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Abstract

Growth hormone (GH) affects most of the tissues in the body, where the
main impact being on growth and metabolism. Infantile over secretion or
lack of GH cause medical problems throughout life. To be able to diagnose
GH deficiency (GHD) and improve its treatment a great deal of effort has
been made and is still being made to explain how GH works.

This thesis discusses methods to describe repeated measures of GH in serum.
In the first paper methods to conclude the existence and define the terminal
time points of a high intensive interval of either changes of frequency or
changes of amplitude are discussed. Both simulations and an application to
a real data set are analysed. The second paper discusses some explorative
methods to improve the estimation of peak amplitude, how to analyse the
standardised curve form of a pulse and how to analyse periodicity.
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1 Introduction

Growth hormone (GH) affects most of the tissues in the body, where the main
impacts being on growth and metabolism. One of the latest achievements
is that GH has an affect on the neurogenesis, i.e. new stem cells (Aberg
et. al. 2000). More well-established are the stimulating effects of GH on
the growth of muscles and bones and that GH mobilises fat cells. Lack of
GH during childhood is conducive to an increased risk of diabetes, obesity
and hypohysial dwarfism. Infantile over secretion leads on the other hand to
acromegaly and gigantism. To be able to diagnose growth hormone deficiency
(GHD) and improve its treatment a great deal of effort has been made and
is still being made to explain how GH works.

This study discusses methods how to describe repeated measures of GH in
serum. The characterisation of GH secretion data is a very high variation,
both individually and between subjects. Every subject has a different base-
line of the GH level that varies with time. The pulses of secretion give rise
to a pulsatile pattern with a high variation of peak frequencies and peak am-
plitudes within individuals as well as between subjects. This thesis presents
two methods to test if data changes significantly in peak frequency or ampli-
tude at a certain interval of time. The methods will also define when these
time intervals occur. In addition to that we will discuss methods to reveal if
there is any periodicity of GH data and the appearance of the curve form of
a standardised pulse.

The first section will give a very brief and ’popular’ description of hormones
in general and GH in particular. This will hopefully make it easier for the
reader to grasp the biological background data. The next section explains
how data is collected and discusses possible sources of errors. This section
is followed by a description of the papers, paper I and paper II, respectively.
Finally, a conclusion is given with a discussion of future topics.



2 Basic theory of growth hormone

The cells in all animals have different tasks. This requires that different cells
must be able to communicate with each other. There are at least four ways
of communication. In the the autocrine system cells are acting on themselves,
in the paracrine system others are sending their molecules to the cell in the
immediate surrounding. Then some cells are able to transport their molecules
(often via the blood system) far in the body (the endocrine system). The
fourth type of communication is the neuroendocrine system. A nerve cell
releases a molecule directly into the blood to its target cell. Such a molecule
or protein carrying information to cells is called a hormone.

The hormone hits its receptor molecule (or binding protein, BP), which is
placed on the target cell. It is a rather beautiful concept, as every receptor
molecule is adapted to a special hormone. It is the receptor molecule that
guarantees that the right hormone ends up in the expected cell. This affinity
of the target cells makes it possible for the concentration of hormones in the
plasma to stay low.

Growth hormone is one of the hormones that belongs to the endocrine sys-
tem. Other examples of endocrine regulators that also influence growth are
insulin, cortisol and estrogens.

GH is a protein of the pituitary gland and its secretion is regulated by
GH-releasing hormone and somatostatin (abbreviated GHRH and SS respec-
tively). These regulators (or peptides) are secreted from the hypothalamus
and influenced by a number of factors (such as nutrition, sleep, level of stress).

The GH consists mainly of four isoforms. The most abundant form is 22kDa
GH, which constitutes about 75% of the secreted GH (Kristrom, 1999). The
difference isoforms have different half-times (t1). Growth et. al. (1994)
discern two groups when estimating the half-time; one ’slow’ group with a
t1 about 19-22 minutes and one ’fast’ group with a ¢: about 12-16 minutes.
CH affects growth in three different ways; stimulates the growth of tissues,
affects the liver (which stimulates other growth factors) and initiates the
mobilisation of fatty acids.

The amount of secreted GH varies to a great extent through life. During
foetal life and puberty high levels of GH are secreted compared to the levels



secreted during prepuberty and adulthood. There is also a difference be-
tween gender. The secretion shows similar behaviour for both sexes during
foetal life and infancy, but during puberty the difference between the sexes
appears. As Albertsson-Wikland et. al. (1994) conclude, there is a two year
difference between the sexes. Both, according to the age at the onset of the
growth spurt, the age at the peak maximum and the age at the end of the
growth spurt. It is believed that girls have higher peak amplitudes and dif-
ferent baselines of the GH levels compared to boys during puberty. Later,
boys catch up at mid puberty. Even after puberty GH continues to be an
important factor of metabolism and the difference between gender is believed
to sustain, due to estrogen secretions in females.

3 Method of measure

The sampling of the data used in the papers took place at the Queen Silvia
Children’s Hospital, Goteborg. The data is based on 50 premature children,
37 boys and 13 girls. The children were of Caucasian origin and mainly
Swedish. Their ages differed between 5 and 14 years old (the range of the boys
was 5-14 and of the girls 8-13). The children were allowed and encouraged
to activity and sleep as normally as possible and they were on an ordinary
diet.

The blood was continuously drawn with a pump system and sampled every
20 minute for a 24-hour period, that is, each individual generated 72 sampling
values. Then the plasma samples were assayed for GH.

We might note that the level of GH measured is the level in the blood, not
the level actually affecting the binding proteins. This might cause a mea-
sure of error since different humans might have different capacity to absorb
the hormones. Another source of error is problems in sampling due to all
the different factors influencing GH. For instance it would be natural if the
children felt some stress during observation, which is known to affect GH.
These possible errors are very difficult to adjust. On the other hand, they
are probably small and therefore not important.



4 Outline of the papers

As mentioned above, the data is measured repeatedly and shows a very
episodic pattern. This irregularity constitutes the main challenge when
analysing data. The aim of this thesis is to develop methods that describe
the fluctuations of GH secretion. The thesis consists of two papers. In the
first paper we seek methods that divide the data into a low and high in-
tensity interval respectively. That is, we want to find methods which test if
peak frequencies or amplitude is changing during a certain period of the day.
In addition to that the distribution of data is described and how a possible
high intensive interval depends on its starting point. In the second paper we
discuss more explorative methods, for instance a method how to calculate
the curve form of a standardised pulse is described.

4.1 Paper 1

In the first paper we develop two methods to describe how the peak fre-
quencies or amplitude of GH is changing during a 24-hour period. The first
method is a criteria-based method, i.e. it is based on a test statistic. Using a
bootstrap-like simulation we may test if frequency or amplitude is stationary
or not. A procedure to find when the high intensive interval occurs, if the
null hypothesis is rejected (i.e. if it is non-stationary), is presented.

The second method is a model-based method, where we first split data into
two intervals (a high intensive and a low intensive). Then the technique and
theory of directional data are used to evaluate how well the splitting ex-
plains our data. We might as well model how the length of the high intensive
interval varies with the time point when the interval begins.

We test our methods by simulating four different cases. One deterministic,
two with varied degrees of randomness but where there is a high intensive
interval and finally a case illustrating stationary, i.e. the probability of peak
or high amplitude is the same regardless of time point. Both methods work
well when testing the null hypothesis of all four cases. Though, the weakness
of the methods appear when determining the terminal points of the high
intensive interval. Specially, the procedure to determine the terminal points
of the criteria-based method is very indistinct and subjective.



Finally, 50 children’s GH level is investigated. It is known that the ma-
jor secretion of GH appears during night. We could confirm this with our
methods.

4.2 Paper II

The second paper presents some explorative methods. First of all, a method
for correcting estimates of peaks is given. When analysing continuous data
at discrete intervals we are bound to make mistakes, the peak time of occur-
rences and its amplitude might be misjudged. This will cause the amplitude
to be underestimated and the time for peak misjudged. The correction is
based on a second order polynomial. We will also estimate the curve form
of a standardised pulse. The estimated half-time from this curve is in ac-
cordance with the corresponding results of Groth et. al. (1994). This curve
may be used for comparative studies.

Then methods to measure both the population and the individual periodicity
respectively are discussed. We will present descriptive methods to estimate
the presence of periodicity. The analysis of periodicity is based on rather
naive assumptions and further development is needed.

5 Conclusions and future developments

The two approaches mentioned in paper I will not be fully comparable with
each other, since they are based on different models and partly answer differ-
ent questions. With the first method (the so called, criteria-based method)
we might test the null hypothesis of stationarity, i.e. if frequency or ampli-
tude respectively may be divided into two different intervals of intensity, and
determine the terminal points of the high intensive intervals. The second
method (the so called, model-based method) is a more refined tool. Besides
the above, we might model how length of the high intensive interval varies
with its starting point. The last procedure might be of importance when
treating growth hormone deficient (GHD) children. Further investigations of
the properties of both methods need to be done, for example of strength and
robustness.



The measure to compare periodicity, presented in paper II, will not give a
complete picture of periodicity. We will only be able to hint the degree of
periodicity. We use, for instance a very naive definition of a peak, which may
influence the periodicity. That is, we make no attempt to remove possible
false peaks, due to noise. It is of interest to study this further, since it is
believed that the periodicity of the injection is of importance for the capacity
to absorb GH when treating GHD-patients.

The development of the curve form of a standardised pulse in the second pa-
per, paper II, might also be analysed further. It remains to develop methods
for comparative studies. A method to compare different populations (such
as gender, ages or tall vs short children) would be of interest. It could also
be useful when developing an objective tool to classify GHD patients.
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Appendix A

Below the algorithms for the programs in paper I are presented. First the
algorithms for estimating the high intensive interval of the criteria-based
method are given. Then the algorithms for estimating the high intensive
interval of the model-based method are described. The random seed used for
all programs is 143255.

Algorithms of criteria-based method

First the algorithm for calculate frequency and then the corresponding algo-
rithm for the amplitude are given.

