Abstract

Let R be the ring of integers in a totally real algebraic number field K
and let f(x1,x92,x3) be a totally definite ternary quadratic form with
coefficients in R. The purpose of this paper is to study representations
of the elements in R by f. We prove a quantitative formula relating the
number of representations of N € R by different classes in the genus of
f to the class number of R[v/—N]. We use this formula when the class
number is one. In particular, we give an algebraic proof of a classical
result of H. Maass on representations by sums of three squares over
the integers in Q[v/5], and moreover, we obtain an explicit dependence
between the number of representations and the class numbers of the
corresponding biquadratic fields.
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0 Introduction

Let f(x1, 29, 23) = 22 + 22 +22. Let N € Z be a square-free positive integer
such that N # 1,3 and let S = Z[\/—N]. Gauss proved that the number of
solutions (z1, Zo, 73) € Z3 to the equation f(zi,Ts,13) = N is

12h(S) for N =1,2 (mod 4),
ri(N) = 8h(S) for N =3 (mod 8),
0 for N =7 (mod 8),

where h(S) denotes the class number of S. In 1940 it was shown by Hans
Maass that every totally positive number N € R = Z[HQ—\/F’] can be repre-
sented by f, where z1, x5, 23 € R (see [13]). One of the results of the present
paper is an algebraic proof of this. Moreover, we prove that there is always
a primitive representation of N by f (see Thm. 6.2). Furthermore, using a
result on the stability of embedding numbers, given in Section 5, we find that
the number of primitive representations of a totally positive N € R, denoted
by r$(N), is given by

where S = R[v/—N]| and v; = 12,24, 32,96 or 384.

In this paper, we shall discuss similar results for representations of integers
by totally definite ternary quadratic forms with integer coefficients in totally
real algebraic number fields.

More generally, let R be a principal ideal domain and let K denote its quo-
tient field. Let A be a quaternion algebra over K, i.e. a central simple
K-algebra of dimension four, and let A denote an R-order in A. In Section
3, we prove that one can always find a free R-lattice L = Re; + Res + Res
and a ternary quadratic form q(zie; + x2e9 + z3e3) = Y a;ir;r; such that
A = Cy(L, q), where Cy(L, q) denotes the even Clifford algebra. In Section 4,
we show that there is a one-to-one correspondence between similarity classes
of R-lattices with non-degenerate ternary quadratic forms and isomorphism
classes of quaternion orders over R. The similarity class of (L, ¢) corresponds
to the isomorphism class of Cy(L, ¢). This is useful when we examine repre-



sentations of totally positive algebraic integers by ternary quadratic forms.

Assume K to be an algebraic number field. Given a totally positive definite
ternary quadratic form, we can construct an R-order A in a quaternion alge-
bra over K, such that the representations of a totally positive integer N € R
by f are in one-to-one correspondence with the solutions to z2 = —¢;N in
A, where ¢y € R is a totally positive constant. Hence the representations are
in one-to-one correspondence with the embeddings of S = R[\/—c;N] in A.
We will also find that the primitive solutions to f(z1,x2,23) = N correspond
to optimal embeddings of S in A. Furthermore, with this construction the
classes of quadratic forms in the genus of f correspond to the classes of orders
in the genus of A (see Section 4 for further details).

In [4], it was proved that

t

D " H(Aea (S, A) = h(S)eya)(S, A),

i=1

where ¢ is the type number of A, S is a maximal commutative suborder of
A, ex«(S,A) denotes the number of A* orbits on the set of embeddings of
S in A, H(A;) is the number of A;-isomorphism classes of two-sided locally
free A;-ideals modulo principal two-sided A;-ideals. h(S) denotes the class
number of S and ey(a)(S, A) =], e(S’p, f\p), where p # 0 are the prime ideals
in R and e(S,, A,) denotes the number of optimal embeddings of S, in A,.
Using this and the relation between ternary quadratic forms and quaternion
orders described above, we prove the equality

sz _
Z |Aut+ 5AZ |S*/R* (S)ev(a) (S, A),

where fi = f,..., f; represent the classes in the genus of f, Aut™(f;) de-
notes the group of integral automorphisms of f; with determinant 1 and
71, (N) denotes the number of representations of N by f;. A is the order
corresponding to f according to the results described above, d, is a fac-
tor independent of N and the sum is taken over all R-orders S such that



R[\/—c;N] C S C K(y/—c¢fN) and S is a maximal commutative suborder
of A (see Thm. 4.12).

