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Abstract. In this report we derive the explicit expressions associated with the calibration

of the Bergstrém-Boyce model of nonlinear viscoelasticity. These expressions are intended
for practical use in a computational algorithm.
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1 Introduction

Computational calibration of constitutive models are based on the solution of an op-
timization problem, where a set of parameter values are to be determined such that the
discrepancy between the predicted (simulated) response and the experimentally observed
response is minimized. A framework that is based on the formulation of an adjoint
problem has been proposed [1],[2| for the solution of such optimization problems. For
a specific realization of the general format, the derivatives are needed of the underlying
constitutive relation, both with respect to the parameters to be calibrated, as well as with
respect to the evolution (internal) variables. In this report, those relations pertinent to
the Bergstrom-Boyce model are derived. These relations are later to be used for carrying
out numerical simulations, to appear in [3].

The Bergstrom-Boyce model was proposed in [4| to describe the mechanical response
for rate-dependent materials which exhibit hysteresis upon cyclic loading, often denoted
as the Mullins effect. Typical materials of this type are rubber elastomers, in particular
those with carbon black particle fillers, although unfilled elastomers also display hysteresis
[5]-

This report is organized as follows. First, the Bergstrom-Boyce model is described in
finite strain kinematics, as can be found in several publications, e.g. [4], [5], [6], and
the restriction to uniaxial stress state is made and the assumption of incompressibility
is adopted. Thereafter, the explicit derivatives with respect to parameters and state
variables are derived. Finally, explicit expressions for derivatives of the objective function
associated with the optimization problem are shown.

2 Bergstrom-Boyce model

First, we give a short description of the Bergstrom-Boyce model, as described in detail
in [6] in a finite strain setting. We then proceed with the simplification to the 1D uniaxial
stress state and incompressible material. The corresponding rheological model, depicted
in Figure 1, consists of two networks (A) and (B) connected in parallel. Network (A)
is a hyperelastic spring while (B) is a hyperelstic spring serially connected to a viscous
dashpot. The total deformation is F' = FY) = F®)_ The stress acting on Network A is
given via the 8-chain hyperelastic model proposed by [7] and reformulated in [6] as

1 s ) (A
N ATG(BY) /i)
JIBY) A (140
where o(®) is the Cauchy stress in network A, J = det[F], B* = J 3 F-F" and j(B*) =
\/Tr[B*]/3. Moreover, A~(z) is the inverse Langevin function given by
1
A(z) = coth(x) — — (2)

X

o B, +s[J — 1)1 (1)

In (1), u®), j*) and k are material parameters.
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Figure 1: Rheological representation of the Bergstrom-Boyce constitutive model for rubber.

Since the ingredients in (1) are all directly computable from F', it is convenient from a
computational point to treat the stress as a function of F', i.e.

o) &f O'(A)(F) (3)

The stress in Network B is expressed like (1); however, in terms of the elastic portion,
F°, of the total deformation via a multiplicative split, F = F°F", with pu(®), jl((i{( as

parameters. The total stress is simply the sum of the two network contributions
o(F) =™ (F)+ P (F°) (4)

The evolution law is expressed in terms of the rate of deformation, L ' fF~! which can

be split as L = L + L" with L & F°L°(F°)~!. The evolution law is then chosen as

L' =4N® (5)
where
i = (j(BY) = 1) (5, (6)
o®
N(B) — “dev (7)
T(B)

and T(p) = |0 dev| o \/Tr[agg : (afiz)T]. In (6), 70, C' and m are material parameters in

addition to the elastic parameters p(®), jl((iz( and k.

For the case of uniaxial stress state, while assuming incompressible material, we can
express the deformation gradient F' by the (prescribed) longitudinal stretch A only

A0 O

1
F=|0 J5 0 ®)
00%
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Furthermore, we have that o9 = 033 = 0; hence from (1) we obtain (incompressibility:
Kk — o0, J—1):

(A) Afl('(B*)/ '(A)>1 ( 1)
X J Jlock 2
klJ —1| == - — [\ — — 9
| ]Jw>.¢wwﬁ>3 A ®)
which inserted into (1) gives o) & (&)
J) A (/500 A

which is Eq. (3.23) in [5] with

j(A) = % <)\2 + ;) (11)

Furthermore, we obtain

2 2
nsz;ﬁm N®:¢;@w% (12)

