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Abstract

We associate a geometric object, the Artin scheme, to any ”tiled” order
in a matrix algebra. We assume for simplicity that the base ring is a dis-
crete valuation ring containing a field and we calculate the dimensions of the
cotangent spaces at closed points of the Artin scheme. As a consequence,
we conclude that the order is hereditary if and only if the dimensions of the
cotangent spaces are minimal.
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1. INTRODUCTION

Let K be a field and V be an n-dimensional vector space over K. To
V we can associate a projective space P(V). In the classical definition
P(V) parametrizes the 1-dimensional subspaces of V. In this paper we will,
however, use the definition in [7] and let P(V') parametrize the subspaces of
V of codimension 1.

The K-algebra A := Endg (V) of K-endomorphisms of V' is a central
simple algebra of dimension n? as vector space over K. It is easy to describe
the left ideals of A. Each left ideal has the form Hompg (V, W) for a unique
subvectorspace W of V. In particular, this gives a bijection between the
K-points on P(V') and the left ideals I C A such that A/I has dimension n
over K.

More generally, one can consider a covariant functor F : K-Alg — Sets
from the category of commutative K-algebras to the category of sets. To
each K-algebra K' we associate the set of all left ideals I' C A" := K' @k A
such that A’/I' is a projective K'-module of constant rank n. This functor F
may also be regarded as a contravariant functor from the category of affine
K-schemes and then extended to a functor defined on the category of all
K-schemes. This extended functor is represented by the K-scheme P (V).

One may replace K by an arbitrary commutative ring R with 1 and V by
a projective R-module M of rank n. Then A := Endg(M) is an Azumaya
algebra which is projective of rank n? as R-module. In the same way as above
we can consider the functor of left ideals of corank n, F : R-Alg — Sets.
This functor is represented by a (generalized) projective space P(M) as
showed by Grothendieck. In particular if M = R™ and A = M,,(R), then F
is represented by ]P”}z_l.

More generally Grothendieck showed (see [6]) that F is representable for
all Azumaya algebras A and he called the corresponding scheme X, the
Severi-Brauer scheme of A. In the case of a central simple algebra over
a field K one gets Severi-Brauer varieties over K, which were studied by
Chatelet already in the 1940’s. We shall follow the terminology in [1] and
call X, the Brauer-Severi scheme of A and F the Brauer-Severi functor of
A.

Let R be a Dedekind domain with perfect residue fields and with quotient
field K and let A be a central simple K-algebra . In [1] Artin studies the
Brauer-Severi functor of maximal R-orders A. He notes that this functor
is represented by a projective R-scheme X and that it may have several
connected components if A is ramified. One of these components X contains
the generic fiber of X over R, which is nothing but the Brauer-Severi K-
variety of A. Artin then goes on and studies X° and shows that it is regular.
This result was generalized to hereditary orders by Frossard [5].

To show that X° is regular, Artin first reduces to the case where R is
a complete discrete valuation ring. It is known that A remains hereditary
after unramified extensions (see [10]) and that A has an unramified splitting
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field. It is therefore sufficient to study the split case where A = M, (K),
which we assume from now on.

The hereditary R-orders in A are well understood (see [15]). They form a
subclass of the tiled orders. An R-order A in A = M,,(K) is said to be tiled
(see [11]) if there is a set of n primitive idempotents eq,...,e, € A with
e1 +...+e, = 1. Artin used these idempotents to embed X° as a closed
subscheme of a multiprojective space over R. He used thereby the fact that
X0 represents the subfunctor 70 C F of ideals I C A such that e;A/e; 1 is
of rank 1 for each i = 1,...,n. His equations for X° are multilinear.

Salberger showed (see section 4) how to represent F° by a multiprojec-
tive R-scheme XO for arbitrary tiled R-orders. He interpreted such orders
as groupoid rings twisted by 2-cocycles and obtained multilinear equations
similar to those of Artin. We shall therefore call X° the Artin subscheme of
the Brauer-Severi scheme X. The coefficients in Salberger’s equations are
given by the 2-cocycle of the groupoid defining the tiled order.

We shall in this paper use these equations to study the geometry of the
Artin subscheme X° of the Brauer-Severi scheme X of an arbitrary tiled
order. The original aim was to show that the only tiled orders for which
X0 is regular are the hereditary orders. This would have been a converse to
Frossard’s result.

We did not succeed in doing this. Instead, we prove a somewhat weaker
result (Theorem 1), in the case where R contains a field k. It says that a
tiled order A C M,,(K) is hereditary if the tangent space dimensions of the
closed points of X are less or equal to n. Furthermore we give in Proposition
13 a condition for A which implies that X is singular.

The paper is organized in the following way:

In Section 2 we recall the definitions of Zariski sheaves and representable
functors.

In Section 3 we introduce the Grassmann and the Brauer-Severi functors.
We include a proof of the representability of the Brauer-Severi functor for
R-algebras A, which are finitely generated and projective as R-modules.

In Section 4 we construct tiled orders with multiplication rules determined
by certain groupoid 2-cocycles. We present equations for the Brauer-Severi
scheme X of such orders.

In Section 5, we study these orders over discrete valuation rings containing
an algebraically closed field. We describe the subclasses of groupoid 2-
cocycles giving rise to hereditary orders and “triangular” orders. We then
study the geometry of the closed fiber of the Artin subscheme X0 C X
for such orders and give a condition on the 2-cocycle for X° to be regular.
Next, we investigate the cotangent spaces at certain closed points of X0,
We show how the dimension of the cotangent space can be determined from
the 2-cocycle. We also give a sufficient condition for X° to be singular.

Finally, we give the main result, which gives a relation between hereditary
orders A and the dimensions of the cotangent spaces at closed points of XV.



2. REPRESENTABLE FUNCTORS

Let C be a category and let C denote the category Func(C°P, Sets)
of contravariant functors ff\om C to the category Sets of sets. For any
X € Obj(C) let hx € Obj(C) be the contravariant functor sending Z to the
set Morc(Z, X) of morphisms from Z to X in C. There is then a canonical
covariant functor & : C — C which sends X € Obj(C) to hx € Obj(a)
and f € Mor(X,Y') to the natural transformation h(f) : hx — hy defined
elementwise by composition, that is h(f)(g: Z - X) = fog:Z =Y.
Lemma 1 (Yoneda).

~

(i) For any functor F € Obj(C) and any X € Obj(C) there is a natural
bijection between the set F(X) and the set of natural transformations
from hx to F.

(ii) The functor h is fully faithful.

Proof. See [4] pp.252-253.1

Thus the category C is equivalent to a full subcategory of 6, where full
means that Morc(X,Y) ~ Morg(hx, hy) for all X,Y € Obj(C).

