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Abstract

This paper deals with a generalization of the class of renewal processes
with absolutely continuous lifelength distribution. A random environment
is modelled by a positive recurrent birth and death process on a finite state
space. The generalization is made by using a stochastic failure rate func-
tion, governed by the environment process and based on an underlying set
of deterministic failure rate functions. Renewal processes (RPRE processes)
are defined in this environment by using a certain Poisson embedding of the
stochastic failure rate function. The existence of a stationary RPRE process
is investigated by considering an embedded regenerative process, and asymp-
totics is proved by establishing an exact coupling. Particular attention is
paid to the case when the underlying deterministic failure rates are increas-
ing or decreasing. In that case couplings are established by using Poisson
embedding, giving domination results, stochastical monotonicity properties,
and rate results. A version of Blackwell’s theorem is proved.

Keywords and phrases. Failure rates, Poisson embedding, random environ-
ment, coupling, asymptotics, rate of convergence, stochastical domination,
stochastical monotonicity.
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4 1. INTRODUCTION

1 Introduction

Considerable attention has been paid to stochastic processes in a random en-
vironment. The processes studied include random walks, Markov processes,
branching processes, diffusion processes, queues and lifelengths. Such mod-
els are used to describe systems which evolve in a fluctuating environment.
The latter is usually only observable through its impact on the system which
it affects. One example is when the capacity of a queueing system is affected
by an underlying parallel process; such systems have been studied, in which
the arrival rate or the service rates have been stochastic processes. The
definition of the random environment differs from one model to another,
but the prototypical assumption is that one or more of the parameters of
the model constitute a stochastic process. As a concrete example from the
vast literature, Nyberg [7] studied birth and death processes with intensities
governed by a certain time homogeneous Markov process.

Although there is an extensive literature on random environment mod-
els, there seems to be very little work on renewal processes in a random
environment. There has been much successful research on generalizations
of renewal processes; however, only a few (ONE?) papers have introduced
a parallel random environment process. Baxter and Li [4] have worked ex-
plicitly with a random environment modelled by a stochastic process. A
martingale approach enables them to prove asymptotics (weak convergence
towards stationarity), and some standard limit theorems of renewal theory
such as the key renewal theorem and Blackwell’s theorem. Their assump-
tions about the random environment and how it affects the renewal process
differs significantly from the assumptions in this paper, however.

In this paper we study a generalization of a class of renewal processes to
one consisting of intensity-governed point processes; they can be thought of
as renewal processes in a random environment (RPRE processes). The class
of renewal processes considered consists of those with absolutely continuous
lifelength distribution, a property making it possible to define the lifelength
failure rate function. The random environment is modelled by a birth and
death process Z = (Z;)3°, with a finite state space S = {0,... M}, for
some M € Z,. Renewal processes are then defined in this environment
by allowing Z; to affect the intensity for a point at . A standard renewal
process has the intensity r(A;) for a point at time ¢, (where A; is the time
elapsed since the last renewal), meanwhile renewal processes in a random
environment are defined in such way that the intensity for a point at time
t is equal to r(Z‘)(At), i.e., we use a stochastic failure rate function; here
{r@(.);i € S} is a collection of failure rate functions. Rigorous definitions



are made in Section 2, using a particular Poisson thinning technique (Poisson
embedding of the failure rate functions.)

The aim of this paper is to use the coupling method to investigate dif-
ferent aspects of this class of RPRE processes, such as asymptotics, rate
of convergence towards stationarity, stochastic monotonicity and stochastic
domination. The study is broad rather than deep, and has more the nature
of a survey over the possibilities of studying the RPRE class through the
Poisson embedding technique. We are particularly interested in the IFR and
DFR cases, i.e., when the failure rates 7(9(-) are increasing and decreasing,
respectively, for all 0 < ¢ < M. In these cases different kinds of couplings
are carried out, by using Poisson embedding technique. We will be very
brief in the case with general failure rates. There are reasons for this; one
is that the Poisson embedding technique doesn’t seem to be the right tool
without some monotonicity conditions on the failure rates. Furthermore,
the IFR and DFR classes are wide, and are probably natural to consider in
many applications.

The rest of the paper is organized as follows. The RPRE processes are
defined in Section 2 and notation is settled. In Section 3 we study the impact
of good and bad environment processes on the point process, and we prove
stochastical domination results. Section 4 deals with conditions for mono-
tonicity properties; only the DFR case is studied. Section 5 deals stationar-
ity and with certain embedded regenerative processes. They are studied in
order to establish sufficient conditions for the existence of stationary RPRE
processes. In Section 6 we prove asymptotical results in the total variation
norm, by establishing exact couplings. In Section 7 we study moments of
the coupling epoch, rendering rates results, and in Section 8 comparisons
of mean measures are made, resulting in a random environment version of
Blackwell’s theorem. Some simulations are made throughout the work; they
are described in Section 9.
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2 Preliminaries

Before a rigorous definition of the class of point processes to be studied, we
present some background theory and examples, and establish some notation.

2.1 Failure rates and Poisson embedding

Suppose that the non-negative random variable Y has absolutely continuous
distribution F, i.e, F' has a density f w.r.t. the Lebesgue measure. Then
we define the failure rate function r by

__f=)
r(z) = = F@)

If Y is the lifelength of an item, for example an electric component or a light
bulb, we can interpret r(¢) as being the failure intensity for a component
with age %, since

P(Y; € (t,t +dt)[|Y; > t) = r(t)dt.

One way of generating such a random variable given the failure rate function
is with use of Poisson embedding. Recall the well-known relation

1— F(t) = e B

where

mn:ﬁ%mmL

Now let ¢ be a two-dimensional Poisson process in (R?, B(RR?)) with ex-
pectation measure £;, the Lebesgue measure restricted to (R?, B(R?)). We
define for any set B € B(R?)

By ={(z,y) € B:z <t}
and
m8(§) = inf{t > 0; £(B;) > 0},

abbreviated by 75 when it is understood which Poisson process we use. Then
with
B ={(r,y) eR}: y <r(z)}

and
Y =1
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“ r(x)

<

Y

Figure 1: The first point under the failure rate function r has the z-coordinate
distributed according to F.

we get Y 2 F because
P(Y > #) = P(¢(By) = 0) = exp(—£+ (By)) = exp(—R(#)) =
1—F(t),

where we used that the Lebesgue measure of B; equals [} r(u)du = R(t).

By using the technique described above, we can construct a renewal process
with initial age o > 0, and with lifelength distribution F'. We need the
residual lifelength distribution Fy, which is defined through

e if Fla) =1
Fo(t) = { (Fa+t)—F(a))/(1 —F(a)) if F(a)<1.

Notice that Fy has failure rate function r, = r(a + -). Let

By = {(z,y9) € R ; y < ma(2)},
and let
0 ifa=0
SO_{ 7B, ifa>0.
Define recursively for n > 1

Bn = {(.'L',y) € ]R'?f— ;T > Snfla y < ’l"(.’[) - Snfl)}

and
Sp =18B,-
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For clarity, we should perhaps point out that r(z) = 0 for all z < 0. Let
Yo = SO,
and for n >1
Y, =S, — Sn-1.

This gives us a renewal process S = (Sp)32,, with lifelengths Y, Y7 ....

It is obvious from the construction that Y} 2 F,and Y, 2 F, for n > 1,
and since they are generated by disjoint parts of the Poisson process &, they
are independent. It should be noted that the initial age a can be randomized.

2.2 Lifelengths in a random environment

We will now describe how the embedding technique can be used to generate
a random lifelength Y in a random environment Z = (Z;)§°. That will, by
extension, give us a way of defining more general renewal processes.

Let Z be a birth and death process on S = {0,... , M}, for some M € Z.
Suppose that 70, ... (M) are failure rate functions satisfying

r@(z) < r9(z)
forall 0 <4 < j < M and all z > 0. Define the stochastic failure rate ry by

rO@) ifZ,=0
ry () = r() = { :
rM(t) if Z, =M

Then, Y is defined through Poisson embedding of ry:

B={(z,y) e RZ;y<ry(z)}

and
Y = TB-.

Although we will not try to model any real phenomena in this paper, we
may think of lifelengths of some kind of components. Suppose that these
imaginary items has a lifelength distribution given by

FO@) =1 i o
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A< X o X
X o (Zt)
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=

Figure 2: Poisson embedding of the stochastic failure rate function ’I‘(Zt)(t).

if we use them in an environment which is constantly equal to 7. (i € S.)
Since we assumed that 7 (z) < r(j)(:v) for 0 <i < j < M and for all z, it
follows that

FO(z) < FU)(z)

for all z. That is, long time survival is more likely in an environment that
constantly equals ¢, than in one that equals j. Therefore we regard ¢ as
better than j, and j as worse than ¢. One way of modelling the lifelength
of such items used in an environment which fluctuates randomly between
states 0,...,M, is by using the Poisson embedding described above; Y is
then the lifelength.

2.3 Renewal processes in a random environment

Renewal processes in the random environment Z will now be defined, in a
way analogous to how we generated the standard renewal processes. How-
ever, we have to define stochastic failure rate functions ry, for each of the
lifelengths Y;, 2 > 0. The lifelength sequence (Y3)52 is then defined through
Poisson embedding. Let a > 0 be the initial age, and define

rO) it Z,=0
ryy(t) = r{(t) = { :
rM(t) i Z, = M,



10 2. PRELIMINARIES
By ={(z,y) € R} ; y < ry,(2)}

S — 0 ifa=0
07 75, ifa>0.

and

Let Yy = Sp. Define recursively, for n > 1,

rOt—8,_1) ifZ =0
ry, () =Pt = Sp1) = S :
rM)(t — 8p_1) if Zy = M,
B'rL = {(-T,y) € ]R'—?—v Yy < Ty, (‘,I; - S(nfl))}a

and
Sp =1TB,-

The lifelengths Y,,,n > 1, are defined through
Y,=8,— Sn_1.

We obtain a sequence S = (Sy)52, which gives rise to a point process N
giving mass 1 to each of the S,-points:

N(B) =#{n; S, € B}

for all B € B(R4). In more compact form,

N =>"ds,
1=0

We call such a point process N (and the sequence S) a Renewal Process in
a Random Environment, abbreviated to RPRE. We use the term renewals
for the S,-points, though it is a slight abuse of terminology.

