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Abstract Based on the DWT (discrete wavelet transform) method, we propose
a new smoothing algorithm for computing surface densities from 3D numerical
simulation samples. To check its effectiveness, we have applied this algorithm
to two Monte-Carlo samples of gravitational lens simulation with different mass
resolutions, generated from the isothermal ellipsoid model of dark matter halos.
The calculated results indicate that this algorithm can reconstruct accurately
the surface density distribution of the gravitational lens simulation sample, and
that the lens caustics and critical curves derived from the surface densities agree
well with the theoretical curves. We have compared the results calculated by
using 3 different wavelet bases (Daub4, Daub6 and B-spline 3th), and identified
the best one. Without sacrificing its smoothing capability, this algorithm has
a very fast computing speed, suitable for later N-body numerical simulations,
which require even higher resolutions.
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1. INTRODUCTION

In recent years, accompanying the progress in observational techniques, gravitational lensing
has become an important tool for the studies of galaxies and cosmology. The superiority
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of gravitational lensing is that we can directly acquire from it information about the mass
distribution in the universe. It has been widely used in various research fields of astronomy.
It is an important tool to explore the distribution of dark matter in the universe[1,2]. It can
be used to measure the mass distributions in galaxies and galaxy clusters[3,4], to acquire
statistical information on large-scale cosmic structures for setting limits on the cosmolog-
ical parameters[5,6], and can be used as well for studying the substructure problem in the
hierarchically clustering theory[7−10].

The gravitational lens in the universe has a much more complex structure than in
various theoretical mass model distributions, such as asymmetry and substructures. So,
the N-body numerical simulation is the best way to study accurately the real properties of
gravitational lens. When we study the gravitational lens by N-body numerical simulations,
the simulated lens is constructed by discrete particles in a box, corresponding to a smooth
mass distribution in real space. To study the properties of the lens generated by numerical
simulation under the thin-lens approximation, we have to obtain first the projected surface
density field on the lens plane from the simulated 3D density field, before the lens properties,
such as the lens potential, deflection angle, image magnification and others, are derived.
Hence, a smoothing algorithm which can construct accurately the lens surface densities is
extremely important in the study of gravitational lensing.

There have been many different smoothing algorithms used for the study of gravita-
tional lensing, including the commonly adopted CIC (Cloud-In-Cell) format[11] and TSC (Tri-
angular Shaped Clouds) format. Some researchers have used more complex smoothing al-
gorithms, such as the Gaussian kernel function[12,13] and SPH(Smoothed Particle Hydrody-
namics) kernel function[14,15]. Some smoothing algorithms adopt a smoothing scale of fixed
length, for example the CIC, TSC or Gaussian kernel function. When kernel functions of
this kind are used, we can prove easily that identical results are obtained whether we use
the so-called 2D smoothing (where we first project the particles onto the lens plane, then
calculate the surface densities by smoothing), or the 3D smoothing (where we first calculate
the 3D volume density field, then integrate along the direction vertical to the lens plane to
obtain the surface densities). Therefore, for the fixed-scale smoothing algorithm, we need
only to use the 2D smoothing, thus saving much computing time. However, in some smooth-
ing algorithms such as the SPH kernel function, the smoothing scale is not fixed, rather, it
is self-adaptive: a short smoothing scale is adopted in high-density regions, a long one, in
low-density regions. Compared to the 2D smoothing, the 3D smoothing can eliminate some
of the projection noises, but it calls for a much greater computer time.

Since the 1990s, the discrete wavelet transform (DWT) has been applied to the statis-
tical studies in cosmology[16−19]. The main advantage of the DWT is that it can provide us
with the statistical properties in both the position space and wave-number space. Based on
the DWT method, we will propose a new smoothing algorithm in this paper, and apply it
to calculate the surface densities of gravitational lens.