Definition 1. A functor F € C is said to be representable if there is an
X € Obj(C) such that hx ~ F in C. In this case we also say that X
represents F.

A natural transformation 7 : € — F in C is called a monomorphism, and
& a subfunctor of F, if 7x : £(X) — F(X) is injective for all X € Obj(C).

Let R be a commutative ring with 1. An R-scheme is a morphism of
schemes ¢ : X — Spec R and an R-morphism ¢ from ¢ : X — Spec R to
1 :Y — Spec R is a commutative diagram of schemes

¢ =
x y
Spec R

By abuse of notation we usually write X for an R-scheme and ¢ : X — Y
for an R-morphism. We denote by Sch/R the category of R-schemes.

We now want to characterize the representable functors in C for the
category C = Sch/R. One property they have is the following. Let X,Y €
Obj(C) and let |, Va, Vo € Obj(C), be a Zariski open covering of Y. Then
hx(Y) is an equalizer in the diagram

hx(Y) = [[ hx(Va) = [[ rx(Va N V)
« a,f

where the two arrows to the right maps (¢q) to (¢alv.nv,) and (¢g) to
(#glvanv) respectively. Another way to express this is that hy induces a
sheaf of sets on each scheme Y € Obj(C).
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Definition 2. A contravariant functor F : Sch/R — Sets is called a
Zariski sheaf if it induces a sheaf of sets on each R-schemeY .

Let AffSch/R denote the full subcategory of Sch/R, whose objects are
the affine R-schemes. Consider the category Func((AffSch/R)°P, Sets).
In this category we define Zariski sheaves, but with respect to the principal
open subsets D(f) := {p € Spec S; f ¢ p} where f € S and where S is an
R-algebra. These subsets form a basis for the Zariski topology on Spec S
with D(f) N D(g) = D(fg) for all f,g € S. Note that the ring of regular
functions on D(f) is the localisation S (see [8], section I1.2).

Definition 3. A functor G € Func((AffSch/R)°P, Sets) is called a Zariski
sheaf if G(Spec S) is an equalizer in the diagram

G(Spec S) — Hg(Spec Sr) = Hg(Spec St.1;)
( t,J
for any set of elements f; € S with Spec S = J,; D(f;). The morphisms are
induced by the ring homomorphisms S — Sy, Sg; = Sy, and Sy, — Sy,
respectively.

Let Fy € Func((AffSch/R)°P,Sets) denote the functor obtained by re-
stricting F to affine R-schemes.

Proposition 1. The map F — Fy is an equivalence between the subcategory
of Zariski sheaves in Func((Sch/R)°P,Sets) and the subcategory of Zariski
sheaves in Func((AffSch/R)°P, Sets).

Proof. See [4], Proposition I-12.1

The category AffSch/R is contravariantly equivalent to the category R-
Alg of commutative R-algebras with 1. We may thus by Proposition 1
identify contravariant functors from Sch/R to Sets with covariant functors
from R-Alg to Sets. To simplify we use the same notation F for both of
them. Furthermore, we write F(S) instead of F(Spec S).

It is not the case that every Zariski sheaf is representable. However we will
see in Lemma 2 that for a Zariski sheaf representability is a “local” property.
To understand this, we must extend some notions from the category C to
the category C.

Definition 4. A subfunctor € of a contravariant functor F : Sch/R — Sets
is called open if for any hx — F, X € Obj(C), the pullback of the diagram
& — F < hx is isomorphic to hy where U — X is an open immersion. In
the same way we say that £ is closed if U is a closed subscheme of X.

This definition coincides with the definition of open(closed) subscheme in
the case F is representable (see [4], p.255).

Definition 5. A collection {F;} of open subfunctors of F is called an open
covering of F if for each scheme X the set {U;}, where hy, is the pullback
of Fi = F < hx, is a covering of X.
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We have already seen that representable functors must be Zariski sheaves.
Furthermore, a functor of the form hx has an open covering of representable
functors, namely itself. More interesting is the following converse statement.

Lemma 2. Let F : Sch/R — Sets. If F is a Zariski sheaf and has an open
covering of representable subfunctors then F is representable.

Proof. See [12], Lemma 1.3.

3. THE BRAUER-SEVERI FUNCTOR

We are now in a position to discuss the representability of two specific
functors, the Grassmann functor and the Brauer-Severi functor. We shall use
the following notation. R is a commutative ring with 1, L an R-module and
Gn(L, R) is the set of all R-submodules M C L such that L/M is a projective
R-module of constant rank n. Furthermore let G, (L, R) denote the covariant
functor which to each R-algebra S associates the set G, (L ® S, S). To see
that G,,(L, R) is a Zariski sheaf, let Spec R = |J; D(f;), fi € R, be a covering
of principal open subsets and consider the diagram

Mo >®Mf@.4®Mﬁfj

\/ “" ‘1"
L— @Lfi — & Lfifj
where M is the equalizer of the first row. Since the second row is an equalizer

there is a unique R-module homomorphism M — L such that the diagram
commutes. The cokernels of the vertical maps yield a new equalizer

L/IM — @ Ly, /My, —— @ L.y /My,
with Lfi/Mfi ~ (L/M)fi. Hence M € G,(L,R) if My, € Gn(Lfi,Rfi) for
all 4.

The functor G,(L,R) gives rise to a contravariant functor from C =

Sch/R to Sets (also denoted G, (L, R)). We call it the Grassmann functor.
It was first studied systematically by Grothendieck in [7].
Example 1. Let L := R™. Then Gi(L, R) is represented by the scheme
P71 (see [8], section I1.7.1). In this case the quotient S-modules (L®S)/M,
M € Gi(L, R)(S) are projective of constant rank 1. Such modules will be
called invertible in the sequel.

If M € Gp(L,R) and P = L/M, then the surjection ¢ : L — P induces
a surjective R-homomorphism ¢, : A" L — A" P (see [14], Appendix C)
and hence an element M,, = Ker ¢, € G1(A\" L, R). This map G,(L,R) —
G1(\" L, R) is functorial and gives a monomorphism of functors G, (L, R) —
Gi1(A\" L, R).

Proposition 2. The functor G,(L, R) is a closed subfunctor of G1(\" L, R)

with respect to the embedding above.
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Proof. See [12] and [7], §9. W

Thus, if L is free of rank m and n < m, then G (A" L, R) is represented
by PY, where N = (') —1 and G, (L, R) by a closed subscheme Xg, (L,r) of
PY defined by the quadratic Pliicker equations (see [9] pp.119-122 and [4]
pp.107-110).

We now consider a particular subfunctor of the Grassmann functor.