We will refer to the construction described above, by saying that N is gener-
ated by &, Z and a, or simply by £, when it is understood which environment
and initial age we use. If a = 0 we say that the RPRE process is zero-delayed.
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2.4 Further definitions and notation

We define V' to be the pair
V=(N,Z)

and when there is no risk for confusion, we also term V an RPRE process
and that V is generated by &. Furthermore, let

Vi=(Nt, Zt)
where N; = N([0,%]).

We assume throughout the paper that the random environment Z is an ir-
reducible and positive recurrent birth and death process on a finite state
space S = {0,... ,M}. (And hence that an unique stationary distribution
7 = (m;)}! exists). We often use A = (\;){! and X = (\})}to denote start
distributions on S.

We say that () and the distribution F() are associated to the state i, and
that 7O ... r@) and FO .. FO) gre associated with the environment
Z.

The term increasing (decreasing) is used for monotone nondecreasing (nonin-
creasing). In order to avoid some trite technicalities, we assume throughout
the paper that whenever monotone failure rates are used, they are defined
for all arguments, i.e., if 7(z) is increasing (decreasing) then

r(y) < (2) r(z)

for all x > 0 and y > 0 satisfying = > y. A distribution F' is said to be of
IFR (DFR) type if it has an increasing (decreasing) failure rate.

We say that the RPRE process is within the IFR (DFR) class if the failure
rate functions 7(*) are increasing (decreasing) for all i € S.

Given two RPRE processes V = (N, Z) and V' = (N', Z'), we say that they
are of the same type if

(i) the environment processes Z and Z' are governed by the same
birth and death intensities, on the same state space S, and if

(i) r®@(z) =r'D(z) for all i € S, for all z > 0, where {r©, ... rO)}
and {7"'(0), . ,r'(M)} are the sets of failure rates associated to Z
and Z', respectively.
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Processes of the same type may be distributionally different since they can
have different initial distributions.

Let N, denote the class of integer valued measures on R, giving finite mass
to bounded sets, and B, the standard o-field on N, generated by the vague
topology. The point process N =) ¢° ds, associated with a RPRE process
S = (S,)§° is a random element in (N} , B ).

The space Dg[0,00) (abbreviated with Dg) is the space of functions with
values in the space E and defined on [0, co), which are right-continuous and
have left-hand limits at all arguments ¢. (E is assumed to be Polish, if not
explicitly defined.) The o—field on D (generated by the Skorohod topol-
ogy) will be denoted by Dg. A birth and death process Z = (Z;) is a
random element in (Dz, ,Dz_ ).

For measures v € N, define the shift operator
o) = vl(t+ ),
and for z € Dg
Orz = (Zt+s) 50

Then we define the shifted RPRE process
0,V = (6:N,0,7).
An RPRE process V' is stationary if
o.,v' 2 v’

for all £ > 0. If V and V' of the same type and V"’ is stationary, then we say
that V' is a stationary version of V. We observe that a stationary RPRE
process has initial environment distribution equal to 7, the stationary dis-
tribution for the environment process.

If an RPRE process V has a random initial age and a random initial en-
vironment state, with probability distributions H and A, respectively, then
we abbreviate that by simply saying that V' has initial distributions (H, \).

We use the notation P(, ;) or P(4 ) when there is reason to emphasize the
initial conditions; the former notation is used when the initial age is a and
the initial environment state is ¢, and the latter one is used when the start
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conditions are randomized. Also, E(, ;) and E(g,)) are used for expectations
w.r.t IP(a,z'), IP(H,)\).

For distribution functions F' we denote the expectation [zF(dz) by m(F),
and we use the notation

Po = mo(F) = /a:aF(da:)

for the o moments of . Furthermore, we denote the support of F' with
s(F).

2.5 The coupling method

The coupling method will be an indispensable tool for us, and is defined
and briefly summarized in the following: we follow Lindvall [6], Chapter
I. Let X and X' be two random elements defined on a probability space
(Q, F,P) and with state space (E,&). Let P=PX ! and P' = PX'"" be
the distributions of X and X' respectively. Furthermore, assume that E is
Polish (metric, separable and complete).

Definition 1 A coupling of P and Plisa probability measure P on (E?,£?)
such that P(A) = P(A x E) and P'(A) = P(E x A) for all A€ €&.

One equivalent way of defining coupling is in terms of random elements: a
random element (X, X') € (E?,£?) defined on a probability space (€2, F, P)
is said to be a coupling of X and X’ if X 2 X and X' 2 X,

In Section 6 we will study asymptotic properties of RPRE processes, and
among other things prove convergence towards stationarity. In doing so, we
will compare the distribution of a shifted non-stationary process with the
distribution of a stationary one, and therefore we need a distance between
probability measures. A common way of measuring such distances is in
terms of the total variation norm.

Definition 2 The total variation norm of P — P’ is given by

| P—P' || =2sup (P(X € A) — P(X' € A)).
Ae&

By choosing an appropriate coupling (X, X") of X and X', it is often possible
to estimate P(X # X'). The total variation norm of P — P’ can then be
bounded using the coupling inequality:

IP(X € )~ P(X' € || < 2P(X # X'). 1)
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Consider now the case when the stochastic elements under study are stochas-
tic processes: let Z = (Z;)3° and Z' = (Z])§° be the processes, and let (Z, Z')
be a coupling of Z and Z'. Suppose that there is a random time 7" € R
such that

Zy = Z~£ forallt>T. (2)

We call T a coupling time for Z and Z' (and when there is no risk for
confusion, for Z and Z’) and obtain from the coupling inequality that

IP(Z: €-) —P(Z) € )| <2P(Z # Z) <2P(T > 1). (3)
If T is finite the coupling is said to be successful, and then (3) gives

lim |P(Z € ) ~P(Z} € )] =0,

Since T is also a coupling time for (;Z)3° and (6;Z')%°, the coupling in-
equality yields that

IP(6:Z € -) —P(6: 2" € )| <2P(T > 1) (4)

which implies
lim [|P(6;Z € -)—P(6;Z' € -)| =0
t—00

if T is finite. In Section 7 we investigate the speed of convergence towards
stationary, by means of establishing finite moments of the coupling time,
among other things. If E[T?] < oo for some a > 0 then

t*P(T > t) < E[T*- I(T > t)] < E[T?] < co.
By dominated convergence, we obtain P(T" > t) = o(t~“) and (4) yields

IP(6:Z € ) —P(6,Z" € -)|| = o(t ™). (5)

Moreover, if E[e??] < oo for some p > 0 we obtain exponential convergence,
ie.,

IP(6:Z € -) —P(6:Z' € -)|| = o(e™ ). (6)
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2.6 Three domination lemmas

In this section we gather three observations which will be useful later on.
Although they are quite obvious (and at least two of them are probably well
known), we present proofs.

The first result concerns stochastic domination of lifelengths in a random
environment (defined as before).

Lemma 1 Suppose that Y is a lifelength in the random environment Z,
possessing a stochastic failure rate ry(-), and let W be a random variable
with a failure rate p(-). If p(z) < ry(z) a.s. for all z >0 then
D
W>Y

Proof. Let & be a bivariate Poisson process in (RZ, B(R? )) with expectation
measure £, and define

B ={(z,y) € RZ: y <ry(z)},
B* ={(z,y) € RZ : y < p()},

Y =75(£)
and
WI = TB* (6)
We have achieved a coupling (W',Y) of (W,Y’) such that
W'>Y as.,

and the result follows. [O.

Lemma 2 Suppose that F' is an absolutely continuous DFR-distribution
on [0,00), with failure rate function r(-) satisfying r(z) > X for some A >0
and for all x > 0. Then, there exists random variables X and Y such that

(i) X =Eap())

(i) YZ2F, and

(iii) Y <X a.s.

Proof. Let r*(z) = A for all x > 0. A Poisson embedding of r(-) and 7*()

results in two random variables Y and X such that (i) and (ii) holds, and
since r(z) > r*(z) for all z > 0, (iii) holds. O

So if F' is a distribution satisfying the conditions in Lemma 2 then F is
stochastically dominated by some exponential distribution. An analogous
result holds in the IFR case:
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Lemma 3 Suppose that F is an absolutely continuous IFR-distribution on
[0,00), with failure rate function r(-). Then, there exist finite constants
A >0 and ) > 0 and random variables X and Y such that

(i) X ZBap()),
(ii) Y 2F, and
(iii) Y <z)+ X a.s.

Proof. Since F is not degenerate there exists z) > 0 such that 0 < r(z)) <
oo. Let A = r(z,) and define r*(z) = 1{;>4,}(z) for all z > 0. Define

B ={(z,y) €eR}: y <r(x)}
and
B* ={(z,y) € ]RfL sy <r*(x)}.

Let £ be a bivariate Poisson process as before and define Y = 7, giving (ii),
and define
X =71« — ).

Obviously, X is exponentially distributed with parameter A, and (iii) holds.
O
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3 Domination

Consider two RPRE process (N, Z) and (N', Z') with the same state space
S for the environment processes, with the same set of failure rate functions
{r©@, . .. 7} but with Z' is stochastically larger than Z. Then it is
quite natural to expect some kind of domination results between the point
processes N and N'. It turns out to be rather easy to establish such results
under monotonicity conditions on the failure rates; then couplings can be
carried out by using the Poisson embedding technique. We can not hope for
similar results with general failure rates.

3.1 A partial ordering on N,

To establish inequalities we need a partial ordering on N;. For measures
v,V € Ny we define v < /' if

v(A) <V'(A) for all A€ B(Ry)

We will also consider mappings ¥ from (N, B(NV;)) to (R4, B(R4)) such
that

U(v) < U() for all v,/ € N satisfying v < v/
or

U(v) > (V) for all v,/ € Ny satisfying v < v/

In the first case we say that U is increasing and in the second case that U
is decreasing.