Since the primitive solutions correspond to optimal embeddings of § =
R[\/—c;N] in A;, we get the equality

G 1
3 ey~ 50

(see Section 4). This gives a generalization of the results for K = Q and
R =7Zin [4].

Let a ternary quadratic form f be such that the corresponding quaternion
order Ay has a Gorenstein clousure G(Ay), which is a Bass order. In Section
5, we will examine the stability of embedding numbers when K = Q(v/d),
d # 1 (mod 8) and d > 0 is a square-free rational integer such that the ring of
integers R in K is a principal ideal domain. We find that for ¢; N = N;Ng, a
totally positive number in R with N; square-free and N1, Ny € R, there exist
positive rational integers My and M; such that the values of eys f)(S, Ay),
where S = R[\/—c;N], are determined by Ny, modulo M, and N; modulo
M. This was proved for K = Q in Sec. 3 in [6].

Section 1 contains a short introduction to the well-known theory of lattices
and orders. In Section 2 we will use ideéles to obtain some auxiliary results
concerning class numbers and type numbers.



1 Lattices and orders

We shall start by describing some of the well-known theory of lattices and
orders, which will be needed later on. Almost all propositions and theorems
in this Section will be stated without proofs but we will often indicate where
a proof can be found.

Let R be a Dedekind ring and denote by K its quotient field. Let V' be
a vector space over K of dimension n, 0 < n < oco. An R-lattice on V is
a finitely generated R-module L such that KL = V. Since an R-lattice is
torsion-free, it is R-projective (see [14], Thm. 1.13).

1.1. Definition. Let L and L' be R-lattices on V. The index [L' : L] is the
fractional ideal of R generated by the determinants of all linear transforma-
tions ¢ : V. — V such that ¢(L') C L.

In the following proposition, we state some of the properties of the index.

1.2. Proposition.

a) Let L = Re;+---+Re, and L' = Re, +---+Re,. Then [L : L] = (dety),
where p(e;) = ¢; fori=1,...,n.

b)[L': L], = [L;g : Ly] for each prime ideal p in R, where Ry, is the localization
of R with respect to the prime ideal p and L, = R, ®g L, L; = R, ®r L' are
considered as Ry-lattices on V.

¢) [L": L'[L' : L]=[L": L] for any R-lattices L,L'|L" on V.
d)IfLCL,then L' : L] =R if and only if L' = L.

1.3. Definition. Letb: V xV — K be a non-degenerate symmetric bilinear
form and let L be an R-lattice on' V. We define L* = {x € V : b(z, L) C R}.

1.4. Proposition. L# is an R-lattice on V. If L = Re; + - -+ + Re,, then
L#* = Rf, + -+ + Rf,, where fi,..., fn is the dual basis of e, ..., e, with
respect to b, i.e. b(e;, fi) =1 and b(e;, f;) =0 fori # j.

Proof. 1t is clear that L# is an R-module. Assume that L = Re; + -+ +
Re,,, then V = Ke; + --- 4+ Ke, We have an isomorphism ¢ : V — V* =



Homg(V, K) given by ¢(x) = b(z,-), since b is non-degenerate. Let g;, i =
1,...,n, be the basis of V* such that g;(e;) = d;;. Denote by fi,..., f, the
elements of V' such that ¢(f;) = g;. Then o(f;)(e;) = d;; that is, b(fi, e;) =
51']'- Let z € L#. Then z = Z?:l szz and b(w,ei) =k € R, so L# C
Rf1 + -+ an But b(fz',Ej) = 6z’j; SO Rf1 + -0+ an - L#. Thus
L#¥ = Rf, +---+ Rf,. For an arbitrary R-lattice L, we may choose a
basis for V' which is contained in L (since KL = V). Denote this basis by
ei,...,en. Using the above, we see that L* C Rf; +---+ Rf, = N. Denote
by ai,...,am a set of generators of L. We have b(e;,a;) = kij € K and
it is possible to choose r € R such that r # 0 and rk;; € R, i = 1,...,n,
j=1,...,m. Then M = Rre,+---+Rre, is an R-lattice such that M C L¥.
We have M CL#¥C Nand V = KM C KL#¥ C KN =V, thus KL#¥ = V.
Moreover L* is finitely generated, since N is finitely generated and R is
noetherian. 0