The structure of this paper is as follows. In the second part, we will introduce the
smoothing algorithm and the noise-elimination program that we use; then, in the third
part, the algorithm is verified by using the Monte-Carlo numerical simulation sample; and
finally, conclusions are given in the fourth part.
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2. THE ALGORITHM

We will discuss the algorithm by separating it into two parts. First, we describe briefly the
wavelet algorithm for smoothing a 3D sample, then we introduce the algorithm for noise
elimination.

2.1 Wavelet Smoothing Algorithm
For simplicity, we discuss the 1D case. For a given density field ρ(x) (0 < x < L), we

can decompose it to[20]

ρ(x) =
2J−1∑
l=0

εJ,lφJ , l(x) +
∞∑
j=J

2j−1∑
l=0

ε̃j,lψj , l(x) , (1)

in which εJ,l represents the scale function coefficients (SFCs, in brief), φJ,l(x) is the scale
function, ε̃j,l represents the wavelet function coefficients (WFCs, in brief), ψj,l is the wavelet
function. J and j are positive integers representing the scales, corresponding to the scales
L/2J and L/2j. l is the integer indicating the position, corresponding to the spatial range
lL/2j < x < (l + 1)L/2j. The scale function can be given by its parent function φ(x):

φJ,l(x) = (
2J

L
)1/2φ(2Jx/L− l) , (2)

and εJ,l can be calculated from the next formula:

εJ,l =
∫ L

0

ρ(x)φJ,l(x)dx . (3)

For the given particle distribution, we can express it in the following form:

ρ(x) =
Ng∑
i=1

wiδ
D(x− xi) , (4)

in which Ng is the total number of particles, {xi} is the position of the i-th particle (0<
xi < L), ωi is the weight of the i-th particle, δD is the Dirac-δ function. The particles
can be either actually observed galaxies, or particles in the numerical simulation sample.
Substituting Eq.(4) into Eq.(1) and Eq.(3), we obtain:

ρ(x) = ρJx+
∞∑
j=J

2j−1∑
l=0

ε̃gj,lψj,l(x) , (5)

in which ρJ is:

ρJ(x) =
2J−1∑
l=0

εJ,lφJ,l(x) , (6)

the scale function coefficient εJ,l is:

εJ,l =
Ng∑
i=1

wiφJ,l(xi) , (7)
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and ρJ is the smoothing of ρ(x) on scale J . When J is sufficiently large, ρJ(x) will be a
very good approximation of ρ(x). We also have

2j−1∑
l=0

L

2j
εgj,l =

Ng∑
i=1

wi . (8)

We can find that the mass allocated to the l-th grid point by the i-th particle is: (L/2j)ωi

φJ,l(xi). The scale function coefficients SFCs are actually a kind of mass re-allocation of the
density field ρ(x).

The procedure to calculate the surface densities of the gravitational lens using this
algorithm is as follows: First, we have all the particles of the lens projected vertically to the
given lens plane to obtain a 2D distribution, then we calculate the scale function coefficients
SFCs by Eq.(7). After the SFCs are obtained, we calculate the surface density at an arbitrary
point on the lens plane by Eq.(5).

2.2 Wavelet De-noising Algorithm
We know that compared to the 3D smoothing, the 2D smoothing will introduce some

extra projection noise. We can eliminate this noise using the wavelet method. The wavelet
method is, in fact, an effective tool for noise elimination, and has widely been applied to
the digital signal and image processing and other fields. In our derivation of the surface
densities of the gravitational lens, we adopt the wavelet method developed by Romeo et
al.[21,22] to eliminate noise.

The process of noise elimination can be described as follows. If the data (for example the
data of numerical simulations) to be processed contain Poisson noise, then a preprocessing
should be done first. Using the Anscombe transform[23], the data YP with Poisson noise can
be converted to the data YG which contain only Gaussian white noise of variance σG =1:

YG = 2
√
YP + 3

8 . (9)

Then, we make the fast wavelet transform on the preprocessed data. The fast wavelet
transform has a very important feature: After the wavelet transform is performed on a
noisy data, the major part of the information carried by the data will be contained in a few
large wavelet coefficients, while the noise will be contained in many tiny ones. If we set a
suitable threshold value, and have all the wavelet coefficients less than this threshold set to
zero, then after the inverse transform, we can obtain a set of new data that is basically free
of the original noise.

