrand (1872-1970)
in W. H. Auden and L. Kronenberger (eds.)

The Viking Book of Aphorisms, New York: Viking Press, 1966

Let us take a closer look at the constraint (∗) to fit the general stochas-
tic topology optimization problem into the framework [BP-Ω]. This con-
straint is equivalent to the existence of the optimal solutions to the the
principle of minimum complementary energy (in our case it is the (x, ω)-
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parametric minimization problem):

(C)x(ω)





min
s

E(x, s, ω) :=
1

2

m∑

i=1

s2
i

E(ω)xi

s.t.





∑

i∈I(x)

BT
i (ω)si = f(ω),

where we introduced artificial variables si = xiσi and an index set of
the present members in the structure I(x) = { i = 1, . . . , m | xi > 0 };
E(ω) is the Young’s modulus for the structure material and Bi(ω) is the
kinematic transformation matrix for the bar i. Not only the energy func-
tional E is not differentiable at the points where the topology of the truss
changes, but it is not even upper semicontinuous at such points!

Therefore, it seems natural to introduce a small but positive bound
ε and require that xi ≥ ε. This approach is called ε-perturbation, and
depending on the structural optimization problem under consideration
the sequence of optimal solutions to perturbed problems may or may not
converge to an optimal solution of the limiting problem as ε goes to zero
(cf. [ChG97, Ach98, Pet01] for the discussion of ε-perturbation in the
deterministic case). The construction of approximations of such a type
for stochastic structural optimization problems is discussed in Papers 2–
4.

Distribution sensitivity

Bridges would not be safer if only people who knew the proper
definition of a real number were allowed to design them.

Mermin, N. David
“Topological Theory of Defects”

in Review of Modern Physics, v. 51 no. 3, July 1979

We expect a robust optimal design to be insensitive to modelling er-
rors, and, in particular, to the errors in the modelling of uncertainty.
Formally, consider a sequence of probability measures {Pk} weakly con-
verging to a limit P. Let {x∗

k} be the sequence of optimal designs corre-
sponding to {Pk}. Do the limit points of this sequence solve the limiting
stochastic topology optimization problem, corresponding to the proba-
bility measure P?

The answer is: not in general. For a subclass of the problems con-
sidered in the thesis, compliance minimization problems, which do not
include any behavioural constraints (∗), the answer is affirmative pro-
vided the sequence {Pk} locally converges to P. For another subclass,
stress constrained weight minimization problems, the answer is negative
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even in the case of local convergence (cf. Paper 2). Therefore, for the
latter problems we propose a reformulation based on a relaxation of the
constraints (∗), which allows large violations of such constraints but pro-
vides a mechanism to control the probability of such violations (Paper 4).
The relaxation, in contrast with the original formulation, possesses opti-
mal designs that are robust with respect to local changes in probability
measure.

Discretization

A theory has only the alternative of being right or wrong.
A model has a third possibility: it may be right, but irrelevant.

Eigen, Manfred
in Jagdish Mehra (ed.), The Physicist’s Conception of Nature, 1973

In the case when the number of points in the set Ω is infinite, we
are faced with the task of solving an infinite-dimensional optimization
problem. For the purpose of numerical computations, it is important to
construct finite-dimensional approximate problems. The most popular
approach to solving stochastic optimization problems is based on the idea
of approximating the probability measure with a sequence of discrete
probability measures with finite support, resulting in a desired sequence
of finite-dimensional optimization problems.

Unfortunately, in our case the straightforward implementation of
such strategy is impossible, owing to the lack of standard constraint qual-
ifications by the feasible set of the problem. Therefore, we approximate
the given topology optimization problem by a sequence of simpler sizing
optimization problems (ε-perturbations), and then discretize the latter
problems (Papers 3–4).
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Paper 1

A NOTE ON EXISTENCE OF SOLUTIONS TO
STOCHASTIC MATHEMATICAL PROGRAMS WITH
EQUILIBRIUM CONSTRAINTS

Anton Evgrafov∗and Michael Patriksson∗

Abstract

We generalize Stochastic Mathematical Programs with Equilibrium Constraints
(SMPEC) introduced by Patriksson and Wynter [Operations Research Letters,
25:159–167, 1999] to allow joint upper-level constraints, and to change continu-
ity assumptions w.r.t. uncertainty parameter assumed before by measurability as-
sumptions. For this problem, we prove the measurability of a lower-level mapping
and the existence of solutions. We also discuss algorithmic aspects of the prob-
lem, in particular the construction of an inexact penalty function for the SMPEC
problem, and touch a question of distribution sensitivity. Applications to struc-
tural topology optimization and other fields are mentioned.

Key words: Bilevel programming; Equilibrium constraints; Stochastic pro-
gramming; Existence of solutions; Stochastic Stackelberg game

1.1 Introduction

The preparation of this note was prompted by a mistake in the proof of
the existence of solutions to stochastic mathematical programs with equi-
librium constraints (SMPEC) [PaW99, Corollary 2.5]. We also generalize
the framework presented there to include more general constraints and
probabilistic settings.

SMPEC represents a model for hierarchical decision-making un-
der uncertainty. It generalizes the deterministic MPEC, or generalized

∗Department of Mathematics, Chalmers University of Technology, SE-412 80 Göteborg,
Sweden, email: {toxa,mipat}@math.chalmers.se
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bilevel programming problems [LPR96] by explicitly incorporating pos-
sible uncertainties in the problem data to obtain robust solutions. For
a discussion of possible applications of the model see [PaW99]; appli-
cations to structural optimization are discussed in [CPW01, PaP00]. A
special form of SMPEC was formulated in [LCN87] in a framework of
stochastic Stackelberg games. Thus the model has applications in eco-
nomics as well.

Let (Ω, S, P) be a complete probability space. The stochastic MPEC
is:

min Eω[f(x, ξ(ω), ω)] :=

∫

Ω

f(x, ξ(ω), ω) P(dω)

s.t.

{(
x, ξ(ω)

)
∈ Z(ω), P-a.s.

ξ(ω) ∈ S(x, ω), P-a.s.

[SMPEC − Ω]

where ξ : Ω → R
m is a random element in (Ω, S, P), Z : Ω ⇒ R

n ×R
m is

a point-to-set mapping representing the upper-level constraints, and S :
R

n ×Ω ⇒ R
m is a set of solutions to a lower-level parametric variational

inequality problem:

S(x, ω) := { ξ ∈ R
n | −T (x, ξ, ω) ∈ NY(x,ω)(ξ) }. (1.1)

The lower-level problem is defined by the mapping T : R
n×R

m×Ω →
R

m and a feasible set mapping Y : R
n × Ω ⇒ R

m having closed convex
images, and NY(x,ω) : R

m
⇒ R

m denotes the normal cone mapping to
the set Y(x, ω).

The outline of the paper is as follows. In section 1.2 the question
of feasibility is addressed. The main result is the measurability of the
solution set to a variational inequality problem mapping, which is a gen-
eralization of the measurability of the marginal mapping for optimiza-
tion problems (cf. Lemma III.39 [CaV77], Theorem 8.2.11 [AuF90]). In
section 1.3, the existence of solutions to [SMPEC − Ω] is proved, gen-
eralizing Corollary 2.5 [PaW99]. In section 1.4 as an example we apply
the existence result to a structural optimization problem. Section 1.5 dis-
cusses penalization procedures, generalizing Theorem 9.2.2 of [BSS93]
to [SMPEC − Ω] and outlining one possible approach to solve SMPEC.

1.2 Feasibility

The crucial part of the proof of the existence of solutions to a determinis-
tic MPEC is the closedness of the feasible set [LPR96]. The typical situ-
ation with SMPEC is that for almost any ω the closedness of an “ω-slice”
Fω = Z(ω) ∩ gr[x → S(x, ω)] of the feasible set could be established
using the existing results.
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Consider now x ∈ R
n. Suppose that for almost any ω we obtain

a point (x, ξ(ω)) ∈ Fω. The objective function can be evaluated at
(x, ξ(·)) only if the function ξ(ω) is S-measurable. Thus the question
arises, whether we can guarantee the existence of some S-measurable
function ξ such that for almost any ω the following two conditions hold:
(x, ξ(ω)) ∈ Fω (feasible solution) and f(x, ξ(ω), ω) ≤ f(x, ξ(ω), ω)
(“non-worse” solution).

Our approach to the problem is as follows. We will use the measura-
bility in ω for fixed x of S(x, ω) and Zx(ω) := { ξ ∈ R

N | (x, ξ) ∈ Z(ω) }
(cf. [Him75, Section 2], [CaV77, Chapter III] or [AuF90, Chapter 8]
for definition of measurability of set-valued mappings). After that, we
can apply the theorem about the measurability of marginal mappings (cf.
Lemma III.39 [CaV77] or Theorem 8.2.11 [AuF90]) to give an affirmative
answer to the posed question.

We simply assume measurability in ω of Zx(ω) and Y(x, ω) for any
x ∈ R

n. A sufficient condition is, e.g. Theorem 8.2.9 [AuF90], cited here
for convenience.

Theorem 1.2.1 (Inverse image [AuF90, Theorem 8.2.9]). Consider a com-
plete σ-finite measure space (Ω, S, P), complete separable metric spaces X ,
Y , measurable set-valued maps F : Ω ⇒ X , G : Ω ⇒ Y with closed im-
ages. Let g : Ω × X → Y be a Carathéodory map. Then, the set-valued
map H , defined by H(ω) = {x ∈ F (ω) | g(ω, x) ∈ G(ω) } is measurable.

Remark 1.2.1.1. If the mappings Zx(ω), Y(x, ω) are defined by inequal-
ities of the type { ξ ∈ R

m | gx(ξ, ω) ≤ 0 }, where gx is a Carathéodory
mapping, then they are measurable.

The next proposition asserts the measurability of the mapping S(x, ·).

Proposition 1.2.2 (Measurability of S(x, ·)). Suppose that the mapping Y
is measurable in ω for any fixed x and has closed convex images for any x
and almost any ω. Let the mapping T be continuous in y and measurable
in ω (i.e. Carathéodory) for any x. Then, the mapping S is measurable in
ω for any x.

Proof. Fix x and consider the mapping S̃ : R
n×Ω ⇒ R

m given by the
normal equation:

S̃(x, ω) := {ν ∈ R
m | T (x, ΠY(x,ω)(ν), ω) + ν − ΠY(x,ω)(ν) = 0},

where ΠY(x,ω) : R
m → R

m denotes the Euclidean projection operator
onto the closed convex set Y(x, ω). By Corollary 8.2.13 [AuF90], the
mapping ΠY(x,ω)(ν) is measurable for any ν. Since T is Carathéodory
in the variables ξ × ω and the Euclidean projection is continuous, the
resulting mapping T (x, ΠY(x,ω)(ν), ω) is Carathéodory in variables ν×ω.
Thus we can apply Theorem 1.2.1 to conclude the measurability of S̃ for
any ν.
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Recalling that S(x, ω) = ΠY(x,ω)(S̃(x, ω)) by Proposi-
tion 1.3.3 [LPR96], we can apply Theorem 8.2.7 [AuF90] about
direct image to get measurability of a mapping clS(x, ·) for any x. Since
T is continuous in ξ and Y has closed images, the mapping S has closed
images and we are through. #

1.3 Existence of solutions

Let X denote the projection of the feasible set of the upper-level prob-
lem on the space of x variables: X := {x ∈ R

n | ∃ ξ(ω) : (x, ξ(ω)) ∈
Z(ω) for almost any ω }. Let also denote by F(x, ω) the “x-slice” of the
feasible set of [SMPEC−Ω]: F(x, ω) := Zx(ω)∩S(x, ω). We will say that
the function f : R

n ×R
m ×Ω is uniformly weakly coercive w.r.t. to x and

the set X if the set {x ∈ X | f(x, ξ, ω) ≤ c } is bounded for any c ∈ R.
The approach to the existence proof is close in spirit to that

of [RoW98, Theorem 14.60] about the interchangeability of integration
and optimization. The difficulty is that we have “coupling” variables x
which do not allow us to use the pointwise minimization in a straightfor-
ward way.

The next theorem generalizes [PaW99, Corollary 2.5] in the follow-
ing ways: we allow joint upper-level constraints Z , do not require any
continuity of the involved mappings with respect to ω, and consider an
arbitrary probability measure on a complete probability space.

Theorem 1.3.1 (Existence of solutions). Suppose that the following as-
sumptions are fulfilled:

(i) the mappings Zx(·) and S(x, ·) are measurable for any x,
(ii) the set Z(ω) and the mapping x → S(x, ω) are closed for almost all

ω ∈ Ω,
(iii) the mapping f(x, ξ, ω) is continuous in (x, ξ), measurable in ω, uni-

formly weakly coercive w.r.t. x and the set X , and bounded from
below by an (S, P)-integrable function,

(iv) for any x ∈ X there is a neighborhood Ux 3 x such that the set
∪x̃∈Ux∩XZx̃(ω) is bounded for almost any ω,

(v) the set F(x0, ω) is nonempty for some x0 ∈ X and almost any ω.
Then, there exists at least one optimal solution

(
x̄, ξ̄

)
to a prob-

lem ([SMPEC − Ω]).

Proof. Owing to the conditions (i), (v), and the Measurable Se-
lection Theorem (e.g. [Aum69, Him75]) there exists a random element
ξ(ω) ∈ F(x0, ω) for almost all ω, i.e., the problem is feasible. Consider
an arbitrary minimizing sequence {(xk, ξk)}. Uniform weak coercivity
in assumption (iii) implies that there must be a subsequence of the se-
quence with a converging x-component. Let us renumber the whole se-
quence, so that x̄ := limk→∞ xk . Consider now a measurable function
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f̃(ω) := lim infk→∞ f(xk, ξk(ω), ω). Using the lower boundedness of f

(in assumption (iii)), we get Eω[f̃(ω)] ≤ limk→∞ Eω[f(xk , ξk(ω), ω)].
On the other hand, the uniform local boundedness assumption (iv)

implies that for almost any ω there is an infinite sequence of indices
k(ω) such that there exists ξ̃(ω) := limk(ω)→∞ ξk(ω)(ω) and so that

f̃(ω) = limk(ω)→∞ f(xk(ω), ξk(ω)(ω), ω). The assumed closedness of the

mappings Z and S (ii) implies that ξ̃(ω) ∈ F(x̄, ω) for almost any ω. Note
that the continuity assumptions on f imply that f(x̄, ξ̃(ω), ω) = f̃(ω) al-
most everywhere.

Consider now the ω-parametric optimization problem in the variables
ξ(ω):

min f(x̄, ξ(ω), ω)

s.t.

{ (
x̄, ξ(ω)

)
∈ Z(ω), P-a.s.

ξ(ω) ∈ S(x̄, ω), P-a.s.

(1.2)

We know that the problem has a nonempty, closed and bounded fea-
sible set for almost any ω, that also depends on ω in a measurable way.
Thus we can apply Theorem 8.2.11 [AuF90] to obtain the existence of a
measurable solution ξ̄(ω) such that f(x̄, ξ̄(ω), ω) ≤ f(x̄, ξ̃(ω), ω) owing
to the optimality of ξ̄ and the feasibility of ξ̃ for the problem (1.2).

Thus we have found a feasible solution (x̄, ξ̄(ω)) with desirable prop-
erties. #

Remark 1.3.1.1. For examples of conditions implying the closedness of
x → S(x, ω) (assumption (i)) we cite assumption (iii) in [PaW99] (which
must hold for almost any ω in addition to the continuity of the mapping
T in (x, y)):
(iii) The lower-level constraint set, Y(x), is of the form Y(x) := { ξ ∈

R
m | gi(x, ξ) ≤ 0, i = 1, . . . , k }, where each function gi : R

n ×
R

m → R is continuous on R
n × R

m and convex in ξ for each x.
Further, either gi(x, ·) = gi(·), i = 1, . . . , k, that is, Y(x) = Y , or for
each upper-level feasible x there is a ξ ∈ R

m such that gi(x, ξ) < 0,
i = 1, . . . , k.

Another example is Corollary 3.1 in [PaP00], which works for a spe-
cific stochastic bilevel programming problem considered in the cited pa-
per.

1.4 Application to stochastic structural optimization

In this section we apply Theorem 1.3.1 to show the existence of a truss
with a minimal weight under stochastic loads and stress constraints. In
the case of discrete measures with finite support the problem was exten-
sively studied in [PaP00].
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The problem formulation is:

min
(x,s(·))

1T x

s.t.

{
0 ≤ x

|s(ω)| ≤ σx, s(ω) solves (C)x(ω), P-a.s.

(W)

where the lower-level problem (C)x(ω) is:

min
s

E(x, s) :=
1

2

n∑

i=1

s2
i

Exi

s.t.
n∑

i=1

BT
i si = F (ω).

(C)x(ω)

The upper-level (design) variable xi represents a volume of material al-
located at the bar i (xi = 0 represents structural void), the lower-level
(state) variable si(·) represents a forse in the bar i multiplied by the bar
length, E is the Young’s modulus of the structure material, σ is the maxi-
mal allowable stress, F : Ω → R

k is a stochastic load, Bi, i = 1, . . . , n are
the kinematic transformation matrices, and E : R

n × R
n → R ∪ {∞}

is an extended real-valued functional, representing the elastic energy
of the structure. The problem (C)x(ω) is the mechanical principle of
minimum of complementary energy. Thus making the identifications
Z(ω) := { (x, s) ∈ R

n × R
m | 0 ≤ x, |s| ≤ σx } and S(x, ω) := { s ∈

R
m | s solves (C)x(ω) } we can see that the problem (W) perfectly fits in

a framework of [SMPEC − Ω].

Proposition 1.4.1. Let the load F : Ω → R
k be measurable. Suppose that

the problem (W) has a feasible point (x, s(ω)) such that P(E(x, s(ω)) <
∞) = 1. Then it posess at least one optimal solution.

Proof. Obviously, assumptions (iii)–(v) of Theorem 1.3.1 are fulfilled.
Furthermore, assumption (i) holds (it is an immediate consequence of
Theorem 1.2.1 for Zx(ω) and [CaV77, Lemma III.39] for S(x, ·)). The set
Z(ω) is closed for any ω. Thus it remains to show the closedness of x →
S(x, ω) for any ω to verify assumption (ii) and conclude the existence of
solutions.

The required property follows from [PaP00, Corollary 3.1] under ad-
ditional assumption of boundedness of energy functional E(x, s). Fur-
thermore, [PaP00, Theorem 4.3] implies that one can add redundant
(such that no optimal solution can violate it) constraint E(x, s) ≤ ν to
the problem (W). Since the function E is l.s.c. by [Roc70, p. 83], the set
Z̃(ω) := { (x, s) ∈ Z(ω) | E(x, s) ≤ ν } is closed for any ω.

We finish the proof by application of Theorem 1.3.1. #
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1.5 Inexact penalization

One-level problems have been studied much more than bilevel ones.
Bilevel optimization algorithms are much less straightforward to de-
velop owing to the non-convex nature of the problem and its absence
of constraint qualifications for nonlinear programming [LPR96]. One
approach is to move the equilibrium constraint as a penalty into the ob-
jective function. For examples of penalty functions leading to algorithmic
solutions to MPEC, see [LPR96, Pan97, YZZ97, ScS99] and references
therein. In particular, the exact penalties are of great importance, since
they lead to exact solutions while they do not require the penalty param-
eter to tend to infinity [Bur91]. One cannot however expect to be able to
construct an exact penalty for SMPEC problems, given an exact penalty
for each ω, as the following simple example shows. The reason is again
the presence of the “coupling” upper-level variables.

Example 1.5.1. Let (Ω, S, P) = ([0, 1], B̄([0, 1]), λ), where λ is a Lebesgue
measure on [0, 1], and B̄([0, 1]) is a σ-algebra of Lebesgue measurable
sets. Let Z(ω) = [0, ω] × { 0 }, f(x, ξ, ω) = (x − 1/2)2, Y(x, ω) = { 0 },
T (x, ξ, ω) = 0, For any ω ∈ [0, 1] an exact penalty for the “fixed-ω” prob-
lem is, for example, G(x, ξ, ω) = max{x − ω, 0 }.

Nevertheless, since
∫ 1

0

[(x − 1/2)2 + µ max{x − ω, 0 }] λ(dω) = (x − 1/2)2 + µ
x2

2
,

the minimizing sequence is xµ = 1/(µ + 2) → 0 as µ → ∞, and thus it
does not reach the optimal (actually, the only feasible) point of the given
SMPEC, x∗ = 0, for any finite value of µ.