1.5. Definition. The index [L* : L] is called the discriminant of L and will
be denoted by D(L).

1.6. Proposition.

a) If L = Rey + - -+ + Rey, then D(L) = (det[b(e;, €;)]).
b) D(L) =[L' : L>D(L’) for any R-lattices L,L" on V.
¢)IfLCL and D(L') = D(L), then L' = L.

The proposition follows easily from Prop. 1.2 and 1.4.

Let V= Ke; +---+ Ke, and let ¢ : V — V be a linear map such that
o(e;) = Z?Zl a;je;. Then the characteristic polynomial of ¢ over K is defined
to be P,(x) = det(z1, — [a;j]), where I,, is the identity matrix of rank n.
Let Py(z) = 2" —=Tr(p)z™ *+---+(=1)"Nr(p). The coefficients Tr(¢) and
Nr(p) are called the trace and the norm of . Notice that

Tr(p+4) =Tr(e)+Tr(y)
and

Nr(p) = Nr(p)Nr(y).

The minimum polynomial of ¢ over K is the polynomial m,,(z) € K[z] of the
least possible degree such that m,(¢) = 0. By the Cayley-Hamilton theorem
P,(¢) =0, so my,|P,.



Let A be a finite dimensional algebra over K. Then we have a linear mapping
fa: A— A for every a € A defined by f,(z) = ax.

1.7. Definition. The characteristic polynomial and the minimum polyno-
mial of f, over K are called the characteristic polynomial and the minimum
polynomial of a over K and will be denoted by P, and m,. The norm and
the trace of f, will be denoted by N7a/k(a) and Tryk(a).

For the remaining part of this Section, we assume that the finite dimensional
K-algebra A is central and simple with dimxgA = n?. By Wedderburn’s
theorem there exists a skew-field D such that A = M, (D). There exists a
maximal subfield F C D, such that E is a finite separable extension field of
K which splits A (see [17], §7b). This means that there is an isomorphism,
which we denote by h, of F-algebras such that

E @k A M,(E).

1.8. Definition. For a € A we define its reduced characteristic polynomial,
denoted by pa,a/k, as the characteristic polynomial of h(1 ® a).

The reduced characteristic polynomial is independent of the choice of the
splitting field F and the E-isomorphism A, see [17], p. 113.

1.9. Definition. If p, a/k(z) = 2" — tra/x(a)z™ ' + - - + (=1)" nra/x(a),
then tra sk 1s called the reduced trace and nry i is called the reduced norm.

The following proposition will be useful later on (for a proof see [17], Thm.
9.9).

1.10. Proposition. Let A be a central simple algebra and define 1 : A X
A — K, by ¥(a,b) = trajx(ab). Then v is a non-degenerate symmetric
bilinear form.

1.11. Theorem (Skolem-Noether). Let K C B C A, where B is a sim-
ple subring of the central simple K-algebra A. Then every K-isomorphism ¢
of B onto a sub-algebra B of A extends to an inner automorphism of A, that
is, there exists an invertible element a € A such that p(b) = aba™!, b € B.



For a proof see [17], Thm. 7.21.

1.12. Definition. A subring A of A containing R, which is finitely gen-
erated and projective as an R-module and such that KA = A is called an
R-order.

Let L be an arbitrary R-lattice on A and let
O(L)={a€ A:aL C L},
O,(L)={a€ A:La C L}.

Then Oy(L) and O, (L) are R-orders in R, see [17], p. 109.

1.13. Proposition. Fvery element of an R-order A is integral over R. Fur-
thermore, the minimum polynomial and the characteristic polynomial of any
a € A belong to R[z].

For a proof see [17], Thm. 8.6.