Definition 6. Let R be a commutative ring with 1, A an R-algebra (not
necessarily commutative) and P a left A-module which is projective of rank
n as R-module. The Brauer-Severi functor is the subfunctor B,(A, R) of
Gn(A, R) of left ideals I C A.

The following proofs are due to Salberger.

Lemma 3. Let M C L be an inclusion of R-modules such that P = L/M
is invertible and let ¢ : L — L be an R-homomorphism. Then o(M) C M
if and only if I @ p(I') and (1) @' have the same images in P ® P for all
LI'e L.

Proof. =; If (M) C M then ¢ induces ¢ : P — P. Put p =1+ M and
p' =1'"+ M. Since Endg(P) = R, we can find r € R such that @(p) = rp
and ¢(p') = rp'. Thus p@ ¢(p') =p@rp' =rp@p' = o(p) @ p'.

<; Let m € M and ¢ = ¢(m) + M in P. We want to show that ¢ = 0.
Since P is invertible this follows if p@ g =0 for allp € P. Let p =1+ M.
By assumption ! ® ¢(m) and ¢(I) ® m have the same images in P ® P so
that p®¢=0. &

Corollary 1. Let L, M and ¢ be as in Lemma 3, with the extra assumption
that L is a free R-module with basis e1,...,e,. Then o(M) C M if and
only if e; @ p(ex) and p(e;) ® e, have the same images in P @ P for all
Jk€e{l,...,n}.

Since, by assumption, A is locally free, the representability of B, (A, R)
will follow from Lemma 2 if we can represent B, (A, R) in the case when A
is free.

Proposition 3. Let A be an R-algebra which is free as R-module. Then
Bn(A, R) is represented by a closed subscheme Xp, (a r) of Xg,(A,R)-

Proof. Using the embedding of Proposition 2, we may reduce to the case
when n = 1. It is thus enough to show that Bi(A, R) is representable.
Let S be an R-algebra. An S-module inclusion M C A ®g S, where M €
Gi(A, R)(S), is an element of Bi(A, R)(S) precisely when M is a left ideal
of A®pg S. This is the case precisely when e,M C M for all ¢; in an S-basis

of AQr S. Let

l l
ay; ... Qy,



be the matrix of the S-module homomorphism ¢ induced by e; in the basis
€1,...,em. By applying Corollary 1 to the equalities

m
ej ® pler) =) _aje; ®ei
=1

m
v(ej) ® e = Zaéjei ® eg
i=1

we obtain that the images p; = e; + M must satisfy the tensor relations
m m

(1) D ahpi@pi=Y alipi ® py.
i=1 i=1

forall j,k € {1,...,m}. Let Y C ]P’T}'g*1 be the closed subscheme correspond-
ing to the homogeneous ideal generated by the elements > 7, al,z;z; =
Yoy aéjmimk, I € {1,...,m}. Then an R-morphism of schemes Spec S —
P71, corresponding to a quotient S-module P = (A ® S)/M, factors
through Y if and only if the global sections p1,...,p, € P satisfy the ten-
sor relations (1) for [ € {1,...,m}. Hence the R-scheme Xp z ) =Y
represents B1 (A, R). B

4. ARTIN SCHEMES OF TILED ORDERS

In this section we consider a certain open and closed subscheme, the Artin
subscheme, of the Brauer-Severi scheme in the case A is a certain groupoid
algebra. We give Salberger’s equations for the Artin scheme and show that
the groupoid algebras give rise to tiled orders.

Let Zy, :={1,2,...,n} and G be the groupoid with elements in Z, x Z,
and the following (partial) law of composition. The product (7,7)(k,l) is
defined if and only if j = k, and (7, 7)(4,1) := (4,1). Let G act trivially on
the commutative ring R and let 7 : G X G — R be a multiplicative 2-cocycle.
This means that

Ta,pyTBy = TafyTa,p
for all a, 8,7 € G whenever the products a8 and (v are defined. We may
also regard 7 as a function 7 : Zp X Zp X Zp — R, (4,5,k) = 7 j),(j k) and
we shall in the sequel write 7;;, for 7(4, j, k). The cocycle condition may be
rewritten as
TijiTikl = TikiTijk-

The 2-cocycle is said to be normalized if 7;;; = 7;;; = 1 for all 1, j € Zy,.

Let A; (or simply A) denote the R-algebra with A = @, <, Reij as
R-module and with multiplication rules €;;e;x = 7€ and_eijgkl = 0 if
j # k. The associativity of this multiplication follows from the cocycle
condition, and makes A into an R-algebra. If 7,5, = 1 for all 4,5,k € Zy,
then A = M,(R) and ¢;, 1 <1,j < n, is the standard R-basis of M, (R).
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Lemma 4. Let 7 and o be 2-cocycles as above. Suppose that there exists a
function u : Zp X Ly X Zn — R*, (i,7,k) = uijk, to the multiplicative group
R* of invertible elements of R such that

Tijk = UijkTijk
for all i,j,k € Zy. Then T and o induce isomorphic R-algebras, A, and
Ay. In particular, if 75, € R* for all 4,5,k € Zy, then A, ~ M,(R) as
R-algebras.
Proof. The elements u;;; form a cocycle for G with values in the group R*.
Fix [ and let v;; = u;j. Then
ViiVik
uijp = ——
Vik

for all 4, j,k € Zy. The map €;; — Uije;-j induces an R-algebra isomorphism
from Ar = @, j<n Reij t0 Ao = D144 j<n Re;;. W

We want to determine equations for the Brauer-Severi scheme X of A.
This scheme may consist of several connected components (see [1]). Artin
studied the following open and closed subscheme X° of X. Consider the
universal Ox quotient module P, representing the functor B, (A, R). As an
Ox-module P has a decomposition @);"_; P;, and each P; has constant rank
on the connected components of X (see [8] p.109 and [2] pp.109-110). Let
XY denote the subscheme of X where rank(P;) = 1 for all . We shall in
the sequel call this subscheme X° the Artin subscheme of X or simply the
Artin scheme of A.

The following key lemma is due to Salberger.

Lemma 5. There is a natural bijection between the following two sets:

(i) Left ideals I C A such that P; := €;;A /el is an invertible R-module
for each i € Zy,.

