Thesis for the Degree of Licentiate of Philosophy

A Richardson Leja Lanczos Algorithm
to Compute Interior Eigenvalues of Very Large
Matrices

Sonia Gupta

Department of Mathematics
Chalmers University of Technology and Goteborg University
Goteborg, Sweden 2001

A Richardson Leja Lanczos Algorithm to Compute Interior Eigenvalues
of Very Large Matrices

Sonia Gupta

ISSN 0347-2809

NO 2001:18

Department of Mathematics
Chalmers University of Technology and Goteborg University
SE-412 96 Goteborg, Sweden

Abstract

An algorithm is developed for the numerical computation of eigenval-
ues in a selected interval inside the spectrum of a large sparse matrix.

It uses the Lanczos algorithm with a filtered starting vector. The
unwanted directions are filtered out using the Richardson iteration with the
Leja shifts covering the part of the spectrum where no eigenvalues are wanted.
Leja points have a similar distribution as zeros of Chebyshev polynomial, but
have the advantage that new Leja points can be added to a given set of Leja
points. Two variants of the algorithm, single vector Lanczos and block Lanc-
zos are developed to find all the desired eigenvalues in any specified part of
the spectrum.

The main advantage of the algorithm is that no factorization of a large
matrix is needed, Richardson iteration can be performed without reorthogo-
nalization and very few Lanczos iterations are needed.

Numerical results are reported on two different classes of matrices.
The first one is obtained from the model used for the investigation of elec-
tronic behaviour of disordered system in the quantum physics. The second
set, of matrices arise in physical chemistry while studying the molecular ex-
cited state. The results are compared with the Lanczos algorithm by Cullum
and Willoughby.

Key words: Lanczos algorithm, Block Lanczos, Orthogonalization, Richard-
son iteration, Leja points, Chebyshev polynomial.

2000 MSC: 65F15, 65F50

Acknowledgement

I would like to express my sincere gratitude to my advisor Prof. Axel
Ruhe for his constant support, encouragement and guidance. In spite of his
hectic schedule, he always spared his valuable time to meet me, discuss the
queries that I had and read and comment on the draft innumerable number
of times.

I wish to thank Dr. Thomas Ericsson for his enthusiasm, enlightening
discussions and suggestions. His influence is felt throughout the work. He
not only helped me in working with the computer but also introduced me to
many important concepts in Numerical Analysis.

It is my pleasure to share the office with Katarina. I am indebted to
Mia for her unconditional friendship. Finally, special thanks to my friends
both from the world in and outside the mathematics.

To my parents!

iii

Contents

1

2

Introduction

Notations and Definitions

Richardson iteration and Fast Leja points
Algorithm

Implementation Details

5.1 Number of fast Leja points
5.2 Interval K and number of Lanczos steps
5.3 Orthogonality
5.4 Stopping criteriao

Numerical experiments

Conclusions

12

18
18
21
22
23

24

42

1 Introduction

In the world of matrix computation, many algorithms exist which deal
with numerical computation of eigenvalues A and eigenvectors x of a matrix
A given by

Ax = Az.

If the size of the matrix A is moderate then there are many efficient algo-
rithms, see for example Golub and Van Loan [11], Bai et al. [3], Demmel
[7].

In many applications, the matrix A is large, sparse and symmetric
and we need to compute only few eigenvalues and eigenvectors. Extensive
research has been done when matrix is symmetric and sparse. Algorithms
for such matrices is treated in Parlett [15].

Algorithms based on the Lanczos method are standard choice when
the size of the matrix is large. The main asset of the Lanczos method is that
we only need matrix vector multiplication. But, as Paige [14] pointed out
in his thesis, the Lanczos vectors start loosing orthogonality when an eigen-
value starts to converge. A trivial remedy proposed was to reorthogonalize
the Lanczos vectors in each step. This is extremely costly both in terms
of computation and storage. The other extreme, no reorthogonalization is
advocated by Cullum and Willoughby in [6]. This is an efficient technique
as long as only extreme eigenvalues are needed which are neither clustered
nor multiple. Cullum and Willoughby’s algorithm run Lanczos algorithm
for many iterations, and so we have to compute eigenvalues of a symmetric
tridiagonal matrix which may be larger than the size of the original ma-
trix. Parlett [15] proposed selective reorthogonalization, which gives almost
the same accuracy as full reorthogonalization techniques in the computed
eigenvalues, with reduced computational and storage cost.

Orthogonality among Lanczos vectors is lost as soon as Ritz vectors
becomes a good approximation of an exact eigenvector of the matrix A.
According to Paige’s result [15, pg. 256], we should orthogonalize a Lanczos
vector against the good Ritz vectors when the cosine of the angle between
the Lanczos vectors become greater than the square root of the machine
precision. Hence, selective reorthogonalization ensures that the tridiagonal
matrix obtained from the Lanczos algorithm is an accurate projection of

matrix A on the subspace spanned by the Lanczos vectors even when they
are orthogonal only to the square root of the machine precision.

Apart from the storage requirement for the Krylov subspace gen-
erated and the computational cost to preserve the orthogonality among the
computed Krylov subspace basis, the Lanczos algorithm gives poor conver-
gence to interior eigenvalues. For any random starting vector, the Lanczos
algorithm always converges to end eigenvalues first. It fails to give good con-
vergence to eigenvalues in the interior of the spectrum, unless it is combined
with a shift and invert spectral transformation. Such an algorithm for few
non-extreme eigenvalues is described by Ericsson and Ruhe [10], Parlett [15].
If the size of the matrix is very large and it is sparse then the computational
effort required for the factorization in the shift and invert will decrease the
efficiency of the algorithm. Also, storage requirements for the factors may
make such algorithms unattractive to use.

This report presents a new iterative method for the computation
of a few selected eigenvalues of a large sparse symmetric matrix A in any
part of the spectrum. This method does not require the factorization of
the matrix A. The main idea of the algorithm is to produce a starting
vector for the Lanczos algorithm in the invariant subspace associated with the
desired eigenvalues. This is done by using Richardson iteration with shifts.
Richardson iteration is well known for solving system of linear equations
and it is known that optimum choice of shifts are reciprocal of the zeros of
the Chebyshev polynomial, described by Young in [20]. In our case, we use
Richardson iteration with shifts to purify the starting vector for the Lanczos
run.

Suppose we are interested in the m smallest eigenvalues of the
matrix A € R™" n >> m. We start our algorithm by taking any random
vector. We choose k shifts in an interval K on the real axis which contains
the whole spectrum of A except for an interval containing the m desired
eigenvalues. When Richardson iteration with these shifts is applied to the
vector, we get a new vector which has large components outside the interval
K and small components inside K. This means we get a filtered initial vector
having large components in the directions corresponding to the m wanted
eigenvalues. In other words, Richardson iteration with shifts amplify the
components of a random starting vector in the direction corresponding to all

the eigenvalues outside the region where shifts are chosen.

It is not easy to decide beforehand how many shifts will be needed
to suppress undesired directions in the given starting vector. So it may
be necessary to add few more shifts to the already computed sequence of
shifts. If shifts are zeros of the Chebyshev polynomial then it is not easy to
update the computed sequence. This is due to the fact that the Chebyshev
polynomial of degree k£ and k£ + 1 do not have common zeros. Because of this
difficulty, Calvetti et al. use Leja points as shifts in Richardson iteration,
both in eigenvalue computation [5, 1] and also for solving systems of linear
equations [4]. In section 3, we will discuss Leja points and its variant fast
Leja points in detail.

Leja points and zeros of the Chebyshev polynomials over the same
interval are distributed almost identically. The main advantage of Leja points
is that it is easy to add new Leja point successively to an already computed
sequence of Leja points.

The next step in the algorithm is to use the vector obtained from
Richardson iteration as the starting vector for the Lanczos iteration. Since,
all directions, except for the ones associated with the wanted eigenvalues, are
suppressed, we get convergence to all the desired eigenvalues after very few
steps.

Hence, the main features of the algorithm includes no factorization
of the large sparse matrix A, Richardson iteration without reorthogonaliza-
tion and very few Lanczos iterations.

The need for such an algorithm was motivated by a physical chem-
istry application. While studying the molecular excited states, one is inter-
ested in eigenvalues (energy levels) several levels above the lowest eigenvalue
(ground state). The matrix obtained is very large and sparse. The test ma-
trix provided to us is of size more than 100,000 which is 0.14% filled. It
is not feasible to find the interior eigenvalues of such large matrix using the
shift and invert transformation technique. The Cullum and Willoughby tech-
nique may provide us with a tridiagonal matrix which is much larger than
the original matrix.