In the following theorem we show that, given a penalty function for
almost any ω, we can construct an inexact penalty function for SMPEC.
It generalizes Theorem 9.2.2 in [BSS93]. Note that we do not necessar-
ily have compact sequences for the lower-level variables, so we do not
necessarily have convergence for these variables. In the case of discrete
measures supported by finite sets, the theorem reduces to [BSS93, Theo-
rem 9.2.2].

We will write val([P ]) for the optimal value of the optimization prob-
lem [P ].

Theorem 1.5.2. Suppose that the assumptions of Theorem 1.3.1 are sat-
isfied, so that there is an optimal solution to [SMPEC − Ω]. Let also
G(x, ξ, ω) be non-negative, continuous in (x, ξ) for almost any ω, and mea-
surable in ω for any (x, ξ) ∈ R

n × R
m function such that S(x, ω) = { ξ |

(x, ξ) ∈ Z(ω), G(x, ξ, ω) = 0 }. Then the penalized problem:

min Eω[f(x, ξ(ω), ω) + µG(x, ξ(ω), ω)]

s.t.
(
x, ξ(ω)

)
∈ Z(ω), P-a.s.

[SMPEC − Ω]µ
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has an optimal solution for any µ ≥ 0 and

sup
µ≥0

val([SMPEC − Ω]µ) = lim
µ→∞

val([SMPEC − Ω]µ)

= val([SMPEC − Ω])

Furthermore, any limit point of the upper-level optimal solutions {xµ}
to [SMPEC − Ω]µ (and there is at least one) is an upper-level optimal so-
lution to [SMPEC − Ω].

Proof. For any µ ≥ 0 the problem [SMPEC−Ω]µ satisfies the assump-
tions of Theorem 1.3.1 (where we can put Sµ(x, ω) = { ξ ∈ R

m | (x, ξ) ∈
Z(ω) }), and thus possess a solution (xµ, ξµ(·)).

Following the proof of Lemma 9.2.1 and Theorem 9.2.2 in [BSS93],
we get:

val([SMPEC − Ω]) ≥ sup
µ≥0

val([SMPEC − Ω]µ)

= lim
µ→∞

val([SMPEC − Ω]µ)

= lim
k→∞

Eω[f(xµk
, ξµk

(ω), ω)]

(1.3)

for some µk → ∞.
By the uniform coercivity (assumption (iii) of Theorem 1.3.1) of f

in x, and by the properties of G as a penalty function, the sequence
{xµk

} is bounded. Switching to a subsequence if necessary, we may as-
sume that xµk

→ x̃. Owing to the lower boundedness of f (assump-
tion (iii) of Theorem 1.3.1) we have that limk→∞ Eω[f(xµk

, yµk
(ω), ω)] ≥

Eω[lim infk→∞ f(xµk
, yµk

(ω), ω)]. By the boundedness of the feasible set
(assumption (iv) of Theorem 1.3.1) for almost any ω, there is a sequence
k(ω) such that ξµk(ω)

(ω) → ξ̃(ω) and lim infk→∞ f(xµk
, ξµk

(ω), ω) =

limk(ω)→∞ f(xµk(ω), ξµk(ω)(ω), ω) ≥ f(x̃, ξ̃(ω), ω), for P-almost any ω.
Owing to the closedness (assumption (ii) of Theorem 1.3.1) of Z ,
(x̃, ξ̃(ω)) ∈ Z(ω), P-a.s.

Following the proof of [BSS93, Theorem 9.2.2] we get:

0 = lim
k→∞

Eω[G(xµk
, ξµk

(ω), ω)] ≥ Eω[lim inf
k→∞

G(xµk
, ξµk

(ω), ω)],

and, by the continuity and non-negativity of G,
lim infk→∞ G(xµk

, ξµk
(ω), ω) ≥ G(x̃, ξ̃(ω), ω) ≥ 0 for P-almost any

ω, thus showing that ξ̃(ω) ∈ F(x, ω) for P-almost any ω. Considering
the parametric optimization problem (1.2) we can find a measurable
function ξ̃(·) ∈ F(x, ·) such that f(x̃, ξ̃(ω), ω) ≥ f(x̃, ξ̃(ω), ω) P-a.s., thus
showing that

sup
µ≥0

val [SMPEC − Ω]µ ≥ Eω[f(x̃, ξ̃(ω), ω)] ≥ val [SMPEC − Ω].
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Together with (1.3) this proves the claim. #

1.6 Concluding remarks

The case of discrete measures was considered in [PaW99] and some algo-
rithms were proposed. For a general SMPEC problem the discretization
that is, the approximation of the probability measure by a sequence of
discrete measures, seems to be the only way to solve it. The discretization
procedure could be applied either to the original problem ([SMPEC−Ω])
or to the penalized one ([SMPEC − Ω]µ).

The question of convergence of the discretizations is related to the
stability of optimization problems with respect to small changes in prob-
ability measure. The question of stability of bilevel programming prob-
lems is not so well investigated in the literature even in the deterministic
case. For existing results we mention [LiM95, WWU96, JYW98].

Existing results about the stability of optimization problems with re-
spect to changes in the probability measure usually presumes the exis-
tence of a constraint qualification [Lep90], which are by no means satis-
fied by SMPEC problems, or they are posed in the spaces of continuous
functions [RoW87, Kal87, RöS91], which also is not the case for a gen-
eral SMPEC. To apply latter results we need to assume the uniqueness
of solutions to a lower-level problem and the continuity of solutions with
respect to ω.

One can also view the lower-level problem as a variational inequality
problem (VIP) in a Banach space X , under the additional assumptions
that ξ(·) ∈ X and T (x, ξ(·), ·) ∈ X∗, hoping to use sensitivity analysis
results in this area [Din97, Wat97, Lev99, Din00]. The difficulty with such
an identification is that the resulting VIP is not necessarily monotone
even if the operator T (x, ·, ω) is monotone for almost any ω.

Despite all these difficulties it is possible to show the convergence of
some discretization schemes under additional assumptions, for the spe-
cific cases of SMPEC discussed in [PaP00] in application to structural op-
timization in contact mechanics. Furthermore, assuming the continuity
of the problem’s data with respect to ω, it is possible to analyze a distri-
bution sensitivity for such stochastic structural optimization models.
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Paper 2

STOCHASTIC STRUCTURAL TOPOLOGY
OPTIMIZATION: EXISTENCE OF SOLUTIONS AND
SENSITIVITY ANALYSES

Anton Evgrafov∗, Michael Patriksson∗, and Joakim Petersson†

Abstract

We consider structural topology optimization problems including unilateral con-
straints arising from, for example, non-penetration conditions in contact mechan-
ics or non-compression conditions for elastic ropes. To construct more realis-
tic models and to hedge off possible failures or inefficient behaviour of opti-
mal structures, we allow parameters (for example, loads) defining the problem
to be stochastic. The resulting nonsmooth stochastic optimization problem is
an instance of stochastic mathematical programs with equilibrium constraints
(MPEC), or stochastic bilevel programs. The existence as well as the continu-
ity of optimal solutions with respect to the lower bounds on the design variables
are established. The question of continuity of optimal solutions with respect to
small changes in probability measure is analysed. For a subclass of the problems
considered the answer is affirmative, thus showing the robustness of optimal so-
lutions.

Key words: Bilevel programming, stochastic programming, robust optimiza-
tion, ε-perturbation, stress constraints

2.1 Introduction and notation

Does the introduction of multiple load cases into a topology optimization
problem always lead to robust optimal designs? The large number of

∗Department of Mathematics, Chalmers University of Technology, SE-412 80 Göteborg,
Sweden, email: {toxa,mipat}@math.chalmers.se
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publications aiming to achieve robust solutions by optimizing for several
(in some cases the continuum) load cases suggests that the answer should
be positive.

The answer of course depends on the definition of “robustness” and
the type of optimization problem under consideration. The reason for
considering several load cases is to incorporate the uncertain nature of
the loads into the model, while the desired property of a robust design is
to change continuously as a model of reality (loading conditions, material
properties, etc.) changes. To thoroughly answer the posed question it is
necessary to measure the closeness of two models of (uncertain) reality.

In this paper we consider two of the most natural and classic struc-
tural topology optimization problems: the finding of a maximally stiff
truss under a volume constraint, and the finding of a truss of minimal
weight under stress constraints. The uncertainty due to several factors
(such as loads unknown in advance, varying material properties, manu-
facturing errors, etc.) is taken into account. Capturing the uncertainty
in the model through the use of probability theory allows us to construct
general models, and through the associated probability measure, it is pos-
sible to interpret the “continuous change in the model of reality” as a
continuous change in a topological space of measures.

To include a wide range of applications we allow mechanical struc-
tures to be unilaterally constrained, i.e., some parts of the structure might
come into unilateral frictionless contact with rigid obstacles, while some
other parts might sustain only tensile forces. Practical applications of uni-
lateral contact include such machine elements as joints, hinges, press-fits,
and examples of structures with tensile-only members include suspension
bridges and cranes.

In addition to extending “classic” structural topology optimization re-
sults (existence of optimal designs, convergence of ε-perturbations) to
the general stochastic setting, we analyse the continuity of optimal so-
lutions with respect to changes in the probability measure. The results
of this analysis give us explicit information about when the introduction
of uncertainty into the structural topology optimization models indeed
leads to robust optimal designs.

2.1.1 Historical overview

The study of the topology optimization of trusses dates back at least
as early as the beginning of the previous century [Mic04]. Practice has
shown that the idea of allowing truss topology to change leads to ex-
ceedingly efficient designs. Thus both the optimization and mechanical
models were considerably generalized in many aspects by many authors
during the last thirty years (see for example surveys [RKB95, Roz01]).

Unfortunately, designs obtained from a topology optimization pro-
cedure have a principal drawback. They may be very inefficient or can



Existence of Solutions and Sensitivity Analyses 15

even fail when loading conditions slightly change. An attempt to main-
tain the efficiency of topology optimization while hedging off possible
failures or inefficient behaviour has given rise to a field of robust topol-
ogy optimization. Owing to the anticipated fact that the “real” prob-
ability model is never known, and the reported high sensitivity of so-
lutions to stochastic structural optimization problems with respect to
small changes in probability measure (e.g. [BHE90, pp. 20–22]), many
probability-free worst-case (“pessimistic”) models of uncertainty have
been developed as an alternative to probabilistic ones. In such worst-
case models uncertain parameters are assumed to vary in convex (“con-
vex uncertainty models”) or even in polyhedral (“polyhedral uncertainty
models”) sets. An efficient numerical approach to solve problems of this
type is known [BTN97], which however has a considerable drawback: the
algorithm can treat uncertainties with respect to loading conditions only.
Furthermore, loads are restricted to lie in some small ellipsoid around
the “primal loads”, a condition that further reduces the generality of the
algorithm.

Recently in [CPW01] and [PaP00] stochastic structural topology op-
timization problems have been formulated and analysed in the case of
discrete probability spaces, with emphasis on sensitivity analysis leading
to numerical methods. The sensitivity analysis conducted as one part of
this paper is an extension of the results in [PaP00] to a more general
probabilistic setting.

2.1.2 Mechanical equilibrium

In this subsection we introduce the notation and mechanical principles
necessary to state the problems we are going to analyse.

Given positions of the nodes the design (and topology in particular)
of a truss can be described by the following sets of design variables:

- xi ≥ 0, i = 1, . . . , m, representing the volume of material, allocated to
the bar i in the structure;

- Xj ≥ 0, j = 1, . . . , r2, representing the volume of material, allocated
to the cable j.

We introduce two index sets of the present (or active) members in the
structure: I(x) = { i = 1, . . . , m | xi > 0 } and J (X) = { j = 1, . . . , r2 |
Xj > 0 }.

Let (Ω, S, P) be a complete probability space. Given a particular de-
sign the status of the linear elastic mechanical system is governed by the
principle of minimum complementary energy (C)(x,X)(ω) (in our case it
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is the (x, X, ω)-parametric minimization problem):





min
(s,S,λ)

E(x, X, s, S, λ, ω) :=
1

2

∑

i∈I(x)

s2
i

E(ω)xi
+ gT

1 (ω)λ

+
∑

j∈J (X)

((Lj(ω)Sj)
2

2Ec(ω)Xj
+ (g2(ω))jSj

)
,

s.t.





CT
1 (ω)λ +

∑

i∈I(x)

BT
i (ω)si +

∑

j∈J (X)

Sjγj(ω) = f(ω),

λ ≥ 0,

SJ (X) ≥ 0,

where the functions in the problem have the following meaning from a
mechanical point of view:

- E(ω) and Ec(ω) are Young’s moduli for the structure and cable mate-
rials respectively;

- Bi(ω) is the kinematic transformation matrix for the bar i;
- γj(ω) is the unit direction vector of the cable j;
- (g2(ω))j is the initial slack of the cable j;
- Lj(ω) is the length of the cable j;
- C1(ω) is the quasi-orthogonal kinematic transformation matrix for rigid

obstacles;
- g1(ω) ≥ 0 is the vector of the initial gaps;
- f(ω) is the vector of external forces.

For the problem to be tractable we assume that all functions listed above
are S-measurable. We further assume that the matrix C1 is quasi-
orthogonal, that is, that C1C

T
1 = I . That condition is fulfilled if at each

node either there is at most one rigid support or multiple supports “act”
in orthogonal directions to each other.

The variables in the problem (C)(x,X)(ω) have the following interpre-
tation:

- si is the tensile force in the bar times its length;
- Sj is the tensile force in the cable;
- λ is the vector of contact forces.

Note, that from the quasi-orthogonality of C1 it follows that λ is
uniquely determined by (s, S) and depends continuously on them:

λ = C1(ω)
(
f(ω) −

∑

i∈I(x)

BT
i (ω)si −

∑

j∈J (X)

Sjγj(ω)
)
. (2.1)

These facts will be often used without backward reference.
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2.1.3 General stochastic minimum compliance problem

We are now ready to state the first problem considered in this paper —
the general stochastic minimum compliance problem:

(P1)





min
(x,X,s(·),S(·))

cf (x, X, s(·), S(·), λ(·)) :=

∫

Ω

E(x, X, s(ω), S(ω), λ(ω), ω) P(dω)

s.t.





x ≤ x ≤ x, 1T
mx ≤ v,

X ≤ X ≤ X, 1T
r2

X ≤ V,

(s(ω), S(ω), λ(ω)) solves (C)(x,X)(ω), P-a.s.,

where v and V are the limits on the amount of cable and structure ma-
terial correspondingly. In this problem we minimize the average value of
compliance for multiple load cases.

In topology optimization we set lower bounds x = 0 and X = 0.

2.1.4 Stochastic stress constrained minimum weight problem

The formal problem formulation is as follows:

(P2)





min
(x,X,s(·),S(·))

w(x, X) := ρ11
T
mx + ρ21

T
r2

X

s.t.





x ≤ x ≤ x,

X ≤ X ≤ X,

|si(ω)| ≤ σ1xi, i = 1, . . . , m,

LjSj(ω) ≤ σ2Xj , j = 1, . . . , m,

(s(ω), S(ω)) solves (C)(x,X)(ω),

P-a.s.,

P-a.s.,

P-a.s.,

where σ1 and σ2 are the maximal allowable effective stresses in, and ρ1

and ρ2 the densities of, the structure and the cable materials respectively.
In this problem we require stress constraints to hold for almost all load
cases, or we allow them to be violated with probability zero.

In topology optimization we set lower bounds x = 0 and X = 0.

2.1.5 Outline

The outline of the remaining part of the paper is as follows. In Section 2.2
the existence of solutions to the stated problems is proved. Section 2.3
is dedicated to the analysis of the continuity of solutions with respect
to changes in the lower bound on the design variables. The stability of
solutions with respect to small changes in the probability measure is the
topic of Section 2.4. Proofs of the auxiliary results can be found in the
appendix.
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2.2 Existence of solutions

In this section we show the existence of optimal designs for problems
(P1) and (P2) under reasonable assumptions about the underlying me-
chanical model. The results depend on the closedness of the feasible set,
which is typically the main issue when the existence of optimal solution
to MPEC is in question [LPR96, Example 1.1.2]. Bilevel structural topol-
ogy optimization problems, where the lower-level problem is (C)(x,X)(ω),
were extensively studied in [PaP00]. We cite three important results for
the reader’s convenience.

Proposition 2.2.1. Fix ω ∈ Ω.

(i) [PaP00, Theorem 2.1] Suppose the feasible set of the problem
(C)(x,X)(ω) is nonempty for some nonnegative design (x, X). Then,
there exists a unique optimal solution to the problem (C)(x,X)(ω).

(ii) [PaP00, Theorem 3.1] Let {(xk, Xk)} be a nonnegative sequence
of designs, converging to (x, X). Suppose, that {(sk, Sk, λk)} is
the corresponding sequence of optimal solutions to (C)(xk,Xk)(ω),
and assume that the sequence of energies is bounded, that is,
that E(xk , Xk, sk, Sk, λk, ω) ≤ c < ∞ for all k. Then, there
exists a unique optimal solution (s, S, λ) to (C)(x,X)(ω), and
limk→∞(sk, Sk, λk) = (s, S, λ).

(iii) [PaP00, Corollary 3.2] Let (x, X) be a nonnegative design for
which there exists an optimal solution (s, S, λ) to the problem
(C)(x,X)(ω). Let {(xk , Xk)} be a sequence of nonnegative designs
which converges to (x, X), and suppose that {(sk, Sk, λk)} is the cor-
responding sequence of optimal solutions to (C)(xk,Xk)(ω). Then,
limk→∞(sk, Sk, λk) = (s, S, λ).

We note that if the problem (C)(x,X)(ω) is feasible for some nonneg-
ative design (x, X), then it is feasible for any design (x̃, X̃) ≥ (x, X).
Furthermore, the feasible set of (C)(x̃,X̃)(ω) includes that of (C)(x,X)(ω).

To prove the existence of optimal designs we need an auxiliary result,
which asserts the measurability of solutions to (C)(x,X)(ω) as functions
of ω. In particular, the measurability of the solutions together with the
lower semi-continuity of the energy functional imply that we can inte-
grate the energy unless it is “too large”.

Corollary 2.2.2. Suppose the measurability assumptions stated in Sec-
tion 2.1 hold. Suppose further that for almost any ω the feasible set of
the problem (C)(x,X)(ω) is nonempty. Then there exists a unique (up to
changes on sets of probability zero) triple of functions (s(·), S(·), λ(·)) al-
most everywhere solving the parametric problem (C)(x,X)(·). In addition,
these functions are S-measurable.
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The following result is a generalization of [PaP00, Theorem 3.1 and
Corollary 3.2] to a stochastic setting.

Proposition 2.2.3. Let a sequence of nonnegative designs {(xk, Xk)} con-
verge to (x̄, X̄). Suppose that (sk(·), Sk(·), λk(·)) solve (C)(xk,Xk)(·), and
that the sequence of energy expectations is bounded:

∫

Ω

E(xk , Xk, sk(ω), Sk(ω), λk(ω), ω) P(dω) ≤ C < ∞.

Then there exists a solution (s̄(·), S̄(·), λ̄(·)) to the problem (C)(x̄,X̄)(·), and
{(sk(·), Sk(·), λk(·))} almost sure converges to (s̄(·), S̄(·), λ̄(·)).

Theorems 2.2.4 and 2.2.5 show the existence of optimal solutions to
problems (P1) and (P2).

Theorem 2.2.4 (Existence of solutions to (P1)). Suppose that for
some feasible point (x0, X0, s(·), S(·)) in the problem (P1) we have
cf (x, X, s(·), S(·), λ(·)) < ∞. Then, there exists at least one optimal so-
lution to (P1).

Proof. Consider an arbitrary minimizing sequence
{(xk, Xk, sk(·), Sk(·))} for the problem (P1) together with the cor-
responding sequence of contact forces {λk(·)}. Since the the feasible
design space is compact, without any loss of generality we may assume
that the sequence {(xk, Xk)} converges to a limit (x∗, X∗) satisfying the
design constraints. Proposition 2.2.3 for such a sequence implies that the
sequence of state variables {(sk(·), Sk(·), λk(·))} almost sure converges
to a limit (s∗(·), S∗(·), λ∗(·)) solving (C)(x∗,X∗)(·) thus showing the
feasibility of the limit in (P1). Furthermore, owing to the l.s.c. property
of the energy functional for each ω and Fatou’s Lemma, the following
inequality holds:

0 ≤ cf (x∗, X∗, s∗(·), S∗(·), λ∗(·)) ≤ lim inf
k→∞

cf (xk, Xk, sk(·), Sk(·), λk(·)),

whence (x∗, X∗, s∗(·), S∗(·)) is an optimal solution to (P1). #

The next theorem generalizes Proposition 4.1 in [EvP01], which as-
serts the existence of solutions to the problem (P2) for trusses without
unilateral constraints.