(ii) n-tuples of My,..., M, € G1(R", R) such that
(2) TijkPik ® Pji = TijiPil @ Djk
in P; ®g P; for all i,j,k,l € Zy, where p;, € P; :== R"/M,; is the
image of e, = (0,...,0,1,0,...,0) € R™ with 1 in the k’th position
Proof. (i)= (ii); Let p; be the image of ¢;;, in P;. If we multiply with €;; =
€;i€i; from the left, then we obtain an R-module homomorphism €;;A — €;A
which sends €;;I into €;;1. Let «y;; : P; — P; be the corresponding quotient
homomorphism and pjj := € + €;;1. Then,

Yii(Pjk) = €ij€jk + €l = Tijr€ik + €iild = TijkPik-
As P; ®g Pj is invertible, we have

Pik ® Pt = Pji @ Pjk-
8



By applying v;; ® id to this equality we obtain
ij (Pjk) ® Pjt = vij (Pjt) @ Pjk

and
TijkPik @ Pjl = Tij1Pil @ Pjk
in P; ®g Pj.
(ii)=(i); Let §; : R™ — €;;A be the R-module isomorphism sending (71, ...,7y)

tori€ji+...+Tn€jn and let Ij = GJ(MJ) Then f’] = Rn/Mj ~ fjjA/Ij is in-
vertible as R-module. It is therefore sufficient to prove that I =11 &... 81,
is a left ideal in A = €1 A D ... @ €, A. That is, we have to show that

eij(I) = €ij(1;) = i (0;(M;)) C 0:(M;) = I
for all 4,j € Zy. Suppose Y p_;rrex € M;. Then Y ¢ | rgpjr = 0 so that
Y p_1 TEPjk ® Tiipa = 0 for all | € Z,,. Applying (2) gives

n n
Z TkTijkPik @ Pji = Z TPk  Tijipa = 0,
k=1 k=1
for all | € Zy, which is possible only if Y}, 77ijkpi = 0. Hence

n
Z TkTijk€k € M;
k=1

and . . .
€ij (0,00 rrer)) = D rreijejn = Y hTijeir € 0;(M;).H
k=1 k=1 k=1

We may and shall apply Lemma 5 to A ®r S for commutative R-algebras
S. We then obtain similar bijections between suitable left ideals in A Qg S
and n-tuples of elements in G1(S™, S) satisfying the same tensor relations.
These bijections are functorial under homomorphisms of R-algebras.

Corollary 2. The Artin scheme X° of the R-algebra A, is isomorphic to
the R-subscheme X' of (P%ﬁl)" defined by the multihomogeneous equations

TijkTikTjl = TijlTaTjk, iy Jy byl € Zn,.
Proof. The bijection in Lemma 5 extends to a isomorphism between two

functors R-Alg — Sets. The first is represented by X° and the second by
X. n

Obviously, if we fix the multiprojective coordinates x;x, we can recover the
elements 7;;; from the equations of the scheme X 0 and hence it is possible
to reconstruct the order A.

Definition 7. Let R be an integral domain with quotient field K and A be a
split central simple K-algebra, that is A ~ M, (K) for some n. An R-order

(see [15]) in A is a subring A of A containing the unit element 14 of A such

that A is a full R-lattice in A. An R-order A in A ~ M, (K) is called a tiled
9



R-order if there exist primitive orthogonal idempotents €11, . .., €nn € A such
that > 1 | € = 1a4.
Lemma 6. Let R be an integral domain with quotient field K and 7 : Z,, X
Zp % Zp, — R\ {0} be a normalized cocycle. Then the following holds.
(i) There exists a function u : Zp X Z, — R\ {0}, (4,7) — ui; with
ui; = 1 for all 1 € Zy, and
Uik
(ii) Let A = A; be the K -algebra with A = €D, ; j<,, Keij as vector space
over K and with multiplication rules e,'jeﬁC :_Tijkeik and e;jer; = 0
if j #k. Then A ~ M,(K) as K-algebras.
(iii) A = Ar = D1 j<n Reij is a tiled R-order in A containing the
primitive orthogonal idempotents e11,...,eny.
Proof.

(i) Choose u;; = 7;; for some fixed | € Zy,.
(ii) This is a special case of Lemma 4.
(iii) It is clear that A is a full R-lattice in A and that A is closed under
multiplication. H

Tijk =

The orders in the last lemma were studied in the thesis of P. Lundstrém
[13] under the name of Brauer orders. The interpretation in terms of 2-
cocycles of the groupoid is due to Salberger.

5. LOCAL STUDIES OF CERTAIN SCHEMES

To simplify the further investigation of the Artin subscheme X° of the
Brauer-Severi scheme X, we shall in this section make the following assump-
tions on the base ring R. We suppose that R is a discrete valuation ring
containing an algebraically closed field k&, which is isomorphic to the residue
field of R. We denote by t an arbitrary but fixed generator of the maximal
ideal m of R. We are interested in the regularity of X°. Let us therefore
recall some definitions and results concerning regularity and Kahler differ-
entials.

Definition 8. A local ring (B, m) with residue field F is called a regular
local ring if

dimp(m/m?) = dim B
where the first dimension is the dimension as vector space over F and the
second dimension is the Krull dimension of the ring.

Note that dim B < dimp(m/m?) holds for all local rings.

Proposition 4. Let (B,m) be a local ring, which contains a field k isomor-
phic to its residue field B/m. Then there is an isomorphism of vector spaces
over k,
m/m? ~ Qp/k ®B k.
10



In particular, if B is a discrete valuation ring, then Qp/, @p k is a one-
dimensional vector space over k generated by dt for any t € m\ m?.

Proof. See [8] p.174.1

Proposition 5. Let A be a commutative R-algebra, let I be an ideal of A,

and let A= A/I. Then there is a natural exact sequence of A-modules:
/22— Qg @4 A——Qijp ——0

Proof. See [8] p.173 or [3] p.389.H

Proposition 6. Let A be a commutative R-algebra and S be a multiplicative
system of A. Then,

Qs-14/r~ S Qu/r
Proof. See [8] p.173 or [3] p.397. W

Proposition 7. If A := R[z1,...,zy,] is a polynomial ring over a commu-
tative k-algebra R, then

Qajp = (A®R Qry;) © (B Adz;)
Proof. See [3] p.394.1

Corollary 3. Let k be a field and R be a discrete valuation ring containing
k with residue field isomorphic to k. Let A = R|z1,...,z,] be a polyno-
mial ring over R and I C A be an ideal generated by some polynomials
qs---,qm € A. Let A= A/I and B = S~ A for some multiplicative system
S of A. Finally, let t be a generator for the mazimal ideal of R. Then,

Proof. Combine the previous 4 propositions.ll
Definition 9. Let (Z,0z) be a scheme.

(i) A point p of Z is a regular point if the local ring (Ozp,m) at p is a
regular local ring.
(iii) The scheme Z is regular if all of its points are regular.

In our case it is enough to check the regularity at the closed points. The
Artin scheme X0 is Noetherian, and such a scheme is regular if and only if
it is regular at all its closed points (see [14], Theorem 19.3).

As we have assumed that R is a discrete valuation ring containing an
algebraically closed field k£ isomorphic to the residue field of R, all closed
points on the Artin scheme XV are k-rational.