For network B, the total stretch A is split multiplicatively into the elastic part A° and
the viscous part AV as A = A°\Y. We may then summarize the expression for the stress in
the longitudinal direction® as

a(g,\) = fYN) + FB (X (q)) (13)
where
X(q) = (N (q)'A Mg =1+¢ (14)
with
TNTIRE N L Rt ¥ B 1))
o AL (.(}w) [ I }A (ﬂ%ﬁ) 1

and j(A\) and A~!(z) are defined in (11) and (2), respectively. Note that f*) and f(®
are the same function; they only differ w.r.t the choice of elastic parameters.
The evolution equation for the state variable ¢ reads

i =N (@ (@NP () =0, ¢(0)=0 (16)
where
(@) =% i\ (q) — 1] 73 (17)
To summarize, the material parameter set to be determined in the calibration is
A) (A B) (B
pzwﬂdéyxﬁgmam} (18)
"elastic” ”viscous”

'We restrict to situations where the longitudinal stretch A(t) is prescribed.

4
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3 Explicit expression of derivatives
3.1 Calibration - problem formulation

In [3], the model format for calibration of constitutive models under uniaxial stress
state was expressed as: Find the material parameter set p € R™ such that the objective

function
Nobs

Flp.g) =5 Z cilo(p,q)(t:) — o™ (19)
is minimized under the constraint that the (internal) state variable ¢ satisfy the evolution
equation

q—h(p.g)=0,  q(0)=0 (20)

Using the format for calibration, as described in [2], the first and second derivatives
of h(p,q) and F(p,q) with respect to p and ¢ are needed. Thus, the explicit expressions

for (0, a), h(p. ), 1, (0 ), i (. 0), i (0 ) (02 0), Fip: ), Fys), F () and
F(p;q) will be derived below.
3.2 Derivatives of h(p,q)

The explicit expression for the derivatives of h(p, q) are obtained after straightforward
differentiation

h(p.q) = A" (a)7(p, a)N(q) (21)
hy(p,q) = X(@)N(@)F, (P q) (22)
ho(:q) = N(@)¥(p,q) + X ()N (9)(p,q) (23)
hyy(p ) = X(@)N(@)Y) (p.q) (24)
hp(p:a) = X(@)N (@)1, (p.a) + N(a)3, (p,0) (25)
hae:a) = A (ON(@)Tgq(p, @) + 2N (0) ¥4 (p, 0) (26)
where it was noted that N;(¢q) = 0 for ¢ # 0 and (\"),(¢q) = 1.
3.3 Derivatives of v(p,q)
Proceeding with the explicit derivatives of v(p, q), we obtain
(0, 0) =70 i(X (@) = 11 [r(m) (0, @)™ (27)
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Yo (P q) =

We proceed with the second derivatives, first the components of j;’p

I
Vup

<N
VB (B
iy

Y B
n®j0

iy
Ty
¥
Tu®co
N
VB m

/i
Y.B) (B
lock-]lock

<!

Y.®)

-]lock’yo

Vi)
lockC

’Y (B)

-]lock
fy’YO’Yo

3/
’y'yOC
’ngm
Tec

A

Yom

Ymm

0
0
yom [N (@) = 1% [rm) (2, )] (7)) o (01 0)
i (p,q) = | 0m I (@) =17 7 (P )] (708)) ) (P14 (28)
(@) = 11 7 (9, 0)]
% [i(X*(q)) —1]C[T(B>(p, q)]™ log(|j(A*(q)) — 1)
i 70 (A (@) = 11 [y (p, )] ™ log (7)) ]
%C [I(A(9)) = 11 7 AN (@) + 0m IO () = U 75 (7my)y - (29)

(a 7x7-matrix)

iy, =0 (30
yom(m —1)(G(X (@) = D)5 72(78) ), (78) o) (31)
Yom(j(A(q)) — 1)C (m — 1>T?_2(TB) ®) (TB) ®) + 75 1( B);/ﬁ(u(la)](?)z)
Tu® (33)

Yo
%(B) log|j(A"(q)) — 1] (34)
Y [log(7p) + 1/m] (35)
Ym(i(X¥(g)) — 1) | (m — 1>TJ7§%2(TB);I(DBC>I((TB)/~$L + Tgfl(TB)/-ll(iM(iL](?)@

¥ @
e (37)