3.2 Good and bad random environment

We saw in Section 2 that it seemed reasonable to regard 7 as a better environ-
ment state than 7 if 1 < 7, with the interpretation of the renewals as failures
of certain components. In the light of that, the following definition should
not come as a surprise. Suppose that Z and Z' are random environments
on the same state space S , and that

D
zZ <7z

holds. Then Z is said to be better than Z'. The following well-known result

D L.
will be useful for us: Z < Z' if and only if there exists a coupling (Z, Z') of
(Z,Z') such that o

Zy < Z; for all t > 0 a.s.
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3.3 The DFR case

Theorem 1 Suppose that Z is a better environment than Z'. Then we may
construct RPRE processes N and N' within the DFR class, with the same
initial age a > 0, and with random environments distributed as Z and Z',
respectively, such that

N=<N' as. (7)

Proof. 1t is well known how to establish a coupling (Z A ) such that Z < Z,
for all £ > 0 a.s. (see [6], Chapter 5), under the condition that Z is better
than Z’. Use now the two-dimensional Poisson process ¢ in (R%,R%) with
expectation measure = the Lebesgue measure £, together with the envi-
ronments Z and Z' to obtain RPRE-processes N and N’. We get Yy > YO
a.s., and proceed recursively (see Figure ?) to find that we have established
(7). O

The rather intuitive result that if V = (N, Z) and V' = (N, Z’) are RPRE
processes with common initial age a, with Z better than Z’, then

D !
N <N, (8)

follows of course from Theorem 1, and gives even more sense to the definition
of better (with the interpretation of long lifelengths as something good, e.g.,
periods between failures of expensive components or between earthquakes,
etc.) The result (8) is a special case of the following stronger result:

Proposition 1 Let N and N' be RPRE processes within the DFR class,
with random environments Z and Z' and with initial age distributions H, H'.

D
Suppose that Z is a better environment than Z', and that H' < H. Then

D D
T(ON) < (=) T(6N')
for all increasing (decreasing) mappings ¥ : Ny — Ry

Proof. Strassen’s Theorem (see [6], Chapter 4) implies that there exists a
probability measure H on (R +,R2) with marginals H resp H' such that
H ({(z,y) € RZ : 2 <y}) = 1, hence also random initial ages a,a’ with
distributions H , H' respectively, satisfying a’ < a a.s. Repeating the proof
of Theorem 1 with these randomized ages renders a coupling (]\7 N ) of N
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and N’ satisfying (7). Using this coupling together with the fact that ¥ o6
is increasing if W is, we conclude that

U(6,N') 2 B(6,N') > U(6,N) 2 T(4,N).

Decreasing mappings are treated analogously. O

3.4 The IFR case

The case with increasing failure rates is not so rewarding as the DFR case.
The IFR property makes it impossible to achieve domination in the sense
of (7) in Theorem 1. We have to content ourselves with a weaker form of
domination.

Theorem 2 Suppose that the random environment Z is better than Z'.
Then we may construct RPRE processes N and N' within the IFR class,
with any initial age a and with environments distributed as Z and Z', re-
spectively, and such that

N; < ]\}é forallt >0 a.s. 9)

Proof. The proof is basically the same as Theorem 2: establish the coupling
(Z ,Z’) of Z and Z', and use the Poisson process ¢ to generate two point
processes N and N’. The stochastic failure rate functions belonging to the
two point processes shows an alternating structure, which renders

0<8,<85<8<85<8<8... as. O
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4 Monotonicity in the DFR case

In this section we study some stochastical monotonicity properties. Our
main concern will be to generalize a monotonicity result from the classical
DFR theory which states that if N is a zero-delayed DFR renewal process
and if ¥ : Ny — R, is increasing (decreasing), then ¥(6; N) is stochasti-
cally decreasing (increasing) in ¢. The result is proved in [6], Section V.22,
p 196 and has many consequences, such as

(i)  N(t+ B) is stochastically decreasing in ¢ for all B € B(R; ),
(ii)  the renewal function E[N¢] is concave,

(iii) the delay D is stochastically increasing in ¢, and

(iv) the age A; is stochastically increasing in ¢.

It will be seen that these results also hold in the random environment case,
if the start is zero-delayed, in the worst possible environment state. We
use proof methods similar to those found in [6]. To illuminate differences
between RPRE processes and standard renewal processes, we show that
concavity does not hold for all zero-delayed RPRE processes within the
DFR class. In addition, it is proved that concavity does not always hold
when Zy = M.

4.1 Monotonicity properties of functionals of the process

Once again we consider monotone mappings ¥ : N, — R, (monotone with
respect to the partial ordering on N defined in the last section).

Theorem 3 Let N be a zero-delayed RPRE process within the DFR class,
in the environment Z with Zy = M, and suppose U is increasing (decreas-
ing). Then U(0:N) is stochastically decreasing (stochastically increasing) in
t.

D
Proof. We must show that U(9;N) > U(§;N) for s < t. Let 0 = ¥ o 4,
which is increasing if ¥ is, and let V! = (N', Z") := 0, sV = (0;_sN,0; 7).

D
Then N’ has some initial age distribution H' > §y, the initial age distribution
of N. Due to the fact that Zy = M we have Zy > Z, and therefore we can
apply Proposition 1 which gives:

B(O,N) = TN) > BN

= T(6,N') = U(6,6,_;N)
= T@N) O
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Corollary 1 Suppose that Zy = M and that N zero-delayed. Then N(t+ B)
is stochastically decreasing in t, for all B € B(R4)

Proof. Use Theorem 3 together with the fact that ¥(v) := v(B) is increas-
ing. [O.

Corollary 2 If Zy = M and N is zero-delayed, then m(t) = Eg ar)[N¢] is
concave in t.

D
Proof. From Corollary 1 we have that N(¢,¢ + h] < N (¢t — h, t]. Therefore

m(t+h)—m(t) = EqalN(tt+h]
< Epum[N(t—h,t]
= m(t) —m(t—h)

holds. Hence m(t) > (m(t — h) +m(t + h))/2 for all t > 0 and 0 < h < ¢,
which is sufficient for concavity. O

Corollary 3 If Zy = M and N is zero-delayed then

(i)  the delay Dy is stochastically increasing in t, and
(ii) the age Ay is stochastically increasing in t.

Proof. The mapping ¥(v) = inf{s > 0; v(0,s] > 0} is decreasing, so (i)
follows from Theorem 3. For (ii) KOLLA!! [O.

Proposition 2 The condition that N is zero-delayed is not sufficient for
concavity; there ezist zero-delayed RPRE processes (N, Z) within the DFR
class, with Zy =i < M such that m(t) = ;) [Ny] is not concave in t.

Proof. We consider a certain RPRE process N with constant failure rates,
i.e., we have a Cox process. Let S = {0,1}, and let the failure rates be
rO(t) = Xg and (M (¢) = A; for all £ > 0, where 0 < Ag < A;. Let Zg = 0.
If we can prove that E ) [N (0, 1]] < E()[NV(1,2]] holds, then

m(l) —m(0) = Eq)[N(0,1]]
< o) [V (1,2]]
= m(2) —m(l)

follows. That implies m(1) < (m(2) + m(0))/2, which is sufficient for non-
concavity of m(-).
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With constant failure rates, we have

E0,0) [V (1,2] || Z1 = 0] = Eg,0)[N(0,1]

and

E,0[N(1,2][|Z1 = 1] = E,1y[N(0,1]].

Therefore we have

E(0,0)[N (1,2]] E0,0)[N(1,2][|Z1 = 0] - P(,0)(Z1 = 0)
+ Eq[NQ,2]Z1 = 1] - Pg)(Z1 = 0)
= E,0[N(0,1]] - P(o,0)(Z1 = 0)]

+ B[N (0,1]] - Po,0y(Z1 = 1).

So it suffices to prove that E¢ y[N(0,1]] > Eo[N(0,1]]. A coupling
argument will do it: let (N',Z’) and (N"”,Z") be RPRE processes of the
same type as (N, Z), with Z, = 0 and Z; = 1. Suppose that N’ and N”' are
generated by the same Poisson process £. Define

Teny = inf{t > 0; 2, = Z, }
and let

1"

y Z, ift < Tu,
7y = )
Zy it t > Tepy.

Then (Z, Z") is a coupling of (Z', Z") satisfying

Zt < Z;’ for allt > 0 a.s.
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Now, use £ to generate N in the environment Z. Since Z 2 Z' , we have a
coupling (N, N") of (N',N"). We have

E0,0)[N(0,1]] = Eg,0)[N'(0,1]]
= Tyo,0)[N(0, ]]

- / Eo 0) || Teny = ul(Bo + d1)e ~(Boto)ugy,

+ / IE(O,O) [N(07 || Teny = u](Bo + 51)67(ﬂ0+61)ud“

1
= / (Ao - u + Bo0) [N (u, 1][| Teny = u])(Bo + §1)eBoton)ugy
0

(e}

+ Ao(Bo + 61)e —(Bo+d1)u g,
1
1

N
S~

o0

+ A (Bo + d1)e —(Bo+d1)u g,
1
1

E(o,1)[N" (0, 1][| Teny = u](Bo + 61 )e~Poougy

0

00
+ / E (0,0) [N 0 1]||Tenv = U] (,60 + (51) (ﬁ0+(51)udu
1

= Eo,[N"(0,1]]

)

= Eo,)[N(0,1]] O

Proposition 3 The condition that Zy = M 1is not sufficient for concavity;
there exist delayed RPRE processes (N, Z) within the DFR class with Zy =
M, such that m(t) = Eq ) [Ni] is not concave in t.

Proof: We consider a certain delayed renewal process, i.e., an RPRE process
with Z; = M =0 for all t > 0. Let 0 < Ay < A1 and let the lifelength failure
rate function be
A if0<t<2
r(t) _{ N ift> 2.

Suppose that N has initial age a > 2. The failure rate function is choosed
so that

Eq[N(1,2][[N(0,1] =0] = Eqg11[N(0,1]]
Eq[N(0,1]

(1 - u+ B 0) [N (u, 1]||Teny = ])(Bo + d1)e” Poto)ugy



24 4. MONOTONICITY IN THE DFR CASE

and

Eo[N(1,2][[(A1[[N(0,1] > 0) = s] = IEs[N(0,1]]
> IE4[N(0,1]]

holds, for 0 < s < 1. Now, let G be the distribution of (A4:]|N(0,1] > 0).
Therefore

Ea[N(172]] = Ea[N(172] ”N(Oa 1] = O] IPa(N(Oa 1] = O)
+ Eu[N(L,2] |N(0,1] > 0] Pu(N(0,1] > 0)
= Eq11[N(0,1]] P4 (N(0,1] = 0)

+/ N(L,2] |(A1[[N(0,1] > 0) = 5]G(ds)Po(N(0,1] > 0)
> Eo[N(0,1]]Pa(N(0,1] = 0) + Eo[N(0, 1][Pa(N(0,1] > 0)
= E4[N(0,1]]

which implies non-concavity of m(-). O
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5 Stationarity

Suppose that N is a standard renewal process with lifelengths Yy, Yq,. ..,
where Y7,Y5,... are distributed accordingly to the lifelength distribution
F. (The delay Yy may have a different distribution.) It is well known that
if 4 = m(F) < oo, then there exists a stationary version N’ of N, i.e., a
renewal process with the same lifelength distribution as N, but such that
o.N' 2 N , for all £ > 0. In the case with standard renewal processes, it
is easy to construct the stationary version given N: let N’ have the delay

Yy Z G,, where G, is given by
dG4(z) = (1/p) - F(z)dz.