Estimating frequency

Frekvens(datav)

1. Initiate an empty matrix.

2. For every individual and time point ....

2.1 If the sample value is related to a peak, then add up the
frequency.

3. Return the counts divided by the total number of individuals.

Rm(m, datav)

1. Initiate variables.
2 For every individual : = 1,2,..,n

2.1 Generate an integer, k;, between 0 and m.

2.2 For every time point j =1,2, .., t.

2.2.1 Translate the data set (datav) k; step forward.
2.3 Add individual #’s contribution to an empty matrix.

3. Calculate the frequency (using Frekvens(datav)) of the remixed data set.
4. Return the test statistic (see equation 1).



Main program

1. Initiate constants and variables.
2. Start a loop through varv=1,2,..,B.
2.1. Simulate the distribution by the method described in section
2.2 (Rm(m, datav)), where m =t — 1.
3.  Compare our value of the test statistic of our sample, with the
quantiles of the generated distribution.

Estimating amplitude

Amplitud(datav)

1. Initiate two empty matrices.

2. For every individual and time point ...

2.1 If the response value is related to a peak, then add up the
amplitude with that value.

3. Return the sum divided by the total number of peaks.

The main program is analogously as for frequency.
Algorithms of model-based method

First the algorithm for calculate frequency and then the corresponding algo-
rithm for the amplitude are given.

Estimating frequency

Nollett(pos1, pos2)
1. Initiate the variables, 'noll’ and ’ett’.
2. Return the number of noughts (noll) and ones (ett) in the spec-
ified interval (posl, pos2).

Ansattpos(pos)

1.  Return the position for the peak after the peak at position pos
in the sequence for individual i.



Berakning(posl1, pos2, tett)

1. Count er, ny and ey, ny for the given interval (posl, pos2) and
its complement, via Nollett(posl, pos2).

2. Calculate p;, and pg.

3. Define the high intensive interval, i.e. the one which correspond
to pg.

4.  Calculate the value of the sum of equation 3.

5. Return the value of equation 3, py, py and the end points of the
high intensive interval.

Main program

1. Initiate constants and variables.
2. Start a loop through all individuals.

2.1. Start a loop which passes through all peaks for one individual.

2.1.1. Calculate the starting point of an interval, via Ansattpos(pos).

2.1.2. Start a loop which passes through all remaining peaks for one individual.

2.1.2.1. Calculate the end point of an interval, via
Ansattpos(pos).

2.1.2.2. Calculate  the value of equation 3, via
Berakning(pos1, pos2, tett).

2.2. Find the interval which maximises equation 3.

2.3. Transpose the end points to trigonometric values.

Estimating amplitude

Berakning(pos1, pos2, ytot)

1. Let the variable ’antal’ define the number of elements of the high
intensive interval.

2. Calculate y;, and yg.

3. Ifyr, > yg then ...

3.1 Switch positions, such that (posl, pos2) define the high inten-

sive interval and recalculate y; and yg.

4.  Calculate the value of the sum of equation 4.

5. Return the value of equation 4, yr, yg and the end points of the high.
intensive interval.
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Main program

1. Initiate constants and variables.
2. Start a loop through all individuals.

2.1.
2.1.1.
2.1.2.

2.1.2.1.
2.1.2.2.

2.2.
2.3.

Start a loop which passes through all response values.

Initiate the starting point of an interval.

Start a loop which passes through all remaining peaks for one individual.
Initiate the end point of an interval.
Calculate  the value of equation 4, via
Berakning(pos1, pos2, ytot).

Find the interval which maximises equation 4.

Transpose the end points to trigonometric values.
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Appendix B

Below the algorithms for the program to estimate the standardised curve
form of a pulse are presented (see paper II).

Posamp(datav)

1.  Define peaks.
2. Calculate the adjusted peaks, via ifsatserl(datav, k1, k2,1, j).

ifsatser1(datav, k1, k2,1, j)
1. Adjust the peaks its corresponding time point according to the
formulas in section 2.1 (equation 1 and 2 respectively).

Kvotfkn(datav, i, avstand)

1. Return two vectors containing the logarithmic difference between
peaks and its surrounding values (up to distance avstand) and
the difference of the corresponding time points for individual s.

The subrutins Stigande(zdatal, ydatal) and Avtagande(zdata2, ydata2) es-
timate the isotonic and antitonic regression respectively, according to the
flow chart at section 2.2.
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Main program

o

Denote the number of values surrounding a peak avstand, which
is considered to have an impact of the peak.

Adjust the peaks according the theory of section 2.1., via
Posamp(datav), for each individual i.

Use Kvottkn(datav, i, avstand) to create a matrix containing the
logarithm of the ratio between the amplitude and its surrounding
values.

Use Kvotfkn(datav, i, avstand) to create a matrix containing the
difference in time of the corresponding time points.

Split the data set, where one containing the values to the left of
a peak and the other containing the values to the right of the
peak.

Plot raw data.

Use Stigande(zdatal, ydatal) to estimate the isotonic regression
of the data set to the left of the peak.

Use Avtagande(zdata2, ydata2) to estimate the antitonic regres-
sion of the data set to the right of the peak.

Plot the result.

13



Two Methods to Analyse Time
Dependence of Hormone Data in
Frequency or Amplitude

1 Introduction

One usually comes across difficulties when analysing hormone data, and
growth hormone (GH) data makes no exception. The main challenges consist
of individual variations and the fact that responses depend on a complex sys-
tem of known (and unknown) substances and factors. The researchers in this
area are interested in the population as a group as well as individuals. Some
of the issues concern how frequencies of the peaks or amplitudes change over
time, i.e. if the peaks come more often or are higher during a certain period
of a 24-hour period. Another question is if the peaks come regularly, in say
some particular 3-hour period. Beside this, there is a need for developing a
method to evaluate if the individuals are growing in a 'normal’ way or not.

The main issue of interest dealt with in this paper is if and how frequency
or amplitude for GH is changing over time (the first question above). The
problem has mostly been treated in an ad hoc way before (e.g. Martha et.
al., 1989). Though, during the last decade numerous progresses in modelling
data have been made. O’Sullivan and O’Sullivan (1988) model a pulse, with
both exponential rise and decay, to depict where pulses appear. Their model
and analysis is an example of a criteria-based method.

The common way of modelling hormonial data uses model-based methods,
especially time series analysis. Diggle and Zeger (1989) introduced a non-
Gaussian auto regression model, based on an underlying process. The latter
depends on the history of the responses. This technique resembles hidden
Markov models. Komaki (1993) adapted a similar pulse-shape as Diggle and
Zeger, and developed a method to find the correct position and amplitude of
the pulses. After that a state-space model is developed. Diggle and AlWasel
(1997) carried on a spectral analysis, where they took the between-individual
variation into special account. But in their approach no consideration of the
exact location of the peak and its amplitude was made. Gou et. al. (1999)
did not just consider that, but also the fact that the circadian rhythm gives
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rise to a baseline in the pulse pattern. These effects were jointly modelled
by a state-space representation.

This paper will present two methods for testing the above question in slightly
different ways. Chapter 2 gives the theoretical background. The first method
to be presented is a rather simple and naive criteria-based method. The other
is model-based, related to the theory of directional data. These approaches
will not be fully comparable, since they are based on different models and
partly answer different questions (chapter 3). Hopefully though, the reader
will find that every method has its own justification. Chapter 4 will illumi-
nate the different methods in an example investigating the GH of 50 children.

2 The methods

This chapter gives the theoretical background to the two methods investi-
gated. The first method to be described (section 2.2) simulates the distribu-
tion under the null hypothesis that the process is stationary (i.e. no major
fluctuation of the frequency or the amplitude during the day). A test statistic
is developed and used to conclude whether the null hypothesis is significant
or not. The second method (section 2.3) divides the data into a low and
high intensive interval. Then the technique and theory of directional data
are used to test if the starting time of the high intensive interval affects the
length of the same. In section 2.1, we first state some overall definitions.

2.1 Some overall definitions

The treated methods deal both with dichotomised data, when analysing peak
frequency, and with continuous data, when analysing amplitude. The pur-
pose is to separate the set of individual observations into two intervals, a low
intensive, L, and a high intensive, H, interval with respect to peak frequency
or amplitude respectively.

Consider a data set of n individuals, from which blood samples were taken
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every 20 minutes during a 24-hour period. Let

bl

X, = { Lt Y0 <Yy > Yign
’ 0 otherwise

where Y ; denotes the sample value of individual 7 at time point j for every
v =1,2,...,n,5 =1,2,...,t. Thus X;; = 1 indicates a local maximum
at j for individual :. We suppose that observations for different individuals
are independent while there may be dependence within individuals. As the
reader might notice, the definition of a peak is rather naive, since we are
analysing continuous data at discrete intervals. A peak may be missed or its
amplitude may be underestimated. Nor do we consider the fact that each
individual starts from a different baseline (which furthermore may fluctuate
during a 24-hour period). Though, with these drawbacks in mind the main
purpose of this paper is to develop methods for analysing growth hormone
data (GH) rather than to find algorithms for the optimal position of a peak. A
number of algorithms have already been developed to find a good prediction
of the exact position when a peak will occur (e.g. Hauffa et. al., 1994
compare two of them). Our definition does not lean on any assumption. For
instance we do not consider the size of difference to neighbouring values.
This increases the influence of random variation, but the advantage is the
objectivity of the definition.

It is also worth noting that the problem is circular, since the data is collected
at specific time points following a 24-hour period. That is, the sequence of
data does not stop at the last time point but continues with a value estimated
by the value of the first time point.

The above definitions will remain throughout the paper. Other notations
will be defined under sections of interest. The required computer calculations
have been performed in Mathematica, version 4.0.1.0.