7o
Yie log li(A" (@) =1 (38)
3o low(rs) + 1/m) (39
0 (40)
¥, log (A (q)) — 1] (41)
¥, 0g(75) (42)
e log |j(A(q)) — 1 (43)
Ve log(7s) (44)
Y l0g(75) (45)
(46)

where it was used in (31) that ((75)” 1(B) 4 (B)

=0).
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The components of qu are as follows

Vo = 7;/]-1(;2( =0
Yy = 70Cm[i(N (@) = U5 (A (@) (78)),m)
Fyoml (@) = 1 [757 (7 + (m = D7E~(75), (7)) 0]
7;;5(3( = %Cm[ji(\"(q) - 1]0717-?71%\()“/((]))(TB);l(i)k
+yom[j(X*(q)) —1]¢ [Tg_l(TB)/qulﬁL + (m — 1)7'179”_2(7'3);(7'3);53‘}
Io = OO (@) = U 773N (@) +m[i(X(9)) — Y95 (7a),

Yoo = om[i(A(q)) — 1975 log (A (q)) — 1|(7B);,
%[ (A(q) — 1 785(A (@) + % C (A (q) — 1) 75 log [1(X¥(q)) — 113
Ar = wCHA (@) — 1 75 log(78)A(X (@) + %li (A (@) — W75 (7B),
+yom[i(A\ (@) — 1975~ log(7s)(75);,

and, finally, 4/, is

Yo = WCLHA (@) = YN (@) +%Cm[i(N (q)) = T g7 AN (@) (78),
+9%C(C = 15N (q)) = U2 T AN (@)]* +7vomli(A (@) = U5 (78)g
+yom(m — D[N (q)) = U5 *[(m5)g)* + 1Cmli(X () — U 75~ (75), 5 (N (0))

3.4 Derivatives of 75(p, q)

Recalling (12)
2 2 .
T(m) = \/;IU(B)! = \/;f(B)(p,A ()]

(z(m))p(0: 1) = \/gsgn(f B, X)) (f ) (0, A(q))

we obtain

(7t )ypr0) = — 25 F P 0 A @) (0. X (@)1 -+ 0) A

where it was used that (A°);(¢) = —(1 + ¢)">X. The second derivatives are
(z8))mp(P, ) = \/gsgn(f B (0, @) (PN (0, X(q))
(T(8))ng (@) = —\/gsgn(f(B) (P, X°(@))) (fPN)e (0, X()) (1 + g) 72

7

(54)

(55)

(56)

(57)

(58)

(53)
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(7(8))ag (P, q) = \/gsgn(f(m (2, A%(D)) (fP)he (9, A°(0))2(1 + ) 3N

- \/gsgn(f(B’ (2 X (@) FP)ere (P, A())[(1 + @) 2N (59)
where it was used that (A°)7 (¢) = 2(1 4 ¢) >\,

3.5 Derivatives of f*)(p, \)
Recall the expression for fA) from (15):

S AlM&A)l ] ] (R) v
ﬁ ock
(FO), 00 (b A) = — [AQ — %] A (J(—i)) (61)
A-1 (ﬁ) i) Jhock

(A) 22— 1

1

g 0.0 = L |2
fock (Jock)

() A () -y (22) 4 ()
lock lock lock lock (62)

and remaining p-derivatives vanish.
Furthermore for A\, we have

: W=y (G0 A
(VY (p3) = — [ ‘ /\] ! (J_) I
Y () o UG )

1

-1 1
Jock

Proceeding with the second derivatives of f(*).

(A)
_l’_

-(A)
Jlock

(7(A)? i

(2A +35) 3N = A (¥ = i)] e (j(M) (63)

(f(A))Z<A>H<A> (p,A) =0 (64)
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"y (f(A));l(AL (p, >‘>
(f )“(A)jl(j:i( (p, )‘) = N(OX) (65)
2(f(A))/(A) (p, )‘)
(A) 1 )\ _ - jlock
() ) (0 A) = “(A)
jlockjlock j

lock

GL) — () (A %)Al( ; )
jloi{ j( )( ) (jl(oc{( jl(ok
3
(66)
with i L) /\2_§ .
RRTEIIELEY o0
(A)
(f(A))l)tj(A) (p,A) = -
lock

J1oc
2
-1 _1_
Jock

L IO 2 -
Gbe)? IO
—1y/ 1 -1\ [ iV (A)
(s )y (48)