In the case with renewal processes in random environments, it is not obvious
if a stationary version exist or how to construct it. However, each (non-
degenerate) RPRE process V = (N, Z) inheres an regenerative process. We
can then rely on a well-known result concerning the existence of stationary
regenerative processes.

5.1 The embedded regenerative process

Suppose that an RPRE process V = (N, Z) is given to us, with a random
initial age a distributed according to the probability distribution H. Define

z* =sup{z > 0; z € s(FV) for all i € S},

allowing z* = oo if all the distributions F@ have unbounded support. We
will, with exception for the IFR case, restrict attention to initial distributions
H satisfying

s(H) C[0,z")

to avoid some difficulties with the delay Sp. (Here is an example which
illuminates why a restriction is needed; suppose that the failure rates are
general, s(F(")) = [0, z] for some zo > 0, for all i € S, and that s(H) =
(2g,00). Then the RPRE is degenerate in the sense that Sy = oo a.s., since
r((f)(:v) =0forallz >0 and all i € S if a > x(.) Define the age process
A = (A4)§° by letting

4, ) tta ift < S
7 min{t — Sp;t— S, >0} ift> S,
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where S, is the location of the n:th point as before. Define the two-
dimensional process X = (X;)3° by

Xi = (A, Zy)
and the sequence T' = (T7,)5%, recursively through

T() = 1nf{t > 0; Xt = (0,0)}
and
T, =inf{t > T, 1; X; = (0,0)}.

Define also
Co =1

and, for n > 1,
Cn == Tn - Tn—l-

(Tn)X o is indeed a (zero-delayed or delayed) renewal process. Obviously
the C,, are independent, and to see that lim,_,, T, = oo a.s, we may argue
as follows: the distributions F©, ... F(M) are absolute continuous, and
therefore we have

D .
Cph>C>0 as.

it C 2 F(M) since C,, includes at least one lifelength. (INTE HELT BRA)
Hence T, = ;- y Cp, — o0 a.s. From now and onwards we assume that C
is a random variable, independent of Cy, C1,... and distributed as C4.

The key to the existence of a stationarity process is the observation that
X = (Xy)° is a regenerative process with respect to the renewal process
(Thn)2,- Recall that a stochastic process X = (X;)§° is a regenerative
process with respect to the renewal process (7),)32, if

(i)  the distributions of 61, X are equal for all n > 0, and
(i) 67, X is independent of {X; ¢t < Ty} and { Ty, ... , T, } for each n > 0.

The C,-variables are called the cycle lengths, and we call (T,,)52, the em-
bedded renewal process.

A moment of thought reveals that we have (i) satisfied; the processes
0, X, 0, X, ...

have the same start value (0,0), and they are all of the same type. It should
be obvious from the definition of RPRE processes that (i) holds; 67, X
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is defined through Poisson embedding, and the environment is Markovian.
(EJ HELT BRA) (There are other possible embedded renewal processes,
exchange for instance the state (0,0) to (0,4) in the definition of the T),-
variables above, for any i € S.)

5.2 The existence of a stationary RPRE process

If X is a Dg-valued regenerative process (where E is a Polish space) with
respect to a renewal process S = (S,,), then there exist a stationary version
X' of X, if the cycle lengths has finite moments of the first order, i.e., if
m(F) < oo where F is the distribution of C. (See [9].)

Our process X is D(gr, xs)-valued. So we need to investigate under which
conditions we have E[C] < co. The following result, which is the main result
in this section, implies that a stationary version exists whenever m(F(©)) <
00.

Theorem 4 If m(F() < 0o then E[C] < co.

Proof. Suppose that V = (N, Z) is an RPRE process with the embedded
renewal process ()22, and cycle lengths (Cy)2,. As before, denote the
locations of the points associated with Sy, S1,.... Since we only are inter-
ested in the cycles, we can assume V is zero-delayed and that Zy = 0, which

implies that (7)), is zero-delayed, i.e., To = Sy = 0. Then C 2 Ti holds,
so it is sufficient to prove E[T} ] < co. Let

n=min{k > 1; Zg, = 0}.

Then

=) Y

k=1
where Y,, = S, — S,,_1, for n > 1. Define

Gn =0(S0,-..,80) \/ 0(Zs;t < Sp)

for n > 1. Observe that 7 is a stopping time w.r.t. the filtration (G,)5 .
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Therefore we have

n oo
E[Y Y] = E[Y Yilysk)
k=1 k=1

= > E[Yilgsi]

ES
Il
—

I
M8

E[E[Yil|Gr-1] 1>k

ES
Il
—

It should be quite obvious that

E[Ykngk—l] = E[Yk”Sk—l’ZSk—J
< m(FO).

Now, in order to prove that > 72, P(n > k) < oo, we prove that 7 2 ¢,
where ( is a geometrically distributed random variable. We may argue as
follows: 7 is the number of points S1,Ss,... that we have to inspect, until
we find one, Sy say, in the best environment state, i.e., Zs, = 0. So we can
think of 7 as the number of required trials until the first successful one. The
first trial is performed in (0, S1], the second one in (57, S2], and so on. Trial
nr ¢ is successful if Zg, = 0. Let
p= ogiz‘nng P, (Zs, = 0).

The probability for a trial to be successful is obviously at least p. It is quite
clear that p>0; first, observe that

p=Pe(Zs, =0),

(which can be proved by a coupling argument using Poisson embedding).
Define 7 = inf{t > 0;Z; = 0}, and let F; be the distribution of 7 when
Zy = M. The environment process hits the state 0 for the first time at 7;
the probability that Zg, = 0 is at least the probability that S; occurs under
the first visit to the state 0. Therefore

Po,n)(Zs, =0) > /u:O - P o, (S1 € [w,u+v)) Bo - e P dy B (du)

> /oo /oo e B @) . (1— e RO wtv)) By - e =PV dy F, (du)
- u=0 Jv=0
> 0.
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We conclude that E[T7] < oo since

S P(n> K —Eff <E(] <oo; O
k=1

The condition m(F©®) < oo implies that m(FU)) < oo for all j € S.
The next result shows that it is possible to have E[C] < oo even though
m(F®) = 0o for all i < M, if we can stochastically dominate the distribu-
tion F(M) by an exponential distribution. Here we consider the regenerative
process defined through

T() = inf{t Z O; Xt = (O,M)}
and
T, = inf{t > T,_1; X; = (0, M)},

with cycles
Co =T
and, for n > 1,
Con=T,—T, 1.

Proposition 4 Suppose that there exists v > 0 such that r(M) (x) > v for
all z > 0. Then E[C] < oo.

Proof. The idea is that the environment process will have infinitely many
long’ visits to state M,; the probability for a point under such a visit is
then proved to be uniformly > 0.

Let 7; be the ith holding time of the Z process in the state M. The
holding times 71,72,... are exponentially distributed with parameter das
(since Z is a birth and death process) and therefore

P(n; >s)=e %% >0

for all 7 > 0. Furthermore, 79,71, ... are independent, so the Second Borel-
Cantelli Lemma gives
P(n; > s, i.0) =1

We conclude that there will be infinitely many visits to the state M, which
lasts for at least s time-units (abbreviated s-visits). Since the stochastic
failure rate is at least v at any time instant regardless of the history of the
process, the probability of having renewals in a s-visit is at least p = 1 —
e~9 > 0. Therefore, the required number of such s—visits are stochastically
dominated by a geometrical distribution. [J

Conjecture 1 If m(FM)) < oo then E[C] < oo.
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5.3 The stationary age distribution in the DFR case

In this section we establish a stochastic domination result concerning the
distribution of the initial age (or the age at any time instant) of a stationary
RPRE process N'. Suppose that N” is a stationary standard renewal pro-
cess with lifelength distribution F(), the distribution associated with the
environment state 0. It is then rather intuitive that N” has a stochastically
larger age (at any time instant) than N’. This is proved by establishing a
coupling such that all points of the standard renewal process which occur
after a random time 7" also are points of the stationary RPRE process. The
result is useful for us in Section 7, in the proof of Theorem 9, where we need
to prove that stationary RPRE processes within the DFR class with finite
(a+1)—moment on the distribution F(©) has an age distribution with finite
a—moment (for a > 0).

Lemma 4 Let V! = (N',Z') be a stationary RPRE process within the DFR
class, with the distribution F©) associated to the state 0. Let N" be a sta-
tionary standard renewal process with lifelength distribution FO). Then

HI 2 HII

holds, where H' and H" are the initial age distributions of N’ and N”,
respectively.

Proof. Let ¢ be a two-dimensional Poisson process in (R?, B(R?)) with

expectation measure £,. Let o 2 i and o 2 H". We may now generate
a stationary RPRE process V* = (N*, Z') and a stationary renewal process
N** in the standard way with Poisson embedding; we generate N* by using
&, Z' and o', and N** by using £, and a”. Denote the renewals of N* and
N** with (S5)s2, and (S;*)52,, respectively. Observe that (N*, N**) is a
coupling of (N’, N"). Define T' = S§, and let

T =min{n > 0;S;* > T,S;* = S, for some m > 0}.

Certainly, T' < oo a.s. We observe that on {n > 7}, there exist an m > 0
such that
Syt =58y, as.,

due to the DFR property. Loosely speaking, all N**-renewals occuring after
Sp are also N*—renewals. Therefore

Af < AY
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on {t > T}. Since N* is stationary,
AF 2 A
for all £ > 0, and the same holds for A;*. In particular,
* R *
P(A; > s) = t]i>nolo P(A4; > s),

and
P(AG* > s) = lim P(A[* > s),
t—o0

holds for all s > 0. It follows that

P(Ay > s) = tl_iglO]P(A;* > s)

. * * >
tlggo(IP(At >s5,t<T) + P(A; >s5,t>T))

IA

lim (P(t<T) 4+ P(4A;* >s,t>1T)
t—o0
. *k >
tlgcr)lo P(A;" > s,t>T)
: k3%
B P > 9)
P(4p" > s),

i.e., we have proved that

D
HEZ2PUAse)<PAre)2H" O
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6 Asymptotics

In this section we investigate the asymptotical behaviour of the RPRE pro-
cesses. We prove that the processes ’forget’ their initial conditions, and,
under certain conditions, become stationary in the limit, just like the case
with standard renewal processes. We first consider the case with general
failure rates. The Poisson embedding technique seems to be quite useless
without some monotonicity conditions on the failure rates, and therefore
the proof relies on a coupling result on regenerative processes. This proof
covers of course also the DFR- and IFR cases, but we present two additional
proofs, based on the Poisson embedding technique. This has the advantage
of making the arguments rather transparent because of the monotonicity of
the failure rates, and in extension it also gives the rate results in Section 7.

