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Notation

f =g, f is defined as g, equivalent to g =: f

X has df F

an /by — 1, a8 1 — 00

convergence almost surely

convergence in distribution

convergence in probability

characteristic function

distribution function

F(x) = P(X > z) for some random variable X ~ F
generalised Pareto distribution

independent and identically distributed

an estimate of M

maximum domain of attraction of the distribution &,
L € RV, means that L is slowly varying or regularly varying
with index 0

L € RV, means that L is regularly varying

with index «






Contents

1 Background
1.1 Heavy tails and what they entail . . . . ... ... ... .......
1.2 Readersroad map . . . . . . .. . .. ... o

2 An asymptotically normal estimate
2.1 Preliminaries . . . . . . . . . . ..
2.1.1 The Landau symbolsoand O . . . . .. ... .. ... ....
2.1.2 Regular variation . . . . . ... ... 0000
2.1.3 Stable distributions . . . . . ... ..o L
2.2 An estimate of the mean of heavytailed random variables . . . . . . .
2.2.1 Estimationof fand & . . . . .. ...
2.3 Asymptotic distribution . . . . .. ... ..o oL
2.3.1 Asymptotic distribution for (B, 5) ................
2.3.2  Asymptotic distributionof & . . . .. ... o000
2.3.3 Joint distribution of the parameters . . . . . . . ... ... ..

3 Performance of the estimate
3.1 Comparison to the empirical mean . . . . ... ... ... ......
3.2 Asimulationstudy . . . ... ... L0
3.2.1 Exact Pareto . . .. ... ... ... .. ... ... ...,
3.2.2 Distribution with perturbed Pareto tail . . . . . . .. ... ..

4 Applications
41 HTTP data . . ... . . . .
4.2 A regression-type application . . . . .. ...



Vi CONTENTS

A The GPD distribution 35
A.1 Properties of the GPD . . . . .. .. .. ... 00 35
B Perturbed GPD distribution 37
B.1 The perturbed GPD . . . . . .. ..o oo 37

Bl Q7 39



1.1

1 Background

Heavy tails and what they entail

Most statistics taught at an undergraduate level, and also mostly used in practice,
assume the underlying distributions to have finite variances. This property is a result
of how fast the tails of the probability distribution decays. If a random variable X
has distribution function F(z), the variance is finite if [ 2?dF(z) converges. This,
in turn, has to do with the behaviour of F'(z) = P(X > z) and P(X < —xz) for large
z, the tails of the distribution.

When the random variable X does not have finite variance, the tails of the dis-
tribution decay too slowly, meaning that there is a high probability of observing
very large (positive or negative) values. Here, distributions with this property are
labelled heavy tailed. (This term is used in various other situations as well and no
universally accepted definition seem to exist). Such phenomena occur for instance
when attempting to model file-size distributions on the Internet (see e.g. [4]) or in
many financial and insurance applications.

The problem of analysing data with heavy tailed properties is that standard statisti-
cal methods will typically not be valid, since these are generally proven under finite
variance assumptions. Lately, however, this area has received more attention, re-
sulting in practically oriented books like e.g. [1], which presents numerous examples
of applications and concrete methods in a simple and easily accessible way.
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2 CHAPTER 1. BACKGROUND

A large body of work is available on estimating quantiles of heavy tailed distribu-
tions, i.e. estimating P(X > x) for large x. This kind of problems occur for instance
in insurance applications. If X models the size of a claim, then the risk of receiving
a claim larger than some level z, is precisely P(X > z). The ability to estimate
such quantities correctly is of crucial importance for insurance companies, when de-
termining rates for their policies. Numerous methods for this kind of estimation
problems are available, see for instance [7] for an overview and introduction to the
area.

When it comes to estimating the size of the average claim, E[X], or the average size
of a file on the Internet, the most common method is to use the sample mean. In case
the distribution of X has the property that P(X > z) ~ Cxz~* for large z, where
C > 0 is a constant and « € (1,2), the sample mean will converge in distribution
to a stable distribution (see Chapter 2 for a definition), not a normal as in the case
with finite variance.

Correctly estimating the parameters of a stable distribution is difficult, but some
very good software is available from John Nolan’s home page (http://academic2.
american.edu/ jpnolan). Another property of the stable distribution is that it has
heavier tails than its normal counterpart, resulting in longer confidence intervals for
estimates of E[X].

The aim of this thesis is to introduce a semi-parametric estimate of the expected
value in a heavy-tailed setting. This means that a model will be suggested for the
tail of the distribution, but not for the “bulk” (P(X < z)) of it, making it reasonably
flexible. The estimate will be asymptotically normal and unbiased and have an easily
estimated variance. Simulations comparing it to the sample mean will also show that
it exhibits a smaller median bias for finite sample sizes.

Readers road map

The thesis is divided into four chapters. In Chapter 1 a short introduction to the
concept of heavy tails is given, serving to motivate the problem later addressed in
Chapter 2. Chapter 2 begins by defining some concepts which will be needed and
also repeats some already known results from probability theory. It then goes on to
introduce a semi-parametric estimate of the expected value of a heavy-tailed distri-
bution and examines its properties. In Chapter 3 the performance of the estimate
is evaluated by simulations. In Chapter 4 the suggested estimation procedure is
applied to file size measurements of TCP traffic over the Internet. Finally there are
two appendices where particularly long calculations have been collected.
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The hurried reader might wish to read only the first part of Chapter 2 and then skip
directly to Theorem 2.1, which is the main result of the thesis. Perhaps a cursory
glance at the graphs in Chapter 3, where the estimate is compared to estimation
using the sample mean, will also be of interest.
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2 An asymptotically normal estimate

In Section 2.1 some definitions and known results are gathered for later reference.
In Section 2.2 a semi-parametric estimate of the mean of a random variable in a
heavy-tailed setting is suggested and its properties are investigated in Section 2.3.

Preliminaries

The Landau symbols 0 and O
A version of the Landau symbols o and O, also called little o and big O, will be used
extensively throughout. For sequences {X,}52,, {V,}o2, and {R,}22, of random
variables

X, = 0,(R,) means that X,, =Y, R, and Y;, =, 0

X, = Op(R,) means that X,, = Y, R, where {Y,}°, is tight.