-1\ [ i) -1 1
)~ Jtoek (A7) < w | A :
Jock Jock lock
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(I(1) Jer ) e
X110 (A
w0 [Tt ) (<— (a’ﬁi&)
M =11 (G0 S0
+D{ i) ]M ) j@i) Tk
A+ 32) D) = BN N =3) | /oy (T ) A
i GOV ](““ ) (m) o
D (2 5) i) = 2N (22 + ) zjz;xgj) (N = %) + 555 A (A —x)] = (%)
(69)
with M(A)
= (70)

—1 1
Jock

It is noted that the first and fourth terms in (69) are identical.
The expressions for f®) and corresponding derivatives are similar to that of f(*);

however with parameters u®), jl(i{{ instead of ;4] jl(if(, respectively.

3.6 Derivatives of j(\)
We recall (11) above as

1 2
A) =4z [ A2+~
i =3 (e +3) ()
with derivatives )
()= ey 2 Tl (72)
I - 3 A A2
WM—i—V+g%1+3-—LAﬂng L) (73)
I /3 X\ b 3 X\ N2
3.7 The inverse Langevin function
We recall the inverse Langevin function from (2)
1
A(z) = coth(x) — - (74)

10
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and we note that there is no explicit expression for y = A~!(z). One possibility is to
utilize the rule for derivatives of inverse functions (obtained by differentiating the identity

A(A™(2) = x) X

T AA (@)

Instead of numerically computing y = A~!(z) for given z by solving for y from A(y) =
x, an approximation formula is used in practice. A Taylor series is not an option since
it gives poor approximation close to the singular point x 4+ 1. Padé approximations have
been proposed, however [5] suggests the simple formula

(A7) () (75)

B 1.31446 tan(1.58986x) + 0.91209z || < 0.84136
AT = 0.84136 < 1 (76)
sgn(z)—x : — |JZ| <
From this, the derivatives are
iy AR £0.91209 || < 0.84136
(A7) (z) = ) (77)
2x1.31446x 1.58986° sin(1.58986x
AN () = : c>c<)s3(1.58986x)( L x| < 0.84136 78
(A7) e) = 2 0.84136 < |z] < 1 (78)
e 84136 < 2] <
4 The objective function
In (19), the objective function was defined. Upon differentiating, we obtain
1N0bs 1 Nobs
Iy obs12 def obs
Flp.g) = 5 alopa@) —of™?= 23 dolp.g) — o™ (79)
i i ti
Nobs
Fopq) = Y clolp,q) —o™ay(p,q)| (80)
i ti
Nobs
Folpq) = > co(p,g) — ooy (p.q)| (81)
Nf)bs Z
Fra) = D clo(p,q) — o™ap,(p,q) + clal,(p, )l (g, (p, )| (82)
i ti
Nobs
Fo0@) = Y clo(p,q) = o™™ap,(p, q) + clo, (p, @)l (p, )| (83)
Nf)bs Z
Fop.q) = > clo(p.q) — ooy, (p,q) + clog(p, 9)]*| (84)
i ti

11



H. Johansson and K. Runesson

where
ap.q) = fP0 N+ P X)) (85)
oy q) = (™) A) + (fP)(p, X°(q)) (86)
o(pq) = (A)(@)(f )5 (p. X)) (87)
an () = ()N + (FE0 0 2() (88)
an0.a) = ) (f e (p. X(q)) (89)
0 (2,0) = (A)og(@(FP)5e(p, X°(0)) + (A (@P (F™)3ere (. A°(g))  (90)

recall that (A°)(¢) = (14 ¢)7'"A ~ (A°)i(q) = —(1 +¢) >N and (A°)7 (q) = 2(1 +¢q) >\
For the dual computation of sensitivities, we need

Nobs
e (Dq) = =Y cap(p,q)| (91)
i ti
Nobs
(D) = =Y con(p,q)| (92)
i ti

5 Verification

The expressions given in this report have been verified by comparing analytical results
with results from numerical differentiation using the following finite difference schemes

o9(z,y) gz +dy,y) — g(zr — dy,y)

ox ~ 2d (93)
Pg(x,y) _ g9(x+dayy) — gz, y) + g(x — du,y) (94)
ox2 d?
829(1'73/) ~ g(l‘ + da:ay + dy) - g(l‘ + dzay - dy) +g(a; - da:ay + dy) - g(x - dmy - dy)
0z0y 4d,d,
(95)

12
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