Hence, the key step in the whole process of noise elimination is to select a suitable
threshold value of the wavelet coefficients. We shall deal with it separately for several
different cases.

The threshold value T is proportional to the standard deviation of the noise, σ, with
factor of proportionality, K, determined by the size Nd of the data:

T = K(Nd)σ . (10)

If the data have not been preprocessed, and the standard deviation is unknown (noise is
mainly Gaussian white noise), then the standard deviation σ can be estimated from the
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median absolute deviation (MAD) of a part of the wavelet coefficients Di(Nd/2):

σ � 1
0.6745

MAD[Di(Nd/2)] . (11)

If the noise is dominated by Poisson noise, then after the preprocessing, its standard variance
can be estimated as:

σ � 1 . (12)

For K(Nd), there are two different estimates. The first is:

K(Nd) =
√

2 lnNd . (13)

This estimate has a rather high efficiency of noise elimination, but probably loses some
original information of the data, so it is not very safe. The other one is:

K(Nd) �
{

0 if Nd ≤ 32
0.3936 + 0.1829 log2Nd if Nd > 32 . (14)

For processing the numerical simulation data, we generally select the latter. After obtaining
the threshold value, we can treat the wavelet coefficients by two different means. One is the
so-called hard processing:

W i =
{

0 if |Wi| ≤ T
Wi if |Wi| > T

, (15)

in which Wi represents the wavelet coefficient, W̄i, the same after the processing. In the
hard processing, those wavelet coefficients that are less than the threshold value are taken
to be zero, and the other coefficients are kept unchanged. The corresponding soft processing
is:

W i =
{

0 if |Wi| ≤ T
sign(Wi)(|Wi| − T) if |Wi| > T

. (16)

In the soft processing, all the wavelet coefficients greater than the threshold value T will
have T subtracted. For numerical simulation data, the soft processing will bring certain
biases to the de-noised data, so the hard processing is usually selected.

After processing the wavelet coefficients, we make an inverse fast wavelet transform
to obtain the de-noised data. Of course, if the original data have been preprocessed, then
the data should be restored correspondingly by the inverse Anscombe transform. It should
be noted that the Anscombe transform will bring a bias to the data, but this bias can be
estimated analytically as:

bias � −1
4

(
1− 1

Nd

)
σ2 . (17)

Thus, we need only to subtract this bias from all the de-noised data.
Performing the DWT decomposition on the particles of the lens simulation sample, we

obtain a matrix of SFCs. By using the de-noising algorithm in this section, we can make the
noise elimination on this matrix of SFCs. As the matrix of SFCs contains the information
of the density field, so the noise elimination of SFCs is equivalent to the noise elimination
of the whole density field. Then, using the de-noised matrix of SFCs, the density field can
be reconstructed.
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3. NUMERICAL TEST

The isothermal ellipsoid model proposed by Kormann[24] and Keeton[25] is the most com-
monly used model of gravitational lens. It has an analytical critical curve and caustics. We
will employ it to test the smoothing algorithm.

The density distribution of an isothermal ellipsoid is:

ρ =
vc

2

4πGq3
e

sin−1 e

1
s2 + x2 + y2 + z2/q23

, (18)

in which vc is the halo’s rotational velocity, G is the gravitational constant, s is the radius of
the ellipsoid’s central core, the X-axis and Y-axis of the ellipsoid are equally long, q3 is the
ratio between the short Z-axis and the two equally long axes, and the projection ellipticity
is e =

√
1− q23 . We take vc =1500km s−1, s =20kpc and q3 =0.5.