1.14. Definition. Let A be an R-order in A. The discriminant of A 1is
D(A) = [A# : A], where A* = {z € A:trax(zA) C R}.

Since A C A#, we have D(A) C R. An R-order A is called maximal if there
are no other R-orders A’ such that A ¢ A" C A. Every R-order in the central
simple K-algebra A is contained in a maximal one. If R is a discrete valuation
ring, then all maximal R-orders A in A are isomorphic and furthermore, the
left A-ideals I in A are principal, that is, I = Aa where a € A*. For proofs
of these facts see [17], Chap. 10 and 18.

A proof of the following proposition can be found in [17], Cor. 11.2 and Cor.
11.6.

1.15. Proposition. The following conditions are equivalent:
a) An R-order A in A is mazimal;
b) Every localization A, is mazimal as an R,-order in Ay,

¢) Every completion A, = R, ®g A is mazimal as an Ry-order in A, =



2 Ideles, class numbers and type numbers

In this Section, we will use ideles to obtain some auxiliary results concern-
ing class numbers and type numbers for orders in finite dimensional central
simple algebras.

We assume, as before, that R is a Dedekind ring. Its quotient field is denoted
by K and assumed to be an algebraic number field. We let A denote a
finite dimensional central simple K-algebra. An infinite prime of K is an
equivalence class of archimedian valuations on K. These primes arise from
embeddings of K in R or in C. The finite primes of K are the equivalence
classes of non-archimedian valuations on K, we always exclude the trivial
valuation. The finite primes originate from the prime ideals p of R. They
are also called the p-adic valuations.

2.1. Definition. Let A be an R-order in A and I a left A-ideal. The ideal
class [I] consists of all left A-ideals that are isomorphic to I as A-modules. T
is called locally free if for each prime ideal p in R the completion fp s a free
Ap—ideal, that 1s, fp = Apap, where oy € A;

We will only consider A-ideals I such that KI = A. A proof of the following
Theorem can be found in [17], Thm. 26.4.

2.2. Theorem (Jordan-Zassenhaus). Let R be a Dedekind ring such that
its quotient field K is global. Then for each R-order A in a semi-simple
K-algebra A, and for each positive integer t there are only finitely many
1somorphism classes of left A-lattices of R-rank at most t.

We observe that the number of classes of locally free left A-ideals for a central
simple K-algebra A over a global field K is finite by Thm. 2.2. The set of
isomorphism classes of locally free, (left), A-ideals is denoted by CI/(A).
Observe that C1/(A) need not be a group. The cardinality of C1/(A) will be
denoted by hy.

Remark. Let I and I denote left A-ideals in the same ideal class. Then
there is an isomorphism of A-modules, ¢ : I' — I where p(\i') = Ap(i') for
A€ A. We may extend o to A = KI = KI, ¢ : A — A, since for an
element € A we can choose 7 # 0, 7 € R such that 7z € I and define
¢ (z) = r~'p(rz). This definition is independent of our choice of 7. We have

8



© (A\) = A¢p'(1) = Aa for some a € A*. For z € A we now choose r # 0 such
that rz € I N A, this is possible since KA = A. We get ¢ (z) = ra. Hence
I and I are in the same ideal class if and only if there is an element o € A*
such that ' = I.

2.3. Definition. Two R-orders A and A’ in a K-algebra A are of the same
type if they are R-isomorphic. A and A" are in the same genus of R-orders if
for each prime ideal p in R the completions A, = Ry ® A and A; =R,®A
are Rp—isomorphic. We shall denote the number of types of orders in the
genus of A by t4.

2.4. Definition. For an R-order A in the K-algebra A, H(A) denotes the
group of locally-free two-sided A-ideals modulo the principal two-sided ideals.
The order of H(A) will be denoted by H(A).

We shall denote by (ay), or (o) a vector such that o, € A; for each p €
Spec(R), p # 0.

2.5. Definition. Let A be an R-order in A. J(A) = {(ap) : 0y € fl; and

ap € A; for almost all p € Spec(R)} with the operation (oy)(By) = (0pf3,) is
called the idele group of A.

J (A) does not depend on the choice of A, since for another R-order Ain A
we have A, = A;, for almost all p.