2.2 A criteria-based method founded on bootstrap sim-
ulations

In this section a criteria-based method to evaluate if frequency or amplitude
changes over time is described. Test statistics, V' and W, are formulated
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to test the null hypothesis (no changes over time), where the distribution
under the null hypothesis is derived by simulation. Then we describe two
possible procedures to find the location of the high intensive interval. Hence
the following sequences { Ry, Ry, ... , R} and {Z, Z, ... , Z;} are calculated,
where

1 n
R, = - ZXM when calculating frequency,
1
1 n
or Z; = N Z Y;;X;; when calculating amplitude at peaks,
I

where N] = ZX%J

Appropriate and simple test statistics are given by

t

V = %;(Rj_R)Q and (1)
W= %Z(zj—Z)Q. ()

The null hypothesis for peak frequency is given by

Hy : fi=fy=...=f; with the alternative,
H, : f;# fj41 for at least some j,

The null hypothesis for amplitude is given by

Hy : a1 =ay,=...=a; with the alternative,

H, : a; # a1 for at least some j,
where a; = E[Y;,sz,j] = E[Z]]

If the process, generated by frequencies, is stationary each individual has the
same probability to reach a peak from a non-peak position, whatever time
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point, i.e. if the null hypothesis is true. The corresponding process, generated
by the amplitude, is stationary if the probability to reach a high amplitude
(compared to the mean) is the same during the 24-hour period. Therefore
we need to compare the values of the test statistic with its distribution in a
stationary process to test the null hypothesis. The latter is evaluated by a
type of bootstrap simulation in the following way;

1. Move all the responses of individual ¢ k; step, where k; is a ran-
domly chosen integer between 0 and ¢t — 1. Accordingly, k; is
independent between individuals but constant within.

2. Calculate the test statistic denoted by v,, where r =1,2,... , B.

3. Repeat the above steps B times. In the applications (section
3.2.1 and 3.2.2) B is set to 1000.

The simulated values can be used to calculate the null hypothesis distribution
of the test statistic.

The null hypothesis is rejected if the test statistic, V, is lower than the &
quantile, v(B, %), or higher than the 1 — § quantile, v(B,1 — §), of the
simulated distribution. Thus we conclude that the probability to peak or
getting a high amplitude respectively is altered with respect to time if V' <
v(B,5) or V> v(B,1 - §). The bootstrap procedure for the test of the
hypothesis of stationary amplitude is treated analogously.

One might think it is unnecessary to use a bootstrap procedure for the test of
stationarity of peak frequency and that the distribution of the test statistic
V' is determined by a calculation for independent indicator variables. This
is not the case. It will always exist a dependence between the X;; within
individuals, since the very definition of peak makes them dependent. If
X;; = 1 then the values of both the previous and subsequent peak will equal

0, i.e. Xz',j—l = Xi,j—|—1 =0.

A rejection of Hy will not give an answer how to separate the data set into
high and low intervals, with respect to peak frequency and amplitude. A
rejection just states there is a difference with respect to time. To be able
to locate the high intensive interval we will present one possible procedure.
The method tries to find the most likely interval and test that one.

18



2.2.1 The longest high level interval

One possible approach is to find the longest interval where most frequencies
are above the mean. This interval is most likely to be the high intensive one.
Hence, if we reject the null hypothesis, Hy, we might proceed by deriving the
most likely interval, i.e. calculate the longest interval where the contribution
of >3(R] — R) is greatest, where
- R,—R ifR; >R

0 otherwise
and R is the overall mean. The algorithm is given below.

1. Test the hypothesis

Hy @ fi=fy,=...=f; against the alternative
H, : f; # fj41 for at least some j € ¢,

at a significant level .

1.1. If Hy is not rejected, then we stop and conclude that it is not
possible to separate the data set.
1.2. If Hy is rejected we calculate s;, where
o — maw ] (X (B - R) - SIETTY Ry = R) /1 i <1
. j—1 D e - )
J ( ?c:j—l(Rl_cl_ - R))/I if j > 1

V j=1,2...,t and l=t—1,t—2,...,1.

Hence s; is the maximal average value of all possible subsets
with length [, i.e. the average of the total data set except the
j : th value and the subsequent (¢ — [ — 1) values.

1.2.1. Determine the longest positive interval with a considerable
contribution to V' (i.e. the interval that corresponds to the
maximal s; with respect to [).

Hence s is a vector of length ¢ — 1, containing the maximum average value
of the sum over every subinterval of length [, where [ = 1,2,... ¢t — 1. The
longest interval that contains the relative greatest value of s with respect to
length [, will reveal the high intensive interval. The time points corresponding
to this interval are then easily found by a reversed procedure.
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Plotting s; against [ is one way to decide which value to choose, see for
instance figure 1 (page 16). This type of plot will also hint at other high
intensive intervals. Though one drawback of this procedure is its subjectivity.

It is important to note that this last procedure can be used as a descriptive
tool only. We might, at a specific level of significance, conclude whether
there is a high intensive interval or not. The procedure to describe when this
interval occurs is merely descriptive. Though the above procedure is an easy
and effective way to deduce when the high intensive interval occurs.

2.3 A model-based method founded on the technique
of directional data analysis

Directional data is a well known and an effective method to deal with obser-
vations that constitute a direction. There are a number of examples when
the theory successfully is used to analyse observations with different geolog-
ical interpretations, such as analysing wind directions or the homing ability
of pigeons and so forth. It can also be used for observations which follow a
circular scheme, like endocrine hormones.

The purpose in this section is the same as before, to separate the frequency
of peaks or the overall amplitude into two intervals (a low intensive, L, and
a high intensive, H), which is done with the least square method. Then
the technique of directional data is used to estimate the start of the high
intensive interval and the length of the same. This approach will give us a
powerful tool to model how the length of a high intensive interval varies with
its starting point.

To be able to separate the observations a suitable measure is needed. If we
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study the change of frequency, the estimate is given by minimising
t
2
Z {Xi,j —lien - pu — ljer 'PL} =
J

t
= > ALieulXij — pu) + Ler[Xi; — pi]} =

J

t t
= > LenlXij—pul* +_ LierlXij —po) =
- .

J

t
= Z IjEH{Ij:Xi,jZI[]- - pH]2 + Ij:Xi,j:OP%[} +
J

¢
+ Z IjEL{Ij:Xi,jzl[l —pr)* + Ij:Xi,j:OP%} =
J
= ex(1—pu)’+ (nu — en)py +ec(l — pr)* + (np — er)p] =
= ngpr(l —py) +nrpr(l —pr) = (nL + ng)p — nupy — NLPs,

where
€r, (&4 eg +er
pL = _’ pH = _7 p = 77
nr, ng ng +ng
e, — number of ones in the low intensive interval,
nr — total number of points in the low intensive interval,
eg — number of ones in the high intensive interval,
ng — total number of points in the high intensive interval.

If studying amplitude, the estimate is analogously given by minimising

t
Z{Yz’,j — Lien - Yir — Lier, - Y117,
J
where

Yy — mean of all the responses for all j € H and
Y, — mean of all the responses for all j € L.
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This means we want to maximise

nEpy +nLps  or (3)
ngYp +npY7 in the two cases, respectively. (4)

The first method corresponds to Bernoulli variables and the second to nor-
mally distributed variables, if assuming independent variables. Our observa-
tions are certainly not independent but the procedures seems robust enough.
The methods we propose here coincide with the maximum likelihood es-
timates if we assume independent observations with constant parameters
within the interval.

In practice an optimal interval cannot always be uniquely obtained. When
we got a multiple choice the first option was chosen. This may lead to a
bias, but we will not consider it further. When the optimal interval is found
for each individual, the next step is to calculate the mean directions and
measure the length of high intensity intervals. Since at least one interval of
the individual intervals (either the low or the high interval) usually overlaps
the day circle, it is appropriate to transform the data into trigonometric
data. This motivates the representation of every sample value as a circular
variable, with angle 6;, where 0 < 0; < 27. The vector (cosb;, sinb;) therefore
represents the direction of an individual point on the circle.

The mean of the individual angles is not an appropriate estimate of the
mean direction. This since it does not give an unambiguous measure (see for
instance Mardia et. al., 1979). The following estimates and test statistics
are used.

Let

1 « 1«
tanb; = %, where C' = - Zcosﬁi and S = - ;sinﬁi.

i=1

Then the mean direction of the above vector is defined by the direction of
the unit vector
(C,S)

7 where R =| (C,9) || .

Thus, the direction is defined by the rescaled mean of the vector sum. The
length, R, can also be used as a measure how well data is clustering around
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the mean direction, i.e. as a measure of association. Hence it defines a value
of the proportion of data that is close to the mean. It is easily shown (after
some trigonometric transformations) that 0 < R < 1. R equals 1 if all the
individual data lies in a perfect direction agreement.

When the optimal interval is found for each individual the next step is to fit
a harmonic regression function. Our model on an individual basis is

L, = a+ bcoso; + csing; + €;, (5)

where L; represents the logarithm of the length of the high intensive interval
for the individual ¢ and ¢; represents the angle of the individual #’s circular
variable. The coefficient, a, represents the constant length of the interval
and b and c reflect how the starting point influences the interval. If b has
the main positive influence, then the interval is at its longest if it starts near
midnight and shortest if it starts near noon. If ¢ reflects the main positive
influence, then the high intensive interval is at its longest if the starting point
is near 6 am and at its shortest if the starting point is near 6 pm.

This model is the simplest natural regression model for circular dependence.
Simple linear regression is not possible to use if continuity is required since

it violates continuity at point 2r = 0. Regression models including shorter

periods (i.e. 27“, 2?”, ...) correspond to polynomial regression on the real line

and are suitable if a richer model is required.
A matrix notation for our model gives

L = ®8+e,
where

® — represents a n *x 3 matrix,
(3 — represents a 3 * 1 matrix of parameters and
€

— represents a n * 1 matrix of errors.

Since this is a parameter linear model the usual estimate of 3 will be valid
here. Hence

. -1
3 = (@T@) "L and
V(@) = (<1>T<1>)102,
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where o2 is the variance of the length.