The rest of the report is organized as follows. Some notations and

definitions are explained in section 2. Section 3 discusses the Richardson
iteration and fast Leja points in detail. The main algorithm along with some
variants is the main topic for section 4. We discuss implementation aspects
of the algorithm briefly in section 5. Section 6 is devoted to some illustrative
numerical examples.

2 Notations and Definitions

The eigenvalues of a matrix A € R"™™ are the n roots of its char-
acteristics polynomial p(z) = det(zI — A). The set of these roots is called
the spectrum and is denoted by A(A). If A € A(A), then the nonzero vectors
x € C" satisfying

Az = Mz

are referred to as eigenvectors.

When A is symmetric, i.e. A = AT all the eigenvalues are real and
there is an orthonormal basis of eigenvectors. Eigenvalues of any symmetric
matrix A satisfy following theorem by Weyl:

Theorem 1 [7, pg. 198] Let A and E be n xn symmetric matrices.
Let \y > ... >)\, be the eigenvalues of A and 5\1 > ... > 5\n be the eigenvalues
of A= A+ E. Then A
i = Al < |E]]2-

We can get a tighter bound on approximate eigenvalues if they are approx-
imated using the Rayleigh quotient.
The Rayleigh quotient of a symmetric matrix A and nonzero vector u is

pu, A) = (u' Au)/(u").

Theorem 2 [7, pg. 205] Let A be symmetric and x be a unit vector. Let
r = Az — p(z,A)x and \; be the eigenvalue of A closest to p(x,A). Let
gap = minj4|A; — p(x, A)|. Then

i — p(z, A)| < [Ir]l2/ gap.

This theorem gives a base for using the Rayleigh-Ritz procedure to approx-
imate the eigenvalues of A when using the Lanczos algorithm.

4

With the Lanczos method, we build up an orthogonal basis V,,, of
the Krylov subspace,

K™(A,v) = span{v, Av, ..., A™ v}

with v as a starting vector.
The vectors in V,,, satisfies a three term recursion

AV = Viu T + Tel
where 7, = Upm118m, T 1S the real symmetric tridiagonal matrix,

_041 B
B oy By

ﬂm72 Q1 ﬂmfl
ﬁmfl 875

We approximate the eigenvalues of A by the eigenvalues of T,, = V,L AV,,.
These approximations are called Ritz values and are denoted by ;. The
corresponding approximate eigenvector is the Ritz vector defined as z; = V}s;
where s; is an eigenvector of T},.

Instead of using a single vector as a starting vector it is possible
to use a block of orthogonal vectors. This block version of the algorithm is
called block Lanczos [12]. If V € R™*? is a starting orthonormal block then
the Krylov subspace associated with V' is

K™(A,V) =span{V, AV, ..., A"V},

As in the case of single vector, using Lanczos algorithm an orthonormal
basis for the Krylov subspace is obtained. After m steps, we get a basis V,,
satisfying a three term recursion

AViy = ViuTon + R EL

where R, = Vipi1By, EL = (0,0, ..., I,) and T, is the real symmetric block
tridiagonal matrix,

- Ml B{ -
B, M, BT
T, = (2)
Bm—2 Mm—l B;b,l
Bm—l Mm

where M; € RP*P and B; € RP*P is upper triangular.

3 Richardson iteration and Fast Leja points

Richardson iteration

Richardson iteration is a well known iterative method for solving

a system of linear equations ~
Ax =b

where z and b are in R”. It computes a sequence of vectors xi,Z, ..., Tn
where B
Tpt1 = Tk + Op(Azp —0), k=1,2,...

where 0, € R is a sequence of shifts. Let eigenvalues of A lie in [a, b] = A(A).
It is shown by Young [20, pg. 361-365] that the good choice for ¢’s are the
reciprocal of the zeros of the Chebyshev polynomial in the interval [a, b].

Suppose we have an eigenvalue problem
Ax = Az

where the spectrum of A lies in the interval A(A) = [a, b]. We are interested
in the m smallest eigenvalues of A which are lying in the interval [a, a;] which
is a subset of A\(A). We can use Richardson iteration with shifts to generate
a good starting vector where components in the unwanted directions are
suppressed.

If gy is a starting vector then using Richardson iteration
Qk+1 = (A_Ckl)qka k= 1521"' (3)

with shifts (x, we try to improve the starting vector for all eigenvalues in
the interval [a, a;]. To achieve this we choose shifts in K = [a, b]. The best
shifts will be the eigenvalues of the matrix A lying in the interval K. But in
all practical situations eigenvalues of a given matrix is never known. Hence,
taking the idea from system of linear equations, an obvious choice for the
shifts will be the zeros of Chebyshev polynomial of degree k£ in the interval
K.

Suppose the starting vector obtained after applying k shifts is not
good and we want to interpolate at k + 1 zeros of Chebyshev polynomial of
degree k + 1. It is difficult to take advantage of previous k shifts since the
Chebyshev polynomial of degree k£ and k41 do not have common zeros. This
motivate us to use shifts obtained from some other polynomial which is com-
putationally efficient and also retains the good properties of the Chebyshev
polynomial. A good replacement was proposed by Calvetti et al. [4] where
they use Leja points as shifts for Richardson iteration for solving the system
of linear equations.

Leja points

Leja points were studied by Edrei [8] and Leja [13] for a compact
set, K in the compact plane C with a connected complement. Any sequence
of points which satisfies the conditions

|Cl| = I?Ea‘]é{|€|acl € K: (4)
and
k-1 k—1
[Tic—Gl=max]Tlc ¢l Gek k=23, (5)
i=0 i=0

are called Leja points for K. The points (; obtained from (4) and (5) might
not be unique. In our case, set K is a union of one or more closed and
bounded intervals on the real axis.

The set K is chosen so that it contains none of the desired m eigen-
values and all or most of the undesired eigenvalues. By choosing shifts for

7

the Richardson iteration as Leja points for such a set, we damp eigenvec-
tor components associated with undesired eigenvalues in the initial Lanczos
vector.

k

-1

1=0

Length of the interval

10

)]

o

|
al

-10

Length of the interval

In Reichel [16], it is shown that the products [[F~ . |¢e — ¢/ and

1=0;2k

|¢ — ¢;| may grow or decrease exponentially with k. So, large & can
give rise to overflow or underflow while computing the Leja points. To avoid
such difficulty we scale K to have length 4, or K = (b — a)/4 should be
approximately equal to 1; see Baglama et al. [2] or Reichel [16] for details.
In figure 1 we show the Leja points distribution in two intervals of different
length. In the interval [—2, 2] whose length is 4, computing 5000 Leja points
is no problem. However, when the interval is [—10, 10] then after computing
400 Leja points we observe that points computed are not evenly distributed.
This is caused by having an interval of length greater than 4 which gives rise
to overflow.

ERADIMCA PO R \ o m——
. . . .
. A . . 0'
.
.
LT . . .
. . .«
.
lo- . . . -
. M .
. . c .
. L .
. . .
. . . —
. .
. M .
. .
. o« .
Lo . . - o
. . . .
. .
N
. . * .
. .
. . . .
. . . .
. .
. |
. FECTEN
. P . -
. .
. * M . .
. . " .
.
CEERAN et et et PEEY AT —_—
. . —
LIRS P NI P RSP ST S] LIRS WP 1 1 1 1 1

100

2-~ o * ot X & St N ™,
F-'-'.'-.*'»'.-'.'--"'-5.':-5-.:-','.-!-'.’:-,-.'-,-'.t.-,"‘-.‘.' '.z 3?§-? !-".i--“'"-'"l'-!.m-.mIs.’ RS !5, < f“a’x’ff.! ”-':s,,.':?c.l P :;'
PO TN AR Y RO o .o O DRSS
0% %% % e Mo ettt . e, ol DR Y,
. . % %t %W 3 o LR A
e %' o % CAR IR ot e o e %
e ALY . e o te e j) L
Poe®® el %t %, 0% el o o0, e o o
. ot % o® e % o o e,
DA R SR A N . e, DI
oo o o %o e . te o
e a® et 0 te 0,0, e T .o PR
o °* ., . %o o . . . * e
°, . o . A LI . DAY
* el . LR AR) . . .
% RPN R ATRIIA I AT o
“t et e e ORI e ®, o, .
° . . . o * . e
PPCIORPE LI L Y 00ty 0 . Oy
- * a0 . oot . 02 e
et 0, . e % . o ot
.. * . o
o et LA A P B LA
KICMCRA DRCAALIS Od e o
[* o o o o® o s o e, AT
e et e % o o o o .
°t, e Ly . AN . LIRS
[¢°g0® o° e *, ¢ o G0 %t DY) .
DAY 0 o . ., . O S .
LR ORI S A .
LD Oy 0 % o* . RN
O 2 00’ ot e, fo0® oot %%, D
e’ ORSATOARANCO A I e 0t ee o000l
0 " Ja ® 1t e & 100" 0% %, RN ANAL
AT X RXSEATRORE R

200 300 400 500 600 700 800 900 1000
Number of fast Leja points

1000 1500 2000 2500 3000 3500 4000 4500
Number of fast Leja points

Figure 1: Leja points generation when the length of the
interval is 4 and more than 4.