Proposition 8. Let 7 : Zy X Zp X Ly, — R\ {0} be a multiplicative 2-cocycle
as in section 4 and let A be the tiled R-order A, described in Lemma 6.
Then X is isomorphic to the subscheme of (P’éﬁl)” defined by the multiho-
mogeneous equations

th I gy = 1 gy i, J,k,l € Zn
11



for non-negative integers [i, j, k| satisfying

[i,1,5] = [i,5,5] = 0

[i,5,k] + [,k 1] = [6,5,0] + 4, k1]
for alli,j, k € Zy,.

Proof. Since R is a discrete valuation ring each 7;;; in the equations of X 0
may be written 7;;; = uijkt[i’j’k], where u;;j is a unit in R. Then A; ~ A, for
Oijk = tl55k] . Hence X0 is isomorphic to the Artin scheme of A, with the
equations asserted above. The assertions about the non-negative integers
[i,7,k] follow directly from the fact that o is a normalized multiplicative
2-cocycle. B

By letting i = k and/or j = [ we get the identities

[7:7]52] = [Z,J’l]+[J’Z7l]
(6,5, k] + [i,k, 5] = 1[4,k J]
[6,5,1] = [j)4,]

which we shall use frequently.

Since the value 7;;, = tli3k] is determined by the integers [,7,k] we
consider the additive 2-cocycle function f : Zy, X Zy, X Zy, = Z>q, (1,5,k) —
[, 7, k], rather than the function 7. We shall call f a cocycle function.

We first consider cocycle functions f satisfying the following additional
assumptions.

Hypothesis 1 (H1). f(i,45,7) = [i,7,%] > 1 for any two different i,j € Zy,.
Assume H1 and consider, for any ¢ € Zj,, the relation
Jj <;kif[i,j,k] =0.
This is a partial order on the set Z,, since
(i) j <; j for all j since [i,7,5] = 0.
(ii) If j <; k and k <; [ then j <; [ since [4, j, k] + [¢, k, 1] > [i,7,1]-
(iii) If j <; k and k <; j then j = k since [4,j, k] + [i,k,7] = [J, k, 5] # 0
if j # k.
In the same way one can verify that the relation i <* j if [i,7,k] = 0 is a
partial order on the set Z,. These observations are due to Salberger.
Hypothesis 2 (H2). If n > 2 there is for each i € Z,, another element
i' € Ly, such that i’ <; j for all j € Zy, \ {i}.
Note that ' is uniquely determined by 7 if H1 holds (use (iii)). We shall
call 7/ the successor of i and use the notation (i) =4, (i)’ = i® and so

on.

Lemma 7. Assume H1 and H2. Then the successor map Zoy — Zp, i +— 7',
consists of exactly one cycle.
12



Proof. If n = 1, there is nothing to prove. If n > 2, let 4,4',i",...,i(8) =i
be a cycle. If s < n, let I ¢ {i,i',4",...,i®} and consider the order <!. By
the definition of successor we have

ZSI il Sl 'i” Sl . Sl Z(S) =1

so that 4 = ¢/. This is impossible, whence s = n.H

To study the relation between the orders <; and the cycle constructed
by means of the successor map, we introduce the following non-symmetric
“distance” function d, which was suggested by Salberger.

Definition 10. Let i,j € Zy. Define d(i,j) € {0,...,n—1} so that j is the

d(i,7)th successor of i and put d(i,i) = 0.

Lemma 8. Assume H1 and H2 and leti,j,k € Zy,. Thenj <; k< d(i,j) <

d(i, k).

Proof. By Lemma 7 it is enough to prove that j <; j' for 4,j € Z, with

i # j'. We use induction with respect to d(i,j) = d. If d = 0, then i = j and

[i,7,7'] = 0. If d > 0 then d(i',j) =d —1 and j <y j', that is [, 5, 5] =0,

by the induction assumption. Also [4,4’, '] = 0 by the definition of i. Hence
[i,4', 4] + [3,5,5') = [i,4', 5| + [, 5,5'] = 0

and [i,7,7'] = 0 as was to be proved.l

Lemma 8 may be visualised in the following way. Let

N
S

be the cycle of the set Z, corresponding to the successor operation. If we
remove % from this, we obtain the total order induced by <;. Conversely, the
cycle can be constructed from the order <;, for any ¢ € Z,, by connecting
the maximal and the minimal elements.
Corollary 4. Assume H1 and H2, and let i, j, k € Z,, be such that i # 7, k.
Then,

(a) min{[i,j, k], [i, k, ]} = 0,

(b) max{[i, , k], ¢, k, j]} = [4, k. J],

(c) [5, 7,1 = [i, k,1].
Proof.

(a) (Zp\ {i},<;) is a totally ordered set by Lemma 8.

(b) max{[i,j, k], [i, k, j]} = [i, 4, k] + [i, k, 5] = [4, &, 5]-

(c) We may by (a) assume that [i, 7, k] = 0. Now use that

[i,7, k] + [i, k, 1] = [i,7,¢) + [4, &k, 4.1
13



Proposition 9. Assume H1 and H2. Then f assumes exactly two values,
if n > 2.

Proof. By part (a) and (b) of Corollary 4, it suffices to show that [i,7,7] =
[k,1, k] for all 4,4, k,l € Z,, with i # j and k # [. This follows from part (c)
of Corollary 4 and the identity [¢, j,i] = [4,7,7]- B

Let us consider the case when H1 does not hold. It is then possible that
[i,7,4] = 0 for i # j. We use again an idea of Salberger and consider the
relation

i~jif[i,5,i] =0
on Z,. This is an equivalence relation since [4, k, j| = [i, k,j] + [¢,j, k] and
both numbers to the right are zero if [i, 7,i] = [4, k, 4] = 0. Hence the relation
induces a partition
T
Zn = B
i=1

of Z, into r equivalence classes Bi,...,B,. Let ¢ : Z, — Z, be the map
defined by c(k) =i if k € B;. We shall call this map a class map for f.
Lemma 9. There exists a cocycle function f : Ly X Ly X Ly — L such
that the diagram below commutes.

(c,e,0)

Liyy X Loy X Loy, = Loy X Loy X Loy
x /
ZZO

Proof. Let 11,12, j1, j2, k1, k2 be element in Z,, such that i; ~ i, j1 ~ jo and
k1 =~ ko. We must show that

[i1, 51, k1] = [12, j2, k2]-

This follows from the equalities

[i1,42, J1] + [i1, 51, k1] = [i1, 42, k1] + [i2, 31, 1]
[i1, J1, J2] + [i1, 92, k1] = [i1, 41, k1] + [41, Jo, Ka]
[i1, J1, k1] + [i1, k1, ko] = [i1, 51, k2] + [41, k1, ko]

Note that f, by construction, satisfies hypothesis H1. Hence the results in
Lemma 7, Lemma 8, Corollary 4 and Proposition 9 holds for f if we assume
that it satisfies hypothesis H2.