It might be of high interest to estimate B If only a is significantly nonzero
then the length of the interval is constant. It should indicate that the starting
point of the high intensive interval does not affect the length of the same.
If b is significant then the high intensive interval is longer if it begins near
midnight and shorter if it begins at noon. If c¢ is significant, then the high
intensive interval is longer if it begins at 6 am, and shorter if it begins at
6 pm. This information might be of importance in studies of GHD (growth
hormone deficient) children.

Another way of looking at equation 5 is to estimate the interaction of how
the starting point affects the length of interval. That is, we transform the
above equation to

L = a+bcosp;+ csing; + €, = a+ Vb2 + c2cos(¢i — ) + €, (6)

where

o = { arctan($) ifb>0

b
7+ arctan(;) otherwise -

The maximal length of interval is given by a + v/b? + ¢? at the time point
when ¢; = ¢, i.e. Zarctan($) if b> 0 and 2 (7 +arctan(§)) if b < 0. Hence,
the latter equation gives a more distinct idea of how length varies with the
starting point. We may use it when calculating the maximum length and its
corresponding starting point.

A test of the hypothesis of homogeneous circular distribution may be per-
formed by using the estimates of R according to the theorem below.

Theorem

Suppose we have t repeated measurements of n independent individuals.
Let L; denote the length of an individual interval and its corresponding
starting point expressed with its angle, ¢;, where : = 1,2,... ,n, according
to equation 5. The hypothesis that the distribution contains no direction,
ie. Hy: E[L] =a VY ¢; € [0,27], may be rejected if R > % at the
significance level a.

Proof
Due to the central limit theorem, we note that both C' and S are normally
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distributed with mean 0 and variance %, respectively. The two-dimensional
random variable (C, S) has an asymptotically bivariate normal distribution
according to Cramer-Wold theorem.

Since C and S are uncorrelated, 2nR? has an asymptotically chi-squared
distribution with parameter 2, or equivalently an exponential distribution
with parameter %, under the null hypothesis. 0

That is, with a sample size of 100 we may conclude a high intensive interval
at a 5% level of significance if R > 0.173. Though, it must be noted that
this result is merely asymptotic.

3 A theoretical comparison

The purpose of this chapter is to study the difference between the methods.
Some differences are obvious (section 3.1) and others more delicate. In sec-
tion 3.2 the differences are illustrated by four simple simulations. First, a
deterministic case is analysed, where all individuals have exactly the same
appearance, i.e. a high intensive interval during a certain period of time. In
the second simulation some stochastic effects are added, but the start of the
high intensive intervals is still predetermined. The third simulation is the
same as the second, but the high intensive interval starts randomly within
a certain interval. Finally, the fourth simulation illustrates the case without
any structure, i.e. when frequency or amplitude follows a stationary process.
The chapter will end with an overall discussion about the results and a com-
parison between the methods (section 3.3).

3.1 Some obvious differences

The criteria-based method estimates if frequency or amplitude varies during
a certain period under a 24-hour period. Then a procedure to find when the
high intensive interval occurs is developed.

In the model-based method the data is divided into two intervals (regardless
if it is appropriate or not), which is done with an ordinary least square
method. With the technique of directional data, the clustering around the
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mean direction is measured. In addition we estimate the following harmonic
regression equation;

L, = a+ bcosp; + csing; + ¢€;,

where the parameters indicate how the length of the high intensive interval
varies with the time point when the interval begins.

Hence the criteria-based method is a method for testing the null hypothesis
of stationarity and finding the high intensive interval. In addition to that,
the model-based method may be used as a tool to describe and model the
high intensive interval. To give a more detailed illustration of their difference
and similarity it might be helpful to observe how they behave in simulations.

3.2 The results of the simulations

In this section the four different cases of simulation are described. Each
case simulates 100 individuals, where one individual is to be measured every
20 minutes during a 24-hour period (i.e. in total 72 points of measure per
individual and day). Each simulation is thought to be commenced at 8:00 am.
First, the criteria-based method is used to analyse frequency (section 3.2.1)
and amplitude (section 3.2.2) respectively and then the model-based method
is used to analyse the same data set (section 3.2.3 and 3.2.4 respectively).

The first simulation will describe a deterministic case, where every individual
gets a peak at the same time during a predetermined interval (between 11:00
pm to 4:00 am). Outside this interval we have a declining (or increasing)
sequence, 1.e. X;; = 0. Nota bene, we are unable to peak twice in a row, so
the sequence of each individual is {0,...,0,1,0,1,...,0,1,0,...,0}. The
probability to peak is thus

1V j=4546,...,60

P(Xi,j = 1|Xi,j—1 = 0) = { 0 otherwise

and this case will be referred to as sim 1.

In the second case (referred to as sim 2) we add some stochastic effects. Still
it will be a rather structured sequence, with a good possibility to deduce the
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data in two intervals (a low and high intense respectively). This time, the
probability to peak (if we did not peak the observation before) is 0.6 if we are
in the high intensive interval, otherwise it is 0.14. The start and length of the
high intensive interval will be the same as in the first case. The probability
to peak is thus

0.60 V j=45,46,...,60

P(Xi;=1|X;;1=0) = { 0.14 otherwise

The third case (referred to as sim 3) is quite similar to the second case. The
only difference is that each individual may start at different time points.
The high intensive interval starts randomly somewhere between 9:00 pm and
11:00 pm and the length of the interval is determined to be 5 hours for
each individual. The probability to peak is the same as for sim 2 and the
probability to enter the high intensive interval follows a sinus-curve, where
the cumulative distribution function is Sin[(j — 38) * ArcSin[1]/7] V j =
38,39, ... ,45.

The last case (referred to as sim 4) illustrates the stationary case. The
probability to peak is 0.4, if we did not peak the observation before, thus

P(Xi;=1X;;.1=0) = 040 V j=1,2,...,72

The four cases above illustrate how different grades of randomness affect
our methods. The first case includes no randomness at all but two levels
of intervals, the second case introduces some noise in the simulation. The
third case adds some extra noise, with a random starting point of the high
intensive interval and finally, the last simulation illustrates the stationary
case.

When creating the analogous cases for amplitude the above simulations are
used. Every individual has a constant baseline (a simplification since the
baseline fluctuates during a 24-hour period), which is uniformly distributed
per individual. When X ; = 0, i.e. when not having a peak, we add a value,
simulated with a log normal distribution (mean equals 0.3 and variance equals
1), to the baseline. When X;; = 1, i.e. when having a peak, the response
value of the amplitude equals the baseline and a value ten times a random
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value following the same distribution as above.

V.. — Zi,j + k; if Xi,j =0
b 10Z2,] -+ kl if Xi,j =1

where Z; ; is log normal distributed, with mean 0.3 and variance 1 and k; is
the constant baseline, for each individual ¢, uniformly distributed between
0.1 and 0.4.

3.2.1 An analysis of the frequencies with the criteria-based method

In this section the null hypothesis of stationarity of frequency is tested with
the criteria-based method. The variable B, i.e. the number of loops, is set to
1000 when simulating the distribution, as described in section 2.2. The results
of the four different cases of simulation are presented and analysed. The
table 3.2.1 shows the values of the test statistics and the medians, the 2.5%
and the 97.5% quantiles, the means and the standard deviations respectively
of the simulated distributions for the different cases.

Table 3.2.1. The results of all four simulations (sim 1, sim 2, sim 3 and
sim 4 respectively) where V' denotes the test statistic of the
frequency and the other values describe the distributions in
the stationary case.

sim 1 sim 2 sim 3 sim 4
\% 0.0988 0.0144 0.0110 0.00157
Median 0.000915 | 0.00145 | 0.000915 | 0.00202

v(1000,0.025) | 0.000432 | 0.00102 | 0.000432 | 0.00138
v(1000,0.975) | 0.00189 | 0.00206 | 0.00189 | 0.00287
mean 0.000983 | 0.00148 | 0.000983 | 0.00205
SD 0.000379 | 0.000271 | 0.000379 | 0.000387

We might conclude that the distributions are symmetric, since the means and
corresponding medians are almost the same. This should not be a big sur-
prise. The simulations take place to assure stationarity, i.e. the frequencies
are equally spaced over time.

The first column of the table 3.2.1 shows the results of the first simulation.
There is a significant difference between the test statistic and the stationary
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state. Hence we might conclude that there is a difference in the frequencies.
To discern when the high intensive interval occurs the longest positive interval
of V is derived, as suggested in section 2.2.2. Plotting (see the first graph at
figure 1) indicates that the length is 5 hours, since the latest peak is at [ = 15
and we are measuring each 20 minutes (i.e. every third of an hour). The
high intensive interval is found to be between 11:00 pm to 4:00 am, which is
as expected.

The second column shows the results of sim 2. As expected the result shows
that there is a difference in the frequencies. To discern if there is an interval
with higher intensity we proceed as before. The figure (the second graph at
figure 1) indicates that the length of the interval is 5 hours and 20 minutes
and further investigation shows the high intensive interval appearing between
11:00 pm and 4:20 am. The interval is longer compared to the interval of sim
1. This is expected, since it is a nonzero possibility to peak outside the high
intensive interval.

The result of the third simulation, sim 3, is shown in the third column of
table 3.2.1. As expected, the null hypothesis may be rejected. The figure
(figure 1, graph c) is difficult to interpret. One suggestion is that the interval
is 4 hours and 20 minutes (i.e. [ = 13). This would mean that the interval
occurs between 10:00 pm to 02:20 am.

The last column shows the results from the forth simulation. The table shows
no significant difference between the test statistic and the stationary state.
Hence we cannot divide the data into different intervals.

N § §
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Figure 1: A plot of s against the length of the subintervals (1) of sim 1 (a), sim 2
(b) and sim 3 (c).
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The conclusion is that our method works satisfactorily in all different sim-
ulations. Though it might be difficult to establish the terminal points of
the interval with our procedure. It turns out to be difficult to interpret the
figure, when dealing with a high degree of randomness.