If a large number of Leja points is required then taking the max-
imum of a sequence of products can be a cumbersome work. Baglama, Cal-
vetti and Reichel [2] introduced a new set of points, called fast Leja points,
which are simpler and faster to compute than Leja points.

Fast Leja points

Fast Leja points are defined by taking the maximum in (5) not
over the whole set K but over the finite set of candidate points c¢;’s which
are set of points in K computed dynamically during the computation. The
fast Leja points satisfy a condition

k

k—1 -1
1116 =Gl = max [T le; — Gl (6)
1=0 1=0

0<5<k -

where {(; 52, are fast Leja points and k is the number of fast Leja points.
Between two consecutive fast Leja points there is only one candidate point.

Suppose we want a sequence of fast Leja points {Cj}le in K con-
sisting of only one interval [ay, b]. We start our computation by first defining
(1 and (3. The first two fast Leja points are endpoints of the interval, i.e.
¢; = a; and {, = b. Using the condition (6) we find next fast Leja point
Ck+1 from the set of candidate points c;. After determining the new fast Leja
point, we remove this point from the set of candidate points. New candidate
points are introduced between the new fast Leja point and the closest fast
Leja points. This guarantee that the new set of fast Leja points and the new
set of candidate points interlace.

As as example, let K = [—2, 2]. Define the first two fast Leja points
as (; = —2 and (, = 2. Then the first candidate point ¢; = (¢; + (3)/2 = 0.
The next fast Leja point is (3 = ¢;. We reuse c¢; to store next candidate point.
The new candidate points are c; = ((3+¢1)/2 = =1 and ¢; = ((+3)/2 = 1.
We choose (4 to be either ¢; or ¢co. Now we update the set of candidate points
by introducing two new candidate points between (, and fast Leja points
closest to (4. From the new set of candidate points the point which satisfies
the condition (6) is a new fast Leja point.

MATLAB code to generate fast Leja points in one interval is given
in [2]. With little modification, fast Leja points can be generated when K

is a union of several intervals. Figure 2 shows the distribution of fast Leja
points for different sets K. The set K = [—2,2] in the top figure. In the
middle and last figures, K is a union of two and three intervals respectively,

which are namely [-2,—1]U[1,2] and [-2, —1] U [-0.5,0.5] U [1, 2].

of :f{ .
) e : K
0 100 200 300 400 500 600 700 800 900 1000
2r7 DEDA T o T P
ok]
e a8
25 600 3000
25 1 R A N A Y AR PR A O ACES T
i . . . U .. .
of-]
_l L . . . A
Lt e T e e T e e e e T e
0 100 200 300 400 500 600 700 800 900 1000

Figure 2: Distribution of 1000 fast Leja points in different intervals.
Top: [—2,2],middle:[—2, —1] U [1, 2] last:[[-2, —1] U [-0.5,0.5] U [1, 2].

Figure 3 shows zeros of Chebyshev polynomial and fast Leja points
in the interval [—2, 2]. The degree of the Chebyshev polynomial and the Leja
polynomial is 25, 50 and 100 in the top, middle and last figures respectively.
From these figures we observe that in same interval zeros of the Chebyshev
polynomial and the fast Leja points are distributed almost identically.

10

Interval

Interval

Interval

2 T

15H + Chebyshev points
' O Fast Leja points

0.5

|

o

3}
T

o+

_1.5 -

Ahﬁéég

+0
-

@ ¥

0 5

2 \

10 15
Number of points

15| + Chebyshev points
O Fast Leja points

0.5

-0.5

-15} o0

0 5 10 15

20 25 30
Number of points

15| + Chebyshev points
O Fast Leja points

......
it
anfl

40 50 60
Number of points

70

80

90

Figure 3: Comparison of zeros of the Chebyshev polynomial and
fast Leja points in the interval [—2, 2].

11

100

the

We take these points as shifts in the Richardson iteration (3) and
apply on a random starting vector whose elements have a normal distri-
bution. The one such vector is shown in figure (4, top). We take A =
diag(ay,as, ..., a100) where g;’s are equidistant points in [—3,2]. The first
20 eigenvalues of A lie in A [—3,—2). In figure 4, we see the effect of the
Richardson iteration with 50 and 100 shifts on the random vector. Since we
have taken the zeros of the Chebyshev polynomial and fast Leja points in the
interval [—2, 2], we observe that the Richardson iteration with these as shifts
has dampened the components in the starting vector corresponding to the
80 eigenvalues of A lying in [—2,2]. The first 20 components of the vector
are large because they correspond to the 20 eigenvalues of A where no shifts
are computed. For a general matrix A, we should plot the absolute value of
27 gy where z is an eigenvector of A and g, is a random starting vector.

From these figures, it is evident that either zeros of the Chebyshev
polynomial or fast Leja points can be used as shifts in Richardson iteration.
But in the computation of eigenvalues it is not known a priori how many
iterations are required to get the desired accuracy for the wanted eigenvalues.
We use the Leja points as shifts since it is easy to update k Leja points to
k + 1 Leja points.

To achieve good performance from the Richardson iteration the
order in which we apply the Leja points as shifts is important. In Reichel
[16] , it is shown by numerical example that to avoid propagated round-off
error we should use Leja points in the order they are generated.

4 Algorithm

The basic idea of the algorithm is to find a good starting vector for
the Lanczos algorithm using the Richardson iteration with fast Leja points
as shifts. As an effect of this, we filter the starting vector in the direction
of desired eigenvectors. We present three algorithms for computing the end
eigenvalues and the interior eigenvalues of a given matrix. These variants
are motivated by the numerical experiments. The choice of the algorithm
depends on the spread of eigenvalues and the need of the user.

12

10
* *
o * Kok * * * %
81071 Kk ’2% * * Kk *** *%@K * % 3@6* oy
B ey wg ok K *
: g * * * * R g * * Y X M
: b * X * P * Sk
o I * % ¥ * o «
. * *
— —2| ¥k * * *
U 10 "k * * E
= *
2 o
4l * *
210°F * E
© 2
10’4 I ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100
k, k=1, 2, ..., 100
10” ! ‘
[dag% + Chebyshev points
[O Fast Leja points
w0l 8% japoints_
= ®
o 107 &5@]
v %
=10° L +]
~ 10 o
KA [+ 1
S| . Qs PR S Sanshn o
s 10° | " o o H
s + yen
i @@5@@?%6@@@@@@%%5%95 T PR T e
10‘5 L ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100
k, k=1, 2, ..., 100
T T
10" & + Chebyshev points ||
I d’&}% O Fast Leja points
8
—
~
o 1020 |
&
)
O
z
© 100 L
| | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
k, k=1, 2 100
Figure 4: Top: Normalized random vector. Middle and last: Effect of

Richardson iteration with zeros of the Chebyshev polynomial and the fast
Leja points as shifts on the above vector. The vector in the middle figure is
obtained with 50 shifts and the last figure with 100 shifts.

13

Algorithm 1: This is a single vector variant which performs well when
well separated end eigenvalues are wanted.

1. Input: End points of the interval K , number of fast Leja points £,
number of Lanczos steps m, normalized starting vector ¢;.

2. Richardson iteration
for j=1,2,3,....k
Compute (; fast Leja point in K.

end

3. Lanczos run

vr = qi/||gxll2
ﬁo = 05 Vo = 0
for j=1,2,3,....m
z = Av;
o = v]Tz
z=2z—ajv; — Bi_1vj_1
Bi = llzl|2
if 3; =0, go to 4
iy = 2/B;
end

4. Compute the eigenvalues of the symmetric tridiagonal matrix 7,
consisting of «;’s and f3,’s as shown in (1).

5. If convergence to all desired eigenvalues is obtained then quit else go
to step 6.

6. Include the converged eigenvalue in the set of the fast Leja points by
performing the Richardson iteration with the converged eigenvalues as shifts.

7. Update the interval K by including the part where the convergence is
obtained. Compute new shifts in this updated interval and go to step 2.

We should know the input quantities before starting the algorithm.
In section 5 we will discuss in detail how to estimate these quantities.

14

We saw earlier that Leja point generation is stable in a interval of
length 4. Hence, we scale the spectrum of the given matrix to a interval of
length 4. To achieve this we need the smallest and the largest eigenvalue of
the matrix. We can estimate them by performing a few Lanczos iterations.
It is also possible to scale the Leja points instead of the spectrum.