Useful properties of this notation include
0p(1) 4 0p(1) = 0,(1) (1+ Op(l))_l = 0y(1)
0p(1) + Op(1) = Oy(1) op(Ry) = Ryop(1)
Op(1)0,(1) = 0p(1) Op(Rn) = R,0,(1)
0p(Op(1)) = 0,(1),
where most are easy to prove, see for instance [21]. Further, the notation a, =

O4(n®) is introduced to denote that a,/n® is bounded away from zero and infinity.
This is not standard notation, but will be useful later.
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Regular variation
A function f : Ry — R, is regularly varying (at infinity) with index o € R, written
f € RV,, if

lim (%)
z—o0 (1)

For the special case a = 0, f € RV, is said to be slowly varying. It follows that
if f € RV,, it can be written f(z) = z%g(z), where g € RV,. Regularly varying
functions can be thought of as functions which behave asymptotically as power
functions. For further properties, see Chapter 0 in [14] or either of [17] or [3], where
the latter is very extensive.

=1t% forallt>0.

Stable distributions

A random variable X is said to have a stable distribution if its characteristic
function can be written

exp{—o®|0|*(1 —ifsign(f) tan 5*) +iuf} if a # 1,
E[ez’GX] —
exp{—o|0|(1 +i32sign(f) In |0]) + ipd}  fa=1,

for some parameters o € (0,2], 0 > 0, f € [—1,1] and p € R « is the index of
stability, o the scale, § denotes the skewness and p the shift parameter. o = 2
corresponds to the normal distribution.

If X follows a stable distribution, this is denoted X ~ S,(o, 3, ). There exist
other, equivalent, parametrisations of the stable distribution. For these and other
properties, see the excellent book [16].

An estimate of the mean of heavytailed random variables

Let X, X4, X,,...,X, be iid positive random variables with distribution function
F', where

F(z):=1—F(z) =cx Y*(1 + 2 °L(x)), (2.1)

for ¢ € (0,1), 6 > 0, L € RV, and some constant c¢. For & € (0,1/2), X has
finite variance and estimation of E[X] could be done using the sample mean X =
(X1 + ...+ X,)/n which, by the Central Limit Theorem, is asymptotically normal
asn — oo. If £ € (1/2,1), X converges to a stable distribution (see e.g. [6])
and is still a valid estimate. There are, however, some difficulties in estimating the
parameters of the limiting stable distribution. If the sample is big enough, it could be
partitioned into sub-samples, for which the mean of each could be calculated. Such
a procedure would render X, ..., X, which would be iid with a distribution that
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is nearly stable. Inference about the unknown parameters could then for instance
be based on maximum likelihood methods. If the sample size, n, is not big enough
to accommodate this method, bootstrapping, as described in [15], is an alternative.

Below, a different procedure is suggested for the model in (2.1). It will give esti-
mators which are asymptotically normally distributed and unbiased with an easily
estimated variance. In the calculations, 0 will be treated as a known perturbation.
The reason for this is that, normally, the sample size n would have to be very big
in order to estimate it reasonably well. Instead the properties of the mean estimate
will be examined as functions of 4.

Before the alternative estimate is suggested, note the following straightforward re-
sult.

Proposition 2.1
Let X be a positive random variable with distribution function F' as in (2.1) and let
u, — 00 as n — oo be a sequence of numbers. Then

Pn = P(Xl > un) = O-I—(u;l/g)

pn = E[X11(x, <uny] = O (u),7'/%)
Yo = Var(Xi1ix, <u,}) = Ox(up /%)
Proof: F(z) = cx */¢(1+ 0(1)) = 7¢O, (1) and the results follow from standard

calculations, using E[X*] = [ kz*"'P(X > z)dz for positive random variables X
and £k =1,2,3,.... U

The standard estimate of E[X] is

_ 1 <&
X = /xan(x) = ;ZX,C,
k=1

where F), is the empirical distribution function. Building on this we propose an
estimate of the form

A

EX]:=M:=j+7:= /un zdF,(x) + /00 zdF (z), (2.2)

where 7 is the part of M which comes from the tail of the distribution. The tail is
assumed to start at some level u,, which in the analysis will be assumed to tend to
infinity.

Let F,(y) = P(X —u, < y|X > u,) be the distribution of the excesses over the
threshold wu,. It follows from (2.1) that

7oy Plunty) (1 N i) “1/61 + (up +y) °L(us + y) 2.3)

Fu(y) F () w T+ u-0L(n,) :
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and if 8, = B(u,) = u,€, then F,(y) is a perturbed GPD, where the df of the
generalised Pareto distribution (GPD) has the form

—1/¢
_ z 0 0
= { 1= () T cr0 (e 20

This means that for large values of u,, Fy,(y) = Gg,)e(y) in the sense that

lim — sup | Fu(y) = G e(¥)] = 0,

unTyYF 0<y<yr—un

where yp is the right end point of F' and (3 is some positive function. See also
Theorem 3.4.13 in [7].

By definition F(u, +y) = F(u,)F,(y). And, for N = N, = |[{i : X; > u,}|
the number of X;’s which exceed u,, we have N ~ Bin(n,p, = P(Xi > u,)), and
estimation of F'(u,) may be done using

N

n .

M)

1 n
(Un) = n Z l{Xi>Un} =
i=1
For large values of u,,, use

Fu(y) = G:(y),
for appropriate estimates é = én and Bn = ﬁ(un) Note that § will be estimated
separately, i.e. 3 = &u, will not be used. The reason for this is to achieve greater
flexibility in the parameter fitting, compensating for the underlying distribution not
being an exact GPD.

We have now arrived at an alternative estimate, M, of E[X],

M::/ nxan(:E)—l—/ zdF(z)
0 Un

1 © N AT — Uy \ L1/
=- ZXil{X,-gun} +/ T— (1 +&{—= ) dx (2.4)
e un NP B
1w . ¢ .
i=1 -

where p = N/n. As seen above, the main interest is in the case £ € (1/2,1). It will
be seen later that, if £ € (0,1) then P(§, € (0,1)) — 1, so the convergence of the
integral will asymptotically not be a problem.