3.2.2 An analysis of the amplitude with the criteria-based method

In this section the null hypothesis of stationarity of amplitude is tested with
the criteria-based method. The variable B, i.e. the number of loops, is set
to 1000 when simulating the distribution, as described in section 2.2. We
analyse the logarithmic values of the amplitude, i.e. the data is expected
to follow a normal distribution. The results of all four simulations (sim 1,
sim 2, sim 3 and sim 4 respectively) are shown in table 4.3.2. The variable
W denotes the value of the test statistic and the other values describe the
distribution in the stationary case for each simulation.

Table 4.3.2.  The results of all four simulations (sim 1, sim 2, sim 3 and
sim 4 respectively) where W denotes the test statistics of the
amplitude and the other values describe the distributions in
the stationary case.

sim 1 sim 2 sim 3 sim 4
w 0.555 0.192 0.164 0.0352
Median 0.0332 | 0.0401 | 0.0371 | 0.0351

w(1000,0.025) | 0.0220 | 0.0276 | 0.0259 | 0.0248
w(1000,0.975) | 0.0510 | 0.0541 | 0.0506 | 0.0477
mean 0.0341 | 0.0404 | 0.0373 | 0.0354
SD 0.00744 | 0.00689 | 0.00644 | 0.00600

As before we might conclude that the simulated distributions are symmet-
ric, since the means and the corresponding medians are almost the same.
We might also note that the standard deviations vary to a greater extent,
compared to analysing frequency. This is quite natural.

The first column of the table 4.3.2 shows the results of the first simulation.
There is a significant difference between the test statistic and the stationary
state. Hence we might conclude there is a difference in amplitudes over time.
To discern when a high intensive interval occurs, the longest positive interval
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of W, as suggested in section 2.2.2, is derived. Plotting (see the first graph
at figure 11) indicates that the length is 4 hours and 20 minutes, since the
latest peak is at [ = 13. The high intensive interval is found to be between
10:40 pm to 3:00 am. We might have expected a longer interval than the
underlying high intensive interval. This since it is difficult to control the
simulation of a continuous variable. The way we simulate the amplitude will
produce peaks outside our control.

The second column shows the results of sim 2. As expected the result shows
that there is a difference in the frequencies. To discern if there is an interval
with higher intensity we proceed as before. The figure (the second graph
at figure 11) indicates that the length of the interval is 5 hours (i.e. I=15).
That is, the high intensive interval should be between 11:00 pm to 04:00 am.

We might reject the null hypothesis of sim 3 (see the third column in ta-
ble 4.3.2) as expected. The figure (figure 11, graph c) is difficult to interpret
as when simulating frequency. Since the line is monotonously decreasing we
refrain from interpreting the length of the interval.

The last column shows the results from the forth simulation. The table shows
no significant difference between the test statistic and the stationary state.
Hence we cannot divide the data into different intervals.
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Figure 2: A plot of s against the length of the subintervals (/) of sim 1 (a),
sim 2 (b) and sim 3 (c).

The results when analysing amplitude are analogous to the results when
analysing frequency. The test of time dependence seems to work well enough,
but the procedure to deduce when the high intensive interval occurs is too
subjective and indistinct when we have lots of randomness in data.
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3.2.3 An analysis of the frequencies with the model-based method

In this section the frequency is analysed with the model-based method. The
results of the method are shown in table 3.2.3. All simulations are given in
the same table. In the first row R and times when the high intensive intervals
begin are presented. In the second row the corresponding values for the end
points are given.

Table 3.2.3. The results of all four simulations of the frequency, where
the values of R and times of the terminal points are given.

siml sim2 sim 3 sim 4

Ryeginning 1.0 0.834 | 0.848 | 0.0256
starting time | -1.0 | -1.41 |-2.49 | 12.0
Rena 1.0 0.809 | 0.838 | 0.0481
ending time 3.67 | 3.84 2.32 2.83

The first column of table 3.2.3 shows the result of the first simulation. Its
high intensive interval begins at 11:00 pm and ends at 3:40 am the following
day. This is as expected, since the underlying interval ends with a nadir. The
clustering around mean (R) for both the beginning and end of the interval
is 1.0, since we analyse the same deterministic pattern for all individuals.
Hence, the average length of the high intensive interval is approximately
4 hours and 40 minutes for the population. The estimate of # cannot be
calculated since the inverse of &' & is singular. Therefore we cannot calculate

the average length of the high intensive interval of an individual.

According to the table above, the high intensive interval of the second sim-
ulation begins at 10:35 pm and ends at 3:50 am the following day (see ta-
ble 3.2.3, second column). This interval is expected to be more conservative
(i.e. longer) than the underlying high intensive interval, since there is a
nonzero possibility to peak outside the predetermined interval. The cluster-
ing around mean (R) for both the beginning and the end of the interval is
strong, above 0.8. Figure 3 shows how the trigonometric coordinates of the

individuals are distributed around the unit circle.

It might be appropriate to explain how to read the figure 3. Since we are
transforming data into trigonometric data, the point (1,0) represents mid-
night, (0,1) represents 6:00 am and so forth. Hence the figure is rotated
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compared to the clock and goes anti-clockwise.

The estimates of 3 are 1.44, -0.169 and -0.732 and variances 0.0245, 0.0231
and 0.0354 respectively. The maximal length of the interval is around 9 hours,
when starting at 5:00 pm. The estimated length of the high intensive interval
of an individual, when starting at 10:35 pm, is approximately 4 hours and 40
minutes. The length of the high intensive interval of the whole population
is around 5 hours). This is expected since all individuals start at the same
time point.

6 am 6 am
1.5 a 15 b
| I
0.5 0.5
I3 -1-05 | 0 O
-0.5 -05
Tl !
- 1.5 15

Figure 3: The circular coordinates of the individual’s frequencies of sim 2 plotted
around the unit circle, where (1,0) represents midnight and goes anti-clockwise.
The first graph (a) shows how the beginning of the high intensive interval is dis-
tributed for the different individuals. The second graph (b) illustrates the corre-
sponding data of the end point of the high intensive interval.

The high intensive interval of the third simulation (see table 3.2.3, third
column) begins at 9:30 pm and ends at 2:20 am the following day. We
might have expected that the high intensive interval should be slightly longer
than the interval in the second simulation. Still, a conclusion might be
that our method is rather robust at randomly chosen starting points. The

clustering around mean () for both the beginning and the end of the interval
is considerable, R > 0.82. Figure 4 shows how the data is distributed.

The estimates of 3 are 1.14, 0.345 and -0.968 and variances 0.0378, 0.0263
and 0.0516 respectively. The maximal length of the interval is 8 hours and 45
minutes, when starting at 7:20 pm. The estimated length of the high intensive
interval of an individual, when starting at 9:30 pm, is approximately 7 hours
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and 20 minutes. The high intensive interval of the whole population is around
5 hours.
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Figure 4: The circular coordinates of the individual’s frequencies of sim 3 plotted
around the unit circle, where (1,0) represents midnight and goes anti-clockwise.
The first graph (a) shows how the beginning of the high intensive interval is dis-
tributed for the different individuals. The second graph (b) illustrates the corre-
sponding data of the end point of the high intensive interval.

The result of the last simulation is given in the forth column of table 3.2.3.
The high intensive interval begins at 12:00 pm and ends at 2:50 am the
following day and a low proportion of data clusters around the mean direction
(R = 0.05 and below for both terminal points). Based on the asymptotic
result in the theorem at page 11 and the value of R, we claim that the interval
is non significant. The figure shows how the data is distributed, see figure 5.

Our conclusion is that all simulations turned out as expected. We are able
to reject sim 1, sim 2 and sim 3, but not sim 4. The estimated time intervals
correspond rather well to to the result of the criteria-based method. The
results of the individual lengths should be interpreted with some reservations
since we did not check the regression model.

3.2.4 An analysis of the amplitude with the model-based method

In this section the amplitude is analysed with the model-based method. As
before, we analyse the logarithmic values of the amplitude. The results of
the method are shown in table 3.2.4.
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Figure 5: The circular coordinates of the individual’s frequencies of sim 4 plotted
around the unit circle, where (1,0) represents midnight and goes anti-clockwise.
The first graph (a) shows how the beginning of the high intensive interval is dis-
tributed for the different individuals. The second graph (b) illustrates the corre-
sponding data of the end point of the high intensive interval.

Table 3.2.4. The results of all four simulations of the amplitude, where
the values of R and times of the terminal points are given.

siml sim2 sim3 sim4

Rieginning 0.936 | 0.383 | 0.332 | 0.0618
starting time | -0.920 | -1.36 | -3.25 | 6.11
Reng 0.942 | 0.424 | 0.421 | 0.0764
ending time 3.62 3.72 3.00 |4.15

The first column of table 3.2.4 shows the result of the first simulation. Its
high intensive interval begins at 11:05 pm and ends at 3:37 am the same day.
The interval is slightly shorter than what we might expect, the length of the
interval is 4 hours and 30 minutes. The clustering around mean (R) for both
the beginning and end of the interval is strong, above 0.90. The reason for
not lying in a perfect direction, i.e. not being 1, may be explained by the
simulation of the amplitude. We do not have a distinct starting point, since
we might get peaks outside the high intensive interval. Figure 6 shows how
the trigonometric coordinates of the individuals are distributed around the

unit circle.

The estimates of 3 are 2.26, -1.09 and -0.796 with variances 0.059, 0.0635
and 0.0381 respectively. The maximal length of the interval is around 36
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hours and 50 minutes, when starting at 2:25 pm. The estimated length of
the high intensive interval of an individual, when starting at 11:03 am, is
approximately 4 hours.

According to the table above, the high intensive interval of the second sim-
ulation begins at 10:40 pm and ends at 3:42 am (see table 3.2.4, second
column). The clustering around mean (R) for both the beginning and end
of interval is considerable less than sim 1, around 0.35. Figure 7 shows how
the trigonometric coordinates of the individuals are distributed around the

unit circle.