6.1 Asymptotics in the general case

Let || - || be the total variation norm. As before, we denote the distribution
associated to the state 0 with F(©). Let

z* = sup{z > 0;z € s(FW) for all i € S}.

Theorem 5 Suppose that V. = (N,Z) is an RPRE process with initial
distribution (H,\), and where H is a probability distribution with support
s(H) C [0,z*). If m(F©)) < 0o then

[P0V €-)—P(V' € )| —0, t— oo, (10)
where V' is the stationary version of V.

Proof. The condition on the initial distribution guarantees that an embedded
regenerative process exists, which we denote by X, defined as in Section 5.
Denote the cycle length distribution with F' and the delay distribution with
G, ie., Ty 2 G. We use a result from [8], Corollary 1.1. It states that if
m(F) < oo and F non-singular then

|Pg(0;X €-)—P(X' €-)|| — 0, t— oo,

where X' denotes the stationary version of X. Since we have assumed that
m(F©) < 0o, Theorem 4 in Section 5 implies that the cycle lengths has
finite expectation. It is quite obvious that F' has an absolutely continuous
component, i.e., that there exists a subprobability measure F* # 0 with a
density f* such that

F(B) > F*(B) = /B £ (x)de
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for all B € B(R4): let n = inf{t > 0; Z; > 0} and observe that
F(.’]}) = IP(O,O) (Tl S .’L') Z IP(O,O) (Tl S x,n > .’L') = (1 - G_R(O)(w)) . e—ﬁow_

Therefore (10) holds. O

6.2 Asymptotics in the DFR case

Theorem 6 Let V = (N,Z) and V' = (N',Z") be RPRE-processes of the
same type within the DFR class, with initial distributions (H,\) and (H', X',
respectively. Suppose that the initial ages are finite a.s. Then

I P (0:V €-) - IP(H’,/\’)(HtV, €-)||—0, as t— oo
(11)

When a stationary version V' of V exists we have

||]P(H,)\)(9tVE-)—]P(V'E-)H—>0, as t— oo (12)

Proof. We shall construct a coupling (V”, V') of (V, V'), such that
0, V" =0,V as. forallt > T, (13)

where T is a finite coupling time. Then ( 11) follows, and if V is stationary,

then 6,V' 2y for all t, giving (12). (A stationary RPRE process has a.s. fi-
nite initial age, due to the construction of stationary regenerative processes,
see ([9])) Let & be a Poisson process in (R2, B(R%)), with expectation mea-
sure £, and let V and V' be generated by £ in the standard way. We will
construct V", once again using £, in the following way: we let V" be equal
to V up to the time T,,, where the environment processes of V and V' first
meet. Thereafter, we let V" evolve in the same environment process as V.
If N” and N’ ever have a common renewal occuring after T,,,, at T say,
then they will be identical from 7' and onwards, giving (13). That is due
to the fact that they are both generated by the same Poisson process ¢, in
identical environments.
More formally, define

Tony = inf{t > 0: Z; = Z,}
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and let
" Zt if ¢ < Te'm)
Zt == ! .
Zy ift > Tepy.

Then (Z",Z") is a coupling of (Z, Z'), (see Lindvall [6]) and it is well known
that T,,, < oo a.s. By letting V" be generated by £, with initial age a”
equal to the one of V, i.e., " = a, and with environment Z”, it follows that

yrn 2 V, since Z" 2 7 and since the initial ages are the same. Suppose
(S; )& and (S))& are the points associated with N and N', respectively.
Define D T and D Toe? , the overshoots at T¢,,,,

DTenv - mln{S enva S Tem) Z O}

and
DTenu = IF;(I}{SZ — Tenw; Si —Tenw > 0}-

It may be helpful to consult Figure 6.2 to see that the first common renewal
of N and N' occurs at

"

T =Teny + max{D’Tenv , D}

So T is the coupling time of V" and V’. We must prove that T' < oo a.s.
Let H and H' be the initial age distributions of V' and V’, respectively, and
let

"

W = ma‘X{D’Tenv ? DTenu}'
We have
P(T < 00) =P(Tepy + W < 00) =

I / P iy Tono + W < 00)H (ds) H'(ds') A N =
s'>0

1€S jES

S5 o o |7 Pl O < oolTuns = )Py )

1€S jES
H(ds)H'(ds")\i ]

where F;; is the distribution of T,,, when Zy =4 and Z(') = j. We now argue
that

IP(S,S,),(i,j)(W < OO”Tem, = u) =1 (14)
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for all fixed s, s’,u < co. Given the initial ages s, s’ and T, = u, define A =
max (Al A!), the largest age at u of the two RPRE processes considered. It
satisfies

A < max(s,s’) + u, (15)

where the right hand expression is the largest age at u if there are no renewals
in [0,u]. The failure rate of (W||Teny = u,a” = s,a’ = s') (from now
abbreviated (W||u, s, s')) is equal to

,',,1(4Z1’LI+30) ($)

for > 0 by definition, and satisfies

1

TAZu+$) ((E) > 7'(0)

= ma.)((s,s’)—ku(x) a.s.

for all z > 0, due to (15) and that the failure rates 7(9), ... (™) are decreas-

ing. Let b = max(s, s’) +u and let W}, denote a random variable distributed

)

accordingly to Fb(0 . Then Lemma 1 gives that

D
(Wlu, s, ) < Wy

Then (14) follows if we, for all b < oo, can prove that Wj < oo a.s. An easy

argument concerning the distribution functions F(© and Fb(o) shows this.
Since F(© is absolute continuous, it has no mass in infinity, giving

o
1= lim FO(u) =1—exp (—/ rO (1) dt) .
0

uU—00

Therefore

o0
/ rO (1) dt = co.
0
Since F© is DFR, it has unbounded support, so

o0
/ rO(t) dt = 0o
b

for all b < oo, or, equivalently,

o0
/ réo) (t) dt = 0.
0
This gives
> ()
P(Wp, < 00) =1—exp (—/ T (t)dt> =1
0
We conclude that T' < oo a.s.[.
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6.3 Asymptotics in the IFR case

Theorem 7 Let V = (N, Z) be an RPRE-processes within the IFR class,
with initial distribution (H, ), and suppose that V' is a stationary version
of V. Then

||IP(H7,\)(0tVe-)—IP(V’E-)||—>0, t — oo. (16)

Proof. We shall construct a coupling (V", V') of (V, V'), such that
OtV” = OtV' a.s.,

for all ¢ > T, where T is a finite coupling time. We construct V' and V"
by proceeding as in the DFR case: let £ be a Poisson process on ]Ri, with
expectation measure £,. Let H' be the age distribution of V. Define Z" as
in the DFR proof, by carrying out a coupling of Z and Z’ at T,,,, and gen-
erate V' and V", with initial age distributions H and H', respectively, using
¢ in the standard way. Let (S;) and (S, ) be the (sequences of) locations of
renewals associated with N’ and N”, respectively. Define

T = min{S}"; SI' > Teny and S;' = S; for some j > 0}.
(2

The random time T is the first time, after T¢,,, where N’ and N” have a
common renewal. Since N’ and N” evolve in the same environment after
Tenv, their futures are identical from 7" and onwards. Therefore T' is our
coupling time. We must prove that 7' < oo a.s. Define

Jo = min (miin{SZ( S > Tenw} s miin{SZ{' : S > Tem,}).

On {Jo = 8, for some m > 0}, define the sequences (I;)$°, (J;)$° and
(vk)$° recursively through

Iy = min{S; : S} > Jp_1},
2

Jy =min{S; : S; > Ju_1},
1

and

[N =1
k= 0 otherwise.
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On {Jy = S, for some m > 0}, swap the primes and the double-prims in
the definitions above. The coupling time 7' is then satisfying

r
TSTenv+UO+Z Ui,

i=1
where
7 =min{k; vy =1},
Uo = Jo — Tenw
and
U = i — Jg-1,

for £ > 1. It may be helpful to think of the coupling in the following way:
we let N” and N’ evolve until their environments coincide, occuring at Tpp,.
Then, one of the processes has a renewal at Jy and hence an age equal to
0. Thereafter, we carry out a series of trials, coupling attempts, until N’
and N” have a common renewal. We make the k:th attempt in the interval
(Jg—1, Jx], successfully if v = 1, for & > 1.

Each of these (Jx_1,J|-attempts can be thought of as consisting of two
sub-trials: the first at I and the second at Jj. These coincide if N' and N"
have a common renewal at Iy, i.e., then I, = J, and otherwise, I < Jj.
At Ji_1, one of the two processes has a renewal, whereas the other one had
the last renewal at I;_;. Assume for simplicity that the renewal at J; was
a N'-point. Then, AIJk = 0, whereas Af}k = Jy — Ix_1 = a, for some a > 0
and Z}k = j, for some j € S. Define

Y= azig,lfes P 0,a,) (v = 1) (17)
where the notation (g, ;) is supposed to be self-explanatory. Let pq (k)
be a short for P(g, ;) (v, = 1). We will prove that v > 0, and hence that
the required number of coupling attempts is stochastically dominated by a
geometrical distribution with parameter 7. In order to estimate the prob-
ability p,i(k), let Z* be a birth and death process on S, governed by the
same intensities as Z and with Z* = 7. Define

Bl — {(z,y) € ]Ri iy < r((lZ;)(:v)}

and
B ={(z,y) € R% : y < r%)(z)}.
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Let € be a two-dimensional Poisson process as before, and let

I :TB(G)(g)a
J = 18(£),
B = {(z,y) e R} :y <r%)(z — 1)}

and
K = 151)(§).

Recall that if z < 0, then r()(z) = 0, for all j € S. Let

(1 =T J=K
~ ] 0 otherwise.