In step 2, we compute the fast Leja points in K which are used
as shifts in Richardson iteration. This step provide us the desired starting
vector for the Lanczos step.

If convergence to all desired eigenvalues is obtained then we stop,
else we add the converged eigenvalues to the set of the fast Leja points.
This means we perform Richardson iteration taking converged eigenvalues as
shifts. Now, since the converged eigenvalue is a fast Leja point, we do not
get convergence to it in the later runs.

For end eigenvalues it is easy to change the interval K after obtain-
ing convergence to a desired eigenvalue. From our experiments we observed,
extreme eigenvalues converge from one end of the wanted interval. Because
of round-off error, orthogonalization of the starting vector against the con-
verged Ritz vector is not enough to suppress the already converged eigenvalue
in the later runs.

Now we move to the second algorithm which is a modified ver-
sion of algorithm 1 to find the interior eigenvalues. Algorithm 2 differ from
algorithm 1 after step 5.

Algorithm 2:

1. Input: End points of the interval K , number of fast Leja points £,
number of Lanczos steps m, normalized starting vector q;.

2. Richardson iteration
for j =1,2,3,....k
Compute (; fast Leja point in K.

Set Qj+1 = (A — CjI)Qj
end

15

3. Lanczos run

v1 = qx/lqkll2
ﬂO = 07 Uy = 0
for 7=1,2,3,...m
z = Av;
o = 0] 2
2 =2z—ojv; — Bj_1Vj1
Bi = llz|2
if 3; =0, go to 4
vir1 = z/B;
end
4. Compute the eigenvalues of the symmetric tridiagonal matrix 7,
consisting of «;’s and f,’s as shown in (1).
5. If convergence to all desired eigenvalues is obtained then quit else go
to step 6.
6. Extend the sequence of the fast Leja points by computing more new

shifts.

7. Orthogonalize the vector obtained from step 2 against the Ritz vectors
corresponding to the converged eigenvalues.

8. Go to step 2 and start Richardson iteration with the above vector.

Unlike end eigenvalues, interior eigenvalues do not follow any obvious
pattern while converging. Because of this, it is very difficult to keep track
of all the intervals where convergence is obtained. Hence, change of interval
is not suitable for such situations. To avoid the reappearance of the con-
verged eigenvalues we opted for the orthogonalization of the starting vector
against the converged Ritz vectors. As soon as convergence to one eigenvalue
is obtained we orthogonalize the starting vector against the Ritz vector cor-
responding to this converged eigenvalue. Hence the step 7 is performed at
every step only after achieving a convergence to an eigenvalue.

This algorithm does not perform as well as the first algorithm.
This is to be expected since interior eigenvalues are much harder to compute
using a standard Lanczos algorithm. Clustered eigenvalues are especially
hard to find.

16

The Lanczos algorithm with a single starting vector cannot detect
multiple eigenvalues. One way to overcome such a situation is to work with a
block matrix which has at least as many columns as the required multiplicity
of eigenvalues. This lead us to the final variant which works fine even when
distinct but clustered interior eigenvalues are sought.

Algorithm 3:

1. Input: End points of the interval K , number of fast Leja points k,
number of Lanczos steps m, orthogonal random block ;.

2. Richardson iteration

for j =1,2,3,.... k
Compute (; fast Leja point in K.
Qjt1=(A—-GNQ;
if mod(j, korth) = 0 (korth is defined in Section 5.3)

Orthogonalize (), internally

end

end

3. Block Lanczos

Ry = Qy
for j =1,2,3,....m
R, =V,Bj_, (QR factorization of R;_;)
Ry = AV, = V1B,
M; = ViR,
R; = R; — V;M;
end

4. Compute eigenvalues of the block symmetric tridiagonal matrix 7,
consisting of M;’s and B,’s as described in (2).

5. If convergence to all eigenvalues is achieved then quit else go to
step 6.

6. Lock the converged eigenvectors by orthogonalizing them against the
starting block.

7. Take the directions where convergence is not achieved and form a
starting block for a new run of Richardson iteration.

17

8. Compute more shifts keeping old fast Leja points and go to step 2.

We know if the multiplicity of an eigenvalue does not exceed the
block size then the block algorithm will find all copies at the same step. So,
Golub and Van Loan [11, pg. 487] suggests that the block dimension should
be at least as large as the largest multiplicity of any sought-after eigenvalues.
Whereas, Cullum and Willoughby [6, pg. 210] and Bai et al. [3, pg. 54]
suggest that the dimension of the block should be larger than the number of
eigenvalues wanted. We start with a subspace whose dimension is the same
as the desired number of the eigenvalues.

Unlike the single vector variant, we have to keep the orthogonality
in all the blocks for the Lanczos step. So we may need to orthogonalize
the basis while performing the Richardson iteration with fast Leja points as
shifts. A condition which should be maintained to obtain a full rank basis is
discussed in section 5.

When working with the block variant of Lanczos some eigenvalues
converge faster than the others. As soon as we get desired accuracy in a
wanted eigenvalue we lock the corresponding eigenvector, as discussed in Bai
et al. [3, pg. 54]. In later steps, the size of the block is reduced by the number
of converged eigenvalues. To avoid convergence to already converged eigen-
values we orthogonalize the new starting block against all the Ritz vectors
corresponding to the converged eigenvalues.

5 Implementation Details

In this section we will discuss how to estimate the input quantities for
the above three algorithms.

5.1 Number of fast Leja points

The most crucial input quantity is to approximate the number of the
fast Leja points required to suppress the unwanted directions in the starting
vector.

18

There are two ways to combine Leja points generation and the
Richardson iteration. The first is, compute a long sequence of the fast Leja
points and then use them as shifts in Richardson iteration. Hopefully in
the end it will provide a good starting vector for the Lanczos step. The
second approach is, performing the computation of fast Leja points and the
Richardson iteration simultaneously, and stop when the undesired directions
in a vector become small enough as compare to others. Among these two, the
latter approach seem more obvious. We have only tested the first approach
since it is easy to decide before hand approximately how many fast Leja
points will be needed.

Our estimation is based on the Chebyshev polynomial in the in-
terval K. We saw in figure 3 that the zeros of Chebyshev polynomial and the
fast Leja points are distributed almost identically in a same interval. The
steep rise of the Chebyshev polynomial outside the interval [—1, 1] is a boon.
We have two situations to deal with according to the wanted interval. Pic-
torially they can be represented as

No fast Leja points

4 N
e | N b End eigenvalues
N J N J
Wanted eigenvalues K
Wanted

eigenvalues

[
a by e d by b Interior eigenvalues
N AN AN J

K No fast Leja points K

In the first case, we compute the Chebyshev polynomial over the interval
[a,b] and in the second case we work with the product of two Chebyshev
polynomial in the intervals [a,a;| and [b;,b]. The Chebyshev polynomial

19

over the interval [a, b] is defined for A outside the interval as

T(X; [a, b)) = Ty (1 + %) = cosh <kcosh_1 (1 + %))

where k is the number of fast Leja points. When the desired interval lies
inside the spectrum of the matrix, we work with Ty (A; [a, a1]) X Ty (X; [b1, b])
and monitor the rise of the polynomial in the interval [aq, b1].

Suppose the number of fast Leja points & = k; + ko where k; points
are in [a,a;] and ko are in [by,b]. Let y = 2(c — a1)/(a; — a). Then

e—klz + eklz

5 , where z=cosh™'(1+1y).

Tkl (1 + y) =
For small ¥ we may approximate

cosh *(1 +y) = log(1+y + y(y +2))

For large k1, e %1# — 0. Hence,

oz (1 +y+Vyly+ 2))161

Let tol be the required accuracy in the computed eigenvalues. Then

Ty, (1+y) > 1/tol
—log(tol) + log(2)

log(1+y+ yly+2))

Similarly, we approximate ks using T, (d; [b1,]).

=k >

(7)

From (7), we observe that number of fast Leja points depends on
the interval [aq, b1] with respect to [c,d]. If ¢ and d are very close to a; and
b, respectively then we need more fast Leja points so that the Chebyshev
polynomial become larger than the 1/tol in the interval [c,d]. In practice,
we always work with the Leja polynomial. As soon as Leja polynomial at
the point ¢ becomes larger than 1/tol we need at least that many fast Leja
points.

20

5.2 Interval K and number of Lanczos steps

As seen above, the interval K plays a very important role in approx-
imating the number of fast Leja points. Too large or too small K can lead
to extra computational effort. The length of K strongly depends on the gap
between the wanted eigenvalues. Moreover, the length of the interval K and
the spread of the interested eigenvalues play a very important role in deciding
the number of Lanczos steps.