The estimates of 3 are 0.932, -0.342 and -0.495 and variances and 0.0273,
0.0437 and 0.0533 respectively. The maximal length of the interval is around
4 hours and 40 minutes, when starting at 3:40 pm. The estimated length
of the high intensive interval of an individual, when starting at 10:40 pm, is
approximately 2 hours and 10 minutes. The high intensive interval of the
whole population is around 5 hours.

6 am 6 am

15 a 15 S b

1l Wesgdd

05 . 05

15 -1-05 | 05 T

05 05

- 1

13 15

Figure 6: The circular coordinates of the individual’s amplitudes for sim 1 plotted
around the unit circle, where (1,0) represents midnight and goes anti-clockwise.
The first graph (a) shows how the beginning of the high intensive interval is dis-
tributed for the different individuals. The second graph (b) illustrates the corre-
sponding data of the end point of the high intensive interval.

The high intensive interval of the third simulation (see table 3.2.4, third
column) begins at 8:45 pm and ends at 3:00 am. The interval is as expected

compared to the underlying interval. The clustering around mean (R) for
both the beginning and end of interval is low, below 0.43. Figure 8 shows
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Figure 7: The circular coordinates of the individual’s amplitudes for sim 2 plotted
around the unit circle, where (1,0) represents midnight and goes anti-clockwise.
The first graph (a) shows how the beginning of the high intensive interval is dis-
tributed for the different individuals. The second graph (b) illustrates the corre-
sponding data of the end point of the high intensive interval.

how the data is distributed.

The estimates of 3 are 1.053, -0.457 and -0.463 with variance 0.0215, 0.0342
and 0.0552 respectively. The maximal length of the interval is around 5 hours
and 30 minutes, when starting at 3:00 pm. The estimated length of the high
intensive interval of an individual, when starting at 8:45 pm, is around 3
hours. The high intensive interval of the whole population is around 5.

The result of the last simulation is given in the forth column of table 3.2.4.
The high intensive interval begins at 6:06 am and ends at 4:09 am and a low
proportion of data clusters around the mean direction (R = 0.08 and below
for both terminal points). The figure also shows that the data is evenly
distributed around the day, see figure 9.

Hence we may reject the null hypothesis (i.e. no high intensive interval)
for sim 1, sim 2 and sim 3, but not for sim 4. This result is reassuring. It
seems that the method to estimate the terminal points works satisfactorily as
well and is in accordance with the result of the criteria-based method. The
results of the harmonic regression analysis may be interpreted with some
reservations, since we did not check our model. It is worth noting that the
estimated individual lengths correspond to the geometric mean, while the
length of the whole population corresponds to the arithmetic mean.
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Figure 8: The circular coordinates of the individual’s amplitudes for sim 3 plotted
around the unit circle, where (1,0) represents midnight and goes anti-clockwise.
The first graph (a) shows how the beginning of the high intensive interval is dis-
tributed for the different individuals. The second graph (b) illustrates the corre-
sponding data of the end point of the high intensive interval.
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Figure 9: The circular coordinates of the individual’s amplitudes for sim 4 plotted
around the unit circle, where (1,0) represents midnight and goes anti-clockwise.
The first graph (a) shows how the beginning of the high intensive interval is dis-
tributed for the different individuals. The second graph (b) illustrates the corre-
sponding data of the end point of the high intensive interval.
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3.3 An overall discussion

The criteria-based method seems to predict the high intensive interval rather
well. Even when analysing amplitude we get satisfactory results. Though
it may be difficult to deduce the terminal points in an objective manner,
specially when dealing with data with a high degree of variation. The model-
based method works well analysing both frequency and amplitude.

The model-based method may also be used when examining data further,
for instance harmonic regression analysis of individual length. It should be
noted that we did not check the validity of the harmonic regression. It was
merely mentioned as a possible approach. Further investigation regarding
strength of both methods also need to be done.

4 An example

To illuminate our methods even further, we will investigate a real data set.
The data set consists of children of both sexes in early puberty. A more
detailed description of the individuals will be given in section 4.2. First
(section 4.1) the method of measurements will be described. In section 4.3
a presentation of the statistical analysis and some comments of the results
will be given.

4.1 Method of measurement

The sampling took place at the Children’s Hospital of Queen Silvia, Géteborg.
The children were allowed and encouraged to activity and sleep as normally
as possible and they were on an ordinary diet.

The blood sampling commenced between 8:00 am and 9:00 am. A constant
withdrawal pump (Swemed, Goteborg, Sweden) with a catheter (Carmeda
AB, Stockholm, Sweden) was used. The tubes were changed every 20 minutes
for a 24-hour period, i.e. each individual generated 72 sampling values.

GH was measured in samples of plasma by a Pharmacia GH radioimmuno
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assay using plyclonical antibodies and all samples except one used the WHO
First International Reference Preparation for human GH (WHO 66/217).
The latter sample was analysed with WHO 80/505 standard, which has been
adjusted for, according to Lofqvist (1999).

4.2 Patients

The study consisted of 50 premature children, 37 boys and 13 girls. The
children were of Caucasian origin and mainly Swedish. Their ages differed
between 5 and 14 years old (the range of the boys were 5-14 and of the girls
8-13). Even if gender might be an important factor during prepuberty we
did not split the data set. This since the data set is a rather small as it is
and since this example is merely meant as an illustration of the methods.

4.3 Analysis of data

In the raw data a missing observation is indicated as -1. If no GH was
detected the observation was indicated as 0. In the analysis an undetectable
value was set to the lowest detectable value of that individual and a missing
observation was imputed by the mean of the nearest surrounding non-missing
values. This means that a missing value will not appear as a peak in the
analysis.

In the first section (section 4.3.1) the frequency is analysed. First with the
criteria-based method and then with the model-based method. Then (section
4.3.2) the logarithmic of the amplitude is analysed analogously.

4.3.1 Analysis of frequency

The result of the analysis of the frequency using the criteria-based method
are presented in table 4.3.1. In the first column the value of the test statistic
is given. Then the simulated distribution is described with median, the 2.5%
and the 97.5% quantiles, the mean and the standard deviation.

40



Table 4.3.1. The result for the 50 children where V denotes the test
statistic and the other values describe the distribution in
the stationary case.

Vv median | v(1000,0.025) | v(1000,0.975) | mean sd

0.00489 | 0.00374 0.00257 0.00511 0.00377 | 0.000625

As the table indicates, we cannot reject the null hypothesis. Hence we cannot
divide the data set into a low and high peak intensive interval. This is in
good conformity with previous results.

The result of the corresponding analysis using the model-based method is
given in table 4.3.1. In the first and second columns R and the time when
the high intensive intervals begins are shown. In the third and fourth columns
the corresponding values of the end point are shown.

Table 4.3.1. The result for the 50 children where the values of R and

times of the terminal points are given.

Rieginning | Starting time | Renq | ending time

0.107 12.2 0.0762 13.9
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Figure 10: The circular coordinates of the individual’s frequency plotted around
the unit circle, where (1,0) represents midnight and goes anti-clockwise. The first
graph (a) shows how the beginning of the high intensive interval is distributed for
the different individuals. The second graph (b) illustrates the corresponding data
of the end point of the high intensive interval.

The result of the model-based method (see table 4.3.1) confirms the result of
the criteria-based method. The clustering around the mean direction is low,
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which is illustrated in table 4.3.1 as well as in figure 10. Note as well that
the value of R is very small, not even significant according to the theorem at
page 11.

4.3.2 Analysis of amplitude

The result of the criteria-based method, when analysing the logarithmic of
the amplitude, is presented in table 4.3.2. In the first column the value
of the test statistic is given. Next the simulated distribution is described
with median, the 2.5% and the 97.5% quantiles, the mean and the standard
deviation.

Table 4.3.2. The result of the 50 children where W denotes the test statis-
tic and the other values describe the distribution in the sta-
tionary case.

W | median | w(1000,0.025) | w(1000,0.975) | mean | sd

0.638 | 0.322 0.223 0.449 0.326 | 0.0579

According to previous results, there is an increased amplitude during night.
This we can confirm, since we reject the null hypothesis. The high intensive
interval is about 5 hours (i.e. [ = 15) and occurs between 23:20-4:20.

Figure 11: A plot of s against the length of the subintervals.

The result of the corresponding analysis using the model-based method is
given in table 4.3.2. In the first and second columns R and the time when
the high intensive intervals begins are presented. In the third and fourth
columns the corresponding values of the end points are shown.

Table 4.3.2. The results of the analyses, where the values of R and times
of the terminal points are given.

Rbeginning starting time | R.,q | ending time
0.484 -1.87 0.624 7.17

The estimates of  are 2.19, -0.385 and -0.512, with variances 0.0203, 0.0271
and 0.0508 respectively. The maximal length of the interval is around 17
hours, when starting at 3:30 pm. The estimated length of the high intensive
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interval of an individual, when starting at 11:30 pm, is around 8 hours. The
high intensive interval of the whole population is around 9 hours.
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Figure 12: The circular coordinates of the individual’s amplitude plotted around
the unit circle, where (1,0) represents midnight and goes anti-clockwise. The first
graph (a) shows how the beginning of the high intensive interval is distributed for
the different individuals. The second graph (b) illustrates the corresponding data
of the end point of the high intensive interval.

The result of the model-based method indicates a rather high proportion of
the observations clustering around the mean direction. Table 4.3.2 indicates
a high intensive interval between 10:07 pm to 7:10 am. The distribution of
the data is shown in figure 12.

Both methods reject the null hypothesis, but indicate different intervals. The
criteria-based method indicates a much shorter interval than the model-based
method. Both intervals may be correct though. The first might show the
interval of extreme peaks, while the second captures a more ’overall’ high
intensive interval. Both results are in accordance with the presumptions.
The high intensive interval is believed to occur at night and going on until
morning.

5 Conclusions

This paper presents two methods to test time dependence of peak frequency
and amplitude of hormonial data. The first method is based on a test statis-
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tic. This method allows us to test the hypothesis that data is stationary.
Then a procedure is developed to deduce when the high intensive interval
will occur. The second method first divides the data into two intervals, a
high intensive and low intensive respectively, with an ordinary least square
method. Then the technique of directional data is used to estimate the mean
direction and the concentration of data in that direction. After that we use
a harmonic regression equation to describe how the length varies with its
starting point.