Then
Pai(k) = Prp(v =1),
Now, define
B'={(z,y) € R} :y < r'%)(2) - Ly y(2)}
J =7p(£)
and

St =K
"] 0 otherwise.

When defining J’ the truncated failure rate r(%)(z) - Liz>ny(z) is used, i.e.,
we ’ignore’ the possibility that there is a common £-points under the failure
rates at I. Therefore, {J' = I'} is an impossible event, and moreover

=1} c{v=1},

which gives
IP(a,i) (V = 1) > IP(a,i) (VI = 1)

We continue our estimations, now by ’ignoring’ the evolution of the envi-
ronment process in (I, 00): define

By ={(z,y) € RL 1y <r™(2) - 1oy (@)}

By = {(z,y) € R} :y <rV(z) - 1oy (2)}
J" = TBQ\’/I(@’
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K" = TBg(f)

and
M 1 if J' = K"
] 0 otherwise.
Certainly,
{'=13c =1},
so we have

Pt =1) > Py (" =1).

In order to estimate the latter probability, introduce another Poisson process
& in Ri, with expectation measure /. Define

A = {(z,y) € R} 1y <rM)(x)}

and

A={(z,y) R :y <rV(a)},
for s > 0. Also, define

T (s) = T4(&)
and
K* = 14(&).

Certainly,

{J°(s") = K} € {J"(s) = K"}
for all s’ > s, i.e., the probability P(J*(s) = K*) is decreasing in s. We
observe that

IP(a,i)(yu = 1) = IP(J*(I) = K*)’
where I is defined as before. Choose a constant C > 0 large enough to

D
ensure that F(O(C) > 0 holds. Since I < F(), we have

PN =K = | P(s) = KN (s)
> / " P (s) = K)AFO (s)

s=0

C
> P(J*(C) = K*)dF©)(s)

s=0
= PJ*(C) = K*)FO(C).
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It should be quite obvious that P(J*(C) = K*) > 0, since C > 0. Fur-
thermore, we note that P(J*(C) = K*)F()(C) is not a function of a or .
Therefore, we have proved that

azl()I’lfesp(a,i)(k) >4 >0,

where

§ =P(J*(C) = K*)FO(0).

We have proved that the number of required coupling attempts 7 is domi-
nated by a geometrically distributed variable with parameter . It remains
to prove that

-
Z U; < o0 a.s.
i=1
We postpone the arguments for that until Section 7.3, Theorem 10, where
the coupling achieved here is used to prove a stronger result. O

Remark. The reason for the ’dubble chance’ structure of the coupling at-
tempts is perhaps not apparent. If we instead would use a ’one chance’
structure then

inf P g ful =
aZlOI,liES (0,a,i) ( successful attempt ) = 0,

since
i (1)

Jim ngt)(t) =0 a.s.

for all £ > 0.



41

7 Rate of Convergence

In this section we continue the study initiated in the last section, where con-
vergence towards stationarity was proved. We consider the couplings carried
out there, and prove finite a— and exponential moments of the coupling
times under some additional conditions. That yields rate of convergence
results, due to (5) and (6) in Section 2. We keep to the lines laid down in
the last section and concentrate us on the DFR and IFR cases; we content
ourselves with some brief comments in the general case. It will be seen that
processes within the IFR class have exponential rate of convergence, since
we can prove that the lifelengths have finite exponential moments with-
out further conditions on the failure rates. The DFR case is slightly more
complicated since DFR distributions not always have finite moments. The
condition m(F(©®) < oo turns out to be sufficient for proving a rate of order
t* (a > 1), and exponential rate follows under the condition that F(9) has
finite exponential moments. We point out that we have no ambition to find
the exact rates, e.g., if a rate of order e® is settled, we do not try to find
the best possible exponent a.

A distribution F' (and random variables with distribution F') is said to have
finite exponential moment, if there exists an « > 0 such that

ola) = /Ooo e F(dz) < 0. (18)

7.1 Convergence of the environment process

We first need a well known result concerning the rate of convergence of the
environment processes. It states that the the coupling time of two environ-
ment processes has a finite exponential moment.

Lemma 5 Let Z and 7' be two independent random environments on S.
Then, the coupling time defined by

Tenw = inf{t > 0; Z; = Z;}
has finite exponential moments.

Proof. 1t is well known that irreducible and positive recurrent time-continuous
Markov chains on a finite state space converges exponentially fast towards
stationarity. REFERENS !!! O
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7.2 The DFR case

In order to investigate the rate of convergence, we first state a result, which
is a special case of a result (Theorem 6.3) proved in [2]

Lemma 6 Suppose that F' is a DFR distribution on [0, 00), with failure rate
function r. If p(y) < oo for an v > 0 then r(zx) >~y for all x > 0.

7.2.1 Finite exponential moments

Theorem 8 Let V be an RPRE process of within the DFR class with initial
distribution (H, \). Suppose that the distribution FO) has finite exponential
moment. Then there exists an a > 0 such that

PN (6V €-)—P(V' €-) || =ole) (19)
where V' is the stationary version of V.

Proof. Recall the definitions in Section 6.2. The coupling epoch T satisfies
T =Tepy + W. Let (H',7) denote the initial distribution of V'. We have

oT ] o (Teny+W) ]

E(u ), m € = B,mmle

= B By [T ™) || Ton, 1]

= E()\JF) [eaTenuE(H,H’) [eaW I Tenv] ]7

and
B, 1r) [ € | Teno) = / / / s, [ [ Teno = u] H(ds)H'(ds") Freny (du)-

Since F(© has finite exponential moments, there exists a v > 0 such that
r(O(z) > 4 for all z > 0, due to Lemma 6. Therefore, the overshot W
has a failure rate which certainly is at least -y, i.e., we can stochastically
dominate W by a random variable X, which is exponentially distributed
with parameter v (by Lemma 2.) It follows that

DT [eaWHTenv =u] < E[e*¥]

which is finite (uniformly in s, s’ and u) if @ <. By Lemma 5 there exists

a 0 > 0 such that

E(Aﬂr)[eﬂTenv] < 0

and therefore the result follows with o = min(3,v) O.
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7.2.2 Finite ¢ moments

Now we weaken the conditions a bit and allow the failure rate (% (z) to
converge to zero, as x — 00. Then, due to Lemma 6, we can not hope for
exponential rate of convergence. However, under certain conditions, we can
establish finite @ moments of the coupling time 7', and hence that the rate
of convergence towards stationarity is of order t*.

In the standard renewal theory, an analogue result is obtained under the
conditions that the initial age distributions and the lifelength distribution
have finite a—moments. If F' is the lifelength distribution and G, is the
stationary initial age distribution, one have to require that mqy1(F) < 00
to ensure that mq(Gs) < oo holds, i.e., one moment is "lost’ in the stationary
initial distribution. (REF?)

In the case with a random environment, it is quite intuitive that some
analogue conditions on the distributions F() i € S, is needed. The natural
condition

Mat1(FO) < o

turns out to be sufficient, due to Lemma 7. That certainly implies that the
stationary initial age distribution has finite « moment, due to Theorem 4.

Lemma 7 Let o > 0 and let F be a DFR distribution on [0,00) with failure
rate r, and suppose that F(0) = 0. If uy < oo then limy ooz - 7(2) > a.

Proof. The Lemma is a special case of Theorem 6.2. in [2]. [

Theorem 9 Let o > 1. Suppose that V is an RPRE processes within
the DFR class, with initial distribution (H,)), and that my(H) < oo. If
Mar1(F©) < 0o then

PN (6V €)—P(V €-)[[=0(t™)
holds, where V' is the stationary version of V.

Proof of Theorem 9. As mentioned above, mq1(F()) < 0o implies that the
distribution G given by

dGy(z) = X1 — FO(z))dz

has a finite & moment. G, is the age distribution for a stationary standard
renewal process with lifelength distribution F(9). Now, use Lemma 4 to see
that mq(H') < mq(Gs) < 0o, where H' is the initial age distribution of V.
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Once again we consider the coupling carried out in the proof of Theorem
6. Let F; ; denote the distribution of T, when Zy =i and Zj = j. Then

Eox,mo[T"] = Eoxn Ewa) | (Tenw + W) [ Tend] |
< C- E()\ ) [ env T E(H,H’) [ we ||Tenv] ]
= C- E()\ ) [ env] +C- ]E()\,ﬂ) [E(H,H’) [ we ||Tem) ] ]

for some constant C > 0. (REFERERA TILL Lp olikheten?) The first term
in the last expression is finite, since F;; has finite exponential moments,
and hence has finite a—moments of all orders. When trying to estimate the
second term we use the same idea as in the proof of Theorem 6. We want
to stochastically dominate the overshoot W in some useful way. We saw in
the proof of Theorem 6 that given that Ti,, = u and that the initial ages
are s, s', the smallest possible failure rate for (W||s,s’,u) is

(quz,’+ac) (.T)

max(s,s’)+u

for > 0, the failure rate if no renewals occur in [0, u]. (Recall that (Z”, Z')
is a coupling of (Z, Z") and that Z]' = Z] for all ¢t > Tey,). Now, for a > 0,

let W, be a random variable independent of W, and distributed according
(0)

to Fé ) i.e., with failure rate function r4 ' (z) for z > 0. Certainly

oy 1@ 2 10y (@)

max(s, s’)+u = "st+s'tu
holds and therefore
D
(WHS,S’,’U,) < Ws—l—s’—l—ua

by Lemma 1. We get

E()‘ ™) E(HH' [ ||T67w] ] =
/s/s'/E(s i) [ W | Tenw = u] dFy,j (u)dH (s)dH' (s') Nir;

1,J€S

/S/S /E & oy dF; (u)dH (s)dH' (s")\im;

JES

Denote the right-hand tripple integral with I; ;, for later purposes. Now,
use Lemma, 7 to see that

lim z -9 (z) > (@ + 1),

T—00
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i.e., that there exists a zy > 0 such that

a+1
T

r(0) (z) >

for all z > zo (since 7(O)(-) is decreasing). We split I; ; into two terms,

denoted with IZ-(E-) and Ii(?j) respectively:

To To To o
L= [ [ [ BIWa ) R di ()dH ()
s=0Js'=0 Ju=0

00 o0 00
T BIWE ] dF ) dH (A ().
s=xo Js'=xo Ju=zo

It should be quite obvious that Ii(,? is finite; under the restriction s+s'+u <
3xy we observe that