We next give a matrix representation of triangular orders. For this we
need to order the index set Z,, as follows.

Definition 11. Let f : Zy X Zyp X Zy, — Z>o be a cocycle function and
¢ : Ly — Zy be a class map for f. Suppose that the quotient cocycle f
satisfies H2. Then (f,c) is on standard form if
(i) c(1) <c(j) =i<J
(ii) The ordering on Z, is given by <1 (see p.11).
14



Definition 12. Let R be a discrete valuation ring with quotient field K and
t a generator of the mazimal ideal m of R. Then an R-order ' C M, (K)
is called triangular if A' = ®1<i,j<n Rt[i’j]eij for a function
[a ] : Zn X Zn — ZZOa (Zaj) = [7'1.7]

with at most one value m # 0 and with [i,j] = 0 for i < j. Here e;,
1<1i,5 <mn is the standard basis for M,(K).

Note that tlle;;tl*le;; € Rtlbkle;; and hence that [i, j]+ [j, k] — [i, k] > 0
for all 4,5,k € Zy,.
Proposition 10. Let f : Zp X Zp X Zn — Lo, (i,5,k) — [i,5,k], be a
cocycle function such that f satisfies H2. Let 75, = tldkl Then A := A, =
@D1<i j<n Beij is isomorphic to a triangular R-order A" C M, (K).
Proof. We may, after a permutation of Z,, and renumeration of the classes,
assume that (f,c) is on standard form. Put [4,j] = [1,4, ] for all 4,j € Z,,.
Then [i,j] € Zxo with [i,5] + [j,k] — [i,k] > 0 and [i,j] = 0 for i < j.
Moreover, by Proposition 9 we obtain that [, | : Z, x Z, — Z>( assumes
at most two values. Hence A’ = @@, <ij<n Rt[i’j]eij 1s a triangular R-order.
The R-module homomorphism A — A’ with €;; — tl"le;; gives an R-algebra
isomorphism from A to A’.H
Remark 1. Let A’ be a triangular order with corresponding equivalence
classes Bj,..., By, written in the order <i, and let |B;| = n;. Then A’ has
a maftrix representation

[R]11 [Rli2 [Rlis ... [Blip—y [Rlir
[(©)™]21  [Rla2  [Rlas ... [Blig-1) [Rlor
A= [®O7s [@)"s2 [Rlss ... [Rlig—1) [Rls
(O [ [Tz - [(O)™]ie—1) [Blm
where [I];; is an n; X nj-matrix with elements from the ideal I on each place.
If m =1, and n; = ... = n,, then these are the orders studied in [1].

We now shall follow the calculations of Artin [1] (see also [5]) and describe
the irreducible components of the closed fiber Y of the Artin scheme X° for
a triangular order A.

Note that if ¢ ~ j, i,j € Z,, then we have the equation

LikTjl = TilLjk
for all k,1 € Z,. Hence the projective coordinates of x; are uniquely deter-
mined by the projective coordinates of z;;. Thus it is sufficient to consider

one element in each equivalence class of ~. We can identify the scheme X?°
with a closed subscheme of (P’}z_l)r in the following way. Fix a transversal

T:={b1,...,b}
of representatives for the classes Bi,...,B,. We shall in the sequel often

use h,i or j to denote an element of T'.
15



Proposition 11. Let A = A, for a cocycle T : Zy, X Zy X Zyp, — R\ {0} of
the form 75, = tldk]l Let X0 be the Artin scheme of A. Then the closed
fiber Y of X© is defined by the multihomogeneous equations

zgzjr = 0 if [4,7,k] >0 and [i,5,l]] =0
TRz = Tarip i [i,5,k] =[5, =0
where 1,7 €T and k,l € Zy,.

Proof. This is a consequence of Corollary 2. B

We divide the closed fiber Y into its irreducible components.

Proposition 12. Let A and X° be as in Proposition 11. Then the closed
fiber Y of X° can be written Y = Uner Yn where Y, is the scheme defined
by the multihomogeneous equations

Tgry = Tz of [0,k =[6,5,1] =0
where 1,7 € T and k,l € Zy,.
Proof. To verify that Y}, C Y, let p € Y},. We must show that z;(p)z;x(p) =
0 if [¢,4,k] > 0 and [7, ,I] = 0. One of the integers [i, 7, h] and [4, 7, h] must
be non-zero. By symmetry we may assume that [j,,h] > 0 and [j, h, 7] = 0.
Also, [4,1,k] = 0 since [4, j, k] > 0. Hence,

[j, h, k] + [h,i, k] = [, h, 4] + [4,4, k] = 0.

This implies that [j,h, k] = 0 and [h, j,k] > 0 since h # j. Thus z;;(p) = 0
and i (p)zi(p) = 0.

To show that Y C (J;,c7 Ya, let p be a point on Y. We must find a number
h € T such that zz(p) = 0 for all j € T, k € Zy,, with [h,j,k] > 0. We
introduce the following relation, suggested by Salberger, on elements in 7.
Put ¢+ < j if i = j or if there is an [ such that [¢,4,]] = 0 and z;(p) # 0.
Then:

(i) < is antisymmetric. For suppose ¢ # j and that there exist k,I
such that z;(p) # 0, [¢,7,1] = 0 and z;x(p) # 0, [4,4,k] = 0. Then
[, 7, k] > 0 which contradicts the equations of Proposition 11. Hence
i=7.

(ii) < is transitive. For suppose i1 < i3 and 45 < i3. Then there exist &, {
with z;,;(p) # 0, [i1,1i2,!] = 0 and z;,k(p) # 0, [i2,i3,k] = 0. Then
also [i1,42,k] = 0 since otherwise z;,;(p)zi,k(p) = 0 by Proposition
11. Hence

[ilaiQai?’] + [il’i3ak] = [ilai%k] + [i25i3’k] =0
S0 [’il,ig,k‘] =0 and ’il < ’i3.

Let h be a minimal element of < and j € T, k € Z,, such that [h, j, k] > 0.
Then z;(p) = 0 since h is minimal. W
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For a triangular order A the cocycle function f satisfies hypothesis H1
and H2. We can thus define the successor operation on the set T' of repre-
sentatives. Consider the sequence of 7 — 1 rational maps

pr1 P pno1 P2 Prr—1
? . .

.- e nil
k ]Pk

where pr, kills the coordinates ), where [i,i(*),k] > 0. The closure of
the graph in (PZ*I)T of these maps is isomorphic to Y; (compare with the
construction in [1]).