If the chosen K is too small then the interval where no fast Leja
points are computed has many unwanted eigenvalues along with the wanted
eigenvalues. So it is very likely that we may get large components along the
directions corresponding to unwanted eigenvalues. In this way, we not only
waste our effort on an uninterested quantity but also increase the computa-
tional cost by increasing the number of Lanczos steps.

There is a trade-off between the interval K and the number of
Lanczos steps. If K is too large then we need many fast Leja points and
very few Lanczos steps. And if K is too small than Lanzcos steps start to
dominate the computational cost.

Suppose all eigenvalues of the matrix A are evenly distributed and
there are m eigenvalues in the wanted interval [c, d]. If

_ length([a1, b1])
length([c, d])

then in [a1, b1] we expect to have at least m7 eigenvalues. Hence, when the
size of the starting block is n x m we need at most 7 Lanczos steps to get
the convergence to all mr eigenvalues. We get better accuracy for wanted
eigenvalues because the starting block has largest components in the direction
of the wanted eigenvectors. This means, we need at least one step of Lanczos
but never more than the ratio 7.

Hence, we decide the interval K so that the total computational
cost which comprises of the Richardson iteration and the Lanczos iteration,
is minimized. In our next section, we show an example that the interval K
cannot be very small. There is some minimum number of fast Leja points
which are required even if the interval where no fast Leja points are computed

21

is very large. So when we decrease the length of K we increase the number of
the Lanczos steps. So we observe that after some time the total requirement
of the fast Leja points in each interval remains the same but number of
Lanczos steps increases.

5.3 Orthogonality

When we apply the Richardson iteration
Qri1=A—-GDHQk, k=1,2,..

the basis Qx1 should be linearly independent. Due to round-off, as k grows,
the columns of Qx4 tend to become parallel. To get a convergence to all the
distinct eigenvalues we need to keep the vectors linearly independent. We
do this by orthogonalizing the basis (Jx. To minimize the orthogonalization
cost, we try to do it as seldom as possible.

There are many ways to measure the loss of orthogonality among
the vectors obtained from the Richardson iteration. The linear independence
of the vectors is best measured by the smallest singular value of QQg. If the
smallest singular value is much smaller than 1 then the vectors are becoming
linearly dependent. In that case we do one step of orthogonalization. The
singular values of @)y are best measure but not cost effective. We are re-
quired to compute the singular values of a large non-square matrix at every
Richardson step or at least after every few steps.

Another approach to measure the linear independence among the
vectors of @) is QR with column pivoting. Let T is a ratio between the
maximum and minimum absolute value of the diagonal of R and g is a growth
in T after some steps of Richardson iterations. If g > 1/tol then one step of
orthogonalization is performed. We start with ¢ = 1 and perform one step
of QR-factorization of)y after some steps of Richardson iterations. We do
not have a good guess when to orthogonalize for the first time. Later we
orthogonalize only when the need arise. The benefit with this approach is
that it is time saving. Also, provides a complete remedy in the sense that it
checks and provide the orthogonal vectors simultaneously.

In the numerical experiment we compared this two approach for
checking the orthogonality. We observed that after the first step of orthog-

22

onalization, the predicted growth from QR gives a very good indication for
the loss of orthogonality and behaves similarly to the result obtained from
the singular values of Q).

We can also measure the loss of orthogonality among the vectors
by looking at the Leja polynomials. We took the idea from Rutishauser[17],
where approximate eigenvalues of a tridiagonal matrix are used to check the
orthogonality among the Lanczos vectors. This is done by looking at the
maximum absolute value of the Leja polynomial over the interesting part of
the spectrum and the maximum of the absolute value of the Leja polynomial
at the left and right endpoint of the interesting interval [c,d]. We have

observed if
max(p(c), p(d))
maxcex(p(¢))
then we do not need to orthogonalize ().

< 1/tol

The distances between c and a; and d and b, plays a very important
role. If there are many eigenvalues in the interval [a;, ¢) and (d, b;] then these
eigenvalues will influence the frequency of the orthogonality steps required.
The problem in this approach root to the fact that we do not know how
many eigenvalues are there in [ai, c) and what is the smallest eigenvalue in
this interval.

From our experiments, shown in Section 6, we observed that if
[a1, by] is much larger than [c, d] then convergence to all the wanted eigenval-
ues is obtained long before the basis loses linear independence. Hence, we
need to orthogonalize the starting block very seldom. We gain nothing by
performing orthogonalization when the growth g > 1/tol.

5.4 Stopping criteria

The algorithm is stopped when user defined accuracy, tol, is obtained
for all the desired eigenvalues. We compute the residual of the Ritz pair

T, = A$Z — 1?10, = A‘/Jé’z - ‘/38191 = (AV; - ‘/37})81 = Uj+1,6j€?$i.
If

|7ill2 = [B;85:] < tol

23

then Ritz value 6; is a good approximation of the eigenvalue \; of the matrix

A.

In the case of the block variant,
|Irill2 = [|B;(E7 s:)|[2 < tol

where EY = (0,...,0,1,) and n X p is the size of the starting block.

6 Numerical experiments

In this section we present the result of numerical experiments which
illustrate the behaviour of the single vector and the block variant algorithms.
We have used three sets of test matrices; namely, a diagonal matrix, the
Anderson matrix and a Hamiltonian matrix.

The choice of diagonal matrices is based on the spread of eigenval-
ues. We consider two different diagonal matrices. If A = diag(as,as, ..., a,)
then in first example a; = ¢ where ¢ = 1,2,...,n and in the second case
a;=1/n,i=1,2,...,n.

The second example comes from the Anderson model of localiza-

tion and we call it the Anderson matrix [9]. These matrices come from
quantum physics and the model is used for the investigation of electronic
properties of disordered systems. The model for the matrix is taken from
Elsner et al. [9] and is defined as follows:
The off-diagonal elements of a matrix obtained from Anderson model are
equal to the off-diagonal elements of the 7-points central difference approxi-
mation to the three-dimensional Poisson equation. The matrices differ from
each other in the diagonal entries, which are suitably chosen random num-
bers. In all our experiments diagonal entries are uniformly distributed ran-
dom numbers in the interval [-1, 1]. Elsner et al.[9] made extensive exper-
iments and found that the Cullum and Willoughby method [6] is best for
computing eigenvalues for these matrices. The matrix is obtained from a
10 x 10 x 10 grid and is of size n = 1000. Figure 5 shows a part of the
spectrum.

24

e R P e e e B e

Distribution of the eigenvalues in the marked region.

2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7

A
W A

Spectrum of the Anderson matrix of size 1000x1000.

1 1.5 2 2.5 3 3.5

Figure 5: Spectrum of the 1000 x 1000 Anderson matrix.

The third set of test matrices are Hamiltonian matrices which arise
in physical chemistry while studying the molecular excited state. A very sim-
ple model for these matrices is given by Wyatt in [19, 18]. These matrices
consists of n, blocks each of size ny,. Elements are defined as follows:
diagonals entries

(Hig)jj=(@—1)A+(j-1)0, §<<A,

off-diagonal entries of diagonal block

(Hyz)j5 = Cexp(—|7 — j'|),

entries of off-diagonal block
(Hi)jj = [C/(noali — | + 1)] exp(=[j = j']).

where i = 1,2,...,m, j = 1,2,...,n5, 0 # i’ and j # j'. (H,),,; means jjth
entry of i/th block. In all our runs A = 0.1,6 = 107, n,g = 5,C = 0.04,

25

ny = 10 and ng = 100. Part of the spectrum of this matrix is plotted in
figure 6.

Eigenvalues

Figure 6: Eigenvalues for the model Hamiltonian matrix.

We will compute a few of the smallest and a few interior eigenval-
ues of all the above examples. The performance of algorithm 1 i.e the single
vector variant for computing the end eigenvalues will be compared with the
block algorithm described in algorithm 3, Cullum and Willoughby’s no or-
thogonalization Lanczos and selective orthogonalization Lanczos. The block
variant is used to find interior eigenvalues and is compared only with the
Cullum and Willoughby’s no orthogonalization Lanczos algorithm. In block
variant algorithm the size of the starting block is same as the number of the
wanted eigenvalues in all the examples.

For these examples, when employing either variant of the algo-
rithm, we will discuss how to estimate the end points of K, the number of
fast Leja points and the number of Lanczos steps. For the block variant, we
will even see when the need of a orthogonalization of the basis block in the
Richardson iteration arises.

26

In figure 7, we show wanted eigenvalues and the corresponding
gap. For the single vector variant, we are always considering the 10 smallest
eigenvalues. Choice of interior eigenvalues is based on the distance in the
eigenvalues.