With the Monte-Carlo method, we can produce simulation samples of the density dis-
tribution satisfying Eq.(18). The size of the cubic box at the lens position is taken to be
4Mpc. The redshifts of the lens and source are respectively taken to be 0.3 and 1.0, and
the projection direction is along the Y-axis. Two groups of simulation samples with dif-
ferent mass resolutions were produced: a sample with a high mass resolution containing
Np = 2× 106 particles, each with mass Mp = 4.375× 108 h−1M�; and a sample with a low
mass resolution containing Np = 2×105 particles, each with Mp = 4.375×109 h−1M�. The
unit of the Hubble constant is taken to be 100km s−1Mpc−1.

With the above algorithm we calculated the surface density κ of the simulation samples,
on a 1024×1024 grid. For each sample, we made calculations with 3 different wavelet bases,
Daub4, Daub6 and B-spline 3th. Then we calculated the lens caustics and the critical curves
from the obtained surface density fields.

The procedure to calculate the critical curve and caustics is as follows: First, using
the fast Fourier transform, we calculated the deflection potential at every grid point of the
density field. Then, we calculated the magnification at every grid point to obtain a mapping
from the image plane to the source plane. Finally, judging by the criterion that the sign
of magnification should change on the two sides of the critical curve, the critical curve and
caustics were determined[26].

Fig.1 shows the lens’ surface density distribution calculated for the sample with a low
mass resolution. The plotted points in this figure represent the mean surface densities in
the intervals between two adjacent ellipse radii, the solid line indicates the theoretical values
calculated according to Eq.(18). The relative errors are given at the bottom of each panel.
We see that all the 3 wavelet bases can fairly fit the theoretical curve. But in the area close
to the center, the Daub4 wavelet base does not reproduce the surface densities very well,
and the relative errors are rather large. On the other hand, the B-spline 3th and Daub6
wavelet bases can reconstruct this part of surface densities quite well. On the whole, the
result of the B-spline 3th wavelet base is not so smooth as those of the Daub4 and Daub6.
So generally speaking, the Daub6 wavelet base is the best choice. It is noteworthy that these
results are obtained by using the wavelet de-noising algorithm. In order to show the effect
of noise, we also calculated a set of surface densities, in which the noise was not eliminated
in the calculation.
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Fig. 1 The surface density κ of the low
mass-resolution sample and its relative
error as a function of the ellipse radius
R. The solid line shows the theoreti-
cal values, the dotted line indicates the
values calculated by using our smooth-
ing algorithm. The number of sample
particles and the adopted wavelet base
are indicated in each panel.

Fig. 2 is the same as the first panel of Fig. 1, based on using the Daub4 wavelet base,
but without applying the wavelet algorithm of noise elimination. We note that after the
de-noising, the noise level was greatly reduced, with no loss of information on the surface
density field. It indicates that our wavelet de-noising algorithm can eliminate effectively the
noise in the sample.

Fig. 3 displays the critical curves and caustics derived from the surface densities of the
low mass-resolution sample. Because the Daub4 wavelet base can not fairly reconstruct the
surface densities near the center, the calculated critical curve and caustics have rather large
deviations from the theoretical curves, especially for the inner part of the critical curve.
However, the Daub6 and B-spline 3th wavelet bases can fit rather well the theoretical curve,
especially for the inner part of the critical curve, and the errors are far less than in the case
of the Daub4 wavelet.

For the high mass-resolution Monte-Carlo sample, we have likewise calculated the pro-
jected surface densities and the corresponding critical curves and caustics. See Fig. 4 and
Fig. 5. We see that the relative errors of the projected surface densities are far less here than
in the low mass-resolution sample: the relative errors calculated by the 3 wavelet bases are
all controlled to be below 2%. The corresponding critical curves and caustics are very good
and match the theoretical curves very well. Compared to the other two wavelet bases, the
Daub6 wavelet base seems to give slightly more smooth results, almost coincident with the
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theoretical curve.

Fig. 2 Same as the first panel of Fig.1, but the wavelet de-noising algorithm has not been
applied.