The criteria-based method tests the hypothesis of stationarity with a bootstrap-
like simulation. The model-based method gives a asymptotic test of the same
null hypothesis. Both methods seem to work well, when dealing with dichoto-
mous data as well as with continuous data. The model-based method may
also be effectively used as a descriptive method characterising how GH be-
haves during its high intensive interval.

References

Diggle, P.J., AlWasel, 1., (1997). Spectral analysis of replicated biomedical
time series, Applied statistical journal of Royal Society Serie C, Vol. 46, No.
1, pages 31-60.

Diggle, P.J., Zeger, S.L., (1989). A Non-Gaussian Model for Time Series
With Pulses, American Statistical Association, Vol. 84, No. 406, pages 354-
359 .

Gou, W., Wang, Y. and Brown, M.B., (1999). A Signal Eztraction Approach
to Modelling Hormone Time Series with Pulses and a Changing Baseline,
Journal of the American Statistical Association, Vol. 94, No 447, pages 746-
755.

Hauffa, B.P. and Stolecke, H., 1994. Receiver-Operated Characteristic Curve
Analysis of Two Algorithms Assessing Human Growth Hormone Pulsatile
Secretion (Pulsar, Cluster): Comparison of Peak Detection Efficacy, Horm
Res, 41, pages 169-176.

Jenkins, G.M., Watts, D.G., (1968). Spectral analysis and its applications,
Holden-Day, California.

44



Komaki, F.,(1993). State-space modelling of time series sampled from con-
tinuous processes with pulses, Biometrika, 80, 2, pages 417-429.

Lofqvist, C. (1999). Growth Hormone Measurements Methodological and In-
terpretational Aspects, Goteborg University, Goteborg.

Mardia, K.V., Kent, J.T., Bibby J.M., (1979). Mulitvariate Analysis, Aca-
demic Press, San Diego.

Martha, P.M., Rogol, A.D., Veldhuis, J.D., Kerrigan, J.R., Goodman, D.W.
and Blizzard R.M., (1989). Alterations in the Pulsatile Properties of Circu-

lating Growth Hormone Concentrations during Puberty in Boys, JCE & M,
Vol 69, No 3, pages 563-569.

O’Sullivan, F. and O’Sullivan, J., (1988). Deconvolution of Episodic Hor-

mone Data: An Analysis of the Role of Season on the Onset of Puberty in
Cows, Biometrics, 44, pages 339-353.

45



Some Explorative Methods Useful
when Analysing Hormone Data

1 Introduction

There are a lot of challenges when approaching hormone data, because of
the wide individual variations and the fact that the responses depend on
a complex system of known (and unknown) substances and factors. The
researchers have a need for explaining the behaviour, both at a population
level and at an individual level. One example of issues of interest is whether
the frequency of peaks changes during a 24-hour period or not. The same
investigation can be done with amplitude. Another issue is how to estimate
the exact amplitude and its corresponding time point. A third issue is to
define if there is some periodicity or not.

In this paper we are going to discuss some explorative methods how to analyse
growth hormone data. A method for adjusting peaks is described in chapter
2. When analysing continuous data at discrete intervals, we are bound to
make mistakes. Some peaks are recorded before and some after their real
appearance. This will cause the amplitude to be underestimated. In addition
chapter 2 will present a method to calculate the curve form of a standardised
pulse. Looking at data from growth hormone (GH) secretion one might notice
that the individual level of amplitude varies substantially. The curve form
of the pulses all show the same appearance, i.e. a sharp rise to the peak and
then a slower decline. An estimation of this underlying curve might be of
interest when comparing different individuals.

Another task to analyse is whether the frequencies follow a certain periodicity
or not. We will discuss both population and individual periodicity. In reality
periodicity is a subjective estimate, since the noise of measurements makes
it very vague and indistinct. It is therefore difficult to quantify. A proposal
how to analyse this will be given in chapter 3.

The results of previous investigations of periodicity give a somewhat shat-
tered picture, some authors indicate a periodicity and others cannot find this.
Pincus et. al. (1996) quantify the entropy with ApEn. ApEn is a statistic
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that measures how well two patterns agree. Pincus et. al. conclude a gen-
der difference, where females show a greater irregularity compared to males.
Others (see for instance Hindmarsh et. al., 1988) cannot find this difference,
but do confirm a periodicity within individuals.

In a well-written overview, Robinson (1990) points out the importance of pe-
riodicity, when treating growth hormone deficient (GHD) patients. He claims
that an intermittent infusion of GH stimulated growth better compared to
continuous infusions.

2 Estimation of the standardised curve form

To be able to adjust the peaks, it is assumed the curve follows a second order
polynomial near its peaks (section 2.1). Then both the amplitude and its
corresponding time point are re-estimated. Next, isotonic regression is used
to estimate the curve form of the standardised pulse. A brief recapture of
the theory of ordered restricted inference will be given in section 2.2 and in
section 2.3 the curve form of the standardised pulse for 50 healthy children
is calculated. It might be helpful to define some variables that will be used
throughout this paper.

The treated methods deal both with dichotomised data, when analysing peak
frequency and continuous data, when analysing amplitude. Consider a data
set of n individuals, from which blood samples were taken every 20 minutes
during a 24-hour period. We define every local maximum as a peak, where y,
describes the response value pth steps from the nearest peak and ¢, describes
the corresponding time point (measured in hours). An index over the n
individuals denotes 1 = 1,2,... ,n.

We further suppose that observations for different individuals are indepen-
dent while there may be dependence within individuals. It is also worth
noting that the problem is circular, since the data is collected at specific
time points during a 24-hour period. That is, the sequence of data does not
stop at the last time point, but continues with a value estimated by the value
of the first time point.

The above definitions will remain throughout the paper. Other notations
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will be defined under sections of interest. The required computer calculations
have been performed in Mathematica, version 4.0.1.0.

2.1 Adjusting the peak estimates

As explained above, we have to consider misjudgement derived from the
fact that we are dealing with continuous data at discrete time observations.
Mauger et. al. (1995) define two types of error that might appear.

“False positive pulse” (FPP) defines the error when we have too tight mea-
surements per half-life of a pulse. Hence the addition of noise will increase
the number of peaks, which does not portray reality. “False negative pulse”
(FNP) defines the error when we have been too sparse with measurements
per half-life of a pulse. Hence we might miss a real pulse between two points
of measurements. According to Mauger et. al. (1995), 3-5 points per half-
life is the proper observational rate to reduce both FPP and FNP. A third
source of error is misjudging the time when a peak appears, which causes the
amplitude to be underestimated.

The two first errors may be restrained by choosing a sampling interval with
respect to the half-time (¢ %) of GH. GH consists of different isoforms, with
different half-times, where we might discern two main groups ( Growth et.
al., 1994). One ’slow’ group with a t% about 19-22 minutes and one ’fast’
group with a t1 about 12-16 minutes. Groth et. al. found that a sampling
interval every 20 minutes gave a desirable result for the estimation of the
total secretion rate as well as for determining the pulse pattern.

This contradicts the result of Mauger et. al. (1995) and their claim that 3-5
points per half-life is the proper rate to reduce both FPP and FNP. In spite
of that, we will ignore the problem of FPP and FNP further, leaning on the
results of Groth et. al.

One way to adjust for the third short-coming is to assume that the curve
form at the top of a pulse follows a second order polynomial, defined by
three points (p = —1,0 and 1). That is, the second order polynomial is
defined by its peak and the two surrounding values. The above model is a
simplification that introduces a bias, since the real pulse form probably is
asymmetric. However, the yield of a more complex model is questionable.
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The distance to the actual time point at the curve’s maximum becomes;

topt Y1 — Y1 (7)

6(2y0 — y1 — y—1)’

where we assume that the equivalent distance between the observations is %
of an hour, which corresponds to the measurements taken every 20 minutes
in our application. Thus the observation to the left of the peak is t_; = —%,
the observation at the peak is 5 = 0 and finally the observation to the right
of the peak is t; = 3.

Hence, if our measured peak is greater than ¢,, we assume that the actual
peak is rising at the observed time. The actual peak is then to the right of
the observed peak. The new time point is calculated by adding t,,; to the
measured time point.

The new amplitude is received by adding

— (yl - y—l) (8)

Yot 8(2y0 — Y1 — y71)

to the measured peak, y,.

When estimating the standardised curve form of the pulse, all individual
pulses are first adjusted according to the above method. Then the curve
form is estimated by the technique of isotonic regression. The next section
recapitulates some of the theory about isotonic regression.
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2.2 Ordered restricted inference

The method to analyse ordered restricted inference is called isotonic regres-
sion. In this section we will only recapitulate those parts of the theory that
are required for our future extension. Isotonic regression in itself constitutes
a very fascinating area, whose entire usefulness will not be fully described
here. The interested reader might consult Barlow et. al. (1972) or Robertson
et. al. (1988) for a more detailed introduction.

The benefit of isotonic regression is increased flexibility compared to ordi-
nary regression analysis. This is accomplished by taking into account that
the response values are ordered. Thus the term isotonic is to be interpreted
as “order preserving”’. Before describing the method further, we need to
postulate two definitions;

Definition 1
Let X be a finite set {z; : j =1,2,...,k}. A nominal relation (after which
we will use < instead of <) on X is a simple order on X if

1. it is reflexive cz=z V zeX

2. it is transitive sy, zeXryyz=>x=xz2
3. it is antisymmetric oy reXr Ry r>-y=cr=1y
4. two elements are comparable : z,y€e X =>x <y or x>y

Definition 2

Let X be a finite set {z; : j = 1,2,...,k} with the simple order z; < 25 <
. = I, where k is an arbitrary integer. In addition, let g(z) be a real

valued function on X and f(z) € F, where F = {x — f(x) : f(x) increases

with z} . Then ¢*(x) on X is an isotonic regression of g if

g0 = "0 (3 (o)~ 1)?).

z€X

Hence the solution is the isotonic function, ¢g*(x), that minimises the least
square error of the difference between g(z) and the class of all isotonic func-
tions, f(z), on X. When z is decreasing instead of increasing the class of
functions, f(x), is called antitonic instead of isotonic.