Theorem 2.2.5 (Existence of solutions to (P2)). Suppose that the follow-
ing assumptions are satisfied:

(i) the feasible set of the problem (P2) is nonempty;

(ii) P(E(·) ≥ c) = P(Ec(·) ≥ c) = 1 for some constant c > 0;

(iii) the functions Lj(·), g1(·), g2(·), C1(·), Bi(·) and f(·) are essentially
bounded.
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Then there exists at least one optimal solution to the problem (P2).

Proof. Assumption (iii) together with the stress constraints and equa-
tion (2.1) implies the essential upper-boundedness of the term gT

1 (ω)λ(ω)
on the feasible set by some constant C < ∞. Following the proof of The-
orem 4.3 in [PaP00] we can show the existence of the upper bound on
energy for some strictly positive design (x̂, X̂) ≤ (x, X):

E(x, X, s(ω), S(ω), λ(ω), ω) ≤
1

2

m∑

i=1

x̂i(σ1)
2

E(ω)

+

r2∑

j=1

max
Xj≤Xj≤X̂j

{
0,

(Xj(Lj(ω)σ2)
2

2Ec(ω)
+ (g2(ω))jσ2Xj

)}
+ C

=: v(ω) + C, P-a.s.,

such that no optimal design can violate it. Assumptions (ii) and (iii)
imply that P(v(·) < ∞) = 1. We then add a redundant constraint
E(x, X, s(ω), S(ω), λ(ω), ω) ≤ v(ω) + C to our problem and use Propo-
sition 2.2.1(ii) to obtain the closedness of the feasible set for almost any
ω. Now Theorem 3.1 in [EvP01] asserting the existence of solutions to
SMPEC can be applied, and we are done. #

Remark 2.2.5.1. Assumption (ii) does not allow the cable and structure
material to break with a positive probability, because in this case we usu-
ally cannot expect the existence of a mechanical equilibrium with prob-
ability 1. Assumption (iii) is satisfied by most mechanical models; the
only questionable assumption is the boundedness of the loads f(·). Our
interpretation of this assumption is that since we work in a framework of
the linear elasticity we cannot consider unbounded loads.

2.3 Convergence of ε-perturbations

The so-called ε-perturbation of structural topology optimization prob-
lems, or approximation with a sequence of sizing optimization problems,
has become a classic topic.

For compliance minimization problems a naive replacement of the
lower design bounds (x, X) = 0 with a small positive value ε > 0 tending
to zero (whence the name — ε-perturbation) is sufficient. Theorem 2.3.1
below is an extension of the corresponding result for discrete probability
measures (Theorem 4.2 in [PaP00]).

The situation with the stress constrained weight minimization is far
more complicated. Sved and Ginos [SvG68] observed that the problem
may have singular solutions, which cannot be approximated by the sim-
plistic approach outlined above. The properties of the feasible region
were further investigated by Kirsch [Kir90], Cheng and Jiang [ChJ92],
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Rozvany and Birker [RoB94]. Cheng and Guo [ChG97] proposed a
more sophisticated relaxation procedure, where not only lower bounds
but also stress constraints were perturbed. They showed the convergence
of optimal values of perturbed problems to the optimal value of the orig-
inal problem, while Petersson [Pet01] showed the convergence of opti-
mal solutions. The ε-relaxation was extended to continuum structures by
Duysinx and Bendsøe [DuB98] and Duysinx and Sigmund [DuS98]. Pa-
triksson and Petersson [PaP00] generalized the result for stochastic truss
topology optimization problems including unilateral constraints and dis-
crete probability measures. Theorem 2.3.3 below extends the latter result
for general probability spaces.

Stolpe and Svanberg [StS01] demonstrated that singular topologies
can occur in multi-load cases even if all other parameters (material prop-
erties, stress limits) are kept uniform among the structural members. This
implies that in our case singular topologies are quite likely to occur.

2.3.1 ε-perturbation of (P1)

Consider the following ε-perturbation of the problem (P1):

(Pε
1)





min
(x,X,s(·),S(·))

cf (x, X, s(·), S(·), λ(·))

s.t.





ε1m ≤ x ≤ x, 1T
mx ≤ v,

ε1r2 ≤ X ≤ X, 1T
r2

X ≤ V,

(s(ω), S(ω), λ(ω)) solves (C)(x,X)(ω), P-a.s.

Theorem 2.3.1. Suppose that for some ε0 > 0 there is a solution
(x0, X0, s0(·), S0(·), λ0(·)) that is feasible in (P1) with (x0, X0) ≥ ε01m+r2

and cf (x0, X0, s0(·), S0(·), λ0(·)) < ∞. For each ε0 ≥ ε > 0, let
(x∗

ε , X
∗
ε , s∗ε(·), S

∗
ε (·), λ∗

ε(·)) denote an arbitrary optimal solution to (Pε
1).

Then any limit point of the sequence {(x∗
ε , X

∗
ε , s∗ε(·), S

∗
ε (·), λ∗

ε(·))} (and
there is at least one) is an optimal solution to (P0

1 ) = (P1).

Proof. According to Theorem 2.2.4 a solution to (Pε
1) exists for

each ε0 ≥ ε ≥ 0. The sequence {(x∗
ε , X

∗
ε , s∗ε(·), S

∗
ε (·), λ∗

ε(·))} is
feasible to the original problem (P0

1 ). Furthermore, the sequence
{cf (x∗

ε , X
∗
ε , s∗ε(·), S

∗
ε (·), λ∗

ε(·))} is non-increasing. Applying Proposi-
tion 2.2.3 we can obtain a feasible solution (x̄, X̄, s̄(·), S̄(·), λ̄(·)) to (P1)
such that it is an a.s.-limit of {(x∗

ε , X
∗
ε , s∗ε(·), S

∗
ε (·), λ∗

ε(·))}.
On the other hand, for any feasible solution (x, X, s(·), S(·), λ(·))

in (P1) with cf (x, X, s(·), S(·), λ(·)) < ∞ there is a sequence
{(xε, Xε, sε(·), Sε(·), λε(·))} of feasible solutions to (Pε

1 ) such that
(xε, Xε) → (x, X) (cf. Proposition 1.1.2 in [AuF90]). Proposi-
tion 2.2.1(iii) implies that the sequence {(sε(·), Sε(·), λε(·))} a.s. con-
verges to (s(·), S(·), λ(·)).
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Finally,

cf (x̄, X̄, s̄(·), S̄(·), λ̄(·)) ≤ lim inf
ε→0

cf (x∗
ε , X

∗
ε , s∗ε(·), S

∗
ε (·), λ∗

ε(·))

≤ lim inf
ε→0

cf (xε, Xε, sε(·), Sε(·), λε(·))

≤ lim
ε→0

cf (xε, Xε, s(·), S(·), λ(·))

= cf (x, X, s(·), S(·), λ(·)),

(2.2)

where the inequalities are owing to the l.s.c.-property of E and Fatou’s
Lemma, the optimality of (x∗

ε , X
∗
ε , s∗ε(·), S

∗
ε (·), λ∗

ε(·)) in (Pε
1 ), and the op-

timality of (sε(·), Sε(·), λε(·)) in (C)(xε,Xε)(·) correspondingly. The equal-
ity follows from the continuity of cf with respect to (x, X) (we can move
variables (x, X) out of the integrals).

Since the feasible point (x, X, s(·), S(·)) was arbitrary, the inequal-
ity (2.2) shows the optimality of (x̄, X̄, s̄(·), S̄(·)) in (P0

1 ). #

Remark 2.3.1.1. For the convergence of optimal values we note first that
the sequence of energies {E(x∗

ε , X
∗
ε , s∗ε(·), S

∗
ε (·), λε(·))} a.s. converges

to E(x̄, X̄, s̄(·), S̄(·), λ̄(·)) owing to Proposition 2.2.1, parts (ii) and (iii),
applied for almost any ω. Thus to apply the Dominated Convergence
Theorem it is only necessary to have an upper bound on the energies.
Such upper bound exists, e.g., in the setting of section 2.4.

2.3.2 ε-perturbation of (P2)

In this subsection we restrict ourselves to a very important special case
of a truss without unilateral constraints under stochastic loading. In this
case, a mechanical equilibrium condition can be formulated as a system
of linear equations, parametrized by x. To this end, we first define B as
the m×n matrix created by stacking the matrices Bi on top of each other,
and, D(x) as the m×m diagonal matrix with elements xiE on a diagonal.
Then s(ω) is a state vector corresponding to a nonnegative design x under
loading f(ω) if and only if for some vector u(ω) of Lagrange multipliers
(nodal displacements) the following system is satisfied:

(Q)x(ω)

(
0 BT

D(x)B −I

) (
u(ω)
s(ω)

)
=

(
−f(ω)

0

)
.

Consider now the following ε-perturbation of the problem (P2):

(Pε
2)





min
(x,s(·))

w(x)

s.t.





o(ε)1m ≤ x ≤ x + o(ε)1m,

|si(ω)| ≤ σ1xi + ε, i = 1, . . . , m,

s(ω) solves (C)x(ω),

P-a.s.,

P-a.s.,
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where from the function o : R++ → R++ we only require the properties
that {o(ε)/ε} converges to zero while {o(ε)/ε2} is bounded away from
zero (e.g., o(ε) = ε2 satisfies these requirements).

Before stating the theorem we need a lemma, which asserts the di-
rectionally Lipschitz dependence of state variables s(ω) on design x uni-
formly in ω.

Lemma 2.3.2. Consider a truss without unilateral constraints under essen-
tially bounded stochastic loading f(·). Let x ≥ 0 be a design for which
the problem (C)x(ω) has a solution s(ω) for almost any ω. Let Ψ > 0 be
arbitrary in R

m and for ε > 0 set

xε = x + εΨ.

Denote by sε(ω) the corresponding optimal solution to (C)xε
(ω). Then,

for some positive constant τ and almost any ω, the inequality

‖sε(ω) − s(ω)‖ ≤ τε (2.3)

holds for all ε > 0.

Theorem 2.3.3. In addition to the the assumptions of Lemma 2.3.2, sup-
pose that for some ε0 > 0 there is a solution (x0, s0(·)) that is feasible in
(P2) with x0 ≥ o(ε0)1m.

For each ε0 ≥ ε > 0 let (x∗
ε , s

∗
ε(·)) denote an arbitrary optimal solution

to (Pε
2 ). Then any limit point of the sequence {x∗

ε} (and there is at least
one) is an optimal solution to (P0

2 ) = (P2). The sequence of optimal
values {w(x∗

ε , X
∗
ε )} converges to the optimal value of (P0

2 ).
Furthermore, for any converging subsequence of the design variables

{x∗
εk
} → x∗ the corresponding sequence of state variables {s∗εk

(·)} a.s.
converges to the optimal state s∗(·), corresponding to x∗.

Proof. Using Theorem 2.2.5 we can verify the existence of optimal so-
lutions to (Pε

2 ) for each ε0 ≥ ε ≥ 0. Now one can follow the proof of The-
orem 4.4 in [PaP00] to conclude that the sequence {(x∗

ε , s
∗
ε(·))} as well as

the sequence of energies {E(x∗
ε , s

∗
ε(·))} is essentially bounded. Thus there

exists a limit point x∗ of the design variables. Then for almost any ω,
there is a subsequence {εk(ω)} such that limk(ω)→∞(x∗

εk(ω)
, s∗εk(ω)

(ω)) =

(x∗, s∗(ω)). Proposition 2.2.1 (ii) implies that the limit is the solution to
the problem (C)x∗(ω). The continuity of other constraints implies that
(x∗, s∗(·)) is feasible in (P0

2 ).
Let (x, s(·)) be an arbitrary feasible solution to (P2), set xε = x +

o(ε)1m and let sε(·) solve (C)xε
(·). Owing to Lemma 2.3.2 the following

estimation holds:

|sε(·)| ≤ τo(ε) + |s(·)| ≤ τo(ε) + σ1[x + (o(ε) − o(ε))1m]

= (τ − σ1)o(ε) + σ1xε ≤ σ1xε + ε,
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for all ε small enough, where we have used the assumption that
{o(ε)/ε} → 0. Since clearly xε satisfies the design constraints, (xε, sε(·))
is feasible in (Pε

2). Hence, w(x∗
ε) ≤ w(xε). Letting ε tend to zero in this

inequality, we obtain that w(x∗) ≤ w(x), whence we may conclude that
(x∗, s∗(·)) solves (P2).

The continuity of the objective function implies the convergence of
the optimal values. The boundedness of energies at the optimal solution
clarifies the usage of Proposition 2.2.1 (iii), hence the convergence of
state variables also follows. #

We illustrate Theorem 2.3.3 with a small numerical example.

Example 2.3.4 (4-bar truss). Consider the problem of minimizing the
weight of the 4-bar structure shown in Figure 2.1. The stress limit for
each bar is σ = 1, and the Young’s modulus is E = 1. Assume that the
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Fig. 2.1: The 4-bar truss problem.

upper design bounds are inactive, and that the force vector f(ω) equals
(2 cos(ω), 1.5 sin(ω)), where 0 ≤ ω ≤ π. The probability measure is
the uniform one on [0, π] (it is easy to see that only the support of the
probability measure is necessary to define stress constrained weight min-
imization; see also remarks in the end of Section 2.4). Since the initial
structural topology as well as the loading conditions are symmetric, we
can expect symmetric optimal solutions (i.e., x∗

1 = x∗
4, x∗

2 = x∗
3). Fig-

ure 2.2 shows the projection of the set of feasible designs onto the lin-
ear subset {x ∈ R

4 | x1 = x4, x2 = x3 }. Note that the feasible set is
not a finite union of polyhedra, because we work with an infinite num-
ber of load cases (compare with the similar Problem 1 in [StS01]). De-
spite the large number of load cases, at the globally optimal solution,
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x∗ = (0, 2.5, 2.5, 0), the structural topology was modified (i.e., bars 1 and
4 were removed).

There are three local minima, two of which (including the globally
optimal solution) are singular. The nonsingular non-global, local min-
imum of the original problem is the global minimum for the “naively”
perturbed problem for all small values of ε. Therefore, we cannot ap-
proximate the globally optimal solution by the “naive” ε-perturbation.

The “correct” ε-perturbation scheme allows us to recover the global
optimal solution. Figure 2.3 shows the convergence of the optimal solu-
tions to the ε-perturbed problems to the solution of the original problem,
as ε decreases to zero (variables x3 and x4 are not shown, owing to the
symmetry of the calculated optimal solutions). We have used the nested
formulation (with eliminated state variables) and a finite difference ap-
proximation of the derivatives to solve the problem using an SQP algo-
rithm.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

global min

local min

x

x

1

2

x + x = 2.51 2

Fig. 2.2: The feasible design domain of the 4-bar truss problem.

2.4 Distribution sensitivity

The analysis of stability of optimal solutions with respect to small changes
in probability measure is of great importance. From the computational
point of view it allows one to replace the original stochastic problem by
a sequence of simpler problems, involving approximations (discretiza-
tions) of the probability measure. From the practical point of view, it
asserts that solutions to the problem obtained using statistical estima-
tions of the unknown stochastic distribution are “close” to exact solu-
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Fig. 2.3: Convergence of the ε-perturbations for the 4-bar truss problem.

tions. From the theoretical point of view, it confirms the robustness of
the probabilistic approach with respect to possible errors in the probabil-
ity distribution.

Throughout this section we assume that Ω is a compact metric space,
S = B(Ω) and the only sources of uncertainty are the loads f(·), gaps
g1(·) and slacks g2(·), which in addition are assumed to be continuous
functions. Although we do not necessarily work with a complete prob-
ability space in such a setting, under additional assumptions about the
feasibility of the lower-level problem it is possible to omit the adverb “al-
most” from the discussion.

Corollary 2.4.1. Given a nonnegative design (x, X), suppose that the prob-
lem (C)(x,X)(ω) is feasible for any ω. Then the solution (s(ω), S(ω), λ(ω))
exists, is unique and continuous, and the optimal value function
E(x, X, s(ω), S(ω), λ(ω), ω) is continuous.

Proof. Both existence and uniqueness were announced in Corol-
lary 2.2.2. Continuity then follows from [BGK+83, Theorem 5.5.1]. #

In the remainder of the section we assume that the assumptions of
Corollary 2.4.1 hold for any positive design (x, X). This assumption can
easily be satisfied by choosing a “rich enough” ground structure, which
can sustain loads for any ω.

Proposition 2.4.2. Let the sequence {(xk, Xk)} of positive designs con-
verge to a nonnegative design (x̄, X̄). Let (sk(·), Sk(·), λk(·)) be the con-
tinuous solution to (C)(xk,Xk)(·). Suppose that the sequence of energy
estimates {

∫
Ω
E(xk , Xk, sk(ω), Sk(ω), λk(ω), ω) P(dω)} is bounded. Then
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the sequence {(sk(·), Sk(·), λk(·))} converges on a set of measure one to a
limit (s̄(·), S̄(·), λ̄(·)), the solution to the problem (C)(x̄,X̄)(·). Furthermore,
the sequence of optimal values {E(xk , Xk, sk(·), Sk(·), λk(·), ·)} uniformly
converges on a set of measure one to E(x̄, X̄, s̄(·), S̄(·), λ̄(·), ·).

2.4.1 Stability of solutions to (P1)

Before proceeding with analyzing the stability of solutions to the stochas-
tic compliance minimization problem with respect to small changes in
the probability measure, we note that in the settings of this section
the problem (P1) has a feasible solution (x0, X0, s0(·), S0(·)) such that
(x0, X0) > 0 provided the bounds on the available material (v, V ) are
positive. We denote the optimal value of a problem (P) by val(P).

Corollary 2.4.3. The following equalities hold:

val(P1) = inf
ε>0

val(Pε
1 ) = lim

ε→0
val(Pε

1).

Proof. Follows immediately from Theorem 2.3.1 and Proposi-
tion 2.4.2. #

Consider a sequence of probability measures {Pk} defined on B(Ω),
together with a sequence of optimization problems:

(P1)
k





min
(x,X,s(·),S(·))

cf
k(x, X, s(·), S(·)) :=

∫

Ω

E(x, X, s(ω), S(ω), λ(ω), ω) Pk(dω)

s.t.





x ≤ x ≤ x, 1T
mx ≤ v,

X ≤ X ≤ X, 1T
r2

X ≤ V,

(s(ω), S(ω), λ(ω)) solves (C)(x,X)(ω), Pk-a.s.

Lemma 2.4.4. Suppose that the sequence of probability measures {Pk}
weakly converges to P. Then val(P1) ≥ lim supk→∞ val(P1)

k.

Proof. Consider an arbitrary sufficiently small ε > 0 such that there
is an optimal solution (xε, Xε, sε(·), Sε(·)) to the problem (Pε

1). Owing to
Corollary 2.4.1 this point is feasible for all problems (P1)

k, so we get:

val(Pε
1) = cf (xε, Xε, sε(·), Sε(·), λε(·))

= lim
k→∞

cf
k(xε, Xε, sε(·), Sε(·), λε(·)) ≥ lim sup

k→∞
val(P1)

k,

and, owing to Corollary 2.4.3:

val(P1) = inf
ε>0

val(Pε
1) ≥ lim sup

k→∞
val(P1)

k.
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#

To prove the reverse inequality we assume additional regularity prop-
erties on the sequence {Pk}. Namely, we suppose that each measure
Pk has a density pk(·) with respect to a Lebesgue measure on Ω and
that the sequence {pk(·)} converges to a density p(·) of P Lebesgue-
almost everywhere. The existence of densities is not a very restrictive
assumption from the theoretical point of view, and it is usually assumed
in engineering applications of probability theory (for just a few examples,
see [Lin00, Soi00, Vro00, MAM01]).

Theorem 2.4.5. Let {(xk, Xk, sk(·), Sk(·))} be a sequence of solutions to
{(P1)

k}. Then any limit point (and there is at least one) of the sequence
{(xk, Xk, sk(·), Sk(·))} is a solution to the limiting problem (P1).

Proof. The sequence of design variables {(xk, Xk)} is bounded and
has a limit point (x0, X0). Thus we may assume that the original sequence
has converging design components.