EWs s o] < BWg,| = EWG|[Wo > 320].
Since mq11(F®) < 0o holds, we see that

E[Wg”WG > 3150] ]P(W() > 3150) < E[WOaHW() > 3.T0] ]P(W() > 3$0)
+ E[Woa||W0 < 3:80] ]P(W() < 3£L‘())

= E[W{] < oo.
Since P(Wo > 3z¢) > 0, we conclude that E[WS ;. ] < co and that IZ-(;-) <

0.
Too see that Ii(?j) < 00, observe that under the restriction s+s'+u > 3xzg

it holds that
a+1

, > ot
Potstu(®) 2 o imm

for all z > 0. Therefore

z 1
/ Ldt
t—0 S+ +u+t
s+s+tutz
s+s'+u

T
Ropoyu(z) = / Tsts'4u(t)dl

= (a+1)-log( )
yielding
s+s+u )a—I—l

67R3+s’+u(w) < (—
T s+stutz
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We use that in the next estimation.
o0
EWl ol = 0‘/_0 $a_1P(Ws+s'+u > z)dx
o
= OA/ xa_le_Rs+s’+u(w)d$
=0

o0 !
< a/ xafl( s—l—,s +u )a+1dx
=0 S+s t+u+«x

00 a—1 !
B , o z* s+ +u)
= olststu) /zzo (s + s +u+z)rtl

The integral in the last expression is uniformly bounded in s,s’ and u; to
see that, first rewrite it as

o ga—le
| s,
x=0 (C + :E)a+1
where ¢ = s + s’ + u. Then, the variable substitution z = ¢ - z gives
o0 a—1 o0 a—1
/ e .o c-/ (c2)* ¢ dz
e=0 (c+ z)ot! 2=0 (¢ + cz)ot!
00 Zafl
= ———dz = C < o0,
/z:O (14 z)ot! ? >

for some constant C' > 0. Therefore
(2) * o o ! a - 1ot
L7 < Ca(s+ s +u)* dF; j(u)dH (s)dH'(s')
s=xg J s'=xzo Ju=xo

which is finite by the assumptions.

7.3 The IFR case

In this section we prove that IFR processes have exponential rate of con-
vergence towards stationarity. The proof is uses a method found in [6], p
30 — 31.

Theorem 10 Suppose that V is an RPRE process within the IFR class,
with initial distribution (H, \), and suppose that V' is a stationary version
of V. Then, there exists a > 0 such that

I P (B €) —P(V' € ) || = o).



7.3 The IFR case 47

Proof. Denote the stationary initial distribution by (H', 7). We prove that
the coupling time T defined in Section 6.3 has exponential moment, i.e.,
that there exists a > 0 such that

Em),(mle®T ] < 00,

Then, the theorem follows from (6) in Section 2.
Recall the definitions of the sequences (Ix)$°, (Jx)° and (v)$°. Let

UO = JO - Tem}

and
Uk =Jp — Jp1

for k > 1. With 7 = min{k : v, = 1} we get

00
T < Tenw +Up + Z Ui - ]1{7'21'}-
i=1

With E[-] as a shorthand for Ey ) (a/ ) [], we have
E[e*"] = lim E[e“(Tenv U0+, Ui'l{rzn)]
n—oo

for & > 0. Denote that right-hand expectation with I (n) and notice that
Ln) = B[00
n—1 . .
+ 2 ]E[ea(Te"”J'_UO) (ea ZZ:: Uil{r>iy _ oo Y, Ui']l{fzi}) ]
7=0
n—1
— E[ea(Tenv+Uo)] + Z IQ(])
j=0
using the convention 3%, (-) = 0.) We may estimate I5(j) by
i=1
. G+
Ip(j) < E[(ea(Teano)ea Yty ). 1{T21‘+1}]

E[€4a(Tenv+Uo)] L/4 ]E[e4a i Ui] 1/4]13 (r>j+1)Y?

IN

where the last inequality is due to Schwarz’ Inequality. Hence

Ble?!] < B[ ealTentlo)]

n—1

1/4 j+1 1/4

. 40(Teny+Uo) YT U - 1/2

+n1l1)1010 EOE[G 0] ]E[e =1 ] P(r>j5+1)7".
]:
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1
We need now some estimates. We start with E[e*® 2 Yi]. Define
Fo=0(V,,V,,0<t < Jp)
and
fi:U(V;,V; ,OStSJi),

for 4 > 1. The o—field F; contains all information concerning the point
processes under the j first coupling attempts. The variables Uy, Uy, ... ,U;
is F;—measurable, and therefore

B[ XL V] = E[B[eXi V5] ]
— E[ (640425:1 Ui) i E[e4an+1||fj] ]
= BT ) Ble e 41, 4,2, ] |

When trying to establish an upper bound for E[e*Ui+1|| Af}j,A{,j,Z 7; 1, we
notice that

Ujt1 = Jiv1 = Jj = (Jjt1 = Lipa) + (s = J).

Define A; = max(Af}j,Af]j), the maximal age at J;. Furthermore, let W
and W' be independent random variables, independent of the RPRE pro-
cesses considered, and with common distribution function F(®). The random
variable (I;41 — J;) has a failure rate

(Zs;+2)
T 4; (z)
for x > 0, obviousy satisfying

Z) 1
P (@) 2 1O (a)

for all £ > 0. Therefore
D
(Ljit1— Jj) <W

by Lemma 1 in Section 2. A similar argument applied on (Jj4+1—Ij41) shows
that

D !
Jj41 = L1 < W
holds, and therefore
D
Uyl F5) <W + W'
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holds, giving the following estimation:
E[e4an+l | A{}j’ IJj’ZJj ] < E[e4a(W+W ) ] < E[e4aW ]2

due to the independence of W and W'. Due to Lemma 3 in Section 2, there
exists finite constants £, > 0 and A > 0 and a random variable X such that

D
W<th+X

where X 2 Exp()), and therefore we have

E[e4aW ]2 < E[e4a(t,\+X) ]2

< eBata ]E[e4°‘X]2.

Denote the last expression with K(«), and observe that it is finite for suffi-
ciently small o > 0. By conditioning recursively on F;_1,F;_o,... ,Fp and
reasoning as above, we realize that

E[ et X% V] < K ()it
The estimation of E[e*Terv+U0)] is straigthforward. Denote the initial dis-
tribution of N’ with H'.

Ble T 0] = B g ¢ B [ e || Teny | |

IN

|
= ]E()\,W) [e4a TenvE(H,H') [ ]E(H,H’) [e4aU0 H ATenv 3 ATenU ] || Tenw ] ]
E(um) [e4a Tenv ]E[e 4a(t/\+X)]]

< K(a)]E(,\,ﬂ-) [64aTe"”]

We proved in Section 6.3 that the number of required coupling attempts is
dominated by a Geo(vy)-distribution. Therefore P(r > i) < (1 —v)*~!. To
sum up, we have

E[eaT] < E[ea(Tenu-l-Uo)] +

n-1 1/4 i1, 1/4
; 40(Tenv +U0) dad 1T U : 1/2
+ lim O:E[ea O] B[t 2ic V] TP (r >+ 1)
]:

K(a)Uth/4 (1 —~)i/?

gk L8

< K(a) ]E(/\m) [e4aTenv] + K(a) ]E(/\ﬂf) [e4aTenU]
J

< (K () (1—)"""

< K(a)Eyn [e4aTenv] + K(a)> B m [e4aTem]

7=0
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To see that there exists a > 0 such that the right hand expression is finite,
first observe that by Lemma 5 there exists 8 > 0 such that E, [etaTenv] <
oo for all 0 < a < (. Since K(a) N\, 1 when a \, 0, we can choose a > 0
such that a < § and such that

Ka)(l1—v)<1

and the result follows. O
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8 Blackwell’s theorem in a random environment

Let || v || g denote the total variation norm of v restricted to B, where v € N

and B € B(R;).

The basic result in classical renewal theory is Blackwell’s Theorem, which
states that

E[N([t,t+A])] > A-X  ast—oo (20)

for all A > 0, where N is a (possible delayed) renewal process with nonlattice

lifelength distribution F, and with A = 1/u, where 1 = E[Y]] and Y} 2F.
Under a stronger condition, we have

||9tM—)\-f||[0,A]—)0 as t — o0 (21)

where M is the expectation measure giving mass E[N(B)] to B € B(R;),
and £ is the Lebesgue measure.

We prove similar results for RPRE processes, using proof techniques and
results taken from [8], in particular from the section 1.6 concerning regen-
erative random measures. The notation M for the expectation measure of
an RPRE process V = (N, Z) will be used. In this section we say that a
coupling of two RPRE processes exists, if a coupling exists in the sense of
(2) in Section 2.5.

Theorem 11 Let V = (N,Z) and V' = (N',Z") be RPRE process of the
same type, such that a successful coupling exists, with coupling time T'. Then

||9tM —OtM' “[O,A] —0 ast— oo,
for some finite constant C > 0 and for all A > 0. If E[T] < oo then

|0: M — 6, M'|| -0 ast— co

Proof: The essential parts of the proof can be found in [8]. Fix a constant

A >0 and let B € B([0,A]). Observe that N(t + B) - I(T < t) 2 N'(¢t +
B)-I(T <t). Hence

|E[N(t+B)]-B[N'(t+B)] | =
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|E[N(t+B)-I(T > )] - B[N'(t + B) - I(T > 1)]| <

[E[(N(t+B)+N'(t+B)) - I(T > )] | <

2-sup E (g ) [N([0,A4])]-P(T > 1)
H,\

where the supremum is taken over all possible initial age- and environment-
state distributions. But

sup I (g5 [N([0,4])] < sgpIEH[N([O,A])]

’

= Eo[N([0,4])] < 0

where N is a standard renewal process with lifelength distribution F =
FM) | the distribution associated to the environment state M as before.
(The inequality can be proved by a coupling argument using Poisson em-
bedding, and the finiteness of the right-hand expectation should be obvious.)
This yields

16, M — 60, M'|[[g,a) <2-C-P(T' > 1) =0,

as t — 0o, since 7' < 0o a.s. Now, suppose that E[T"] < co. Then

(4]
16:M =6, M joa7 < D 16140 M = Orin M [|[o 11
n=0
[A]
< 2-CY P(T>t+n)
n=0
which gives
10; M -6, M'|| = Jim |0 M — 6; M |j0,4] <
—00

= 2.C) P(T>t+n)

n=0

o
< 2-CZ]P(T>n)—>Oast—>oo
n=[t]

since Y o0 P(T > n) < 0. O

In order to see that random environment versions of (21) holds, we once
again use theory for regenerative processes. As before, for an RPRE process
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V = (N, Z), denote the embedded regenerative process with X; = (A4y, Z;),
the embedded renewal process with (7,)52, and the cycle length distribution
with F. If we let

VO =(N° 2% = (1,N, 01, 7)

so that the embedded regenerative process is zero-delayed, the following
holds:

Proposition 5 If V' = (N',Z') is a stationary version of V, then
MI =C- €+
where ¢, the equilibrium intensity, is given by

c= ﬁE[/OTO N[t + 1)dt]

Proof. A proof is given in [8]. O
By using our rate results from Section 7 we come to the following conclusions.