5
451 1
10 10 Hamiltonian matrix n, = 10, n, = 100
4 S
2e-2 2e-2
351 |
10 5 Anderson matrix of order 1000
3w]
n 2e-1 7e-3
<
(=}
€25 |
g
W oho 3 diag((1:1000).2/1000)
om
4e-48e—-4
15f f
10 30 diag(1:1000)
1m -
4e—-2 le-1
0.5 |
O | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

Spectrum of the matrix

Figure 7: Desired eigenvalues in various test examples. Quantities above
and below the line are number of wanted eigenvalues and the gap
between them respectively.

The first step is to decide the required number of fast Leja points which
will be needed to suppress all the directions in the interval K. We will
approximate the number of fast Leja points by plotting the Leja polynomial.
We plot the Leja polynomial of different degrees and when the condition
discussed in Section 5 is satisfied we take that many fast Leja points as
shifts in the Richardson iterations. In other words, as soon as we reach the
estimated degree, we take that many fast Leja points while computing the
eigenvalues. In figure 8 we show the Leja polynomial for the end eigenvalues
for all the examples which are amplified in the wanted spectrum.

27

10

Leja polynomial

10

Leja polynomial

50 |

— - 100 fast Leja points
—— 200 fast Leja points
300 fast Leja points
* Wanted eigenvalues
+ Other eigenvalues

A NI AU A NN AR USRS SRR NERRITI i

0.04 0.06 0.08 0.1 0.12 0.14

Part of the spectrum

0.16

0.18 0.2

0.22

— — 3000 fast Leja points
—— 3500 fast Leja points

— - 4000 fast Leja points
* Wanted eigenvalues |
+ Other eigenvalues
100-m*****-|-‘++++"+ oo+ +
0.0285 0.029 0.0295

10

Leja polynomial

10

Leja polynomial

50 |

Part of the spectrum

— - 100 fast Leja points
—— 200 fast Leja points
300 fast Leja points
* Wanted eigenvalues

+ Other eigenvalues

|
0.6
Part of the spectrum

0.55

0.65

0.7

— — 400 fast Leja points
—— 500 fast Leja points
600 fast Leja points
* Wanted eigenvalues
+ Other eigenvalues

Fook kKK A+ o+
I I

28.625

+o+ b RN
| |
28.645

I
28.635

28.63 28.64

Part of the spectrum

Figure 8: Leja polynomial in the interval where no fast Leja points
are computed for the end eigenvalues. Examples from top to bottom:
diag(1:1000), diag(1 : 1000).2/1000, Anderson matrix, Hamiltonian
matrix.

28

Similarly, in figure 9 we plot the Leja polynomial for the interior eigen-
values in the desired spectrum.

— — 100 fast Leja points
10 T T T T T = —— 200 fast Leja points
s 10 P ~1-— 300 fast Leja points 7
5 Bike [* Wanted eigenvalues
s . , — + Other eigenvalues
510" - ; .
<])
8
3
10°
| | | | | | |
15 1.55 1.6 1.65 1.7 1.75 1.8
Part of the spectrum
T T
-l — - 1000 fast Leja points
_ T —— 1500 fast Leja points
-E 10°F ~ — - 2000 fast Leja points H
S D * Wanted eigenvalues
s _ el + Other eigenvalues
3 - _ S
Q1020 - ~ N i
S LN
q, ~ ~
— - ~
-~
100 = St PR \\\\b_,,,*¥¥;
| | | | | | | [I I
0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07
Part of the spectrum
T - — . _ T T
e T~ — - 1000 fast Leja points
_ PR S —— 1500 fast Leja points
-g - _ N — - 2000 fast Leja points
S jov°l - > * Wanted eigenvalues | |
s [_ "N [+ Other eigenvalues
2 - =7 T -~ \
Q. ~
8 RGN
9 NN
10° i A+ e ek W HE R S
2.12 2.14 2.16 2.18 2.2
Part of the spectrum
T — - == = _ I T
- T~ — - 500 fast Leja points
_ - Sl —— 1000 fast Leja points
.g 10°L /./ e N — - 1500 fast .Leja points il
S P - N * Wanted eigenvalues
s - + Other eigenvalues
3 e
8 - o
s
lO0 % HHHHHHHHGHHHGHGGHGGE‘__\? o =
| | | | | | |
30.22 30.24 30.26 30.28 30.3 30.32 30.34

Part of the spectrum

Figure 9: Leja polynomial in the interval where no fast Leja points
are computed for the interior eigenvalues. Examples from top to
bottom: diag(1:1000), diag(1 : 1000).2/1000, Anderson matrix,
Hamiltonian matrix.

29

In all the examples the interval where the desired eigenvalues lie is
very small as compare to the full spectrum. In table 1 we give the description
of the interval where no fast Leja points will be computed in the case of the
end and the interior eigenvalues.

TABLE 1 Length of different intervals

Ex. Spectrum Length of [ay, b]
[a, b] End Interior
1 |]0.0320, 4.0320] | [0.0320, 0.2282] | [1.5095, 1.8699]
2| 0.0280, 4.0280] | [0-0280, 0.0305] | [0.0293, 0.0536]
3 | [0.3946, 4.3046] | [0.3946, 0.8104] | [2.1236, 2.2045]
4 | [28.615, 32.615] | [28.615, 28.646] | [30.21, 30.31]

From this table we observe that there are many eigenvalues in the interval
K. We get an estimate on the required number of fast Leja points from
figures 8 and 9 where wanted interval [c,d] is also shown. In case of the
interior eigenvalues [c, d] is in the middle of the interval [a, b;]. These fast
Leja points in K helps in amplifying the directions corresponding to the
wanted eigenvalues by suppressing the unwanted directions corresponding
to the eigenvalues in K. The interval [a;, b;] was decided so that the total
number of fast Leja points and the number of Lanczos steps can be optimized.
A smaller interval required more fast Leja points and larger was demanding
more Lanczos steps. In figures 10a and 10b, we show the ratio between the
interval where eigenvalues are desired and the interval where no fast Leja
points will be computed in case of the end and the interior eigenvalues.

From this figure we also get an estimate for the required number of Lanc-
zos steps. If the wanted eigenvalues are clustered together then the interval
is large as compare to when they are nicely separated.

From the figures 8 and 9 we get the approximation on the required
number of the fast Leja points. We compile the estimate number of fast Leja
points in table 2 for the end and the interior eigenvalues. This will help us
to compare between the estimate and the actual number of fast Leja points
needed to get the convergence to all the eigenvalues. The entire algorithm is
dominated by the matrix-vector multiplication. So it is very important that
we do not use too many fast Leja points. Because this will not only increase
the computational cost but also the computational time.

30

Figure 10a : End eigenvalues

Hamiltonian matrix nb=10,ns=100

Anderson matrix of order 1000

1
e——
4

1

e

3

-1 diag‘(1:1000).2/1000)
8

1 diag(1:1000)
He—

Figure 10b : Interior eigenvalues

Hamiltonian matrix nb=10,nS=100 1
anll—
8
Anderson matrix of order 1000 1
sl ——
15
diag((1:10002.2/10002 -1
16
.) 1
diag(1:1000) .
3

Figure 10: Estimation of the length of the interval where no fast Leja points
will be computed.

31

TABLE 2 Estimation of fast Leja points

Ez. | End eigenvalues | Interior Eigenvalues
Single | Block

1 < 300 | <150 < 300

2 | <3500 | < 1500 < 1500

3 < 150 | < 100 < 1500

4 < 500 | < 250 < 1500

Now we have all the input quantities for the algorithms 1 and 3.
With this we are ready to implement the single and the block variant of the
algorithm. In the block variant case the size of the starting block is n x m
where n is the size of the matrix and m is the required number of wanted

eigenvalues.
TABLE 3(a) Computation of end eigenvalues
Ex. | Interval | Ratio # of fast # of the
K T Leja points k| Lanczos steps m
T | [Aso, \a] | 54 200 20
2 | [Aas, An 6 2900 30
3 | [Aas, An 3 150 20
4 | [Aas, An 3 400 30
TABLE 3(b) Computation of interior eigenvalues
Ez. Interval Ratio # of fast # of the
K T Leja points k | Lanczos steps m
1 [)\1,)\370] U [)‘4601 /\n] 3 250 3
2 [A1, A1s] U [Aso, An) 16 1500 11
3 [A1, Asgs] U [Aa20, An 15 1700 9
4 | [AM,30.21] U [30.31, \,] 7 1000 7

32

In the above two tables, table 3(a) and 3(b), we have compiled the
results for the end and the interior eigenvalues respectively. These tables
contains the optimum interval K and the ratio of the interval [a;, b1] and [c, d]
for the respective examples. These tables also show the maximum number
of the fast Leja points and the Lanczos steps needed to get the convergence

to all the wanted eigenvalues. From above tables we observe that results
discussed in Section 5 give good estimate to the input quantities required for
the algorithms discussed in Section 4.