Fatou’s Lemma and Lemma 2.4.4 imply:

∫

Ω

lim inf
k→∞

E(xk , Xk, sk(ω), Sk(ω), λk(ω), ω)p(ω) dω

≤

∫

Ω

lim inf
k→∞

[E(xk , Xk, sk(ω), Sk(ω), λk(ω), ω)pk(ω)] dω

≤ lim inf
k→∞

∫

Ω

E(xk , Xk, sk(ω), Sk(ω), λk(ω), ω)pk(ω) dω ≤ val(P1) < ∞.

Thus we see that the P-probability of the set Ωf = {ω ∈ Ω |
lim infk→∞ E(xk , Xk, sk(ω), Sk(ω), λk(ω), ω) < ∞} is one. Using
Proposition 2.2.1 (iii) we can verify the existence of a limiting state
(s0(·), S0(·), λ0(·)) corresponding to the design (x0, X0), and the P-a.s.
convergence of (sk(·), Sk(·), λk(·)) to this state. Using the lower semi-
continuity of E , this implies:

val(P1) ≤

∫

Ω

E(x0, X0, s0(ω), S0(ω), λ0(ω), ω)p(ω) dω

≤

∫

Ω

lim inf
k→∞

E(xk , Xk, sk(ω), Sk(ω), λk(ω), ω)p(ω) dω

≤ lim inf
k→∞

∫

Ω

E(xk , Xk, sk(ω), Sk(ω), λk(ω), ω)pk(ω) dω

= lim inf
k→∞

val(P1)
k.

Together with estimation of lim supk→∞ val(P1)
k given by Lemma 2.4.4

this finishes the proof. #



Existence of Solutions and Sensitivity Analyses 29

2.4.2 Example: Instability of solutions to (P2)

In the proof of continuity of solutions to the general stochastic compli-
ance minimization problem with respect to small changes in the proba-
bility measure we have used three properties of the problem:

- the boundedness of the objective function implies the convergence of
the state variables;

- the optimal value of the problems (Pε
1 ) monotonically decreases as ε

goes to zero;
- any positive design defines a solution, which is feasible for all probabil-

ity measures.

Unfortunately, the stress constrained weight minimization problem pos-
sesses neither of these properties. The following numerical example
shows that solutions to the stochastic weight constrained minimization
problem are not in general continuous with respect to changes in the
probability measure.

Example 2.4.6 (One bar with a cable). Figure 2.4 shows a simple one-
dimensional structure introduced and analysed in [PaP00] that consists
of a bar suspended with one cable. Suppose that Ω = [−1, 2], P is the

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���������������������������������������������������������
���������������������������������������������������������

σ =1/2 σ =12 1

11

X x

(ω)f

Fig. 2.4: The cable suspended one-bar truss.

uniform distribution on [−1/2, 1], f(ω) = ω, E = Ec = 1, ρ1 = ρ2 = 1,
x = 1 and X = 2. After eliminating the state variables one obtains the
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following optimization problem:




min
(x,X)

x + X

s.t.





0 ≤ x ≤ 1,

0 ≤ X ≤ 2,
xω

x + X
≤ x, P-a.s.,

− ω ≤ x, P-a.s.,

0 ≤
Xω

x + X
≤ X/2, P-a.s.

Figure 2.5 shows the feasible domain for the design variables (x, X).

���
�

X

1

2

1

constant weight

x
x+X=1 x+X=2

Fig. 2.5: The admissible design domain. The optimal solution is at the black circle.

Note that this domain consists of the union of a two-dimensional, convex
domain and the isolated optimal point (x∗, X∗) = (1, 0) with correspond-
ing optimal weight w∗ = 1.

Let Pk be a uniform distribution on [−1/2, 1] ∪ [2 − 1/k, 2]. We note
that the sequence {Pk} weakly converges to P and all the measures pos-
sess densities. On the other hand, for any vector (xk , Xk) feasible to (P)k

the inequality Xk ≥ 1 holds, owing to the fact that Pk(f(ω) > 1) > 0.
Thus the sequence of optimal solutions to (P2)

k cannot converge to the
optimal solution (x∗, X∗) = (1, 0) of (P2).

A few remarks are in order. The stress-constrained weight minimiza-
tion problem depends only on the support of the probability measure,
not on the measure itself. The assumption of fixed compact support of
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the approximating measures, being extremely restrictive from the theo-
retical point of view, is nevertheless satisfied in some applications (such
as the topology optimization of machine parts, where all loading condi-
tions can be prescribed).

In accordance with the previous remark, the stochastic weight mini-
mization problem could be treated as a semi-infinite mathematical pro-
gram. However, the presence of a probability measure could be exploited
algorithmically. For example, when constructing penalty functions for the
problem, one can impose larger penalties on more probable violations of
constraints.

2.5 Concluding remarks and further research

In Section 2.4 we have shown that the introduction of uncertainty into
structural topology optimization problems does not necessarily lead to
robust solutions, if one understands robustness as insensitivity to mod-
elling errors. It is possible to prove the robustness of the optimal so-
lutions to stochastic compliance minimization under regularity assump-
tions on the approximating probability measures. The main reason for
the instability of the optimal solutions to stochastic stress constrained
weight minimization is that stress constraints are imposed in a too re-
strictive way — we require them to hold with probability one. The al-
ternative is to allow small average violations of stress constraints, which,
however, may result in rather large violations with small probabilities.
This approach is one of the topics of current research.

One uncovered question in this paper is the possible construction of
efficient numerical methods for stochastic topology optimization prob-
lems. The current research topics in this area include:
◦ the approximation of stochastic structural topology optimization prob-

lems with simpler finite-dimensional problems with discrete measures;
◦ alternative ε-perturbation approaches, removing stress constraints

from the original problem.
This would allow us to apply existing algorithms for nonsmooth op-
timization (e.g. BT algorithm [OKZ98] or implicit programming algo-
rithm [LPR96]) to stochastic topology optimization problems.
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2.A Proofs of the auxiliary results

Proof of Corollary 2.2.2. Both existence and uniqueness follow from
Proposition 2.2.1(i) applied for almost any ω.

The feasible set of the problem is defined by inequality and equal-
ity constraints involving only measurable mappings, whence a point-to-
set mapping ω → { feasible set of (C)(x,X)(ω) } is measurable for fixed
(x, X), owing to Theorem 8.2.9 in [AuF90]. Each function s2/x is l.s.c.
with respect to s by [Roc70, p. 83], whence the objective function is mea-
surable. Then we apply Lemma III.39 and its Application in [CaV77]
to verify the existence of S-measurable solution. Since the solution is
unique, we are done. #

Proof of Proposition 2.2.3. Let Ẽ(ω) :=
lim infk→∞ E(xk , Xk, sk(ω), Sk(ω), λk(ω), ω), which is non-negative
and S-measurable being a lower limit of functions satisfy-
ing these properties (where measurability is owing to Corol-
lary 2.2.2). Let k(ω) be a sequence of indices such that
Ẽ(ω) = limk(ω)→∞ E(xk(ω), Xk(ω), sk(ω)(ω), Sk(ω)(ω), λk(ω)(ω), ω).

Using the non-negativity of E , the assumed feasibility of the problem,
and Fatou’s Lemma, we get:

0 ≤

∫

Ω

Ẽ(ω) P(dω)

≤ lim inf
k→∞

∫

Ω

E(xk , Xk, sk(ω), Sk(ω), λk(ω), ω) P(dω) ≤ C < ∞.

Thus P(Ẽ(ω) < ∞) = 1 holds, and for almost all ω ∈ Ω the sequence
{E(xk(ω), Xk(ω), sk(ω)(ω), Sk(ω)(ω), λk(ω), ω)} is bounded. Proposi-
tion 2.2.1(ii) for such ω implies that there exists (s̄(ω), S̄(ω), λ̄(ω))
solving the problem (C)(x̄,X̄)(ω), and such that (s̄(ω), S̄(ω), λ̄(ω)) =
limk(ω)→∞(sk(ω)(ω), Sk(ω)(ω), λk(ω)(ω)). From Corollary 2.2.2 we know
that (s̄(·), S̄(·), λ̄(·)) is measurable.

Now we can use the l.s.c. property of E for fixed ω (Lemma 3.2
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in [PaP00]):

0 ≤ E(x̄, X̄, s̄(ω), S̄(ω), λ̄(ω), ω)

≤ lim
k(ω)→∞

E(xk(ω), Xk(ω), sk(ω)(ω), λk(ω)(ω), Sk(ω)(ω), ω)

= lim inf
k→∞

E(xk, Xk, sk(ω), Sk(ω), λk(ω), ω),

whence

0 ≤

∫

Ω

E(x̄, X̄, s̄(ω), S̄(ω), λ̄(ω), ω) P(dω)

≤ lim inf
k→∞

∫

Ω

E(xk , Xk, sk(ω), Sk(ω), λk(ω), ω) P(dω) ≤ C < ∞.

The latter inequality and Proposition 2.2.1(iii) imply the almost sure con-
vergence of the sequence {(sk(·), Sk(·), λk(·))} to (s̄(·), S̄(·), λ̄(·)). #

Proof of Lemma 2.3.2. For each ε > 0 and almost each ω the problem
(Q)xε

(ω) has a unique solution (uε(ω), sε(ω)). Owing to the Hoffman
error bound [Hof52], the inequality

‖sε(ω) − s(ω)‖ ≤ τ̂

∥∥∥∥
(

0 BT

D(x)B −I

) (
uε(ω)
sε(ω)

)
−

(
f(ω)

0

)∥∥∥∥

= τ̂

∥∥∥∥
(

0
εD(Ψ)uε(ω)

)∥∥∥∥ ,

holds. Therefore, to finish the proof it is sufficient to show the uniform
essential boundedness of uε(·) for ε > 0.

Owing to Theorem 3.2 in [Pet01] (see also Theorem 3.2 in [PaP00])
the inequality ‖uε(ω)‖Ψ ≤ ‖u(ω)‖Ψ holds for almost each ω, where
u(ω) is an arbitrary Lagrange multiplier for the problem (C)x(ω), and
‖ · ‖Ψ is an elliptic norm associated with the positive definite matrix∑m

i=1 ΨiB
T
i EBi.

Let Ω1 ∈ S be a set of probability one such that each problem (C)x(ω)
with ω ∈ Ω1 has an optimal solution and the set Q := { f(ω) | ω ∈ Ω1 }
is bounded. The system (Q)x being a KKT system for a quadratic prob-
lem (C)x is solvable for each vector f in a closure of a convex hull of
the set Q, owing to Theorem 5.5.1 in [BGK+83]. Furthermore, holding x
fixed, the problem (C)x(·) satisfies the constant rank constraint qualifica-
tion (CRCQ), which, in turn, implies the sequentially bounded constraint
qualification (SBCQ) (cf. Proposition 1.3.8 in [LPR96]). In particular we
can infer the existence of a constant C, independent of ω, bounding the
minimum norm Lagrange multipliers ū(ω). This finishes the proof. #

Proof of Proposition 2.4.2. The pointwise convergence of op-
timal solutions on a set Ω1 of measure one holds owing to Proposi-
tion 2.2.3. On the other hand, for each (xk , Xk) the optimal value func-
tion to (C)(xk,Xk)(·) is a quadratic function of (f(·), g1(·), g2(·)) owing
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to Theorem 5.5.2 in [BGK+83]. Using a characterization of a solubil-
ity set of a parametric quadratic programming problem with parame-
ters in the linear part of the objective function and in the right-hand
sides of the constraints (Theorem 5.5.1 in [BGK+83]) we can infer the
convergence of solutions to (C)(xk,Xk) towards the solution of (C)(x̄,X̄)

for all (f, g1, g2) in some convex bounded polyhedral set, a.s. containing
{ (f(ω), g1(ω), g2(ω)) | ω ∈ Ω1 }. The convergence of quadratic functions
on a bounded convex polyhedron is uniform, and this finishes the proof.
#
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STOCHASTIC STRUCTURAL TOPOLOGY
OPTIMIZATION: DISCRETIZATION AND PENALTY
FUNCTION APPROACH

Anton Evgrafov∗and Michael Patriksson∗

Abstract

We consider structural topology optimization problems including unilateral con-
straints arising from, for example, non-penetration conditions in contact mechan-
ics or non-compression conditions for elastic ropes. To construct more realis-
tic models and to hedge off possible failures or inefficient behaviour of opti-
mal structures, we allow parameters (for example, loads) defining the problem
to be stochastic. The resulting nonsmooth stochastic optimization problem is
an instance of stochastic mathematical programs with equilibrium constraints
(MPEC), or stochastic bilevel programs. We propose a solution scheme based
first on the approximation of the given topology optimization problem with a
sequence of simpler sizing optimization problems, and second on approximat-
ing the probability measure in the latter problems. For stress constrained weight
minimization problems an alternative to ε-perturbation based on a new penalty
function is proposed.

Key words: Bilevel programming, stochastic programming, robust optimiza-
tion, discretization, ε-perturbation, stress constraints

3.1 Introduction and notation

In this paper we propose a solution scheme for stochastic generalizations
of two of the most natural and classic structural topology optimization
problems: the finding of a maximally stiff truss under a volume con-
straint, and the finding of a truss of minimal weight under stress con-
straints. The reason for introducing stochasticity into the problem is that

∗Department of Mathematics, Chalmers University of Technology, SE-412 80 Göteborg,
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uncertainty due to several factors (such as loads unknown in advance,
varying material properties, manufacturing errors, etc.) has to be taken
into account to obtain robust optimal solutions. Capturing the uncer-
tainty in the model through the use of probability theory allows us to
construct arbitrarily general models.

To include a wide range of applications we allow mechanical struc-
tures to be unilaterally constrained, i.e., some parts of the structure might
come into unilateral frictionless contact with rigid obstacles, while some
other parts might sustain only tensile forces. Practical applications of uni-
lateral contact include such machine elements as joints, hinges, press-fits,
and examples of structures with tensile-only members include suspension
bridges and cranes.

The resulting optimization problem is an instance of stochastic math-
ematical programming problems with equilibrium constraints (SMPEC),
or stochastic bilevel programming problems [PaW99, EvP01]. In con-
text of structural optimization, this class of problems was studied for dis-
crete probability measures in [CPW01, PaP00], and for general probabil-
ity measures in [EPP02].

In the case of discrete probability measures there is a strong connec-
tion with the intuitive multiple load approach ([SvG68], [Ben95, p. 8],
[StS01]), which is widely used to obtain designs that are more robust
with respect to unknown loading conditions. In such an approach, an
engineer picks up a few loading scenarios, empirically assigns them some
“weights” and then solves, essentially, the stochastic optimization prob-
lem with a discrete probability measure, where each scenario has a prob-
ability proportional to its “weight”. By considering our problems in the
framework of stochastic programming, we can analyze the question of
existence of the limiting optimal designs if the sequence of the empirical
probability distributions converges, i.e., as the number of the load cases
converges to infinity!

When the probability measure is not discrete, the problem is posed in
an infinite-dimensional space, whence it is important to construct finite-
dimensional approximations to the problem. The most popular approach
to solving stochastic optimization problems is based on the idea of ap-
proximating the probability measure with a sequence of discrete prob-
ability measures with finite support, resulting in a desired sequence of
finite-dimensional optimization problems.

Unfortunately, in our case the straightforward implementation of
such strategy is impossible, owing to the lack of standard constraint qual-
ifications by the feasible set of the problem. Therefore, we approximate
the given topology optimization problem by a sequence of simpler siz-
ing optimization problems (ε-perturbations), and then discretize the lat-
ter problems. The “naive” ε-perturbation involving only a change in
the lower bounds on design variables studied in [Ach98, PaP00, EPP02]
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is sufficient for solving stochastic compliance minimization problems.
For stress constrained weight minimization we propose a new penalty
function based alternative to the perturbation method by Cheng and
Guo [ChG97] (see also [Pet01, PaP00, EPP02]).

The outline of this paper is as follows. After introducing the neces-
sary mechanical principles and formulating the problems, in Section 3.2
we formulate the penalty function approach to the stress constrained
weight minimization. We illustrate this new approximation scheme with
small numerical examples. Section 3.3 is dedicated to the construction
of the finite-dimensional discretizations of the sizing approximations of
the topology compliance and weight minimization problems. We end the
paper with a numerical example (Section 3.4), illustrating all the steps of
the proposed solution approach.

3.1.1 Mechanical equilibrium

In this subsection we introduce the notation and mechanical principles
necessary to state the problems we are going to analyze.

Given positions of the nodes the design (and topology in particular)
of a truss can be described by the following sets of design variables:
- xi ≥ 0, i = 1, . . . , m, representing the volume of material, allocated to

the bar i in the structure;
- Xj ≥ 0, j = 1, . . . , r2, representing the volume of material, allocated

to the cable j.
We introduce two index sets of the present (or active) members in the
structure: I(x) = { i = 1, . . . , m | xi > 0 } and J (X) = { j = 1, . . . , r2 |
Xj > 0 }.

Let (Ω, S, P) be a complete probability space. Given a particular de-
sign the status of the linear elastic mechanical system is governed by the
principle of minimum complementary energy (C)(x,X)(ω) (in our case it
is the (x, X, ω)-parametric minimization problem):





min
(s,S,λ)

E(x, X, s, S, λ, ω) :=
1

2

m∑

i=1

s2
i

E(ω)xi
+ gT

1 (ω)λ

+

r2∑

j=1

((Lj(ω)Sj)
2

2Ec(ω)Xj
+ (g2(ω))jSj

)
,

s.t.





CT
1 (ω)λ +

∑

i∈I(x)

BT
i (ω)si +

∑

j∈J (X)

Sjγj(ω) = f (ω),

λ ≥ 0,

SJ (X) ≥ 0,

where the functions in the problem have the following meaning from a
mechanical point of view:
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- E(ω) and Ec(ω) are Young’s moduli for the structure and cable mate-
rials respectively;

- Bi(ω) is the kinematic transformation matrix for the bar i;
- γj(ω) is the unit direction vector of the cable j;
- (g2(ω))j is the initial slack of the cable j;
- Lj(ω) is the length of the cable j;
- C1(ω) is the quasi-orthogonal kinematic transformation matrix for

rigid obstacles;
- g1(ω) ≥ 0 is the vector of the initial gaps;
- f(ω) is the vector of external forces.
For the problem to be tractable we assume that all functions listed above
are S-measurable. We further assume that the matrix C1 is quasi-
orthogonal, that is, that C1C

T
1 = I , the unit matrix of the corresponding

size. This condition is fulfilled if at each node either there is at most one
rigid support or multiple supports “act” in orthogonal directions to each
other.

The variables in the problem (C)(x,X)(ω) have the following interpre-
tation:
- si is the tensile force in the bar i times its length;
- Sj is the tensile force in the cable j;
- λ is the vector of contact forces.

Note, that from the quasi-orthogonality of C1 it follows that λ is
uniquely determined by (s, S) and depends continuously on them:

λ = C1(ω)
(
f (ω) −

∑

i∈I(x)

BT
i (ω)si −

∑

j∈J (X)

Sjγj(ω)
)
. (3.1)

These facts will be used often without backward reference.

3.1.2 Stochastic minimum compliance problem

We are now ready to state the first problem considered in this paper —
the general stochastic minimum compliance problem (P1):





min
(x,X,s(·),S(·))

cf (x, X, s(·), S(·), λ(·)) :=

∫

Ω

E(x, X, s(ω), S(ω), λ(ω), ω) P(dω)

s.t.





x ≤ x ≤ x, 1T
mx ≤ v,

X ≤ X ≤ X, 1T
r2

X ≤ V,

(s(ω), S(ω), λ(ω)) solves (C)(x,X)(ω), P-a.s.,

where v and V are the limits on the amount of cable and structure mate-
rial correspondingly.

In topology optimization we set lower bounds x = 0 and X = 0.
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3.1.3 Stochastic stress constrained weight minimization problem

We formulate problem (P2) as follows:





min
(x,X,s(·),S(·))

w(x, X) := ρ11
T
mx + ρ21

T
r2

X

s.t.





x ≤ x ≤ x,

X ≤ X ≤ X,

|si(ω)| ≤ σ1xi, i = 1, . . . , m,

LjSj(ω) ≤ σ2Xj , j = 1, . . . , r2,

(s(ω), S(ω), λ(ω)) solves (C)(x,X)(ω),

P-a.s.,

P-a.s.,

P-a.s.,

where σ1 and σ2 are the maximal allowable effective stresses in, and ρ1

and ρ2 the densities of, the structure and the cable materials, respectively.
In topology optimization we set lower bounds x = 0 and X = 0.