If é > 1, then M should be set to oo since this would indicate that the first moment
of the distribution in (2.1) is infinite.
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Estimation of 3 and &

Assume the excesses Y7,...,Yy to be iid GPD, where V7 = X; — u,, and N is
independent of the Y;. [19] then gives the distribution of the conditional maximum
likelihood estimates of (§,7), where n = —£/3. There is no closed expression for the
estimates, but it turns out that they satisfy

Azé Zln

where

1 1,1 S
h(n)_5+ﬁ(é(n)+1>;1—n1€_o

and h(n), n € (—oo, max; Y;), is continuous at 0. These equations are then solved
numerically. The case of interest here will be £ € (0,1), where the Cramér regu-
larity conditions will be met, ensuring convergence of (B, {;“A) to a bivariate normal
distribution. Extensions could be made to the case £ > —1/2, see [18|.

Asymptotic distribution

The aim of this section is to find the asymptotic distribution of the estimate M
given by (2.5). The properties of the estimates By, En, Pn and fi, are investigated
first, and the results are then used for proving Theorem 2.1, which is the main result
of this section.

Asymptotic distribution for (4, €)

Extensive use will be made of the fact that if U(¢) is the score statistic for a
parameter ¢ and the log-likelihood function is approximately quadratic near the
maximum likelihood estimate 1,2, then

b= =g N(Q 7', Q7Y), (2.6)

as the sample size tends to infinity. @ is the Fisher information matrix and b = E[U].
See e.g. Chapter 5 in [11] for details.

Lemma 2.1 (GPD case) o
Let Yi,...,Y, be iid GPD and (3,,&,) be the maximum likelihood estimates of
(3,€), where & € (0,1). Then

\/_Q};/;D (f _ﬁ> —¢ N(0,1), asn — oo,

3
where
1 )
Qorp = ——= ﬂl AUHO (2.7)
+28 \sarg  Tie

and [ is the 2 x 2 identity matrix.
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Proof: The log-likelihood function for one observation, y, can be written as

1 Yy-1-1/¢
18,€ly) =1 | = (1+65) 77,
g Y )
and the claim follows using standard calculations and (2.6) above, see Appendix A
or e.g. [19] for details. The assumption £ € (0,1) ensures that Cramér’s regular-
ity conditions are not violated and, hence, that the maximum likelihood estimates
converge to a normal distribution. O

Here it will be more interesting to look at the asymptotic distribution for B and {?
when the underlying model is the perturbed Pareto in Equation (2.3), the result is
stated in the following lemma.

Lemma 2.2 (Perturbed case)
Let Y3,...,Y, be iid with df F, as in Equation (2.3) and with £ € (0,1). Then

VUi, (?L:?> —a N(0,I) asn— oo

where Qgpp is given by (2.7) and I is the 2 x 2 identity matrix. Further, for large
n and u, such that |u °L(u,)| <1,

B — 3
has covariance Q~!, where Q = Qgprp + Qpers and
_ (Qss Qﬁ&) .
QPert = (Qﬁg Qce with (2.8)

1 2061+ s

Qﬁﬁ ~ _,82(1 + 25) (1 i (2 n 5)6)11” L(un)
~— 1 BB+ (6+0)E+2Y)

Qpe BA+E1+2) (T+EQ+NI+EQ2+ 5))% L(uy)

2 1 5
Qee ~ (1+&)(1+2¢) : (L1461 + L+ +E240)) <(5[5(3 +0)E° +

(2 +45 — 1) — (26> + 46 +3)8 — (0 + 70 + 7)€% — (5 + 26)€ — 1])U;JL(un),
and bias Q~'b, where

_ (El0sl\ 08 ~1/8 —,
’= (E[Ug]) 1+£(1+0) ((5(5— 1) — 1)/(5(1+5g))> nLun)  (29)
Proof: See Appendix B. 0

For u, large enough to make ||Qgpp@pert] < 1 in Lemma 2.2 it is possible to use
the approximation Q™! ~ Qopp — QuppQrertQupp, see Appendix B for details.
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Asymptotic distribution of /i

Lemma 2.3 (Distribution of /1)
Let X7, Xs,... be positive iid random variables with df F' given by (2.1). Further,
let w, = E[X11{x,<u,}] and 72 = Var(Xi1ix,<u,}), With u, = O, (n%) for some
a € (0,1) and £ € (0,1). Then

Vi,

/'L_,u‘n) _>dN(O’1)a as n — oo,
Tn
or, equivalently,

Elexp{it " (i = 1)} = /2, as n— oo,
7Y

n
where [ is defined in Equation (2.2).

Proof: The proof is straightforward in that all that has to be done is to verify that
the Lindeberg-Feller Theorem (see e.g. Chapter 2 in [6]) is applicable. To this end,
note that

V) =30 St - ZYM,

Tn 1 ’Yn

where E[Y} ] = 0, E[Y2,] = 1/n and hence }_;_, E[Ys,] =1 for all n > 1.

Further, by Proposition 2.1,
i £ €Y/ = £n*ETVDH20 (1) 5 00, asn — o0

for all a € (0,1), £ € (0,1) and € > 0, where u, = O, (n®) was used. This means
that

ZEH}/]CRF |}/}cn| > 6] )
k=1 n
Un

= ? (|X11{X1§1m} - :un| > Gf}/n\/ﬁ)

u2

= ,Y_g P(Xll{X1§un} > pn + 6’Yn\/ﬁ)
P(X11(x,<un} < fn — evn\/ﬁ))

2
V—Q(F(Mn + 6’Yn\/ﬁ) + F(,un - 6'Yn\/ﬁ)) — 0, asn — oo,

E(X111x,<un} — #0) %5 1 X1 (X1 <un} — Hn| > €10V/7]

since F(z) = 0 for z < 0, F(z) = 27¢0, (1) and u2/y2 = n®O, (1). The conver-
gence holds for all € > 0, a € (0,1) and £ € (0,1). The result now follows from the
Lindeberg-Feller Theorem. (]
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2.3.3 Joint distribution of the parameters

Lemma 2.4 (Joint distribution)

Let X, Xs,... be positive iid random variables with distribution function F' as in
(2.1) and N = [{X; : X; > u,}| ~ Bin(n, p,), where p, = F(u,) and u, = O (n®)
for some a € (0,1) and £ € (0,1). Then

P(t1,ta,t3,ts) = E[exp{itlﬂ(ﬂ — pn) + i\/nané/;D(tm t3) (ﬂAN a ﬁ) + it4M}]
Tn €N - 6 pn(l - pn)

21 12
— exp{—g1 — E(tg,tg) (Z) — 54} as n — oo,

where Qgpp is given by (2.7), un = E[Xi1ix,<un})s V2 o= Var(X11{x,<u,}) and
p=N/n.