Each Y; is then isomorphic to a sequence of r — 1 blow-ups of the space

P?~" along regular subschemes. As noted by Artin [1] and Frossard [5], this
scheme is regular of dimension n — 1. Hence the singularities on Y must
belong to at least two irreducible components of Y.
Proposition 13. Let A = A, for a cocycle T : Zp X Zp, X Zp, — R\ {0}
of the form 75, = b3kl Suppose that the corresponding cocycle function f
satisfies H2. Let X© be the Artin scheme of A and Y the closed fiber of XP.
Let p be a k-rational point of Y and C = Oy,. Then

dimg(QRcyx ®c k(p)) <n
with equality if and only if p is in at least two components of Y.

Proof. By Proposition 10, A is isomorphic to a triangular order and we may
thus assume that A is of the form described in Remark 1. Also, since Y only
depends on A/tA, we may assume that A is of the form

[Rlin  [Rliz [Rlis ... [Rlip—1) [RBlr
[(H)]21 [Rl22 [Rl2s ... [Rlig—1) [Rlar
A=| (M1 [@]s2 [Rlss ... [Rligp-1) [Rlsr
@Ol (Ol (O o Oy [Rlr

where [I];; is an n; X nj-matrix with elements from the ideal I on each place.
The result for such hereditary orders (see section 7) may be found in [5],
section 2. The proof there is an obvious generalization of Artin’s proof in
[1], section 4.1

Proposition 14. Let A = A, be as in the previous proposition with the
additional assumption that [i,j,i] <1 for alli,j € Z,. Let B = Ox, for a
k-point p of X° C X. Then

dimg(Qp/, ®B k(p)) < n.

Proof. Note that by the exact sequence

tB/2B —*— Qp)y 85 C —— Qcj ——0

of Proposition 5 we have,
dimg (Qp/, @B k(p)) < dimg(Qc/k, @c k(p)) + 1

where C = Oy,,. Hence, if p only belongs to one irreducible component
Y;, then we are done. Suppose therefore that p € Y; NY;, i # j. We must
17




verify that the differential dt is a linear combination of the differentials which
generate Q¢ ®c k(p). Choose k,l € Zy, such that z(p) # 0, [4,4,k] =0
and zj(p) # 0, [i,7,1] = 0. Hence [i,5,k] =1 and
t.’L‘ikLEjl = -'If'ila:jk-
Let Yii = :IIZ'l/.’E,'k and Yjk = xjk/-'ﬂjl- Then
dt = yadyjk + yjkdyi = 0
in Qp/i, ®p k(p) since yi(p) = y;x(p) = 0. Thus
dimy, (g, ®p k(p)) = dimg (/i ®c k(p)) < n.B

We now study the cotangent spaces in the case where we may have
[i,7,k] > 2. First suppose that [i,7,7] > 1 for all i,5. We shall work in
the affine space where z; # 0, j € Z, with affine coordinates y;; = =i/x;;-.
Definition 13. Let f be a cocycle function. A pair (i,k) € Zp X Ly, is
called adjacent pair if k is a minimal element of the partially ordered set
(Zn \ {3}, <i), that is [i,7,k] > 0 for all j # i, k.

There is a connection between the notion of adjacent pair and successor
(as defined on p.12) of the orders <; as follows. Let i’ be a successor of i.
Then (i,4) is an adjacent pair since

[, 5,4 = [4,5,4') + [3,4', 5] = [¢',5,4'] >0
for all j # 4,4'. Conversely suppose (i, k) is an adjacent pair. Then

[Zakaj] = [Jakaj] - [iaja k] < []akaj]

for all j # i, k. Hence, if [j, &, j] <1 for all j # k, then k£ must be a successor
of 4.
Proposition 15. Let A = A, for a cocycle T : Zp X Zy X Zp, — R\ {0} of
the form Ty, = tldk] such that the corresponding f satisfies H1. Let p be
the k-point of X° with t(p) = zjx(p) = 0 for all j,k € Zp, j # k. Then:

(i) If [¢,5,4] = 1 for some i,j € Zy, then the vector space Qg ®p k(p)
has a k-basis consisting of the differentials {dy;;} where (i,k) are
the adjacent pairs.

(i) If [4, 5,4 > 2 for all i,j € Zy, then the vector space Qg ®p k(p) has
a k-basis consisting of the differentials {dy;,}, where (i,k) are the
adjacent pairs, together with the differential dt.

Proof. Qi ®p k(p) is generated by the differentials dy;y, i,k € Zn, and dt
with relations given by

At ypyin) = dd yiy;p)
where 1, j, k,l € Z,. These relations can be rewritten as
yikyndtPF 4 IR (g dyy + yudya) =

Yy dt B 1+ B3 (o dy i+ yedyi).-
18



The relations with i = j or k = [ may be omitted. If {7, j} N{k,I} = 0, then
the relations become 0 = 0 in Qp/, ®p k(p). If j =1 and i # j, k, k # 1,
then the relation is

(3) Ikl dy = 0, i, ik € Lp.
If j=1and i =k, then
(4) dtlidil = o, 4,7 € Zn.

All relations in (2p/, ® pk(p) are then obtained from the relations (3) and (4)
above. If (i, k) is not an adjacent pair, there is j # 4, k such that [z, 7, k] =0
and hence dy;; = 0. If (4, k) is an adjacent pair, then there is no such j and
hence the differentials dy;;, do not occur in any of the relations above. They
are thus linearly independent in Qp/; ®p k(p). If [i,7,4] > 2 for all 1 # j
then dt does not occur in any relation so that (ii) holds. If [i,5,7] = 1 for
some i # j, then dt = 0 which gives (i).H

Proposition 16. Let A = A, for a cocycle T : Zp X Zy X Zn, — R\ {0} of the
form Ty = tl3k] such that the corresponding f satisfies H1. If [i,5,i] > 2
for all i,j € Z,, then the Artin scheme X° of A is singular.

Proof. Let p be the point defined by t(p) = z;,(p) = 0 for all j,k € Z,,
j # k, and let y;;, = zi/x;;. By Proposition 15, the maximal ideal m of the
local ring B has the elements y;x, where (7, k) is an adjacent pair, and ¢ as
a minimal set of generators. The ideal in B generated by the y;;’s, (i, k) an
adjacent pair, clearly contains m}])v where N = max{[i, j, k]}. But then dim
B < dimy(Qp/, ®5 k(p)) (see [3], Corollary 10.7) so X" is singular at p and
therefore a singular scheme.ll

We now remove the hypothesis that [4, j,7] > 1 for all 4,5 € Z,. As noted
on p.15 the scheme X is isomorphic to the closed subscheme of (IP’?{I)T
given by the equations

t[zyjak]wzkle — t[Z,J’l]wzlx]k

where 4,7 € T and k,l € Z,. We consider the point p € X° where t(p) =
zi(p) = 0 for all pairs j € T, k € Zy, such that j # k.