3.2 Penalization

A continuation algorithm based on so-called ε-perturbation is a popular
numerical approach for solving stress constrained weight minimization
problems. The method was first proposed by Cheng and Guo [ChG97] for
trusses, and it corresponds to solving a sequence of sizing structural opti-
mization problems obtained from the original one by substituting lower
bound on the design variables with ε2 and relaxing the stress constraints
by ε. The perturbation parameter ε (whence the name — ε-perturbation)
is eventually reduced to zero, and the optimal solution from the previ-
ous iteration is used as a starting point for the new iteration. Peters-
son [Pet01] established the convergence of the optimal solutions to per-
turbed problems towards an optimal solution of the original problem,
Patriksson and Petersson [PaP00] generalized the procedure for stochas-
tic weight minimization of trusses including unilateral constraints and
discrete probability measures, and Evgrafov et al. [EPP02] proved the
convergence of the method for general probability measures in the spe-
cial case of trusses without unilateral constraints under stochastic loading
conditions.

Being an interesting theoretical result, it is difficult to transfer
the ε-perturbation result to efficient algorithms. Stolpe and Svan-
berg [StS01] discussed the possible discontinuity of the optimal solutions
to ε-perturbed problems with respect to ε, which might cause the contin-
uation approach to fail in practice. Furthermore, the presence of stress
constraints in the problem does not allow us to use the many numerical
algorithms that were designed for MPECs without state constraints (e.g.,
the BT algorithm [OKZ98, Chapter 7] or the implicit programming al-
gorithm [LPR96, Section 6.1]). Specifically in the stochastic setting, the
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presence of stress constraints does not allow us to construct discretiza-
tions for the problem. Even though the stress constraints must hold with
probability one they can be violated on some set of measure zero, which
may happen to contain our discretization points.

The goal of this section is to introduce an alternative convergent
scheme, which in addition to adding the small lower bounds on the design
variables moves the stress constraints into the objective function using a
convex penalty function. Let

G(x, X, s, S) :=
m∑

i=1

[|si| − σ1xi]
2
+

xi
+

r2∑

j=1

[LjSj − σ2Xj ]
2
+

Xj
.

Using the usual convention 0/0 = 0 and a/0 = ∞ for any a > 0, the func-
tion G can be evaluated at any nonnegative design (x, X). Furthermore,
G is l.s.c. on R

m
+ × R

r2
+ × R

m × R
r2
+ .

Let µ : R++ → R++ be an arbitrary function such that
limε→+0 µ(ε) = +∞ and limε→+0 εµ(ε) = 0. Consider the penalized
problem (P̄ε

2):




min
(x,X,s(·),S(·))

wε(x, X, s(·), S(·)) :=

w(x, X) + µ(ε)

∫

Ω

G(x, X, s(ω), S(ω)) P(dω)

s.t.





ε1m ≤ x ≤ x + ε1m,

ε1r2 ≤ X ≤ X + ε1r2 ,

(s(ω), S(ω), λ(ω)) solves (C)(x,X)(ω), P-a.s.

The problem (P̄ε
2) is an instance of a stochastic MPEC (or stochas-

tic bilevel programming problem). Even the existence of optimal solu-
tions for this class of problems is a non-trivial fact, which is caused by the
implicit characterization of the feasible set. Examples of MPEC having
non-closed feasible sets are easy to construct [LPR96, Example 1.1.2].

The closedness properties of design-to-force mappings were inves-
tigated by Petersson [Pet01] for trusses, then generalized for trusses
with unilateral constraints by Patriksson and Petersson [PaP00], and for
stochastic settings by Evgrafov et al. [EPP02]. We cite some auxiliary re-
sults from the latter paper, which will be used in the development that
follows.

Proposition 3.2.1 ([EPP02, Proposition 2.3]). Let a sequence of
nonnegative designs {(xk, Xk)} converge to (x̄, X̄). Suppose that
(sk(·), Sk(·), λk(·)) solves (C)(xk ,Xk)(·), and that the sequence of energy
expectations is bounded:

∫

Ω

E(xk, Xk, sk(ω), Sk(ω), λk(ω), ω) P(dω) ≤ C < ∞.
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Then there exists a solution (s̄(·), S̄(·), λ̄(·)) to the problem (C)(x̄,X̄)(·),
and {(sk(·), Sk(·), λk(·))} almost surely converges to (s̄(·), S̄(·), λ̄(·)).

The following energy estimation will be useful to obtain closedness
properties of the feasible set of the penalized problem (P̄ε

2) and to verify
the existence of solutions.

Lemma 3.2.2. Suppose that the functions Bi(·), γj(·), C1(·), f(·), g1(·),
g2(·), 1/E(·), L2(·)/Ec(·) are essentially bounded by some constant K >
0. Let (x, X) be a positive design such that (x, X) ≤ (x, X) < ∞ and
the problem (C)(x,X)(·) has a solution (s(·), S(·), λ(·)). Then there are
constants K1 > 0 and K2 > 0, depending on K, x, X, σ1, σ2, m and r2

only, such that

E(x, X, s(·), S(·), λ(·), ·) ≤ K1 + K2G(x, X, s(·), S(·)).

Proof. The inequality follows from the assumed essential bounded-
ness of the functions defining the problem (C)(x,X)(·) and inequalities of
the following type:

m∑

i=1

s2
i (·)

2E(·)xi
≤

1

E(·)

m∑

i=1

[
σ2

1xi +
[|si(·)| − σ1xi]

2
+

xi

]
,

following from the inequality (a + b)2 ≤ 2a2 + 2b2, which holds for arbi-
trary a, b ∈ R. In this way we can bound all the terms appearing in the
definition of E . #

Proposition 3.2.3. Suppose that the problem (P̄ε
2) is feasible and proper.

Then it possesses at least one optimal solution.

Proof. Lemma 3.2.2 gives us the energy estimation, necessary for the
application of Proposition 3.2.1. Then we can follow the proof of Theo-
rem 2.4 in [EPP02] to reach the conclusion. #

Now we come to the main result of this section, asserting that all limit
points of the family of optimal solutions to (P̄ε

2) as ε decreases to zero
are in fact optimal solutions to the limiting problem (P2). The proof of
this result depends on the following assumption of locally directionally
Lipschitz behaviour of the design-to-force mapping.

Assumption 3.2.4. Let (x, X) ≥ 0 be a design for which the problem
(C)(x,X)(ω) has a solution (s(ω), S(ω), λ(ω)) for almost any ω. Let
(Φ, Γ) > 0 be arbitrary in R

m × R
r2 and for ε > 0 set (xε, Xε) :=

(x, X) + ε(Φ, Γ). Denote by (sε(ω), Sε(ω), λε(ω)) the corresponding
optimal solution to (C)(xε,Xε)(ω). Then, there exist ε0 > 0 and a non-
negative function τ(ω) ∈ L2(Ω, P) such that the inequality

‖(s(ω), S(ω), λ(ω)) − (sε(ω), Sε(ω), λε(ω))‖ ≤ ετ(ω)

holds for almost all ω ∈ Ω and all 0 < ε < ε0.
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Assumption 3.2.4 is known to hold for trusses without unilateral
constraints and general probability measures [EPP02, Lemma 3.3],
and for trusses with unilateral contraints and discrete probability mea-
sures [PaP00, Theorem 3.3].

We denote the optimal value of a problem (P) by val(P).

Theorem 3.2.5. Suppose that the functions Bi(·), γj(·), C1(·), f(·),
g1(·), g2(·), 1/E(·), L2(·)/Ec(·) are essentially bounded, and let Assump-
tion 3.2.4 hold at each feasible design in (P2). Suppose further that for
some ε0 > 0 there is a solution (x0, X0, s0(·), S0(·)), which is feasible in
(P2) with (x0, X0) ≥ ε01m+r2 . Then for any 0 < ε ≤ ε0 the problem
(P̄ε

2) has an optimal solution (xε, Xε, sε(·), Sε(·)). Any limit point of the
sequence {(xε, Xε, sε(·), Sε(·))} as ε goes to zero is an optimal solution
to (P2).

Proof. The point (x0, X0, s0(·), S0(·)) is feasible in (P̄ε
2) for any

0 < ε ≤ ε0, with an objective value wε(x0, X0, s0(·), S0(·)) =
w(x0, X0). Proposition 3.2.3 implies the existence of a sequence
{(xε, Xε, sε(·), Sε(·))} of optimal solutions to (P̄ε

2). The compact-
ness of the design space implies the existence of a subsequence
{(xεk

, Xεk
)} converging to a limit (x̄, X̄) ≥ 0m+r2 . Since

wεk (xεk
, Xεk

, sεk
(·), Sεk

(·)) ≤ val(P2), we can apply Lemma 3.2.2 and
Proposition 3.2.1 to conclude that the sequence {(sεk

(·), Sεk
(·))} con-

verges to a limit (s̄(·), S̄(·)), solving the problem (C)(x̄,X̄)(·). The bound-
edness of {µ(εk)

∫
Ω G(xεk

, Xεk
, sεk

(·), Sεk
(·)) P(dω)} as εk goes to zero,

the nonnegativity and l.s.c. property of G, and Fatou’s Lemma, imply that
the point (x̄, X̄, s̄(·), S̄(·)) satisfies the stress constraints, whence is feasi-
ble in (P2). Then, the following inequalities hold:

val(P2) ≤ w(x̄, X̄) ≤ lim inf
k→∞

wεk (xεk
, Xεk

, sεk
(·), Sεk

(·))

= lim inf
k→∞

val(P̄εk

2 ).
(3.2)

On the other hand, for any point (x̃, X̃, s̃(·), S̃(·)) that is feasible in
(P2) and for large enough k, Assumption 3.2.4 implies that the point
(x̃+ εk1m, X̃ + εk1r2 , s̃εk

(·), S̃εk
(·)), where (s̃εk

(·), S̃εk
(·), λ̃εk

(·)) solves
(C)(x̃+εk1m,X̃+εk1r2 )(·), is feasible in the problem (P̄εk

2 ) with the objec-

tive value wεk (x̃+εk1m, X̃+εk1r2 , s̃εk
(·), S̃εk

(·)) ≤ w(x̃, X̃)+εk(mρ1+
r2ρ2)+Kεkµ(εk) for a suitable positive constant K, thus showing the re-
verse inequality:

lim sup
k→∞

val(P̄εk

2 ) ≤ val(P2);

together with (3.2) this establishes the optimality of (x̄, X̄, s̄(·), S̄(·)) in
(P2). #
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3.2.1 Numerical examples

We illustrate Theorem 3.2.5 with small numerical examples.

Example 3.2.6 (One-bar truss with a cable). Figure 3.1 shows a simple
one-dimensional structure introduced and analyzed in [PaP00] that con-
sists of a bar suspended with one cable. Suppose that Ω = [−1, 2], P is the
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Fig. 3.1: The cable suspended one-bar truss.

uniform distribution on [−1/2, 1], f(ω) = ω, E = Ec = 1, ρ1 = ρ2 = 1,
x = 1 and X = 2. Every feasible design (x, X) must satisfy x > 0 (be-
cause P(f < 0) > 0). Solving the equilibrium problem, we can see that
the design-to-force mapping

s(ω) =

{
xω

x+X , for ω ≥ 0,

ω, otherwise,
S(ω) =

{
Xω

x+X , for ω ≥ 0,

0, otherwise,

satisfies the Assumption 3.2.4 for every feasible design, thus we can ex-
pect the convergence of solutions to penalized problems towards the so-
lution of the original problem.

After eliminating the state variables one obtains the following opti-
mization problem:





min
(x,X)

x + X

s.t.





0 ≤ x ≤ 1,

0 ≤ X ≤ 2,
xω

x + X
≤ x, P-a.s.,

− ω ≤ x, P-a.s.,

0 ≤
Xω

x + X
≤ X/2, P-a.s.
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Figure 3.2 shows the feasible domain for the design variables (x, X).

���
�

X

1

2

1

constant weight

x
x+X=1 x+X=2

Fig. 3.2: The admissible design domain. The optimal solution is at the black circle.

Note that this domain consists of the union of a two-dimensional, convex
domain and the isolated optimal point (x∗, X∗) = (1, 0) with correspond-
ing optimal weight w∗ = 1.

Now we set µ(ε) = ε−0.8 and consider perturbation parameters εk =
2−k. The corresponding penalized problem is:





min
(x,X)

x + X + ε−0.8
k

(
x

∫

{ x+X≤ω≤1 }

[
ω

x + X
− 1

]2

dω

+

∫

{−1/2≤ω≤−x}

[
− ω − x]2 dω

+X

∫

{ (x+X)/2≤ω≤1 }

[
ω

x + X
− 1/2

]2

dω

)

s.t.

{
εk ≤ x ≤ 1 + εk,

εk ≤ X ≤ 2 + εk.

The behaviour of the optimal solutions to the penalized problems is
shown in Figure 3.3. The sequence converges to the optimal solution
of (P2), as was predicted by Theorem 3.2.5. We note that this problem
possesses uncountably many local minima, corresponding to the weight
x + X = 2, but our approximation scheme recovers the globally optimal
solution.
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Fig. 3.3: The convergence of the optimal solutions to the penalized problems.

Example 3.2.7 (4-bar truss). Consider the problem of minimizing the
weight of the 4-bar structure shown in Figure 3.4 (this problem also ap-
pear in [EPP02]). The stress limit for each bar is σ = 1, and the Young’s
modulus is E = 1. Assume that the upper design bounds are inactive,
and that the force vector f(ω) equals (2 cos(ω), 1.5 sin(ω))T . The prob-
ability measure is the uniform one on [0, π]. Since the initial structural
topology as well as the loading conditions are symmetric, we can ex-
pect symmetric optimal solutions (i.e., x∗

1 = x∗
4, x∗

2 = x∗
3). Figure 3.5

shows the projection of the set of feasible designs onto the linear sub-
set {x ∈ R

4 | x1 = x4, x2 = x3 }. Note that the feasible set is not
a finite union of polyhedra, because we work with an infinite number
of load cases (compare with the similar Problem 1 in [StS01]). There are
three local minima, two of which (including the globally optimal solution,
x∗ = (0, 2.5, 2.5, 0)T ) are singular. The nonsingular non-global, local
minimum of the original problem is the global minimum for the “naively”
perturbed problem for all small values of ε. Therefore, we cannot approx-
imate the globally optimal solution by the “naive” ε-perturbation.

Our penalization scheme recovers the global optimal solution. Fig-
ure 3.6 shows the convergence of the optimal solutions to the ε-perturbed
problems towards the solution of the original problem, as ε decreases to
zero (variables x3 and x4 are not shown, owing to the symmetry of the
calculated optimal solutions). We have used the nested formulation (with
eliminated state variables), adaptive numerical quadratures to calculate
the penalty function and a finite difference approximation of the deriva-
tives to solve the problem using a sequential quadratic programming
(SQP) algorithm. The penalty parameter was taken to be µ(ε) = ε−0.8.
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Fig. 3.4: The 4-bar truss problem.

Of course, applying a nonlinear programming algorithm to a penal-
ized problem we can only expect a local solution, owing to the noncon-
vexity of the problem. For example, it is possible to obtain all three local
minima for the 4-bar truss problem by providing different starting points
to an SQP algorithm.

3.3 Discretization

The most popular method to solve a stochastic programming problem
involving a non-discrete probability measure is to approximate it with
a sequence of finite-dimensional problems with discrete measures. To
implement such a procedure one needs to construct two objects:
- a discrete measure P̃, in some sense close to the original one. The pop-

ular choice is to start from a finite partition A = {Ωi | ∪iΩi = Ω} and
define P̃i = P(Ωi). This involves the calculation of probabilities P(Ωi),
which, ideally, we would like to avoid and replace by some estimations
of P(Ωi);

- an approximation f̃ to a random element f of the original problem.
One possible choice is to define f̃ = E(f | A), which involves the
computation of conditional means. In the case when Ω itself is a sub-
set of a metric space we can define a vector ω̃ = E(ω | A), and con-
sider f̃i = f(ω̃i). This approximation still involves the computation
of conditional means, although simpler than in the previous case. In
the computational scheme, we would instead like to choose sampling
points ω̃i ∈ Ωi and set, as before, f̃i = f(ω̃i).
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Fig. 3.5: The feasible design domain of the 4-bar truss problem.

Examples of discretizations of stochastic programming problems with
recourse (the most studied class of stochastic programming problems)
based on the ideas of conditional means can be found in [Ols76b, Ols76a]
and in [BiW86]. One generic scheme which allows us to avoid the com-
putations of conditional means is the “method of mechanical quadra-
tures” [Vai71], which we will use to approximate integrals in our prob-
lems. It was successfully used to discretize stochastic programming prob-
lems with complete recourse in [Lep90].

To characterize the convergence of the solutions to the discretized
problems towards a solution to the original one, we use the general
notion of discrete convergence, introduced by Stummel [Stu73] and
Vainikko [Vai78]. See also [Vas82, Lep90, Lep94] for the applications
to stochastic programming problems, [Pan79, Lis87, Lis90] for the appli-
cation to variational inequalities in Banach spaces, and [Lep93, Lep96]
for applications to control problems. With some identifications we can
embed the method of mechanical quadratures into the framework of
discrete limit spaces. In spirit, the following analysis is close to that of
Lepp [Lep90] for the stochastic programming problems with recourse.

It seems impossible to apply discretization schemes directly to the
structural topology optimization problems, owing to the discontinuity of
the lower-level objective function E at the points, where the topology
changes. Therefore, we discretize sizing approximations of the topology
optimization problems instead.

In this section we assume that all state variables are elements of
L∞(Ω, P). Measurability of the state variables is necessary for the model
to be tractable in the probabilistic setting; it is a very mild condition and
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Fig. 3.6: Convergence of the ε-perturbations for the 4-bar truss problem.

holds under measurability assumptions on the problem’s data [EPP02,
Corollary 2.2]. A more questionable assumption is the essential bound-
edness of the state variables. But since we formulate our problems in the
framework of linear elasticity, all loads and stresses considered must be
bounded.

In the remainder of the section we list the main assumptions and re-
sults, while the interested reader can find the complete development with
proofs in the appendix.

Suppose that Ω is a compact metric space with a metric denoted by
ρ(·, ·). Let S ⊃ B(Ω), P({ω | ρ(ω, ω0) < r }) = P({ω | ρ(ω, ω0) ≤ r }) >
0 for any ω0 ∈ Ω, r > 0, and P is a regular measure.

Consider a sequence of partitions of Ω, Ak = {Ak
1 , . . . , Ak

k }, satisfying
the following properties:
(M1) P(Ak

l ) > 0,
(M2) ∪k

l=1A
k
l = Ω,

(M3) Ak
i ∩ Ak

j = ∅, i 6= j,
(M4) limk→∞ diam(Ak

l ) = 0,
(M5) P(∂Ak

l ) = 0.
Note, that the collection of the sets {Ak}, satisfying the properties (M1)–
(M5) generates an algebra S0 ⊂ S.

Define a sequence of discrete measures Pk with support supp Pk =
{ωk

1 , . . . , ωk
k }, satisfying the following properties:

(M6) ωk
l ∈ Ak

l ,
(M7) limk→∞ max1≤l≤k Pk(ωk

l )/P(Ak
l ) = 1.

We further assume the following:



Discretization and Penalty Function Approach 51

(D1) the functions E(·), Ec(·), g1(·), g2(·), Lj(·) and f(·) are S0-
measurable;

(D2) the functions f (·), g1(·), g2(·), 1/E(·), L2
j (·)/Ec(·) are bounded;

(D3) the functions C1(·), Bi(·), γj(·) are constants;
(D4) the functions E(·) and Ec(·)/L2

j (·) are bounded.

We denote by (C)k
(x,X)(ω

k
l ) the following equilibrium principle:





min
(s,S,λ)

E(x, X, s, S, λ, ωk
l ) :=

1

2

m∑

i=1

s2
i

E(ωk
l )xi

+ gT
1 (ωk

l )λ

+

r2∑

j=1

((Lj(ω
k
l )Sj)

2

2Ec(ωk
l )Xj

+ (g2(ω
k
l ))jSj

)
,

s.t.





CT
1 λ +

∑

i∈I(x)

BT
i si +

∑

j∈J (X)

Sjγj = f(ωk
l ),

λ ≥ 0,

SJ (X) ≥ 0.