Proof: Let

Bun(t) = E[exp{m%ﬂ Y

n

bne (1) = Elexpliv/ Qo (e ) (10~ P11

— Elexolit, VP~ Pn) — expfit, VP~ Pn)
¢y (1) = E[exp{its pn(l—pn)}‘N] p{it pn(l—pn)}

)

then ¢(t1,1a,t3,14) = E[dun(t1)0p¢n (L2, t3)Ppn(ts)]. Note that, conditional on N,
{1 is independent of (BN, fN)

If {¢,}22; is a sequence of characteristic functions such that ¢, (t) — ¢(t), then there
is a constant ng such that, for each n > ng thereis a é > 0 such that |@,(t)—¢(t)| < 0.
This means that

P(lpn(t) — o(t)] < 6) = P(I¢n(t) — ¢(t)] < 6, N > no)
+ P(lon(t) — o(t)] <6, N < no)
=P(N > ng) + P(lon(t) — o(t)| < 6, N <mng) = 1, asn — oo.

Using Lemmas 2.2 and 2.3 together with the above property, means that

t2
P n(t1) —p eXp{—El} and

1
Pp.en(ta, t3) —p eXP{—i(tm t3) (Z) },

Naturally, the product ¢, n(t1)ds e n(t2,t3) will also converge in probability.



2.3. ASYMPTOTIC DISTRIBUTION 13

Further, since N ~ Bin(n,p,), p = N/n and np, = n'~*0,(1), it follows from the
Lindeberg-Feller Theorem that

V=P Ar0.1) and pin (t1) —a exp{itaN'(0,1)}.
Pu(l = pn)

Finally, then

buw(10)03 )i (1) —ba xp - T} exp{=3 (et ({7 explits'(0, 1),

and the claim follows by taking expectations. U

All the tools are now in place for proving the main theorem of this section.

Theorem 2.1 (Distribution of M)

Let Xy,...,X, be positive iid random variables with distribution function F', such
that F(z) = cz=¢(1 4+ 27°L(z)), for some constants ¢ > 0, £ € (0,1) and § > 0,
where L(z) is a slowly varying function. With u, = O, (n®¢) for some a € (0, 1),
Pn = P(X1 > up), un = E[X11{x,<un})s 2 = Var(Xi1ix,<u,}), B as in (2.3), M =
E[X,] and M as in (2.5),

N
%\/E(M_M) —a N(0,1),

where

2

pn(l_pn)(uﬁ 592 P AEO" _ 6, ).

r-¢) T a-ey
Proof: First note that Equation (2.3) states that 3 = Oy (u,). From (2.5) follows
that

Vi Vi Vi by \, Vn( by B
= M) = 2 ) + 2 pn>(un+1_éN)+%(1_éN )
= {Taylor expand and isolate all troublesome (-terms}

_ VA Vi B, 1
—%(M—Mﬁ)‘*‘v—n@—pn)(un*—l—_g+ﬁ(ﬂzv B)

83 k= 0y — 57+ (b - 09)
£ (1= &)kt PN N
Vn 1, 8.
+Ipn(1—_§(ﬂN_ﬂ)+W(£N_g)

+ gzk% +0,((By — B)* + (€ — 6)2))



14 CHAPTER 2. AN ASYMPTOTICALLY NORMAL ESTIMATE

__ | Use Proposition 2.1 together with the Continuous
~ | Mapping Theorem and Q_pp, from Lemma 2.1

\/ﬁ ~ pn(l _pn) ﬂ \/ﬁ ~
= (o — )+ Un + (P — pn)
I Tn ( 1_5)y@d1_%ﬂ .
4N (0,1) —aN(0,1)
P B 2
+ Yl iy = §) +o,(1),
—aN(0,(1+6)?)

The result now follows by using Lemma 2.4 and the Continuous Mapping Theorem
(see e.g. Theorem 29.2 in [2]). The sequence

nl_ n ﬂ 2 n;BQ 1+€2
p(%%p)(“”*l—s) +5 (g = 0+

by Proposition 2.1. O

ko =1+

Note that there is no closed expression for the asymptotic variance of the estimate M
under the conditions in Theorem 2.1. This is because only the tail behaviour of the
distribution function F' is specified and hence the assumptions do not determine the
value of 72. An exact limit could be obtained, should F' be more closely specified,
but this would in turn mean placing extra conditions on L(z). Since L(zx) is not
known in practice, such conditions would be of limited practical use.
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3 Performance of the estimate

Two methods for estimation of the expected value of a heavy-tailed random variable
which satisfies (2.1), are compared. The standard way, estimation using the empiri-
cal mean, is compared to the estimate (2.5). This is done in Section 3.1. In Section
3.2, the two methods are compared by simulation for some selected cases.