By intersecting X with hyperplanes passing through p, we shall reduce
to the case treated in Proposition 16.

Definition 14. Let Hjj, denote the hyperplane in (P’}z_l)’" where x5, = 0.
Lemma 10. The hyperplane Hjy, j ~ k, j # k, intersects X0 transversally
at p.

Proof. Let m be maximal ideal of the local ring B at p on X°. We must
verify that z;; is not in m2. The crucial equations are

(5) gy = 0y,

fori € T, i # j. Since

[j,i,k] + [i,j,k] = [Z’J’Z] >1
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and
(6,5, k] + [i, k, 5] = [, k, 5] =0
we have [4,7,k] > 1 so equation (5) is0 =0 forall; 7. W

Note that if Hjj, intersects X 0 transversally at p, then the cotangent space
dimension at p decreases by one. Also, if p is a regular point on X° and H ik
intersects transversally at p, then p is a regular point on X° N H. jx and the
dimension of local rings at p decreases by one (see [14], Theorem 14.2).
Lemma 11. If z;1(p) =0, j =~ k, for a k-point p in X°, then z;,(p) = 0
foralli eT.

Proof. We have the equation
and since j ~ k it follows that z;;(p) = 0. B

Let H denote the multiprojective linear subspace of (P !)" defined by
zjr, = 0for all j € T, k € Zy,, such that j ~ k, j # k. As a consequence
of Lemma 10 and Lemma 11, the scheme X° N H is the result of n — 7
consecutive intersections of X with hyperplanes intersecting transversally
at p. Furthermore X°N H is isomorphic to the closed subscheme of (P}; )"
defined by the multihomogeneous equations

.7 '7k — " -7l
tib gy = a3 )

where i, j, k,l € T. Since [i,4,i] > 1 for all i, j € T the scheme X° N H is of
the type we investigated in Proposition 15.

Proposition 17. Let A = A, for a cocycle 7 : Zy, X Zy, X Zp, — R\ {0} of
the form 7,5, = tle3k] - Suppose [i,5,i] > 0 for some i,j € Z, and [k,1, k] > 2
for all k,1 € T such that [k,1,k] is nonzero. Then the the Artin scheme X°
of A is singular.

Proof. We apply Proposition 16 to the scheme X° N H constructed above.
Then X% N H has a singular k-point. As X0 intersects H transversally at p,
this point must be singular also on X°. W

6. HEREDITARY ORDERS

In this section we let R be a discrete valuation ring with quotient field K
and A an R-order in a split central simple K-algebra A.

Definition 15. A is called a left (right) hereditary order if every left (right)
A-lattice is projective (see [15], p.130).

It is known (see [15] p.307) that A is left hereditary if and only if A is
right hereditary. We shall therefore use the term hereditary order. We recall
the following structure theorem.
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Proposition 18. Let A be a hereditary R-order and R be a discrete valua-
tion ring. Then there exists positive integers {n1,...,n,} with sum n and an
isomorphism of K -algebras A ~ M, (K) such that, under this isomorphism,

[Rlin [Rlie [Rlizs - [Rlip—)) [Rlir
(D)1 [Rlo2 [Rlas - [Rlip—1) [Rl2r
A~ | (@ (B2 [Rlss --. [Rlig-1) [Blsr

(O Oz (Ohs - (Ol Rl

and
(O] [Rliz [Rhs ... [Blig—1 [Blw
(D21 [(D)]22 [Rl2s -.. [Blig—1) [Rl2r
rad(A) ~ | [Dlsr [(Bls2 [(D)ss ... [Rlig—1) [Rlsr

(A1 [(Or2 [(D]rs - [Olig—1) [@)]rr
where [I];; are n; X nj-matrizes with elements from the ideal I on each place.
Conversely every such order A is hereditary.

Proof. This a special case of Theorem (39.14) in [15] in the case where R is
a complete. But the completeness is not needed for split K-algebras.l

As a consequence of the proposition above we note that for a hereditary
R-order A the dual lattice A := {z € A;tr(zA) C R} is equal to t~'rad(A).

The following result is essentially due to P. Lundstrom [13], p.72, but we
give a proof of Salberger.
Proposition 19. Let A = A; for a cocycle T : Zy X Zyp, X Zp, — R\ {0} of
the form T, = tldkl . Then A is hereditary if and only if [i,5,4] < 1 for all
i,] € Zp.
Proof. 1f [1,j,4] <1 for all 4,j € Z,, we have seen in Remark 1 that A has a
representation as in Proposition 18. Hence A is hereditary.

For the converse, consider the non-degenerate symmetric bilinear form
b: Ax A— K, (z,y) = tr(zy) (see [15], section 9). Since

0 if (4,7 Ik
b(eij, ext) = tr(eijens) = { il if 8,;; i El,k;

the dual basis {€;;}1<ij<n Of the basis {€;}i1<ij<n has the form ¢; =
t_[i’j’i]eji. If A is hereditary, then ¢; = t_[i’j’i]eﬁ € t~'rad(A) so that
eji € t91-1rad(A). Since the set {e;;} is an R-basis for A this is possi-
ble only if [7,7,4] < 1. B

Theorem 1. Let R be a discrete valuation ring with maximal ideal m. Sup-
pose that R contains an algebraically closed field k such that R = k + m.
Let A = A, for a cocycle T : Zp X Ly X Zn — R\ {0} and let X© be the
Artin scheme of A. Then A is hereditary if and only if the dimension of the

cotangent space Qg @p k(p) at any closed point p of X° is at most n.
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Proof. By Lemma 4 we may assume that 7;;; = tl43:k] for an additive cocycle
function f : Zy X Zp X Zy, — Z>o, (1,5, k) = [1, 7, k].

If A is hereditary, then dimg(Qp/;, ®p k(p)) < n at any closed point
p € X0, by Proposition 14.

If A is not hereditary there exists i,j € Zy, such that [¢,,4] > 2. Let p
be the k-point where t(p) = z;x(p) =0 for all j € T, k € Zj, such that j # k
and let B = Ox . By Proposition 15 the cotangent space at p considered
as a point of X° N H has dimension greater or equal to r + 1. Since X° N H
is obtained by n — r consecutive intersections of X° by hyperplanes Hjy
intersecting transversally at p, the cotangent space dimension dimy (2 /k®B

k(p)) at p € XO is greater or equal to (r+ 1)+ (n—r)=n+1. &
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