Let (Pε
1) be an ε-perturbation of the problem (P1):





min
(x,X,s(·),S(·))

cf (x, X, s(·), S(·), λ(·))

s.t.





ε1m ≤ x ≤ x, 1T
mx ≤ v,

ε1r2 ≤ X ≤ X, 1T
r2

X ≤ V,

(s(ω), S(ω), λ(ω)) solves (C)(x,X)(ω), P-a.s.

Any limit point of the family of optimal solutions to (Pε
1 ) as ε con-

verges to zero is an optimal solution to the limiting problem (P1), owing
to [EPP02, Theorem 3.1].

In the following two theorems we construct discretizations for the
problems (Pε

1) and (P̄ε
2 ). The formal definition of weak∗ discrete con-

vergence is given in the appendix (Definition 3.A.2). We note that from
the weak∗ discrete convergence of the sequence {(x∗

k, X∗
k, s∗

k(·), S∗
k(·))}

follows the (usual) convergence of the optimal designs.

Theorem 3.3.1. Consider the following sequence {(Pε
1)k} of discretiza-
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tions of the problem (Pε
1 ):





min
(x,X,sk(·),Sk(·))

cf (x, X, sk(·), Sk(·), λk(·)) :=

k∑

l=1

E(x, X, sk(ωk
l ), Sk(ωk

l ), λ(ωk
l ), ωk

l ) Pk(ωk
l )

s.t.





ε1m ≤ x ≤ x, 1T
mx ≤ v,

ε1r2 ≤ X ≤ X, 1T
r2

X ≤ V,

(sk(ωk
l ), Sk(ωk

l ), λk(ωk
l )) solves (C)k

(x,X)(ω
k
l ),

l = 1, . . . , k.

Suppose that the assumptions (M1)–(M7) and (D1)–(D4)
hold. Suppose further that there exists an optimal solution
(x∗, X∗, s∗(·), S∗(·)) to the problem (Pε

1 ) such that the energy func-
tional E(x∗, X∗, s∗(·), S∗(·), λ∗(·), ·) is essentially bounded. Finally,
assume that the problems (C)k

(x∗,X∗)(ω
k
l ) are feasible for any k, 1 ≤ l ≤ k.

Let {(x∗
k, X∗

k, s∗
k(·), S∗

k(·))} be a sequence of optimal solutions to
{(Pε

1)k}. Then any weak∗ discrete limit point of this sequence solves the
limiting problem (Pε

1 ).

Theorem 3.3.2. Consider the following sequence {(P̄ε
2)k} of discretiza-

tions of the problem (P̄ε
2 ):





min
(x,X,sk(·),Sk(·))

wε(x, X, sk(·), Sk(·)) := w(x, X)+

µ(ε)
k∑

l=1

G(x, X, sk(ωk
l ), Sk(ωk

l )) Pk(ωk
l )

s.t.





ε1m ≤ x ≤ x + ε1m,

ε1r2 ≤ X ≤ X + ε1r2 ,

(sk(ωk
l ), Sk(ωk

l ), λk(ωk
l )) solves (C)k

(x,X)(ω
k
l ),

l = 1, . . . , k.

Suppose that the assumptions (M1)–(M7) and (D1)–(D4)
hold. Suppose further that there exists an optimal solution
(x∗, X∗, s∗(·), S∗(·)) to the problem (P̄ε

2 ) such that the energy func-
tional E(x∗, X∗, s∗(·), S∗(·), λ∗(·), ·) is essentially bounded. Finally,
assume that the problems (C)k

(x∗,X∗)(ω
k
l ) are feasible for any k, 1 ≤ l ≤ k.

Let {(x∗
k, X∗

k, s∗
k(·), S∗

k(·))} be a sequence of optimal solutions to
{(P̄ε

2)k}. Then any weak∗ discrete limit point of this sequence solves the
limiting problem (P̄ε

2 ).

In Theorems 3.3.1 and 3.3.2 the requirement of feasibility of
(C)k

(x,X)(·) for positive designs may be related to a “richness” of the
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ground structure (a truss with the topology where all members are
present). For example, we can start from a ground structure which is
able to sustain any load and thus satisfy the assumption.

3.4 Numerical example

We consider the problem of finding a minimum weight of the cable sus-
pended crane shown in Figure 3.7. In this example, the force is a unit
vector with the direction uniformly distributed on [−3π/4,−π/4]. The
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Fig. 3.7: The ground structure for the weight minimization problem.

number of bars is m = 23, and the number of cables is r2 = 5. We set
ρ1 = ρ2 = 1.0, the maximal cross-sectional area for both cables and bars
equals 1.0, the maximal stresses are σ1 = 1.4 and σ2 = 0.8, Young’s mod-
uli are E = Ec = 1.0, and the initial slacks g1 = 0. For the penalty
function, we use µ(ε) = ε−0.8, and then start with ε = 0.05 and succes-
sively multiply it by a factor of 0.6, until it gets as small as 5.0 · 10−4.

We have solved the nested formulation of the problem (P̄ε
2), i.e., we

have eliminated the state variables and treated them as functions of de-
sign. To solve for optimal solutions, we have used a sequential quadratic
programming algorithm, and to obtain first-order information we have
used finite-difference approximations. The starting point was the ground
structure. This numerical approach can only be applied to trusses of small
size, and the construction of efficient algorithms to solve problems of this
type is one of the topics of the ongoing research.

In Table 3.1 we report the optimal weights for discretizations with k
varying from 1 to 625. The norm of the differences between optimal de-
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k w∗ ‖x∗
k − x∗

625‖ ‖X∗
k − X∗

625‖
1 10.3753 1.44 1.30
5 13.2174 1.16 · 10−1 1.23 · 10−1

25 13.3063 5.29 · 10−3 2.26 · 10−3

125 13.3118 4.63 · 10−4 2.47 · 10−4

625 13.312 - -

Tab. 3.1: Convergence of the optimal desings and the objective values.

k P625(σ1%) P625(σ5%) P625(σ10%)
1 0.9984 0.976 0.952
5 0.8512 0.168 0.12

25 0.432 0.0 0.0
125 0.430 0.0 0.0
625 0.4304 0.0 0.0

Tab. 3.2: Stress violations.

signs for various values of k and the optimal design for k = 625 is also
included. Further increases of k do not lead to any significant changes in
the optimal design, therefore we conclude that the optimal design corre-
sponding to k = 625 is a good approximation of the limiting optimal de-
sign. Table 3.2 shows the stress constraint violations, where σα% denotes
the event “at least one structure member (bar or cable) violates the stress
constraint by at least α%”. From the tables one can observe convergence
of the optimal designs, even though we are not sure whether the Assump-
tion 3.2.4 is satisfied in this problem. High values of P625(σ1%) even for
k = 625 are due to our treatment of stress constraints via a penalty func-
tion, which allows small violations. In accordance with Theorem 3.2.5,
this value reduces with a further reduction of the penalty parameter ε, as
shown in Figure 3.8.

Two optimal designs corresponding to k = 1 and k = 625 are shown
in the Figure 3.9, and their behaviour under various loading conditions is
shown in the Figure 3.10.

3.5 Concluding remarks and further research

In Section 3.2 we have introduced a principally new approach to solve
stress constrained topology weight minimization problems. Even though
we do not get an a priori estimate of the violation of the stress constraints
in this way (as we do while using an ordinary ε-perturbation approach),
this approach has several practical advantages. The penalized formula-
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Fig. 3.8: The decrease of P625(σα%) as ε decreases for various values of α (k =
625).

tion does not have any state constraints, which makes it suitable for the
discretization of the “continuous” stochastic programming problem. Fur-
thermore, many numerical algorithms for bilevel programming problems,
which work only for problems without state constraints, can be applied.

It is still an open question whether the simultaneous decrease of the
perturbation parameter ε and increase of the number of discretization
points leads to the convergence of the optimal solutions to discretized siz-
ing optimization problems towards optimal solutions to stochastic topol-
ogy compliance minimization problems. In the case of stress constrained
weight minimization such convergence does not necessarily hold because
of the known discontinuity of solutions with respect to changes in prob-
ability measure [EPP02]. Thus, for stochastic weight minimization, an
actual question is the finding of an alternative formulation, which has
stable solutions with respect to modelling errors.
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3.A The proof of convergence of discretizations

3.A.1 Discrete limit spaces

Consider a sequence of finite-dimensional spaces {`k
∞(Pk)} and a Banach

space L∞(P). Further consider a sequence of linear bounded connection
operators pk : L∞(P) → `k

∞(Pk) satisfying the following property:

∀ s(·) ∈ L∞(P) : lim
k→∞

‖pk(s(·))‖ = ‖s(·)‖.

In the same way, we can consider a sequence of finite-dimensional
spaces {`k

1(Pk)} and a Banach space L1(P), together with a sequence of
linear connection operators qk : L1(P) → `k

1(Pk), satisfying the corre-
sponding property.

Definition 3.A.1. The sequence {sk(·) ∈ `k
∞(Pk)} (strongly) discretely

converges to a limit s(·) ∈ L∞(P), if limk→∞ ‖sk(·) − pk(s(·))‖ = 0.

A completely analogous definition could be given in the case of L1-
spaces.
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Definition 3.A.2. The sequence {sk(·) ∈ `k
∞(Pk)} weakly∗ discretely con-

verges to a limit s(·) ∈ L∞(P), if for any sequence {uk(·) ∈ `k
1(Pk)}

(strongly) discretely converging to a limit u(·) ∈ L1(P), it holds that
limk→∞〈uk(·), sk(·)〉 = 〈u(·), s(·)〉, where 〈·, ·〉 denotes the standard pair-
ing between the corresponding dual spaces.

For further details about discrete limit spaces, the reader is referred
to the original works of Stummel [Stu73] and Vainikko [Vai78].

3.A.2 Method of mechanical quadratures

The main reason for introducing the partitions Ak and the measures Pk

with the properties (M1)–(M7) (cf. Section 3.3) is the following result:

Proposition 3.A.3 ([Vai71, Corollary 1]). The equality

lim
k→∞

k∑

l=1

f(ωk
l )Pk(ωk

l ) =

∫

Ω

f(ω) P(dω)

holds for an arbitrary bounded P|S0-integrable function function f : Ω →
R iff the properties (M1)–(M7) hold.

Thus we can approximate any integral involving P|S0 -integrable func-
tions.

To put the method into a framework of discrete limit spaces, we
need to define corresponding connection operators. We define pk :
L∞(Ω, P) → `k

∞(Pk) in the following way:

[pk(s(·))](ωk
l ) := P(Ak

l )−1

∫

Ak
l

s(ω) P(dω).

Then we define operators qk : L1(Ω, P) → `k
1(Pk) on the everywhere

dense subset S0 ⊂ L1(Ω, P) of S0-measurable functions by:

[qk(u(·))](ωk
l ) := u(ωk

l ),

and extend them onto the whole space L1(Ω, P) by continuity. For the
proof of the norm-consistency and the properties of the connection op-
erators, the reader is referred to [Lep88, Lep90].

3.A.3 Auxiliary results

In this section we adapt two auxiliary results due to Lepp [Lep90] to our
notation. First we restate some assumptions for further reference.

Consider a function f : R
n × R

m × Ω → R and suppose that the
following assumptions hold:
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(A3) The function f(·, ·, ω) is convex and differentiable for each ω ∈ Ω.
Suppose further that f(x, s, ·) is S0-measurable and bounded for
each (x, s) ∈ R

n ×R
m. Moreover, for each bounded set B ⊂ R

n ×
R

m there corresponds a constant β ∈ R such, that |f(x, s, ω)| ≤ β
for all (x, s) ∈ B.

(A4) The functions f ′
x
(·, ·, ω), f ′

s
(·, ·, ω) are continuous, and the functions

f ′
x(x, s, ·), f ′

s(x, s, ·) are bounded and S0-measurable. Moreover,
to each bounded set B ⊂ R

n × R
m there correspond bounded

and S0-measurable functions γ : Ω → R, δ : Ω → R, such that
|f ′

x(x, s, ·)| ≤ γ(·), |f ′
s(x, s, ·)| ≤ δ(·) for all (x, s) ∈ B.

Proposition 3.A.4 ([Lep90, Proposition 3.1]). Suppose that a function f
satisfies assumptions (A3) and (A4). Suppose further that (xk, sk(·)) ∈
R

n × `k
∞(Pk) is a bounded sequence such that f(xk, sk(·), ·) ≤ 0, Pk-

a.s. Then any weak∗ discrete limit point (x, s(·)) ∈ R
n × L∞(P) satisfies

f(x, s(·), ·) ≤ 0, P-a.s.

Proposition 3.A.5 ([Lep90, Proposition 3.2]). Suppose that a function f
satisfies assumptions (A3) and (A4).

(i) Suppose that (xk, sk(·)) ∈ R
n×`k

∞(Pk) weakly∗ discretely converges
to a limit (x, s(·)) ∈ R

n × L∞(P). Then the following inequality
holds:

lim inf
k→∞

k∑

l=1

f(xk, sk(ωk
l ), ωk

l ) Pk(ωk
l ) ≥

∫

Ω

f(x, s(ω), ω) P(dω).

(ii) Suppose that (xk, sk(·)) ∈ R
n × `k

∞(Pk) (strongly) discretely con-
verges to a limit (x, s(·)) ∈ R

n × L∞(P). Then the following in-
equality holds:

lim sup
k→∞

k∑

l=1

f(xk, sk(ωk
l ), ωk

l ) Pk(ωk
l ) ≤

∫

Ω

f(x, s(ω), ω) P(dω).

(3.3)

Remark 3.A.5.1. Almost the same arguments as those in the proof of
Proposition 3.A.5 (ii) can be used to prove the following fact: if a func-
tion f satisfies assumptions (A3) and (A4) and (xk, sk(·)) ∈ R

n × `k
1(Pk)

(strongly) discretely converges to a limit (x, s(·)) ∈ R
n ×L1(P) such that

s(·) is essentially bounded, then inequality (3.3) holds.

3.A.4 Discretization of (C)(x,X)

In this section we study the convergence of the solutions to discretiza-
tions of the subproblem (C)(x,X)(·) appearing as a constraint in our prob-
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lems. We note that we cannot apply Theorem 3.1 in [Lep90] because the
Slater condition is not necessarily fulfilled in our problem. We use Hoff-
man’s error bound [Hof52] instead.

In the same way as the notion of discrete convergence generalizes
the notion of convergence onto sequences of discrete spaces, we may
generalize the notion of closedness of point-to-set mappings. The fol-
lowing two propositions assert such “discrete closedness” and “discrete
continuity” of the mapping (x, X) → { solution of (C)(x,X)(·) } on a set
(x, X) ≥ ε1m+r2 , for fixed ε > 0, with respect to weak∗ discrete conver-
gence.

Proposition 3.A.6. Suppose that the assumptions (M1)–(M7) and (D1)–
(D3) (cf. Section 3.3) hold. Consider an arbitrary sequence of positive de-
signs (xk, Xk) ≥ ε1m+r2 converging to (x̄, X̄). Suppose that the sequence
{(s∗

k(·), S∗
k(·), λ∗

k(·))} of solutions to (C)k
(xk,Xk)(·) weakly∗ discretely con-

verges to (s̄(·), S̄(·), λ̄(·)). Suppose further that the optimal solution to
the problem (C)(x̄,X̄)(·) exists. Then (s̄(·), S̄(·), λ̄(·)) is the solution of
(C)(x̄,X̄)(·).

Proof. The proof is in three steps. First, we need to establish the
feasibility of the limit (s̄(·), S̄(·), λ̄(·)) in the problem (C)(x̄,X̄)(·). Then
we show that the objective value at the limit point is no greater than
the lower limit of the sequence of optimal values of discrete problems.
Finally, we prove that any feasible solution is a strong discrete limit of
the feasible solutions to discrete problems, thus showing that the limit
point is indeed optimal.

Assumptions (D1)–(D3) imply assumptions (A3) and (A4) for the
constraints. Thus we can apply Proposition 3.A.4 to verify the feasibility
of (s̄(·), S̄(·), λ̄(·)) in the problem (C)(x̄,X̄)(·).

Denote the optimal solution to the limit problem
(C)(x̄,X̄)(·) by (s∗(·), S∗(·), λ∗(·)). Since the inequality 0 ≤

E(x̄, X̄, s∗(·), S∗(·), λ∗(·), ·) ≤ E(x̄, X̄, s̄(·), S̄(·), λ̄(·), ·) holds and
the latter function is essentially bounded, so is the optimal value of
the problem (C)(x̄,X̄)(·). For each S0-measurable set D consider the
problem (C)(x,X;D):





min
(s(·),S(·),λ(·))

cf
D(x, X, s(·), S(·), λ(·)) :=

∫

Ω

χD(ω)E(x, X, s(ω), S(ω), λ(ω), ω) P(dω)

s.t.





CT
1 λ(ω) +

m∑

i=1

BT
i si(ω) +

r2∑

j=1

Sj(ω)γj = f(ω), P-a.s.,

λ(ω) ≥ 0, P-a.s.,

S(ω) ≥ 0, P-a.s.
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Owing to the integrability of the objective value
E(x̄, X̄, s∗(·), S∗(·), λ∗(·), ·), (s∗(·), S∗(·), λ∗(·)) solves the problem
(C)(x̄,X̄;D) for any D ∈ S0. This property also holds for the discretiza-
tions (C)k

(x,X)(·) and (C)k
(x,X;D) (the latter is defined in a similar way).

On the other hand, the optimal value of the problem (C)(x̄,X̄)(·) is mea-
surable with respect to the completion of the σ-algebra, generated by
S0 [CaV77, Lemma III.39]. Thus if (s∗(·), S∗(·), λ∗(·)) solves (C)(x̄,X̄;D)

for each S0-measurable D then it solves (C)(x̄,X̄)(·) as well.
Thus we assume that (s∗

k(·), S∗
k(·), λ∗

k(·)) solves the problem
(C)k

(xk,Xk ;D), and we will prove that (s̄(·), S̄(·), λ̄(·)) solves (C)k
(x̄,X̄;D)

for a fixed, but arbitrary S0-measurable D.
Assumptions (D1), (D2), S0-measurability of D and inequality

(xk, Xk) ≥ ε1m+r2 (and thus (x̄, X̄) ≥ ε1m+r2) allow us to invoke
Proposition 3.A.5(i) to conclude:

val(C)(x̄,X̄;D)

≤

∫

Ω

χD(ω)E(x̄, X̄, s̄(ω), S̄(ω), λ̄(ω), ω) P(dω)

≤ lim inf
k→∞

k∑

l=1

χD(ωk
l )E(xk, Xk,

sk(ωk
l ), Sk(ωk

l ), λk(ωk
l ), ωk

l ) Pk(ωk
l )

= lim inf
k→∞

val(C)k
(xk,Xk ;D).

(3.4)

Now, let (s̃k(ωk
l ), S̃k(ωk

l ), λ̃k(ωk
l )) be a projection of

pk{(s̃(·), S̃(·), λ̃(·))}(ωk
l ) onto the set:

{ (s, S, λ) ∈ R
m+r2+r1 | CT

1 λ +

m∑

i=1

BT
i si +

r2∑

j=1

Sjγj = f(ωk
l ),

S ≥ 0, λ ≥ 0 },

for an arbitrary point (s̃(·), S̃(·), λ̃(·)) that is feasible in (C)(x̄,X̄;D). Then

(s̃k(ωk
l ), S̃k(ωk

l ), λ̃k(ωk
l )) is feasible in (C)k

(xk ,Xk;D). Since assumption
(D3) holds we can use Hoffman’s error bound for linear systems [Hof52]
to obtain the following estimation:

‖(s̃k(ωk
l ), S̃k(ωk

l ), λ̃k(ωk
l ))−pk{(s̃k(·), S̃k(·), λ̃k(·))}(ωk

l )‖

≤K‖f(ωk
l ) − pk{f(·)}(ωk

l )‖,

for some constant K > 0 independent from k, l and f . Both sequences
{pk(f)} and {qk(f )} strongly discretely converge to f in discrete L1-
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sense [Vai78, p. 649], and thus we can establish the strong discrete con-
vergence of {(s̃k(·), S̃k(·), λ̃k(·))} to (s̃k(·), S̃k(·), λ̃k(·)):

lim
k→∞

‖(s̃k(·), S̃k(·), λ̃k(·))−pk(s̃k(·), S̃k(·), λ̃k(·))‖`k
1

≤ lim
k→∞

K‖qk(f (·)) − pk(f (·))‖`k
1

= 0.