Corollary 4 If V = (N, Z) is within the IFR class, then there exists an
o > 0 such that

|0 M —c1- 4] = o(e_"‘t). (22)

IfV = (N, Z) is within the DFR class such that ma1(F(©)) < oo holds for
an o > 1, then

16: M —cz-£]| = ot~ (D), (23)

and if FO) has ezponential moments then
16: M —c3- £]| = o(e™*) (24)
for some a > 0. The constants c1,co and c3 is determined by Proposition 5.

Proof. Once again, the essential steps in the proof is taken from [8]. Under
the assumptions, E[T] < oo holds, proved in Section 7. The proof of the
second statement in Theorem 11 reveals that

0o
||9tM_9tMI|| <2.C Z ]P(T>n)
n=[t]

To estimate the rate of convergence towards zero of the last term, we use
the following result. Suppose that g(-) is a non-negative function with an
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increasing derivative, and that E[g(7") | < oco. Then E[g(T+2)] < oo holds,
which is equivalent to

/Ooog'(a:)IP(T >z —2)dr < 0

by Fubini’s Theorem. Hence

o0

gt) > P(T>n) < / P(T > z — 2)dx
n=[t]

< / §@)P(T >z — 2)dz — 0

as t — oo, i.e.,

> 1
P(T > n)
Z[:t (g’(t)

).

To see that (22) holds, let g(z) = e*® and recall Theorem 10 where expo-
nential moments of 7" in the IFR case is proved. The statement (24) follows

in the same way from Theorem 8 and (23) follows from Theorem 9 with
g(z) =z* 0O

Remark 1 Theorem (11) implies of course a RPRE wversion of (20), i.e.,
that B[N ([t,t + a])] — ¢ a when t — co.
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9 Simulations

In this section we describe two techniques which enable us to perform exact
simulations of RPRE processes with unbounded failure rates. Furthermore,
we present some simulations. As before we concentrate ourselves to the IFR
and DFR case, though the case with general failure rates should cause no
further complications. (?)

9.1 Exact simulations in the IFR case

Consider first the case when the failure rates are bounded by a constant
C > 0. A simulation is then straightforward; it is only to implement the
Poisson embedding technique described in Section 2. As well known, one can
simulate a two dimensional Poisson process £ in [0, t] x [0, C] with expectation
measure £ by first simulating a one-dimensional Poisson process on [0, t]
with intensity C' (with points at Sy, S1,... , Sk, for some K > 0) and then
assigning to each point S,, a random variable I,, uniformly distributed on
[0,C]. The I, variables must of course be independent of the Sy,’s. Then

is the desired two dimensional Poisson process.

Now, suppose that at least one of the failure rates are unbounded. Then
the method described above has to be modified, since if one of the lifelengths
survives sufficiently long, its failure rate will exceed C' and causes an error.
Even though such a simulation probably can be done good enough for the
most practical purposes, it is not an exact simulation. One way of handle
this problem is to successively ’enlarge’ the state space of ¢ until the failure
rate ’collapses’, i.e., until we encounter a Poisson point under the failure
rate. This can be carried out step by step, with the state space enlarged in
each step until the failure rate collapses. The number of required steps is
dominated by a geometrically distributed random variable.

To be more exact, pick a number ¢ satisfying 0 < ¢ < 1, and let W,
denote a random variable distributed according to Féo). We want to simulate
a lifelength Y with initial age a, in the random environment Z. Define

zq = inf{z > 0; R (z) > log(1/q) }, (25)
and let

Co = riM)(z,). (26)
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Then ©
P(W, > z,) = e Fa (@) < g,
The lifelenght Y has failure rate rézx)(x) for z > 0, which certainly satisfies

r(z) < r{#)(z) < rM(z) as.

a

for all z > 0, and hence
P(Y > z,) <P(W,>z,) <gq.

We use the Poisson embedding algorithm described above, using a two-
dimensional Poisson process in [0,z,] x [0,C;]. Two things can happen.
Either we encounter a point (S, I,) in [0, z,] X [0, C,] such that

I, < ri#s0)(s,)

and hence Yy < z,. Then we are finished. Or the lifelength survives the
first z, time units, forcing us to take measures if we want to avoid an error.
With a new initial age b = a + z, in the definitions (25) and (26) above, we
get zp and C satisfying

Ca < Cb

and
P(Y > zq + 2||Y > z,) < P(W), > 2p) < g.

We continue the embedding, now using a Poisson process in (x4, 4 + p] X
[0, Cp), i.e., we use now an ’enlarged’ Poisson process. Once again, the failure
rate will collapse in (4,2, + xp] with a probability at least ¢, and if not,
continue as described above until it happens.

After this procedure, the next lifelength can be generated in the same
way; then, in the first step, we use 2y and Cj defined as in (25) and (26)
with initial age 0, and a Poisson process in (Y, Y + zg] x [0, Co].

The following simulations are done with this algorithm, implemented in
Matlab.
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9.2 Exact simulations in the DFR case

We saw that when the failure rates are increasing and bounded, we still can
implement the Poisson embedding algorithm. That is not possible in the
case with unbounded decreasing failure rates. To overcome this problem
simulations can be made by using the distributions F© ... F(M),

We want to simulate a lifelength Y with no initial age, in the environment
Z starting with Zy = 1, say. The problem is to handle the possible singularity
of 7)(x) at z = 0. Since Z is a birth and death process, we know that the
times between jumps are exponentially distributed. Therefore, we can first
simulate an exponential holding time 79, the time until the next environment
change. Then we use the distribution function

FO(z) =1— ¢ RY@

together with some standard algorithm to generate an observation Wi on
FO)_ If Wy < 1o then we are finished: let

Y =np.

Otherwise, we have two choices. Either we simulate the next environment
state, j say, a new holding time 7; and an observation W5 of the distribution
F,Sg). We let

Y =no+ W

if Wo < m1, and if not, we continue with the next holding time and so on.
Our other choice is to continue with Poisson embedding in the usual way
since all the failure rates are bounded from 7y and onwards. (But then, if we
want to generate another lifelength after Y, we must of course once again
handle the singularities by repeating the method above.)

Below we present some simulations. Here we have used the straightfor-
ward simulation technique since we only simulated RPRE processes with
bounded failure rates. The programs are written in Matlab.
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10 Some comments

We have so far investigated aspects like asymptotics, stochastic domination
and stochastic monotonicity, under (for us) suitable model assumptions.
There are however other aspects and problems not mentioned in this paper.
Furthermore, the model has (of course) limitations, which raise the question
of possible generalizations of the model. These aspects are briefly discussed
in the following.

We have chosen to work entirely with a random enviroment on a finite
state space S, a model assumption keeping certain technicalities on a mod-
erate level. Obvious extentions would be to have a infinite S state space,
countable or uncountable.

One other aspect is the following. Suppose that we model the failure
process of a certain component of a machine with a RPRE process. Given
that a component has survived s time-units (at time ty say), its failure
intensity is determined by s and the random enviroment state Z;,, but it will
be totally independent of {Z;; (typ —s) <t < to}. Whether that component
was exposed for the worst or the best possible enviroment state under its
first s time-units is irrelevant, i.e., the model exhibits no wear.
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Figure 3: A Matlab simulation of a three state RPRE process within the IFR
class. The failure rates: 70 (z) = 0.01-23, rM)(z) = -2® and r® (z) = 50-2°,
for x > 0. The initial age was 0, and Zy = 2, the birth intensities: (2,1,0);
the death intensities: (0,1,2).
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Figure 4: The construction in the proof of Theorem 1 renders N < N' a.s.
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Figure 5: The alternating structure in the IFR case, which gives Ny < J\}é
for allt > 0 a.s.

o 0.5 1 1.5 2
The expectation function E[N_]

Figure 6: A Matlab simulation of m(t), when N is zero-delayed, with a
two state environment process starting with Zy = 1. The birth and death
intensities are By = 1,081 = 0,00 = 0 and d1 = 1, and the associated failure
rates are (0 (z) = 0.01- (142)~" and rM(z) = 10- (142)%° for allz > 0.
The simulation is the average of 10000 realizations of Ny, for 0 <t < 3.
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The expectation function E[N_]

Figure 7: A Matlab simulation of m(t), when N is zero-delayed, with a
two state environment process starting with Zyg = 0. The birth and death
intensities are By = 0.125,6; = 0,69 = 0 and 61 = 8, and the associated
failure rates are r(9)(z) = 1 and v (z) = 1000 for all z > 0. The simulation
is the average of 1000 realizations of Ny, for 0 <t < 3.
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Figure 8: The embedded regenerative process X = (A, Z) and the embedded
renewal process (T5,)22,.
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Figure 10: The coupling (N*, N**) of (N', N").
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Figure 12: Coupling in the IFR case.
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Figure 13: A ezxact Matlab simulation of a three state RPRE process of
IFR type. The failure rates were 0 (z) = % szt r(D(z) = 522, and
rD(z) =100 - 23, and Zy = 1.
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Figure 14: A two state RPRE process. The failure rates were r0(z) =
% cxtl, v (z) =528, The initial age was 2.5, and Zy = 1.
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Figure 15: A three state RPRE process of DFR type. The failure rates were

rO(z) = 1+wa rD(z) = H%, and r? = 11+—0w. The initial age was 0, and
Zo = 2.
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Figure 17: A Coz process. The failure rates were 79 (z) = 0.1, rM(z) = 1.1,
and 12 = 2.1. The initial age was 0, and Zy = 0, the birth intensities was
(0.1,0.05,0) and the death intensities (0,0.05,0.1)