Comparison to the empirical mean

If X is a positive random variable with distribution as in (2.1) and with £ € (1/2,1),
then it has infinite variance but finite mean, E[X] = M. The usual way of estimating
M would be to use something like Theorem 7.7 in Chapter 2 in [6]:

Theorem 3.1

Suppose X1, Xo, ... are iid positive random variables with a distribution that satis-
fies

P(|X;| > z) = 27" L(z), where v < 2 and L € RV;. Let X,, = (X1 +...+ X,,)/n,

a, =n ! inf{z : P(|Xy| > z) < nfl} and b, = E[X11{x;|<a,})-

Then (X, — b,)/a, —¢ Y as n — oo, where Y is a stable random variable, Y ~
S, (o, k, M) for some parameters o > 0 and k € [—1,1], where M = E[X] if v > 1.
O

Based on Theorem 3.1 above, a confidence interval for M would look something like

Xn_slangMSXn_Soan (1_7)a
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where (1 — ) is the approximate confidence level and sy and s; are quantiles of the
stable distribution. The interesting “first order” parameter here is really a, which
determines the convergence rate for the estimate. Under the assumption that the df
F is as in Equation 2.1, a,, ~ (constant) - n®*.

On the other hand, the estimate in Theorem 2.1 leads to a confidence interval
~ Tn 9 Tn
M_Z'y/2\/kn% SMSM+27/2an% (1_7): (31)

where z,/, is a suitable normal distribution fractile, (1 — ) the approximate confi-
dence level and k,, is defined in Theorem 2.1. As above, the interesting term to look
at is vVknvn/+/n. Tt follows from Proposition 2.1 that

VEnvn
Jn

- na(ﬁ—%)—%OJr(l), for some « € (0, 1).

05 06 07 08 09 ¢ 0.5
—0.1 0.4
~
-~ —0.2 0.3
-~ _ ~ 203 0.2
. ---—T04 0.1
—0.5 3040 60 80 100"

Figure 3.1: Left: The approximate behaviour of the logarithm of the confidence
interval width. (If the width is proportional to n”, the graph displays p, as a function
of £ and « € (0,1)). Right: The width of the confidence intervals as functions of
the number of observations, n, for a fixed value & = 0.7 and for a selection of o’s.
T corresponds to estimation based on the sample mean, and the o’s to estimation
based on Equation 2.5 using threshold u, = n®¢.

f(z)

constant

21— cx 51+ 279)

Figure 3.2: An example of how the density might look.
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Figure 3.1 suggests that the optimal parameter selection would be o = 0, correspond-
ing to using all observations for the tail estimation. This goes against intuition, for
consider the a density such as the one in Figure 3.2. In this case it would be natural
to select « in such a way as to make u,, = w, where w denotes the starting-point
of the tail. The reason Figure 3.1 suggests a = 0 is a erroneous extrapolation of
the tail-behaviour of the distribution F'(z) in Equation (2.1) to be valid for small

A~

x. Still, what the figure does show is that the estimate M will converge faster than

X, regardless of a € (0,1). It does not, however, say anything about bias.

~

Calculation of Bias(M) for finite sample sizes is difficult without imposing extra
conditions on the distribution function F' in (2.1). Instead of performing such cal-
culations, simulations are made in the next section for a few special cases.

A simulation study

Two simulations were made in order to determine the behaviour of M itself, and its
relation to X,. The parameters § and ¢ were estimated using the Splus program-
package EVIS, Version 3, written by Alexander J McNeil. Refinements could be
made for these estimates, of course, and there is a large body of work done in this
area, see for instance [19] or [20] and the references therein. Improvements to X,
could also be made, for instance by bootstrapping from the sample as described in
[15].

Depending on the value of {-C , different estimates of the mean are made, as illustrated
in Figure 3.3. € > 1 would indicate that the mean is infinite, and so the estimate
should be infinity in this case. Further, if é < 0 this would indicate a distribution
with finite tail and then the ordinary Central Limit Theorem will be used.

£>1 | FX = o

£<0 _ Exj=x

Figure 3.3: The figure shows how M is used in the simulations.

Exact Pareto

In the first simulation, 500 samples, each of size 1000, were drawn from a generalised
Pareto distribution with parameters § = 10 and £ = 0.7, corresponding to an
expected value of 33.3. The estimation strategy in Figure 3.3 was compared to the

one using only ﬁ)?] = X. The results are displayed in Figure 3.4.
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It may be noted that the trend in the /3 graph is theoretically justified since, if Y is
GPD distributed with some parameters # and &, then

P(Y>u-|—v|Y>u)_(1"'5%1})_1/6:( ¢ v >—1/€

P(Y>U+U): P(Y>u) - (1+§£)_1/€ B+ Eu
8

hence the estimate of 3 is expected to grow linearly with the threshold wu,. The
increased variability in 3 and ¢ for larger u,, is due to the estimates being based on
fewer observations as the threshold increases.

A larger median bias for X,,, compared to M, is noted. This is an expected result
since the underlying model is Pareto, and hence perfectly adapted to M.
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Figure 3.4: Results from the Pareto simulation. Top: A boxplot showing the results
of the estimation strategy in Figure 3.3 compared to using X. The dash-dotted line
shows the true expected value. Above the boxplot is a graph showing the number of
outliers not displayed. For u, between 25 and 35 the expected value was estimated
to 0o 2, 6 and 9 times, respectively. The largest outlier for X,, was at 389 which
was larger than the ones for u, between 5 and 20, but smaller than for the other
thresholds. Bottom left: Estimates of ¢ for different values of w,. Bottom right:
Estimates of (3 for different values of u,,.
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Distribution with perturbed Pareto tail

The above simulation with an exact underlying Pareto distribution is of course
favourable for M , since the correct model is assumed for the data, whereas no such
assumptions are made for X,,. We now study the behaviour of the estimates for a
more general case.

A few simulations were done where samples were drawn from the pdf in Figure
3.2 with parameters w = 10, £ = 0.7 and 6 = 1, corresponding to a mean of
approximately 15.7. 500 samples, varying in size from 100, up to 100000 were
generated and the estimates calculated for different values of the threshold u,. The
results are plotted in Figures 3.5 — 3.8.