Now we will compare the single vector variant and the block vari-
ant with the Cullum and Willoughby no reorthogonalization (C&W) and
selective reorthogonalization (SO). In table 4(a) we compare methods for
computing the smallest 10 eigenvalues. The entry in each block corresponds
to the number of the fast Leja points, size of the tridiagonal matrix and the
number of orthogonalization steps. Table 4(b) compare the result for interior
eigenvalues.

TABLE 4(a) End eigenvalues- Comparison with other methods

Ex. Single Block cesw Selective
vector variant technique ortho.
1 40044040 | 10042040 | 0+4-300+0 0+300+52
2 | 290043040 | 300+10+0 | 04+1500+0 | 0+1000+1000
3 4504-604-0 50+104+0 | 0440040 | 044004135
4 | 2800421040 | 3004+100+0 | 04+10004-0 | 0+1000+ 996

TABLE 4(b) Interior eigenvalues-
Comparison with other methods
Ex. Block cew
variant technique

25049040 | 0-+1500+0
1500+33+0 | 043000+0
1700+45+0 | 04+6000+0
1000+70+0 | 0+10000+0

=W =

From table 4(a) we observe that the need of reorthogonalization of
the Lanczos basis make selective orthogonalization algorithm expensive.
Whereas, we never did any orthogonalization step in Cullum and Willoughby
technique and block variant. As compare to Cullum and Willoghby tech-
nique, accuracy obtained in the computed eigenvalues was much better when
approximated by the selective orthogonalization algorithm. In tables 5(a)
and 5(b) we count explicitly the matrix-vector multiplication(MV) for each
algorithm for the end and the interior eigenvalues.

33

TABLE 5(a) End eigenvalues- Comparison of matrix-vector multiplication

Ex. | Single vector | Block variant | CEW | Sel. orth.
1 440 1020 300 404
2 3100 3100 600 3000
3 510 510 400 670
4 3010 3100 1000 2992

TABLE 5(b) Interior eigenvalues-

Comparison of matrix-vector multiplication

Ez. | Block variant | CEEW
1 2590 1500
2 15033 3000
3 17045 6000
4 10070 10000

Unlike Cullum and Willoughby method, we do not need to store any
vector or matrix. Apart from storage the whole algorithm is dominated by
Richardson iteration which consists of simple matrix-vector computation.
Hence, the over all structure of the algorithm is not complicated.

We wrote all the algorithms i.e. 1, 2, 3 corresponding to the sin-
gle and the block variant in MATLAB. The Cullum and Willoughby no
reorthogonalization algorithm and the selective orthogonalization algorithm
are written in Fortran 90 and MATLAB so as to handle large tridiagonal ma-
trix and reorthogonalization efficiently. Because of this we didn’t compare
the total execution time taken by each algorithm.

In all the above examples we never performed a single step of
orthogonalization in the Richardson iteration while implementing the block
variant algorithm. The reason being the interval [a;, b;] chosen is larger than
the interval [c, d]. If [a;, b1] and [c, d] are same or almost same then we may
require to perform few steps of orthogonalization to keep the basis linear
independent to the working precision.

Let us consider a 1000 x 1000 diagonal matrix A whose diagonal
elements are evenly distributed in the interval [—2,2]. We take the interval
K to be [-2,—1] U[1,2]. We will consider two different intervals [c, d] and

34

will compute all the eigenvalues within this interval. In the first case we will
find all the 250 eigenvalues in the interval [—0.5,0.5] and in the second case
interval under consideration will be [—0.9, 0.9] which has 450 eigenvalues.

We get convergence to all the wanted 250 eigenvalues in [—0.5, 0.5]
with 40 fast Leja points, as seen from the figure 11.

1035

T T

— — 50 fast leja points
—— 100 fast leja points
30 — 150 fast leja points L
- Exact eigenvalues in [-.9,.9]
Exact eigenvalues in [-.5,.5]

Leja polynomial

100

AN R AR APV

vl LIS

w0 WWWVWVWVWW ‘ /WWWWWVV‘“WW‘/WWM
\,»y-,,v\“f»ﬁf Rz . /_»\» _’\\.“."
i 5 U i

R /.
v "’\luli \/J-‘\'.\/‘w \Jy|

-2 -15 -1 -0.5 0 0.5 1 15 2
Spectrum

Figure 11: Leja polynomial of 1000x1000 diagonal matrix.

Since we forced one step of orthogonalization after 10 steps of Richardson
iteration, we see in figure 12 that after that we do not require any more
orthogonalization step. Assaid in Section 5.3, we start with growth ¢ = 1 and
orthogonalize after pre-assigned number of Richardson iterations. After the
first QR-factorization we get the condition number of the basis by looking at
T, defined in Section 5.3. From T we estimate the condition number after one
step of Richardson iteration. We keep a check on the growth of this condition
number after every step of Richardson iteration and when it becomes larger

35

than 1/tol we orthogonalize the basis for the second time. We denote this

growth by ¢g which is updated at every step by multiplying with the condition
number after one step of Richardson iteration.

2

10 T T
I —— Smallest singular value]
—— Predicted growth using QR
<
310tk
3 [
100 I L I I I I I
0 5 10 15 20 25 30 35
Number of fast leja points

40

Figure 12: Checking loss of orthogonality when [c, d] = [-0.5,0.5]. We
force one step of orthogonalization after 10 steps.

But if we relax the first orthogonalization then we get convergence to

all the eigenvalues without performing a single step of Richardson iteration.
This is shown in following figure 13.

36

10 T T
r —— Smallest singular value 1
—— Predicted growth using QR ||
10°F
£
2
=
O]
10" Fo
100 ! 1 ! ! ! ! !
0 5 10 15 20 25 30 35 40

Number of fast leja points

Figure 13: Checking loss of orthogonality when [c¢, d] = [-0.5,0.5]. We
do not force when to do the first orthogonalization.

Now lets consider the second interval [—0.9,0.9]. From figure 11 we know
approximately 100 fast Leja points are needed for the convergence. Figure
14 tells us that 2 steps of orthogonalization were performed.

The first one is after 10 steps and the other when the predicted growth be-
come larger than the tolerance 108. If we orthogonalize when growth become
larger than 10* then orthogonalization was performed 3 times to maintain
the linear independence among the Richardson vectors. This is depicted in
figure 15.

37

12

10 I I T
—— Smallest singular value
—— Predicted growth using QR
1010 | |
10° + -
=
8 10° .
V]
10" + -
10° + e
100 ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

Number of fast Leja points

Figure 14: Checking loss of orthogonality when [c, d] = [-0.9,0.9]. We
orthogonalize when growth become larger than 108.

These figures hint at taking larger [a, b1| as compare to [c, d]. From
these figures it is also noticeable that after the first step of orthogonalization,
smallest singular value and the predicted growth obtained using the QR-
factorization of the Richardson block behaves similarly. Hence, we can rely
on this computed growth to monitor the loss of linearly independence. This
will also avoid the computation of singular values at every step of Richardson
iteration.

38

10 I I I
E —— Smallest singular value]
—— Predicted growth using QR |

10F E

10F E

Growth
(=Y
o
T

0 ! ! !

1 1
0 10 20 30 40 50 60 70 80 90 100
Number of fast Leja points

10

Figure 15: Checking loss of orthogonality when [c, d] = [-0.9,0.9]. We
orthogonalize when growth become larger than 10%.

The other thing which is interesting to observe is the relation be-
tween the number of fast Leja points and the number of Lanczos steps, which
we talked about in Section 5.2. Let [c, d] be the wanted spectrum and [a1, b1]
be the interval where no fast Leja points will be computed. Then if length
of a1, by] is small then we need more fast Leja points and few Lanczos steps
and if length of [aq, b;] is large then we need less fast Leja points and more
Lanczos steps. There is a trade off between fast Leja points and Lanczos
iterations. In figure 16 we tried to show that if the length of [a4, b;] is too big
as compare to [c,d] then it is Lanczos algorithm which starts to dominate
the entire algorithm.

39

Total matrix—vector multiplications

1800

1600

1400 -

1200

1000

800

600

400

200

Hamiltonian matrix having 10 blocks of size 100 each
T T T T T T

[Leja points
1500 [Lanczos steps

+
110

600
+ —
1000 600 °10
+ +

50 600 430
900

+
360

o 60 gog 600 .
+ 750 zgo
0 700 600
+ 600

600 180
70 &00 600 8% ¥ 120
+ + 600 150

90 * 100
90 70

0 2 4 6 8 10 12 14 16 18 20

Intervals in increasing order

Figure 16: Comparison between the fast Leja points and the Lanczos

iterations.