Then, we use Remark 3.A.5.1 to get:

val(C)(x̄,X̄;D)

≥ lim sup
k→∞

k∑

l=1

χD(ωk
l )E(xk, Xk,

s̃k(ωk
l ), S̃k(ωk

l ), λ̃k(ωk
l ), ωk

l ) Pk(ωk
l )

≥ lim sup
k→∞

val(C)k
(xk,Xk ;D),

which together with (3.4) completes the proof. #

Proposition 3.A.7. Suppose that the assumptions (M1)–(M7) and (D1)–
(D4) hold. Consider an arbitrary sequence of positive designs (xk, Xk) ≥
ε1m+r2 converging to (x̄, X̄), and suppose that the problems (C)k

(xk,Xk)(·)

and (C)(x̄,X̄)(·) are feasible. Suppose further that the optimal value of the
problem (C)(x̄,X̄)(·) is essentially bounded.

Then the sequence of solutions (s∗
k(·), S∗

k(·), λ∗
k(·)) to (C)k

(xk ,Xk)

strongly discretely converges to the solution (s∗(·), S∗(·), λ∗(·)) of the
problem (C)(x̄,X̄)(·).

Proof. The additional assumption (D4) implies the strong convex-
ity of the objective function with respect to (s, S) locally uniformly
with respect to (x, X). Since λ depends linearly on (s, S) (cf. (3.1))
we may assume the strong convexity of E with respect to state vari-
ables on a feasible set locally uniformly with respect to (x, X). Ac-
cording to [Lep94, Remark 2] under the strong convexity of the objec-
tive function weak∗ discrete convergence of the solutions to the prob-
lems (C)k

(xk,Xk)(·) implies strong discrete convergence. Since the solu-
tion to the problem (C)(x̄,X̄)(·) is unique, the weak∗ discrete compact-
ness of the sequence {(s∗

k(·), S∗
k(·), λ∗

k(·))} and Proposition 3.A.6 im-
ply that the sequence {(s∗

k(·), S∗
k(·), λ∗

k(·))} weakly∗ discretely converges
to (s∗(·), S∗(·), λ∗(·)). Since weak∗ discrete compactness follows from
boundedness [Vai78, Proposition 10], it is sufficient to show the bound-
edness of {(s∗

k(·), S∗
k(·), λ∗

k(·))}.
From the proof of Proposition 3.A.6 we know that there exists a

sequence {(sk(·), Sk(·), λk(·))} feasible in {(C)k
(xk ,Xk)(·)}, and strongly

discretely converging to (s∗(·), S∗(·), λ∗(·)) in L1-sense. Owing to
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the optimality of (s∗
k(·), S∗

k(·), λ∗
k(·)) in (C)k

(xk,Xk)(·) the inequality
E(xk, Xk, s∗

k(·), S∗
k(·), λ∗

k(·), ·) ≤ E(xk, Xk, sk(·), Sk(·), λk(·), ·) holds.
For any S0-measurable set D according to Remark 3.A.5.1 we then have:

lim sup
k→∞

k∑

i=1

χD(ωk
l ) E(xk, Xk,

sk(ωk
l ), Sk(ωk

l ), λk(ωk
l ), ωk

l )Pk(ωk
l )

≤

∫

Ω

χD(ω)E(x∗, X∗, s∗(ω), S∗(ω), λ∗(ω), ω) P(dω),

from which we deduce that the sequence
{E(xk, Xk, sk(·), Sk(·), λk(·), ·)} is bounded. Since E is weakly coercive
in (s, S, λ) locally uniformly w.r.t. (x, X) on a set { (x, X) ≥ ε1m+r2 },
and always nonnegative, the boundedness of (s∗

k(·), S∗
k(·), λ∗

k(·)) follows.
#

3.A.5 Discretization of (P1)

Proof of Theorem 3.3.1. Applying Proposition 3.A.7 to the se-
quence {(x∗, X∗, sk(·), Sk(·), λk(·))}, where (sk(·), Sk(·), λk(·)) solves
(C)k

(x∗,X∗)(·), and then using Proposition 3.A.5(ii), we obtain the follow-
ing inequality:

lim sup
k→∞

val(Pε
1)k

≤ lim sup
k→∞

k∑

l=1

E(x∗, X∗, sk(ωk
l ), Sk(ωk

l ), λk(ωk
l ), ωk

l ) P(ωk
l )

≤ val(Pε
1).

(3.5)

We may assume that the original sequence weakly∗ discretely con-
verges to a limit (x̃, X̃, s̃(·), S̃(·)). Its feasibility is implied by Proposi-
tion 3.A.6 and the continuity of the design constraints. From Proposi-
tion 3.A.5(i) we get the reverse inequality:

val(Pε
1 ) ≤ cf (x̃, X̃, s̃(·), S̃(·), λ̃(·))

≤ lim inf
k→∞

k∑

l=1

E(x∗
k, X∗

k, s∗
k(ωk

l ), S∗
k(ωk

l ), λ∗
k(ωk

l ), ωk
l ) P(ωk

l )

= lim inf
k→∞

val(Pε
1)k ,

which, together with (3.5), completes the proof. #
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3.A.6 Discretization of (P2)

Proof of Theorem 3.3.2. The proof is similar to the one of Theorem 3.3.1
and is therefore omitted. #

3.A.7 Existence of weak∗ limit points

To establish the convergence of the discretization scheme it remains to
establish the existence of weak∗ discrete limit points for the sequence
of solutions to discretized problems. A sufficient condition for such an
existence is the boundedness of the sequence.

Proposition 3.A.8. Suppose that the assumptions (M1)–(M7) and (D1)–
(D4) hold. Suppose further that the functions E(·), Ec(·), and L(·) are
independent from ω. Let {(xk, Xk)} be a bounded sequence of designs
such that (xk, Xk) ≥ ε1m+r2 for some ε > 0 and all k. Suppose that the
problem (C)(x,X)(ω) is feasible for any ω ∈ Ω for (x, X) > 0. Then the se-
quence of solutions {(sk(·), Sk(·), λk(·))} to the problems {(C)k

(xk,Xk)(·)}
is bounded.

Proof. Owing to [BGK+83, Theorem 5.5.2] the solution
(s̃1(·), S̃1(·), λ̃1(·)) of (C)(x1,X1)(·) is a piecewise affine function of
(f(·), g1(·), g2(·)), whence it is bounded.

Then we can use the locally Lipschitz continuity result [PaP00, The-
orem 3.4] to bound the sequence {(s̃k(·), S̃k(·), λ̃k(·))} of solutions to
(C)(xk,Xk)(·):

‖(s̃k(ω), S̃k(ω), λ̃k(ω)) − (s̃1(ω), S̃1(ω), λ̃1(ω))‖

≤ τ(ω)‖(xk, Xk) − (x1, X1)‖ · ‖(uk(ω), ek(ω)‖,

and thus the boundedness of {(sk(·), Sk(·), λk(·))} will follow if we can
show the boundedness of τ(ω) and of the sequence of Lagrange multipli-
ers {(uk(·), ek(·))} for the constraints of (C)(xk,Xk)(·).

For positive designs we can assume that both the optimal solutions
and Lagrange multipliers for the problem (C)(x,X)(·) are unique. There-
fore, owing to [BGK+83, Theorem 5.5.1] they continuously depend on
(f(·), g1(·), g2(·)). Proposition 3 in [LuT97] then implies that τ can be
choosen independent from ω.

The boundedness of {(uk(·), ek(·))} follows from [Hag79, Theo-
rem 3.1], which asserts the Lipschitz dependence of solutions to quadratic
problems on a bounded set of parameters, provided a uniform strong
convexity of the objective function and a uniform linear independence
constraint qualification conditions hold. We note that the assump-
tions of the theorem follow from the boudedness of {(xk, Xk)} and
(f(·), g1(·), g2(·)), the quasi-orthogonality of C1, and the boundedness
away from zero of {(xk, Xk)}. #
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CONSTRAINED WEIGHT MINIMIZATION
PROBLEMS
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Abstract

The problem of finding a truss of minimal weight subject to stress constraints and
stochastic loading conditions is considered. We demonstrate that this problem is
ill-posed by showing that the optimal solutions change discontinuously as small
changes in the modelling of uncertainty are introduced. We propose a relaxation
of this problem, which is stable with respect to such errors. We establish a clas-
sic ε-perturbation result for the relaxed problem, and propose a solution scheme
based on discretizations of the probability measure. Using Chebyshev’s inequal-
ity we give an a priori estimation of the probability of stress constraint violations
in terms of the relaxation parameter. The convergence of the relaxed optimal
designs towards the original (non-relaxed) optimal designs as the relaxation pa-
rameter decreases to zero is established.

Key words: Stochastic programming, robust optimization, ε-perturbation,
stress constraints, discretization

4.1 Introduction

We consider the problem of finding a truss of minimal weight subject to
stress constraints and stochastic loading conditions. The reason for in-
troducing the stochasticity into the problem is that uncertainty due to
loading conditions unknown in advance has to be taken into account
to obtain robust optimal solutions. On the other hand, Evgrafov et
al. [EPP02] showed that optimal solutions to stochastic stress constrained
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weight minimization problem change discontinuously as small changes in
the modelling of uncertainty are introduced. Therefore, the optimal so-
lutions are not robust with respect to modelling errors, and their quality
is very hard to estimate.

In this paper we impose the stress constraints in a relaxed manner,
which makes the weight minimization problem stable with respect to
changes in probability measure. By adjusting the relaxation parameter
one can ensure that stress constrains are noticeably violated with an ar-
bitrarily small probability, and that the relaxed optimal designs are close
to the original (non-relaxed) optimal designs.

Given positions of the nodes the design (and topology in particular)
of a truss can be described by design variables xi ≥ 0, i = 1, . . . , m, rep-
resenting the volume of material, allocated to the bar i in the structure.
We introduce an index set I(x) = { i = 1, . . . , m | xi > 0 } of the present
(or active) members in the structure.

Let (Ω, S, P) be a complete probability space. The stochastic stress
constrained minimization problem can be formulated as follows:

(P2)





min
(x,s(·))

w(x) := 1T
mx

s.t.





x ≤ x,

|si(ω)| ≤ σ1xi, i = 1, . . . , m, P-a.s.,

s(ω) solves (C)x(ω), P-a.s.,

where the minimization problem (C)x(ω) is the principle of minimum
complementary energy:

(C)x(ω)





min
s

E(x, s) :=
1

2

m∑

i=1

s2
i

Exi
,

s.t.





∑

i∈I(x)

BT
i si = f (ω).

The data in the problem has the following meaning from a mechanical
point of view:

- E is the Young’s modulus for the structure material;
- Bi is the kinematic transformation matrix for the bar i;
- f(ω) is the vector of external forces.

For the problem to be tractable we assume that the function f(·) is S-
measurable. The variable si in the problem (C)x(ω) is the tensile force in
the bar i times its length.
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4.2 A (short) quest for a correct relaxation

One does not need a specially constructed example to demonstrate the
discontinuity of optimal solutions to the stress constrained weight mini-
mization problem. The problem instance below is probably the simplest
example one could imagine.

Example 4.2.1 (One-bar truss). Figure 4.1 shows a simple one-
dimensional structure that consists of a single bar.
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Fig. 4.1: The one-bar truss.

Suppose that Ω = [0, 2], f(ω) = ω, σ1 = 1, and x = 0. Let P(1) be a
uniform distribution on [0, 1], P(2) be a uniform distribution on [1, 2], and
Pk = (k − 1)/kP(1) + 1/kP(2). The sequence {Pk} weakly converges to
P = P(1), and each measure possesses a density.

The structure is statically determinable, thus the force s(ω) is inde-
pendent from x and equals to f(ω). The optimal solution x∗ of (P2)
equals 1, while each optimal solution x∗

k of (P2)
k equals 2. Therefore,

the sequence {x∗
k} does not converge to x∗ as k goes to infinity as one

wants.

It is difficult to imagine the existence of any mild conditions under
which the stochastic stress constrained weight minimization problem is
stable, when it is unstable even for the extremely simple structure of Ex-
ample 4.2.1. Thus, it is reasonable to construct a relaxation of the prob-
lem, having the following properties:

(i) it is possible to recover a solution to the original problem as a limit
point of the solutions to the relaxed problems as a relaxation pa-
rameter goes to 0;
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(ii) the relaxed problem is stable with respect to changes in the proba-
bility measure;

(iii) it is possible to estimate the violation of the relaxed constraints;
and

(iv) it is possible to numerically solve the relaxed problem.
One straightforward approach, which obviously satisfies the require-

ment (iii), is to choose a relaxation parameter δ > 0 and to require that
P(|si(ω)| ≤ σ1xi + δ) = 1, i = 1, . . . , m. This approach is used when
sizing approximations to the deterministic case of the problem (P2) are
considered [ChG97, Pet01]. To show why such a relaxation of the prob-
lem is not enough, we consider the following example.

Example 4.2.2 (Two-bar truss). Figure 4.2 shows a simple structure that
consists of two bars.
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Fig. 4.2: The two-bar truss.

Suppose that m = 2, Ω = [0, 2], f2(ω) = ω − 1, σ1 = 1, x = 0, and

f1(ω) =





ω, if 0 ≤ ω ≤ 0.5,

1 − ω, if 0.5 < ω ≤ 1,

0, otherwise.

Let P
(1)
k be a uniform distribution on [0, 1/k], P(2) be a uniform distribu-

tion on [1, 2], and Pk = 1/k2P(1) + (k2 − 1)/k2P(2). The sequence {Pk}
weakly converges to P = P(2) and each measure possesses a density.
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As before, the force vector s(ω) is independent from the design and
equals f(ω). The optimal solution to the non-relaxed problem (P2)

k is
x∗

k = (1/k, 1)T ; thus the sequence of solutions {x∗
k} converges to the

optimal solution x∗ = (0, 1)T of the non-relaxed problem (P2) as k goes
to infinity for this example.

For any “small” δ > 0 the optimal solution of the relaxed problem
(Pδ

2 ) exists and equals xδ = (0, 1 − δ)T . On the other hand, for k > 1/δ
the feasible design space of the problem (Pδ

2 )k is (0,∞) × [1 − δ,∞),
and the objective function w(x) does not attain its infimum on this set.
Therefore, there is no optimal solution to the relaxed problem (Pδ

2 )k!

Example 4.2.2 clearly shows that the requirement (ii) is violated by
the “straightforward” relaxation of stress constraints.

To introduce the “correct” relaxation scheme, for positive designs x,
we consider a convex, non-negative and differentiable function, which
was used Evgrafov and Patriksson [EvP02] to construct a penalty func-
tion for the stress constrained weight minimization problem:

G(x, s) :=
m∑

i=1

[|si| − σ1xi]
2
+

xi
.

Using the usual convention 0/0 = 0 and a/0 = ∞ for any a > 0, the func-
tion G can be evaluated at any non-negative design x, and, furthermore,
it is l.s.c. on R

m
+ × R

m.
Now, for a positive relaxation parameter δ > 0 consider the following

minimization problem:

(Pδ
2 )





min
(x,s(·))

w(x)

s.t.





x ≤ x,
∫

Ω

G(x, s(ω)) P(dω) ≤ δ,

s(ω) solves (C)x(ω), P-a.s.

Owing to the measurability of the solutions to (C)x(·) (cf. [EPP02,
Corollary 2.2]), the problem (Pδ

2 ) is indeed a relaxation of (P2) (in the
sense that the feasible set of the former problem contains that of the
latter), and (P0

2 ) = (P2).
Furthermore, owing to Chebyshev’s inequality, for any c > 0 the fol-

lowing inequality holds:

P
(
|si(ω)| ≥ σ1xi + c

)
≤

δxi

c2
, (4.1)

i.e., by choosing a small δ the probability of violating any stress constraint
can be made arbitrarily small. Therefore, the proposed relaxation satis-
fies the requirement (iii).
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The rest of the paper is organised as follows. In Section 4.3 we investi-
gate the properties of the feasible set of the problem (Pδ

2 ), and show that
it satisfies a Slater-type constraint qualification. Section 4.4 addresses
the existence of solutions for the problem. In Sections 4.5, 4.6 and 4.7 we
show that the problem (Pδ

2 ) possesses the properties we listed; in particu-
lar, Theorem 4.5.1 verifies the property (i), and Theorem 4.6.3 addresses
the stability requirement (ii). Using Theorems 4.5.2 and 4.7.1 we can
approximate the problem with a sequence of simple differentiable and
finite-dimensional subproblems; this gives us the property (iv). At last,
we illustrate the theory with a numerical example in Section 4.8.

4.3 Auxiliary results

In this section we collect auxiliary results necessary for the following de-
velopment.

The lemma below asserts the continuity of the mapping x → s(·),
where s(·) solves (C)x(·), restricted to the feasible set of the problem
(Pδ

2 ). It is an important part of the proof of existence of solutions to
(Pδ

2 ), as it enables us to choose a feasible state corresponding to the limit
of the design variables.

Lemma 4.3.1. Suppose that the sequence {(xk, sk(·))} to (Pδ
2 ) has design

components converging to a limit x0. Then the sequence of state variables
P-a.s. converges to a limit s0(·) solving (C)x0

(·) as k goes to infinity.

Proof. The sequence of designs is bounded, so we can use [EvP02,
Lemma 2.2] to conclude that the sequence of energy estima-
tions {

∫
Ω
E(xk, sk(ω)) P(dω)} is bounded. Now the claim follows

from [EPP02, Proposition 2.3]. #

The following lemma is the crucial technical tool. It shows that
a Slater-type constraint qualification holds for the relaxed stress con-
straints.

Lemma 4.3.2. Suppose that (x, s(·)) is a solution that is feasible in (Pδ
2 )

and is such that
∫
Ω G(x, s(·)) P(dω) > 0. Fix an arbitrary ε > 0. Then it

is possible to find a feasible point (x̃, s̃(·)) such that x̃ > x, ‖x̃ − x‖ < ε,
and

∫
Ω

G(x̃, s̃(ω)) P(dω) <
∫
Ω

G(x, s(ω)) P(dω).

Proof. Let x̄ = (1 + ε/3)x, and let s̄(·) be the solution to (C)x̄(·).
Then s̄(·) = s(·) and, since P{G(x, s(ω)) > 0} > 0, there is an index i
such that xi > 0 and P{[|si(·)| − σ1xi]

2
+/xi > 0} > 0. The continuity of∫

Ω[|si(ω)| − σ1xi]
2
+/xi P(dω) w.r.t. xi implies that

∫
Ω G(x̄, s̄(ω)) P(dω) <∫

Ω
G(x, s(ω)) P(dω).
For some positive p ≥ 3 to be determined later set x̃ = x̄ + ε/p · 1m

and let s̃(·) be the solution of (C)x̃(·). Using the directionally Lips-
chitz continuous dependence of solutions to (C)x(·) on x (cf. [EPP02,
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Lemma 3.3]), the continuity of [|s̃i| − σ1x̃i]
2
+/x̃i for i such that x̄i > 0,

and the inequality

[|s̃i(·)| − σ1x̃i]
2
+

x̃i
≤

p(τ + σ1)
2‖x̃ − x̄‖2

ε
=

ε(τ + σ1)
2‖1m‖2

p
,

for i such that x̄i = 0, we conclude that it is possible to choose
a large enough p such that the inequality

∫
Ω G(x̃, s̃(ω)) P(dω) <∫

Ω
G(x, s(ω)) P(dω) holds. #

4.4 Existence of optimal solutions

From now on we make the following blanket assumptions:
(B1) for every positive design x the problem (C)x(ω) is feasible for al-

most any ω;
(B2) the problem (C)0m

(ω) is infeasible with a positive probability.
The first assumption is related to the “richness” of the ground struc-

ture and is easy to satisfy in practice. For example, one can start from
a ground structure that is able to sustain any load. The second assump-
tion eliminates the possibility of the empty structure being the optimal
solution.

In view of Example 4.2.2 it is of prime importance to establish the
existence of optimal solutions to the problem (Pδ

2 ) for any δ > 0.

Theorem 4.4.1. For any δ > 0 the problem (Pδ
2 ) possesses at least one

optimal solution (x∗, s∗(·)).

Proof. If there is at least one feasible solution (x̃, s̃(·)) then we can
bound the design space by introducing additional constraint w(x) ≤
w(x̃). Then from any minimizing sequence one can choose a subsequence
with converging design components. Lemma 4.3.1 ensures that the corre-
sponding subsequence of forces converges, and the limit is then feasible
in (Pδ

2 ) owing to the lower semi-continuity and non-negativity of G and
Fatou’s Lemma. Since the objective function is continuous in both design
and state variables (it is independent of the forces), the limiting point is
also an optimal solution.