For u, = 5 the estimate is very biased. This is as expected since the density, f(z),
is constant up to z = 10 and then decreases polynomially.
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Figure 3.5: Results from the simulation with perturbed Pareto tail. The graphs
are based on 500 samples, each of size 100. Top: A boxplot showing the results of
the estimation strategy in Figure 3.3 compared to using X,,. The dash-dotted line
shows the true expected value. Above the boxplot is a graph showing the number of
outliers not displayed. For u, between 5 and 35 the expected value was estimated
to oo 66, 83, 109, 113, 113 and 137 times, respectively for u, between 10 and 35.
The largest outlier for X,, was at 70 which was smaller than for the other thresholds.
Bottom left: Estimates of & for different values of w,,. Bottom right: Estimates of 3
for different values of u,,.
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Figure 3.6: Results from the simulation with perturbed Pareto tail. The graphs are
based on 500 samples, each of size 1000. Top: A boxplot showing the results of
the estimation strategy in Figure 3.3 compared to using X,,. The dash-dotted line
shows the true expected value. Above the boxplot is a graph showing the number of
outliers not displayed. For u, between 15 and 35 the expected value was estimated
to 0o 4, 5, 17, 21 and 31 times, respectively, for u, between 15 and 35. The largest
outlier for X,, was at 89 which was larger than the ones for u, equal to 5, but smaller
than for the other thresholds. Bottom left: Estimates of £ for different values of u,.
Bottom right: Estimates of 8 for different values of u,,.
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Figure 3.7: Results from the simulation with perturbed Pareto tail. The graphs are
based on 500 samples, each of size 10000. Top: A boxplot showing the results of
the estimation strategy in Figure 3.3 compared to using X,,. The dash-dotted line
shows the true expected value. Above the boxplot is a graph showing the number of
outliers not displayed. For u, between 5 and 35 the expected value never estimated
to co. The largest outlier for X,, was at 31 which was larger than for all thresholds for
M. Bottom left: Estimates of ¢ for different values of u,. Bottom right: Estimates

of 3 for different values of u,,.
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Figure 3.8: Results from the simulation with perturbed Pareto tail. The graphs are
based on 500 samples, each of size 100000. Top: A boxplot showing the results of
the estimation strategy in Figure 3.3 compared to using X,,. The dash-dotted line
shows the true expected value. Above the boxplot is a graph showing the number
of outliers not displayed. The largest outlier for X,, was at 33 which was larger than
for the M-estimates. Bottom left: Estimates of ¢ for different values of u,. Bottom
right: Estimates of 3 for different values of u,,.
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For comparison with the earlier results, a similar simulation was made for a finite
variance case, using parameters £ = 0.3, 6 = 1 and w = 10. 500 samples, each of
size 10000, were generated and the mean was estimated using the strategy in Figure
3.3. The result is displayed in Figure 3.9. For this case, no apparent difference is
noted between M and X,., both appear to be unbiased and have the same variance.
Surprisingly, this is also the case for M with u, = 5, where normally a bias would
have been expected. An explanation for this is that the tails are very light and their
influence on the estimate is small.
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Figure 3.9: Results from the simulation with perturbed Pareto tail. The graphs are
based on 500 samples, each of size 10000. Top: A boxplot showing the results of
the estimation strategy in Figure 3.3 compared to using X,,. The dash-dotted line
shows the true expected value. Above the boxplot is a graph showing the number of
outliers not displayed. Bottom left: Estimates of £ for different values of u,,. Bottom
right: Estimates of 3 for different values of u,.
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4 Applications

The aim of this chapter is to outline applications of M to telecommunication data.
Focus will be on the estimate, rather than on how to model network traffic, which is
a large area on its own. References to this area will therefore be very sketchy and we
will not go into any details, but see for instance [9], [12], [8], [10] and its companion
paper [13], for suggestions of different models.

When attempting to describe the behaviour of Internet-traffic data one often arrives
at a model like

X (t) =4 p + noise,

where X (t) describes the traffic intensity into a network node at time ¢, p is a con-
stant mean traffic intensity and the noise could for instance be fractional Brownian
noise. This model will be interesting when analysing network behaviour and perhaps
augmenting the network.

Sometimes it will be more interesting to look at the accumulated traffic into a node
t
At) = / X (s)ds =4 vt + noise,
0

where v is a constant and noise could be fractional Brownian motion. Such a process
is interesting when it comes to bandwidth and buffer dimensioning in the network.
There are various models for the processes X and A, but most of them have in
common that p or v are expected values of some random variable. Hence, in order
to have some idea of how X or A behaves, this mean will have to be estimated. In
the heavy-tailed setting discussed earlier, M could be used for this purpose.
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HTTP data

The data examined is the file sizes in HTTP traffic from a modem pool. It was
generously supplied by Dr Attila Vidacs at the High Speed Networks Laboratories
at the Technical University of Budapest, and is displayed in Figure 4.1 below.

Note that there are six large observations, five of which appear closely together. A
more detailed look at the data shows that five of these were generated by the same
user and that four appeared back to back in time and originated from the same
web site. This kind of behaviour might be observed for instance when the HTTP
protocol is used for file transfers instead of using F'TP. It is not clear that this was
the case, but in order to keep the model simple, these six large observations were
taken out when the mean was estimated, so that the Pareto-tail assumption would
more realistic, see Figures 4.2 and 4.3.

The mean was then estimated using the same strategy as in Figure 3.3. The result
is displayed in Figure 4.4 below. Visual inspection shows that the mean might be
around 1.25 - 10*. Estimation using the sample mean, X,,, without removing the
six largest observations resulted in an estimate of about 1.5 - 10%, and when the
observations were removed this number changed to slightly below 1.2 - 10,

Two observations could be made. First, estimation based on the sample mean is
sensitive to outliers, as demonstrated by the large difference between the estimates
above when 6 out of 7627 observations are removed from the sample. Secondly,
it would be difficult to find a simple model for this situation. An alternative esti-
mation strategy would be separate modelling of the six large observations and then
concatenation of the resulting two estimates. When using X,,, such a strategy would
result in just using the whole sample. For M , though, this might not necessarily be
the case. The problem then would be that six observations would not be enough for
making a good estimate.
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Figure 4.3: The mean-excess plot for the data suggests modelling of the file-sizes
with a Pareto distribution, apart from the six largest observations.
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compared to the sample mean, X,,, based on all observations (dotted line) and with
the six largest observations removed (dashed line). Bottom left: Estimation of & for
different values of w,,. Bottom right: Estimation of § for different values of wu,,.
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A regression-type application

This section presents a simple regression-type application of the mean-estimation
procedure described earlier. This procedure will, in turn, be compared to the stan-
dard methods otherwise used.