Fig. 3 The critical curves and caus-
tics of the low mass-resolution Monte-
Carlo sample. The black line is
the theoretical curve, the yellow and
red lines are, respectively, the criti-
cal curve and caustics of the sample.
The adopted number of sample parti-
cles and the wavelet base are indicated
in each panel.
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Fig. 4 The surface density κ of the
high mass-resolution sample and its
relative error as a function of the ellipse
vector R. The solid line represents the
theoretical values, the dotted line, the
results calculated using the smooth-
ing algorithm. The adopted number of
sample particles and the wavelet base
are indicated in each panel.

Fig. 5 The critical curves and caus-
tics of the high mass-resolution Monte-
Carlo sample. The black line is
the theoretical curve, the yellow and
red lines are, respectively, the criti-
cal curve and caustics of the sample.
The adopted number of sample parti-
cles and the wavelet base are indicated
in each panel.
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For comparisons, we quote here the Monte-Carlo sample results obtained by Li G. L.
et al.[15] using the SPH3D smoothing algorithm. They used the same parameters as ours
for the lens simulation, and only a slightly different number of particles from our high mass-
resolution sample (namely, 1748982), so an approximate comparison can be made. Fig. 6
displays the lens’ surface density distribution they calculated and Fig. 7, the corresponding
critical curve. Compared with the result of our high mass-resolution sample, the errors of
their surface densities are significantly larger, and the critical curve derived from the surface
densities is also not so smooth as ours. It means that on the order of magnitude of 106, the
algorithm of ours is superior.

Fig. 6 The surface density κ calculated by the SPH3D method and its relative error as
functions of the ellipse radius R[15]. The solid line shows the theoretical values, the dotted
line shows the results calculated by the SPH smoothing algorithm. The adopted number of
sample particles is indicated in the figure.

Generally, for the calculations of the lens simulation sample with a rather large number
of sample particles (of the order of 105 or 106), our smoothing algorithm can fairly recon-
struct the lens’ surface density field. But if the number of sample particles is relatively small
(below the order of 105), then the calculated surface density field will have certain errors.
With the improving computing power of the current computer hardware, the particle num-
ber adopted for modern numerical simulation studies can be made increasingly larger. For
the N-body numerical simulations of gravitational lensing, the number of sample particles
is commonly of the order of 105-106 or even higher, very suitable for the application of our
algorithm.

It is noteworthy that this algorithm has a very fast speed for the calculation of surface
densities. We made our calculations with an Intel Itanium CPU, and our computing time
was generally less than 20 seconds. By comparison, the SPH3D algorithm adopted by Li
G. L. et al. needed a time as long as several minutes. Hence, for further simulations with
particle numbers on the order of 108 even 10 9, our algorithm is superior.
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Fig. 7 The critical curve and caustics of the surface densities calculated by the SPH3D
method[15] . The blue and red curves are the theoretical critical curve and caustics, the black
curve is the critical curve of the sample.

4. CONCLUSIONS

We have introduced a smoothing algorithm, in which the DWT multi-scale analysis is used,
and applied it to the study of gravitational lensing. For testing this algorithm, we have
produced numerical simulation samples of an isothermal ellipsoid using the Monte-Carlo
method. Two simulation samples with different mass resolutions were prepared. The cal-
culated results indicate that this algorithm can reconstruct very well the surface density
field of the high mass-resolution lens sample, and that the relative errors of the computed
surface density field are controlled to a very low level. For the low mass-resolution sample,
the algorithm can fairly reconstruct the surface density field as well. We compared three
wavelet bases, the Daub4, Daub6 and B-spline 3th wavelet bases. The calculated results in-
dicate that the Daub6 wavelet base is the best, its calculated surface density has the smallest
relative error, and the critical curve and caustics then derived are also the best. We have
compared our results with those calculated by Li G. L. et al. with the SPH3D method. For
a sample with a size comparable to that of our high mass-resolution sample, their calculated
surface densities have higher relative errors than ours, and their derived critical curve is also
not as smooth as ours. This indicates that when the particle number is on the order of 106,
our algorithm is superior.

We will apply this algorithm to study the properties of the lens samples produced by
N-body simulations. This work is in preparation.
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