Thus it remains to find a feasible solution. Following the proof of
Lemma 4.3.2, we see that if s̃(·) solves (C)1m

(·), then it solves (C)2q ·1m
(·)

for any q ≥ 0 as well. Thus we can make the value of
∫
Ω G(2q ·

1m, s(ω)) P(dω) arbitrarily small (but nonnegative), if we choose a “large
enough” q. Hence the point (2q · 1m, s̃(ω)) is feasible in (Pδ

2 ) for some q.
#

Remark 4.4.1.1. For any optimal solution (x∗, s∗(·)) to (Pδ
2 ) the equality∫

Ω
G(x∗, s∗(ω)) P(dω) = δ holds.



74 Evgrafov, A. and Patriksson, M.

Proof. If the strict inequality
∫
Ω

G(x∗, s∗(ω)) P(dω) < δ held, then for
some 0 < µ < 1 we would have

∫
Ω G(µx∗, s∗(ω)) P(dω) < δ as well. Fur-

thermore, s∗(·) solves (C)µx∗(·), and 0 < w(µx∗) < w(x∗) (cf. assump-
tion (B2)). The latter inequality contradicts the optimality of (x∗, s∗(·))
in (Pδ

2 ). #

4.5 Continuity with respect to lower bounds and
relaxation parameter

An additional motivation for considering the relaxed problems (Pδ
2 ) is

given by the following result, which ensures that by reducing the relax-
ation parameter to zero one recovers optimal solutions to the original
problem (P2).

We denote by val(P) the optimal value of any problem (P).

Theorem 4.5.1. Suppose that the problem (P2) possesses an optimal solu-
tion, and let the sequence {δk} monotonically decrease to zero. Then any
limit point of the sequence of optimal solutions {x∗

δk
, s∗

δk
(·))} (and there is

at least one) is an optimal solution to (P2).

Proof. The inequality

val(P2) ≥ lim sup
k→∞

val(Pδk

2 ) (4.2)

obviously holds.
On the other hand, the optimal solution to (P2) is feasible in each

problem (Pδk

2 ). In particular it means that the sequence of optimal de-
signs {x∗

δk
} is bounded and has a limit point x̃. Lemma 4.3.1 implies

that the corresponding sequence of forces {s∗
δk

(·)} converges to a limit
s̃(·) solving the problem (C)x̃(·). The non-negativity and lower semi-
continuity of G, and Fatou’s Lemma, imply that (x̃, s̃(·)) is feasible in
(P2), and thus we get:

val(P2) ≤ w(x̃) = lim inf
k→∞

w(x∗
δk

) = lim inf
k→∞

val(Pδk

2 ).

Together with (4.2), this proves the claim. #

The function G, defining the constraints of our problem, is not upper-
semicontinuous at the designs which are not strictly positive. There-
fore, to apply numerical algorithms we would like to introduce a posi-
tive lower bound ε1m on the design variables and eventually reduce ε
to zero. This method, called ε-perturbation, is classic in topology opti-
mization and is known to converge for compliance minimization prob-
lems [Ach98, PaP00, EPP02]. On the other hand, for stress constrained
weight minimization this simple procedure cannot approximate some
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optimal solutions, owing to the phenomena known as “stress singular-
ities” and “singular topologies” [SvG68, Kir90, ChJ92, RoB94]. More
sophisticated numerical approaches are known to overcome this diffi-
culty, for example the ε-perturbation by Cheng and Guo [ChG97] (see
also [Pet01, PaP00, EPP02]) and a penalty function approach by Ev-
grafov and Patriksson [EvP02]. It turns out that for our relaxation the
simple approach outlined above is sufficient. To be more precise, for
ε > 0 consider the following ε-perturbation of the problem (Pδ

2 ):

(Pδ,ε
2 )





min
(x,s(·))

w(x)

s.t.





x + ε1m ≤ x,
∫

Ω

G(x, s(ω)) P(dω) ≤ δ,

s(ω) solves (C)x(ω), P-a.s.

Theorem 4.5.2. Let {(x∗
ε , s

∗
ε(·))} be a sequence of optimal solutions to the

problems {(Pδ,ε
2 )}. Then any limit point of the sequence {(x∗

ε , s
∗
ε(·))} as ε

goes to zero (and there is at least one) is an optimal solution to the problem
(Pδ

2 ). Furthermore:

val(Pδ
2 ) = inf

ε>0
val(Pδ,ε

2 ) = lim
ε→0

val(Pδ,ε
2 ).

Proof. For any ε0 > 0 there is a point (x0, s0(·)), which for every
ε ∈ (0, ε0) is feasible in each problem (Pδ,ε

2 ). In particular, it means
that the sequence of optimal designs {x∗

ε} is bounded and has a limit
point. We make another observation, namely that for ε1 < ε2 it holds
that val(Pδ,ε1

2 ) ≤ val(Pδ,ε2

2 ).
Suppose that limk→∞ x∗

εk
= x̃ for some sequence εk converging to

zero. Lemma 4.3.1 implies that the corresponding sequence of forces
{s∗εk

(·)} converges to a limit s̃(·) solving the problem (C)x̃(·). The non-
negativity and lower semi-continuity of G, and Fatou’s Lemma, imply
that (x̃, s̃(·)) is feasible in (Pδ

2 ), and thus we get:

val(Pδ
2 ) ≤ w(x̃) = lim

k→∞
w(x∗

εk
) = inf

ε>0
val(Pδ,ε

2 ). (4.3)

On the other hand, Lemma 4.3.2 implies that any feasible solution
(x, s(·)) to (Pδ

2 ) such that
∫
Ω

G(x, s(ω)) P(dω) > 0 holds can be arbitrar-
ily closely approximated by feasible points of (Pδ,ε

2 ). In particular, any
optimal solution to (Pδ

2 ) can be approximated in such a way, to give us
the reverse inequality:

val(Pδ
2 ) = lim

k→∞
w(xεk

) ≥ inf
ε>0

val(Pδ,ε
2 ).

Together with (4.3), this proves the claim. #
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The following proposition enables us to approximate the optimal
value of (Pδ

2 ) from below in a different way.

Proposition 4.5.3. Let the sequence {δk} monotonically increase to δ∞ >
0. Then val(Pδ∞

2 ) = limk→∞ val(Pδk

2 ).

Proof. Obviously, the inequality

val(Pδ∞
2 ) ≤ lim inf

k→∞
val(Pδk

2 ) (4.4)

holds.
On the other hand, Lemma 4.3.2 implies that any solution (x, s(·))

that is feasible in (Pδ∞
2 ) and is such that

∫
Ω G(x, s(ω)) P(dω) > 0 can

be arbitrarily closely approximated by feasible points of (Pδk

2 ) for “large
enough” k. In particular, any optimal solution to (Pδ∞

2 ) can be approxi-
mated in such a way, which gives us the reverse inequality:

val(Pδ∞
2 ) ≥ lim sup

k→∞
val(Pδk

2 ).

Together with (4.4), this proves the claim. #

4.6 Continuity with respect to changes in probability
measure

In this section we prove the main result of the paper, showing that for
fixed δ > 0 the optimal solutions to the problem (Pδ

2 ) change contin-
uously as the probability measure changes. Throughout the section we
assume that Ω is a compact metric space, S = B(Ω) and the source of
uncertainty f(·) is assumed to be a continuous function.

Continuity allows us to omit the adverb “almost” when we talk about
solutions of (C)x(·) for positive designs x.

Proposition 4.6.1. For positive design x and each ω ∈ Ω the problem
(C)x(ω) has a unique solution s(ω), which is a continuous function of ω.

Proof. We made an assumption that the problem (C)x(ω) is feasible
for any ω for a positive design x. The claim then follows from [EPP02,
Corollary 4.1]. #

Consider a sequence of probability measures {Pk} defined on B(Ω),
together with a sequence of optimization problems:

(Pδ
2 )k





min
(x,s(·))

w(x)

s.t.





x ≤ x,
∫

Ω

G(x, s(ω)) Pk(dω) ≤ δ,

s(ω) solves (C)x(ω), Pk-a.s.
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Without any further regularity assumptions on the probability mea-
sure we can prove the following inequality.

Lemma 4.6.2. Suppose that the sequence of probability measures {Pk}
weakly converges to P. Then val(Pδ

2 ) ≥ lim supk→∞ val(Pδ
2 )k.

Proof. Fix arbitrary positive numbers ς < δ and ε > 0. Consider an
optimal solution (x∗, s∗(·)) to (Pς,ε

2 ). Owing to Proposition 4.6.1, s∗(·)
is a continuous function. Furthermore, since the energy E(x∗, s∗(·)) is
continuous, we can deduce that G(x∗, s∗(·)) is continuous as well. Since
{Pk} weakly converges to P we conclude that (x∗, s∗(·)) is feasible in
(Pδ

2 )k for large enough k, and

val(Pς,ε
2 ) ≥ lim sup

k→∞
val(Pδ

2 )k

holds.
Owing to Theorem 4.5.2 and Proposition 4.5.3, the following inequal-

ity holds:

val(Pδ
2 ) = inf

ε>0
inf
ς<δ

val(Pς,ε
2 ) ≥ lim sup

k→∞
val(Pδ

2 )k,

which is the desired result. #

To prove the reverse inequality we assume additional regularity prop-
erties on the sequence {Pk}. Namely, we suppose that each measure Pk

has a density pk(·) with respect to a Lebesgue measure on Ω and that the
sequence {pk(·)} converges to a density p(·) of P Lebesgue-almost every-
where. This assumption is not very restrictive from the theoretical point
of view, and it is usually assumed in engineering applications of probabil-
ity theory.

Theorem 4.6.3. Let {(xk, sk(·))} be a sequence of solutions to {(Pδ
2 )k}.

Then any limit point (and there is at least one) of the sequence {(xk, sk(·))}
is a solution to the limiting problem (Pδ

2 ).

Proof. As in the proof of Theorem 4.4.1 for large enough q we can
find a point (2q · 1m, s̃(·)) that is feasible in (P

δ/2
2 ). Since {Pk} weakly

converges to P and s̃(·) is continuous, for large enough k this point is fea-
sible to (Pδ

2 )k. In particular, it means that the sequence {xk} is bounded
and has a limit point x0. Therefore, we may assume that the original
sequence has converging design components.

The lower semi-continuity and non-negativity of G, and Fatou’s
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Lemma, imply:
∫

Ω

lim inf
k→∞

G(xk,sk(ω))p(ω) dω

≤

∫

Ω

lim inf
k→∞

[G(xk, sk(ω))pk(ω)] dω

≤ lim inf
k→∞

∫

Ω

G(xk, sk(ω))pk(ω) dω ≤ δ.

Thus we see that the P-probability of the set Ωf = {ω ∈ Ω |
lim infk→∞ G(xk, sk(ω)) < ∞} is one. Using Lemma 4.3.1 we can ver-
ify the existence of a limiting state s0(·) corresponding to the design x0,
and the P-a.s. convergence of sk(·) to this state. Using the lower semi-
continuity of G, this implies:

∫

Ω

G(x0,s0(ω))p(ω) dω

≤

∫

Ω

lim inf
k→∞

G(xk, sk(ω))p(ω) dω

≤ lim inf
k→∞

∫

Ω

G(xk, sk(ω))pk(ω) dω ≤ δ.

The latter inequality shows that (x0, s0(·)) is feasible in (Pδ
2 ), and thus:

val(Pδ
2 ) ≤ w(x0) ≤ lim inf

k→∞
val(Pδ

2 )k.

Together with the estimation of lim supk→∞ val(Pδ
2 )k given by

Lemma 4.6.2 this finishes the proof. #

To show the qualitative difference between the problems (P2) and
(Pδ

2 ) we reconsider Example 4.2.1.

Example 4.6.4 (Example 4.2.1 revisited). Figure 4.3 shows the conver-
gence of solutions to (Pδ

2 )k to the solution of (Pδ
2 ) as k increases to infin-

ity for various values of δ, as predicted by Theorem 4.6.3.
On the other hand, for a fixed k, the solutions to (Pδ

2 )k converge to
the optimal solution x∗

k = 2 of (P2)
k as δ decreases to zero, in accordance

with Theorem 4.5.1. Similarly, optimal solutions to (Pδ
2 ) converge to the

optimal solution x∗ = 1 of (P2).

This example shows that one cannot in general expect convergence as
δ goes to zero and k goes to infinity simultaneously.

4.7 Discretization

The most popular method to solve a stochastic programming problem
involving a non-discrete probability measure is to approximate it with a
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Fig. 4.3: Convergence of solutions to (Pδ
2 )k to the solution of (Pδ

2 ) for various
values of δ.

sequence of finite-dimensional problems with discrete measures. Unfor-
tunately, we cannot apply Theorem 4.6.3 to our situation, because the
approximating discrete measures do not possess densities. Without this
assumption, the implementation of such a strategy seems to be impossi-
ble, owing to the discontinuity of the function G defining the constraints
of our problem. Therefore, we discretize the sizing approximations (Pδ,ε

2 )
of (Pδ

2 ); Theorem 4.5.2 shows the viability of such an approach.
In this section we sketch one possible discretization approach, which

does not require us to assume the continuity of the load vector f(·) with
respect to ω. Evgrafov and Patriksson [EvP02] used this approach to dis-
cretize sizing approximations to the stochastic compliance minimization
problem and to the original (non-relaxed) stress constrained weight min-
imization problem. The interested reader is referred to the cited paper
and references therein for the detailed development of the discretization
theory.

Suppose that Ω is a compact metric space with a metric denoted by
ρ(·, ·). Let S ⊃ B(Ω), P({ω | ρ(ω, ω0) < r }) = P({ω | ρ(ω, ω0) ≤ r }) >
0 for any ω0 ∈ Ω, r > 0, and P be a regular measure.

Consider a sequence of partitions of Ω, Ak = {Ak
1 , . . . , Ak

k }, satisfying
the following properties for each k and 1 ≤ l ≤ k:
(M1) P(Ak

l ) > 0,
(M2) ∪k

l=1A
k
l = Ω,

(M3) Ak
i ∩ Ak

j = ∅, i 6= j,
(M4) limk→∞ diam(Ak

l ) = 0,
(M5) P(∂Ak

l ) = 0.
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Note that the collection of sets {Ak}, satisfying the properties (M1)–
(M5), generates an algebra S0 ⊂ S.

Define a sequence of discrete measures Pk with support supp Pk =
{ωk

1 , . . . , ωk
k }, satisfying the following properties for each k and 1 ≤ l ≤

k:
(M6) ωk

l ∈ Ak
l ,

(M7) limk→∞ max1≤l≤k Pk(ωk
l )/P(Ak

l ) = 1.
We further assume that

(D1) the function f(·) is S0-measurable and bounded.
We denote by (C)k

x
(ωk

l ) the following equilibrium principle:





min
s

E(x, s)

s.t.





∑

i∈I(x)

BT
i si = f (ωk

l ).

In the following theorem we establish the convergence of discretiza-
tions for the problem (Pδ,ε

2 ). We note that from the weak∗ discrete con-
vergence of the sequence {(x∗

k, s∗
k(·))} follows the (usual) convergence

of the optimal designs.

Theorem 4.7.1. Consider the following sequence {(Pδ,ε
2 )k} of discretiza-

tions of the problem (Pδ,ε
2 ):

(Pδ,ε
2 )k





min
(x,s(·))

w(x)

s.t.





x + ε1m ≤ x,
∫

Ω

G(x, s(ω)) Pk(dω) ≤ δ,

s(ωk
l ) solves (C)k

x
(ωk

l ), l = 1, . . . , k.

Suppose that the assumptions (M1)–(M7) and (D1) hold. Suppose further
that there exists an optimal solution (x∗, s∗(·)) to the problem (Pδ,ε

2 ) such
that the energy functional E(x∗, s∗(·)) is essentially bounded.

Owing to the positivity of x∗ and assumption (B1) the problems
(C)k

(x∗)(ω
k
l ) are feasible for any k, 1 ≤ l ≤ k. Thus, there exists a se-

quence of optimal solutions to {(Pδ,ε
2 )k}; we denote it by {(x∗

k, s∗
k(·))}

Then any weak∗ discrete limit point of this sequence solves the limiting
problem (Pδ,ε

2 ).

Proof. We assume that the original sequence is weakly∗ convergent.
The following two inequalities follow respectively from Propositions A.7
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and A.8 in [EvP02]:

val(Pδ,ε
2 ) ≤ lim inf

k→∞
val(Pδ,ε

2 )k,

val(Pς,ε
2 ) ≥ lim sup

k→∞
val(Pδ,ε

2 )k,

for any 0 < ς < δ. Then, the claim follows from Proposition 4.5.3. #

4.8 Numerical example

We consider the problem of finding a minimal weight of the beam-like
structure shown in Figure 4.4. In this example, the forces of magnitude
one act independently from each other, with the directions uniformly dis-
tributed in the intervals schematically shown in the figure. The number
of bars in the ground structure is m = 49. We set E = 1.0, σ1 = 1.0, start
with ε = 0.05 and successively multiply it with factor 0.6 until it gets as
small as 5.0 · 10−4.
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Fig. 4.4: The ground structure for the weight minimization problem.

We have solved the nested formulation of the problem (i.e., we have
eliminated the state variables and treated them as functions of design) us-
ing an SQP-type algorithm. The starting point was the equally distributed
material.

In Table 4.1 we report the optimal weights and statistics describing
the violations of the stress constraints for various values of the number
of discretization points k. The definitions of the statistics used are given
below:

maxσ := max
1≤`≤k̂

max
1≤i≤m

[|σ|i` − σ1]+,

avgσ :=

k̂∑

`=1

{
max

1≤i≤m
[|σ|i` − σ1]+

}
Pk̂(ωk̂

` ),



82 Evgrafov, A. and Patriksson, M.

k w∗ maxσ avgσ

1 33.599 745.5% 285.0%
25 45.447 18.95% 1.02%

625 45.967 13.27% 0.61%

Tab. 4.1: Results of numerical calculation.

where σi` is a tensile stress in the bar i under the loading condition `, and
k̂ = 625. The number maxσ characterises the maximal stress violation in
the structure for all load cases, whereas avgσ is an average (for all load
cases) maximal (among the structure members) stress violation. The way
we formulate stress constraints only guarantees that avgσ is small when
δ is small. Nevertheless, maxσ turns out to be not very big and seems to
decrease with δ for this problem.

The reduction of the relaxation parameter δ to the value 1 ·10−5 while
keeping k = 625 gives us only a 3.6% increase in the optimal weight,
whereas the corresponding numbers maxσ and avgσ decrease drastically
to 2.54% respectively 4 · 10−2% (compare with the last row in Table 4.1).

Further increases of k do not lead to significant changes in the op-
timal design. Therefore, we assume that k = 625 is a reasonably good
approximation of the problem’s probability measure, and, in particular,
use this approximation when calculating statistics maxσ and avgσ.

Two optimal designs corresponding to k = 1 and k = 625 are shown
in the Figure 4.5. It is interesting to note that the multiple-load optimal
design has fewer bars than the corresponding average-load design. Their
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Fig. 4.5: The optimal designs for the weight minimization problem corresponding
to (a) k = 1 and (b) k = 625. Line thicknesses are proportional to
cross-sectional areas.

behaviour under various loading conditions is shown in the Figure 4.6.

4.9 Conclusions

The relaxation of the stress constrained weight minimization problem
proposed in this paper offers a good trade-off between the strict satisfac-
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tion of the stress constraints and the robustness of the optimal solutions
obtained with respect to changes in the modelling of uncertainty. The
bound (4.1) on the constraint violations also allows one to choose a sat-
isfactory value of δ before starting the optimization. For example, one
can choose the boundary value c of the maximal acceptable violation of
stress constraints, and then choose δ to be so small that the estimation
δx/c2 of the probability of exceeding this boundary is negligible, where x
is an upper bound for the design variables x.

The ongoing research is concentrated on the development of efficient
numerical methods for the problem (Pδ

2 ) as well as on the possible ex-
tensions of the results for more general mechanical models (e.g., trusses
with unilateral constraints, frames, possibly with flexible joints).
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Fig. 4.6: Stresses and displacements for various random forces for optimal de-
signs, corresponding to (a) k = 1 and (b) k = 625. Note: for the sake of
a better visualization of stresses, line thicknesses are not proportional to
cross-sectional areas.