The dataset to be investigated is a portion of the publically available measurements
of HTTP data gathered from the Home IP service offered by UC Berkeley to its
students, faculty and staff. The dataset is described in detail on http://ita.ee.lbl.gov
/html/contrib/UCB.home-IP-HTTP.html.

Due to the size of the dataset, only the measurements between Wed Nov 6 12:46:59
1996 and Sat Nov 9 20:47:01 1996, were used. And of these, only the GET requests
were looked at. This left 1 577 582 observations of file down-loads to be examined.

The dataset was then divided into 10 minute intervals and the mean file-size was
estimated for each of these. The division into small intervals was done so that trends
and other non-stationarities would be negligible in each small interval. Then, esti-
mates of the parameters § and &, as in Equation (2.5) were calculated for different
thresholds u,. Which threshold to choose was based on examination of qg- and
probability-plots and on comparing the excesses over the treshold to a generalised
Pareto distribution using a Kolmogorov-Smirnov test. The threshold for each inter-
val was selected so that it passed the test with at the 5% significance level. The
result is presented in Figure 4.5.

2.5 X104

ol i i i i i i i
Wed 12 Thu 00 Thu 12 Fri 00 . Fri12 Sat 00 Sat 12 Sun 00
Time

Figure 4.5: UC Berkeley mean file-sizes over 10 minute intervals. Dotted lines are
95% pointwise confidence intervals. Note that the network was down for approxi-
mately 2.5 hours on Friday afternoon. For the cases where é < 0, the mean was
estimated using the sample mean. No confidence interval is supplied for these ob-
servations.
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The estimation procedure used to generate Figure 4.5 should be compared to the
one using the sample mean for the same disjoint intervals. In Figure 4.6 a plot of
the difference between these estimates is displayed. Note that the sample average
tends to yield larger estimates for this data set.
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Figure 4.6: Difference between the two estimates, M — X,,. Not completely shown
are two large negative observations of size —3.5 - 10° and —1 - 10° around Thursday
midnight.
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Figure 4.7: Histogram of the differences between the estimates, M — X,,. The two
largest negative observations are not shown.

The number of observations used for estimating the tail-parameters £ and f is dis-
played in Figure 4.9. Note that few observations were used on Wednesday afternoon,
due to a drop in overall traffic. The relatively few observations, in turn, lead to
greater variability in the estimate of the mean file-size for the same period.
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Figure 4.8: Number of observations in each 10-minute interval.

Examining the results, it appears that file-sizes increase slightly after midnight. This
might indicate that users wait for periods of low traffic intensity before downloading
large files, thus making the downloads faster.
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Figure 4.9: Number of observations exceeding the selected threshold. This corre-
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Figure 4.10: The estimated value of £ for each of the 10-minute intervals. When
¢ < 0, the mean was estimated using the sample mean.



A The GPD distribution

A.1 Properties of the GPD

In order to determine the asymptotic distribution we need the information matrix
for the estimate (/3,£). We assume that the observations used for this estimate come
from a generalised Pareto distribution with density function

1 g\ e
f(x)_5(1+65> ’ €>0,$€[0,00)

Let I(3,€) := In f(z) be the log-likelihood function and U = (Ug, Ug)" be the score
function, where

Ug:%—%(%—i-l) (1+§%)1 (A1)

ngéln(l-l—f%)—6221(1—(14-5%)_1). (A.2)
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Calculation of the second derivatives results in

82
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We note that if X has density f(z), then

1+7€

b -

This makes E[Us] = E[U¢] = 0 and the information matrix, @), will have components

1+§ ] = , ifr&E>—-1,reN
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B Perturbed GPD distribution

The perturbed GPD

Our model of the distribution function is

F(z) = a4 (1+ 27 L(2)),
where 0 > 0 is assumed to be known, & € (1/2,1), L(z) € RV, is a slowly varying
function at infinity and c is a constant. This means that F' € M DA(®¢), where

0, <0
Qe (z) = { eXp{_x—g}, >0
is the first extreme value distribution, see for instance Theorem 8.13.2 — 4 in [3] or
Chapter 1.2 in [14].

The distribution for the excesses over the threshold u = u,, is

- Fu+y) y\ Vel + (u+y) *L(u+y)
F(y)=——"=(14+2
) F(u) ( + u) 1+u%L(u)
and if 8 = u& we note that this equals a perturbed GPD distribution.

We are interested in estimating the parameters § and &. Let Y;,Y5,... be the
excesses over the threshold u. Use these for estimating the parameters # and £ in
the GPD by the ML method. How big an error does this lead to when the actual
distribution is not GPD but rather F,? The score function and the information
matrix can both be expressed in terms of

E[ln(1+%)] and E[(1+%)_T}, re{1,2,3...}
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So, if the log-likelihood function is

1(B,€) =In [% (1 _1_5%)—1_1/6]’

this means that, for r € {1,2,3,...},

Yyl u=L(u) o 1 1e s L(tu) £
[(03) T = e (L T T )
1 u 9L (u) &9 ré
T 1xre 1+u L(u) (f(r+5)+1 - Tf"‘l)
_ 1 4 1 7«25(5 (u_‘sL(u)—u_%LZ(u)-l----),

1476 1+7rE (r+6)E+1
for |u™°L(u)| < 1
1 N I )
1+76 147E (r+0)¢E+1
1
1 + 7€
Y\ Y (tu) °L(tu) — u°L(u)
EP”(”E)]_“/I e O R
uL(u) &0
14w L(u) 145

—e-c- +‘5 5L —w L) + ), for L)) <1
5

w0 L(u)

~&

w0 L(u)

~E—E-
~ ¢

1+ 65

where [u9L(u)| < 1 is needed for the series expansion to work. Making use of
Equations A.1 and A.2 in Appendix A and calculating the expectation of Uz and Ug
using, not the df for GPD, but rather F},, results in

o€ . u 0L (u)
BA+E(140)) 1+udL(u)
_ 0§ (L) — w2 L2
= A TET D) (u°L(u) L*(u) +...)
PEE-1)—0 L)
EQ+0(1+E(1496)) 14+uL(u)
I e
= 01681+ €1 £ 9) (v L(u) —u L (u) +...),