In the above figure, we are considering the 1000x 1000 Hamiltonian matrix
and we are interested in eigenvalues from 201 to 210. We start with small
[a1, b1] where Richardson iteration is more expensive because of many fast
Leja points. But later when [a;, b;] becomes considerably large than Lanczos

40

runs becomes dominating factor in the algorithm.

In the end, we tried our algorithm on some large sparse matrices
again coming from previous 3 categories. Except for the diagonal case, we do
not know the exact eigenvalues of the matrix. We estimate the smallest and
the largest eigenvalue of the respective matrix by using the eigs command
in MATLAB. We could have done this computation by doing few runs of
Lanczos iteration. Once we know the end eigenvalues we scale the matrix so
that all the eigenvalues lie in an interval of length 4. We decide the wanted
interval [c, d] and using the conditions from section 5 we estimate the interval
[a1, bt], number of fast Leja points, orthogonality condition and the number
of Lanczos iterations. The algorithm is stopped when the condition discussed
in section 5.5 is satisfied.

We restricted ourselves to finding the 10 interior eigenvalues using
the block variant i.e. algorithm 3. The block size of the starting block is
n x 10 and accuracy desired in the wanted eigenvalues is less than or equal
to 10719 We did not compare the results with Cullum and Willoughby
no reorthogonalization because we are not having an efficient algorithm to
find the eigenvalues of a large tridiagonal matrix. In the following table
for each example we mention the size of the matrix, wanted interval [c, d],
interval [aq, b;], number of fast Leja points and Lanczos iterations and the
CPU time. The CPU time does not incur the initialization of the data and
the computation of the fast Leja points. Hence, CPU time shows the time
spend on the Richardson iteration and Lanczos iteration. We have run all
the examples on a 330 MHz Sparc workstation and using the MATLAB 6.0
version.

41

TABLE 6 Results from large matrices

FEz. | Size [c, d] [ay, b1] nflp | m | CPU time
1 | 10000 | [2.0034,2.0070] [1.93,2.08] 3000 | 27 92
1 | 20000 | [2.0017,2.0035] [1.94,2.06] 7000 | 30 501
1 | 40000 | [2.0009,2.0018] [1.991,2.01] 17000 | 15 2176
2 | 10000 | [1.0032, 1.0068] | [0.965,1.042] 3000 | 25 113
2 [20000 | [1.0016,1.0034] [0.981,1.023] 6000 | 34 570
2 | 40000 | [1.0008,1.0017] [0.985,1.016] | 13000 | 25 2383
3 | 10648 | [2.1608,2.1684] | [2.1356,2.1036] | 17000 | 25 | 1346
3 | 21952 | [2.1608,2.1684] | [2.1356,2.1936] | 26000 | 25 2573
3 139304 | [2.1608,2.1684] | [2.1356,2.1936] | 47000 | 25 6358

In the above table example 1 means diag(1:n), example 2 corresponds to
diag(1 : n).?/n and Anderson matrix is given by example 3. Also, number of
fast Leja points is given by nflp and number of Lanczos steps by m. From
this table it is evident that number of fast Leja points increase as the size
of the matrix increase. Moreover, for the clustered eigenvalues work load is
more. This fact is pronounced even in the number of the Lanczos steps. In
all the example size of the block is n x 10.

7 Conclusions

The bounds which we define in Section 5 to estimate the end points of
the interval K, number of fast Leja points k, orthogonality and the Lanczos
steps m give reasonably good estimates. In some examples the estimate to
the number of Lanczos steps is much larger than the actual number of steps
required.

The Cullum and Willoughby method performs very well while com-
puting the end eigenvalues. Reorthogonalization requires a substantial effort
in selective orthogonalization technique. The work required by the block
Lanczos is little more than the single vector variant.

While computing the interior eigenvalues we observe that when the
spectrum of the matrix is dense, the Cullum and Willoughby method need

42

many Lanczos steps. This means we have to work with a very large tridiago-
nal matrix. Whereas with the block variant we need very short Lanczos runs.
The required number of fast Leja points depend on the spread of the wanted
eigenvalues. We observe that the total need of fast Leja points is large but
the Richardson iteration consists of simple matrix vector multiplication.

There are few points which we would like to study further in more
detail. In case of the small matrices we worked with the exact eigenvalues of
the matrix and in case of the large matrices we estimated the end eigenvalues
using the MATLAB build-in function eigs. We approximated the eigenvalues
to the full accuracy i.e. when the residual is less than 10~ °. We would like to
estimate the end eigenvalues by Lanczos algorithm and would like to investi-
gate how accurately do we need to approximate the end eigenvalues. What
will be the consequences if they are not accurate to the full machine accuracy
say 10710 or less? Since fast Leja points generation need end eigenvalues, this
is an interesting question to probe further.

The next question is related to the Richardson iteration and the
fast Leja points. We compute long sequence of the fast Leja points and
then apply the Richardson iteration using them as shifts. If we do not get
convergence then more fast Leja points are computed. As said in section 5.2,
performing fast Leja points and Richardson iteration simultaneously seem
more obvious. We would like to implement this approach and compare with
the present version of the algorithm.

Among all the three algorithms we worked extensively with algo-
rithms 1 and 3. We discarded the algorithm 2 on the argument that it is
difficult to find interior eigenvalues using single vector Lanczos algorithm.
We think it will be interesting to see how better algorithm 3 i.e. block vari-
ant performs as compare to the algorithm 2 which is a single vector Lanczos
algorithm.

43

References

[1] J. Baglama, D. Calvetti, and L. Reichel. Iterative methods for the
computation of a few eigenvalues of a large symmetric matrix. BIT,
36:400-421, 1996.

[2] J. Baglama, D. Calvetti, and L. Reichel. Fast Leja points. ETNA,
7:124-140, 1998.

[3] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. Van der Vorst. Tem-
plates for the Solution of Algebraic Eigenvalue Problems: A Practical
Guide. SIAM, Philadelphia, 2000.

[4] D. Calvetti and L. Reichel. An adaptive Richardson iteration method
for indefinite linear systems. Numerical Algorithms, 12:125-149, 1996.

[6] D. Calvetti, L. Reichel, and D. C. Sorensen. An implicitly restarted
Lanczos method for large symmetric eigenvalue problems. ETNA, 2:1-
21, 1994.

[6] J. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Sym-
metric Figenvalue Computations, volume 1. Birkhauser, Basel, 1985.

[7] J. W. Demmel. Applied Numerical Linear Algebra. SITAM Publications,
Philadelphia, PA, 1996.

[8] A. Edrei. Sur les déterminants récurrents et les singularités d’une fonc-
tion donnée par son developpement de Taylor. Compositio Mathematica,
7:20-88, 1939.

[9] U. Elsner, V. Mehrmann, F. Milde, R. A. Romer, and M. Schreiber.
The Anderson model of localization: A challenge for modern eigenvalue
methods. SIAM J. Sci. Comput., 20:2089-2102, 1999.

[10] T. Ericsson and A. Ruhe. The spectral transformation Lanczos method
for the numerical solution of large sparse generalized symmetric eigen-
value problems. Math. Comp., 35:1251-1268, 1980.

[11] G. Golub and C. Van Loan. Matriz Computations. Johns Hopkins
University Press, Baltimore, MD, 3rd edition, 1996.

44

[12] G. H. Golub and R. Underwood. The Block Lanczos method for com-
puting eigenvalues. Mathematical Software III, pages 364-377, 1977.

[13] F. Leja. Sur certaines suites liées aux ensembles plans et leur application
a la representation conforme. Annales Polonici Mathematici, 4:8-13,
1957.

[14] C. C. Paige. The computation of eigenvalues and eigenvectors of very
large sparse matrices. PhD thesis, London University, 1971.

[15] B. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Engle-
wood Cliffs, NJ, 1980.

[16] L. Reichel. Newton interpolation at Leja points. BIT, 30:332-346, 1990.

[17] H. Rutishauser. Computational aspects of F. L. Bauer’s simultaneous
iteration method. Numer. Math., 13:4-13, 1969.

[18] A. Vijay and R. E. Wyatt. Spectral filters in quantum mechanics: a
mesurement theory perspective. Physical Review F, 62:4351-4364, 2000.

[19] R. E. Wyatt. Matrix spectroscopy: Computation of interior eigenstates
of large matrices using layered iteration. Physical Review E, 51:3643—
3658, 1995.

[20] D. M. Young. Iterative Solution of Large Linear Systems. Academic
Press, Inc, New York, 1971.

45