We may use the theory of ordered restricted inference to estimate the curve
form of a standardised pulse if we split the curve into a rising and declining
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part. When a pulse is rising we get the isotonic case and when it is declining
we get the antitonic case. The usual way to compute ¢g*(x) is by PAVA (Pool
Adjactive Violated Algorithm). The algorithm was deduced by Ayer et. al.
(1955).

Figure 13: A flow chart over PAVA. The active block is abbreviated AB, the
consequent block B, and PU is just a control variable.

The algorithm is illustrated in a flow chart at figure 13 and a brief description
is given below.

Let us define a block as a set of consecutive elements, which is a subset of
X. The active block is abbreviated AB, the consequent block B,. As a
first step, every individual element forms a block of its own. These blocks
may then be joined if the criterion for pooling is reached. The set is then
re-examined to see if the final partition is reached. If not, the procedure is
repeated. The criterion for pooling is given by

AB if Av(AB) < Av(B;)
B, otherwise

Y

ABnew = {

where Av(z,y) is the weighted mean of z, y.

This algorithm might then be used to estimate the regression which describes
how the ordered data increases or declines. In our case, we want to estimate
how a pulse increases and declines respectively to be able to develop the
curve form of a standardised pulse.

2.3 The general pattern of the curve form of a pulse

In this section we will give an example how to calculate the curve form of the
standardised pulse. We will investigate a real data set. The data set consists
of children of both sexes in prepuberty but it will be analysed as one dataset.
It is not fully made clear whether sex is an important factor to explain the
level of GH during the prepuberty phase. This factor will be ignored though,
since the object is to exemplify the methods rather than claiming facts.
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2.3.1 Patients

The sampling of the data used in the paper took place at the Queen Silvia
Children’s Hospital, Goteborg. The children were allowed and encouraged to
activity and sleep as normally as possible and they were on an ordinary diet.
The blood sampling commenced between 8:00 am and 9:00 am. The blood
was continuously drawn with a pump system and sampled every 20 minute
for a 24-hour period, that is each individual generated 72 sampling values.

GH was measured in samples of plasma by a Pharmacia GH radioimmuno
assay using plyclonical antibodies and almost all samples used the WHO
First International Reference Preparation for human GH (66/217). One
sample used the WHO First International Reference Preparation for human
GH (80/505). The latter was adjusted to the former standard according to
Lofqvist (1999).

The study consisted of 50 premature children, 37 boys and 13 girls. The
children were of Caucasian origin and mainly Swedish. Their ages differed
between 5 and 14 years old (the range of the boys was 5-14 and of the
girls 8-13). In the analysis of the data undetectable values were set to the
lowest detectable and missing observations were imputated by the mean of
the nearest non-missing values.

2.3.2 Results

Before applying the so called PAVA algorithm to the data set, some adjust-
ments are made. First the amplitude and its time point (i.e. when the peak
occurs) are adjusted according to the method described in section 2.1. Then
we proceed by calculating the ratios between the response values of the a
peak and its surrounding values. After that the corresponding difference in
time (measured in hours) is calculated. The influence of a peak is assumed
to have diminished after three previous and three subsequent values respec-
tively. That is, we calculate the difference up to the six points that surround
a peak.

To minimise variance, the logarithm of the ratio of the amplitude values is
taken. The difference between times is not transformed. Finally the mean is
calculated by means of isotonic regression on the sorted values with respect
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to the difference of time.
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Figure 14: The curve form of a standardised pulse, based on 50 children.

The result is given in figure 14 after a ’back transformation’ of the logarithmic
data. The characteristic form of the pulse is a rather sharp rise followed by
a slower decline. We might note that the half-time for the declining part
is approximately 20 minutes (i.e. the time difference is approximately 0.3).
This is in accordance with previous results (Growth el. al., 1994).

3 Investigation of periodicity

When analysing periodicity, we must first define if we mean between indi-
viduals or within individuals. The first is called population periodicity (see
section 3.1) and the latter individual periodicity (see section 3.2). In section
3.3 an alternative procedure to evaluate the population periodicity is pre-
sented. Graphical procedures will be discussed only, since periodicity is a
quantity difficult to define mathematically.

We have a very naive definition of peaks, which is sensitive to a number of
errors. The first type of error is ’double peaks’, i.e. two peaks may appear
very close to each other, where one is a true peak and the other one is due
to noise. Another error may be termed ’baseline peaks’, i.e. some noise
at the baseline may be interpreted as a peak. The third type of error is a
misplaced peak, i.e. a true peak is misplaced due to some noise. The latter
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may be adjusted by the method mentioned in section 2.1. This type of error
will not affect the estimation of periodicity since we are measuring discrete
intervals (every 20 minutes), but the two other errors do have an impact on
the procedures presented.

3.1 Periodicity at a population level

A simple method is to analyse the number of points of measure until a new
peak is reached. This will result in an array of numbers. Let N;; denote
the number of measurements between the (j — 1):th and the j:th peak for
individual 1.

frequency
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Figure 15: Histogram of the number of measurements between two peaks (N ;),
calculated on the whole population.

We might illustrate the method with the same individuals as in section 2.3.
Figure 16 shows the histogram of the responses (the number of intervals
between two peaks). Straight from the figure we see that the probability to
get, for instance N;; = 4 (i.e. corresponding to a periodicity of 1 hour and
20 minutes), is almost as big as getting NV;; = 6 (i.e. corresponding to a
periodicity of 2 hours).

That is, a simple histogram reveals how the variables of the N;; are dis-
tributed. The sharpness of the distribution indicates the strength of period-
icity. If we have a deterministic periodicity, that is a peak every certain time
point then all the variables of the V; ; are equal. If not, the values will differ
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to a different extent depending on the strength of the periodicity.

3.2 Periodicity at an individual level

In this section we will use the same method at an individual level. Even if we
are unable to distinguish a periodicity between individuals it is possible that
each individual follows a certain rhythm. Figure 16 shows the histograms of
the variables of the IV_; of three of the individuals.

frequency frequency frequency
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Figure 16: The histograms over N_; for some of the individuals from the same
data set as above.

In the first figure it (see figure a) appears to be two periodicity levels, one at
every 40 minutes and one at every two hours to two hours and 20 minutes
respectively. The individual represented in the next figure (see figure b) shows
a periodicity every one hour and the third individual (see figure c) gives a
very vague appearance in respect to periodicity. It must be noted that the
number of observations per individual are low, but a bold conclusion of the
above graphs might be that there is no periodicity in data. Though our naive
definition of a peak may have a major impact on the result. We define a peak
as every local maximum in the sample. A false peak may easily affect the
result. Further studies are therefore needed.

To give some examples how the distribution of the variables of the N_; varies
with periodicity, we simulate different possibilities. Below three cases are
described.

In the first case (figure a and b) there is an equal possibility (1/2) to peak
every second or third time. In the second case (figure ¢ and d) a peak may
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Figure 17: The histograms over N_; for the simulated values.

occur every second time (with possibility of 1/5), every third time (with pos-
sibility of 3/5), every fifth time (with possibility of 1/10) and every seventh
time (with possibility of 1/10). In the third case (figure e and f) a peak
occurs every second time with a possibility of 1/3 and every third time with
a possibility of 2/3.

The figures show very sharp distributions, which might be expected in an
ideal world as above. The main conclusion of the simulations is that the
above method to discover periodicity might be an interesting tool to develop
further.

3.3 A complement to investigating the periodicity

A drawback with the previous method is its sensitivity to false peaks. The
procedure makes it possible for a false peak to conceal a true periodicity
easily. One result might be that the true underlying periodicity is underes-
timated or undiscovered.
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Another descriptive way to analyse periodicity is to calculate the number of
neighbouring peaks at a certain distance, 7, to a peak. That is, we count
the number of neighbouring peaks at distance 7 and plot these values v.s.
T, where 7 = 1,2,...,t. Even if the resulting figure will be interfered by
false peaks we will not miss or underestimate an underlying periodicity. We
analyse the same data set as before.

The result is illustrated in figure 18, where the relative frequency is plotted
v.s. the distance between peaks. Since noise increases with distance we have
chosen to neglect data corresponding to a distance above 7 = 36.

Figure 18: The plot of the relative frequency of N; ; = 7 v.s. 7 of the 50 children
investigated.

The result is in accordance with the previous method. If there is a periodicity,
the best estimate is around every second hour (i.e. 7 = 6), though the slow
rate of decline is an indication of no periodicity.

4 Conclusions

This paper has been dealing with explorative methods analysing GH data.
The first chapter describes how to adjust for the errors which appear when
analysing continuous data at discrete intervals. The chapter also describes
how to calculate the curve form of a standardised pulse. This can be used for
comparative studies, i.e. when analysing if there are any differences between
puberty phases, gender, GHD children vs normal children and so forth.

The third chapter suggests a method to test whether data contains periodic-
ity or not. There is a supposition that such a periodicity exist. The method
discussed is merely a descriptive tool to measure periodicity. This is evalu-
ated by a transformation of data. Instead of analysing data, we observe the
number of steps needed to reach a peak, termed N; ;. The distribution of the
variables of the NNV; ; are then analysed. A drawback is that this method may
underestimate the periodicity if there are a lot of ’"double peaks’, i.e. where
one peak is due to noise. Another procedure, not so sensitive to that type of
errors, is to plot the number of the variables of the NV, ; equal 7 vs 7, where 7
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is the distance between two peaks. We cannot, with our methods, distinguish
any periodicity. This may still be due to our naive definition of a peak as a
local maximum. The peaks due too noise might disturb the distribution of
N; ; to much. Further developments are needed.
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