E[Us] ~ —

E[U¢] ~
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for u sufficiently large so that |u °L(u)| < 1. Analogously, using Equations A.3 —
A.5 in Appendix A,

Qs = Eldag] o oot 206(1 + €) uL(w)
o8 = EB Y (1 0g) T BRI+ 201+ (210)8) 1+ uL(u)
N S S (¢5,.1 M

P+28) FO+2) (1+(2+0))

O = ElT] ~ 1 - SE(3 + (6 + 6)E + 2€2)

¢ B+ +26)  BL+EA+26)(1+EA+)A+EER+0)
u O L(u)

14+ u0L(u)

N 1 ( _ SE(B+(6+0)E +28%)

BL+&(1+29) (1+&(1+6)(1+&(2+9))

B 2 26 1 £(2+¢)
Qe = Eleel ~ irgrae 5_2(_ 1+66 " (1461 +E(1+49))

£(1+¢) ) ~ u”’L(w)
(1 +20)(1+(2+6)&)/ 1+uL(u)
2 2
T AFO0+%) 1+

O[0(3+0)&° + (0* +46 — 1)&* — (26° + 46 +3) — (0* + 70+ 7)€ — (5 +28)§ — 1]

u_‘sL(u))

(140661 +E1+9)(1+£(2+0))
uL(u),

resulting in an information matrix

_ (@ss Qﬂ&) B.1
(Qﬂf Qee )’ (B-)

where u is assumed to be sufficiently large so that |u=°L(u)| < 1, as above.

B11 Q!
The aim is to estimate Q! in such a way that it contains only constants and
terms of order u=°L(u). To do this, observe that we can write Q = Qgpp + Qperts
where QQgpp is the information matrix we get when the underlying distribution is
exactly Pareto (c.f. Equation A.6 in Appendix A), and Qpers is the contribution
from the perturbation, i.e. the contribution arising from not having an exact Pareto
distribution.

Now approximate @' in the following way:

Q_l = (QGPD + QPe'r't)_1 = (1 + Q(_}'}?DQPert)_lQE;}DD =
= Z(_QC_J}?DQPC”)]CQC_J}?D = Qapp — QarpQreriQcpp + R~

k=0

1 -1 -1
~ Qgpp — QappQPertQapp:

8
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where R is the remainder of the sum. The advantage to this is that all elements in R
will be functions of (u=°L(u))*, for k > 1 and hence should be negligible. Another
advantage is that there is no need to explicitly calculate Q;im which would have
been a messy affair.

Does Y (—Qapp@pert)* converge? Tt will if ||QgppQ@pertllz2 < 1. This is shown the
following way:

L(u) _
|Qabp@penll} < \m\ NQEH I - | Qerel

u”L(u)
1+ uL(u)

2

Amax(Qapp) Qpp) * Amax((@pere) Qpert);

where (u™L(u)/(1 + u°L(1)))Q'per; = @pere and Amax(A) is the largest eigenvalue
of A. Finally, find bounds for the eigenvalues by using

Theorem B.1 (Gershgorin’s Theorem)
Let B be an arbitrary matrix. Then the eigenvalues A of B are located in the union
of the n disks defined by

|/\—b“|§2‘b”|, forizl,...,n.
j#i

Proof: This is Theorem 2.9 in [5]. O
The matrix we are interested in finding the eigenvalues for is

ey t
- (QPert) QPert
and since Q'p,,, is a symmetric matrix, we can write
Q".., = PDP! M = PD*P!
Pert — = - )

where P is the matrix with columns being the eigenvectors of Q'%,,, and D =
diag{A1, A2} is the matrix with the corresponding eigenvalues in the diagonal. Hence,
the eigenvalues of M are all positive.

The conclusion is that the eigenvalues of the perturbation matrix have to be smaller
than both

100[3457}“00052;55 and 32082 + (5+52’2)5(([)-12+ﬂ3)’
making
52 62 4 6° 2500
A ((@pert)! Qpere) < mae (100 G 1000 3208 + o ﬁg))



B.1. THE PERTURBED GPD 41

Using the same method on the remaining eigenvalue results in

Amax(Qgpp) Qgpp) < 16 + 445 +165%

This all illustrates that we will have large values of the bound for both large and
small values of 3 and ¢, assuming £ € (0.5,1). Still, we have an (albeit coarse)
limit for the eigenvalues demonstrating that it is possible to get convergence in the
approximation of the inverse by selecting a large enough value of u.

To summarise the above,

uL(u) |2
1QappQpertll; < T u—é(Lgu) (16 + 452 + 164%) -
52 52 + & 2500
100———— + 1000, 32052 .
max(00ﬂ4+ﬂ2+ 0002, 3205 +((5+52)(ﬂ2+ﬂ3)>

So we arrive at an approximate expression for Q~!:

Lemma B.1 (Approximation of Q')

-1 -1 -1 -1 -1 2
Q= QGPD - QGPDQPertQGPD + O(HQGPDQPert“Q)
~ QE;}JD - QEJ}DDQPertQa}DDa

for large u, where

o= 0+9 (2 7)
and
1 1 6(1+¢) (1,1) (1,2)\ uw’L(u)
Qarp@renQarp = (146 (L+ (L+8)E) L+ (2+6)¢) ((2, 1) (2 2)) 1+u9L(u)’
with

(1,1) = —28*(1 + B3+ 25 + £+ 0(3+0)€ — (1 +26)&% — (6% — 3)€3 +
(146)(2+36)&" +26(1 +6)&€%))
(1,2) = (2,1) = B2+ 42+ 0)E+2(1+0)(4+ 6)E2 + (20(1 +6) — 1)&3 —
2(146(4 +0))E* + (0 — 4)6€° + 26°¢°)
(2,2) =21+ (-1 +&(-4(1+ & + 0(-2+£(0((€ - 1) = 1)
+ (-G +2£03+8))
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