There is a local-global correspondence according to the following proposition,
(see [19], Chap. III, Prop. 5.1):

2.6. Proposition. Let L be an R-lattice on A. For every p # 0, let L,
be a lattice on A, such that Ly = Ly, for almost all p. Then there exists a
unique lattice L' in A such that IA/,, = L, for allp. In fact, this is a bijection
between lattices on A and {(Ly)p : Ly a lattice on A, and Ly = L, for

almost all p}.
Let NA)={ae J(A):ahat = A} and let U(A) = {(ap) € T(4) : o €
Az}



2.7. Proposition. Let A denote an R-order in A. Then there is a bijective
correspondence between

a) the locally free left A-ideals in A and the elements of U(A)\T (A).

b) the isomorphism classes of locally free left A-ideals in A and the elements
of U(AM\JT (A)/A*.
¢) the locally free two-sided A-ideals in A and the elements of U(A)\N (A).

d) the isomorphism classes of locally free two-sided A-ideals in A and the

elements of U(A)\N(A)/(A* NN (A)).
e) the types of the orders in the genus of A and the elements of N (A)\ T (A)/A*.

Proof. a) Using the local-global correspondence we have a bijection where a
locally free left A-ideal I such that Ip = Apap corresponds to o = (o). We
also observe that a, € A* and oy € A* for almost all p, so o € J(A). For
B =(B) € TJ(A), we deﬁne AB=AN(N Apﬂp) =NAn Apﬂp) AB will
then denote the uniqely determined locally free left A-ideal that corresponds
to ApB,. Since Aye,B, = Ayf,, for all ¢, € A*, we have a bijection between
the ideals and the elements of U (A)\J (A).

b) Let I and I’ belong to the same ideal class. Then there is an o € A*
such that A,,oz a = Apozp and we find that q,apoa = oy, for some ¢, € A*

Hence, we have a bijection between the ideal classes and the elements of
UN\T (4)/4"

c) Let I denote a locally free two-sided A-ideal. Then I, = Ayap = apA, for
all p so a = (o) € N(A) and the two-sided locally free A-ideals correspond
bijectively to the elements of U (A)\N(A) .

d) Now we let T and I' denote two locally free two-sided A-ideals in the same
ideal class. We have I' = I, where oo € A*, and Apa = Apapa for all p.
Then o, = e, and we know that oy, €, o € N'(A,) so o € N(A,) for all
p. But then o € N (A) N A* and we have a bijection between the elements of
H(A) and the elements of U(A)\N(A)/(N(A) N A*).

e) Let I; and I; represent two different ideal classes such that O,(I;) = A; =
Aj = O,(1). Then there is an element o € A” such that A; = ad;o~ L. We
havelEAZp—(’)( p) SO

(*) Iy = Iiphyy = Tyl jpa !



Since I;, = Ay, we have O,(I;;) = aj’plApajp = Aj,. Substituting this into
(%), we get

Ly = Lo, Tiyo ' = Ao, Apajpa™
We also have

13 1 A -1 _ A
Qip ULy, Apajpa ozip = azpozA O Lo, p = ajplipag, = Ay,

S0
Lip = AyByapa ™,
where f, = azaa;, € N(A,) for all p.

Hence (f,) € N(A) and both I; and I; can be represented by elements in
N (A)ajA*. Using the following lemma, we are done.
]

2.8. Lemma. The type number ty for an R-order A in A is given by the
number of non-isomorphic orders among O,(I), ..., O.(Iy), where I, ..., I
represent the classes of locally free left A-ideals.

Proof. Let I =2 I, for some k. Then there exists an element o € A* such
that I = Iya. Hence O,(I) = a7 'O, (Ix)a and O, (1) = O,(I}).

Let A" be an R-order in the genus of A. Then, for every p € SpecR, p # 0,
there exists oy € A* such that A = ozp Apap Since A = A for almost all

p, we can choose (ap) e J(A). Then I' =N(An Apozp) will be a locally free
left A-ideal with O,(I') = A’

We also need to know that all O,(/;), i = 1,..., h, belong to the same genus.
Let A; = O,(I;) and A; = O,(I;). Then I;, = A,,ozZp and IJ = Apajy so

O, (Lip) = ai}lApaip = aiiplajpor(jjp)(ai;lajp)il
and ozi_plajp € fl;. Hence A;, and Aj, are isomorphic for all p € SpecR, p # 0,

that is, A; and A; belong to the same genus. O
2.9. Proposition. Let Ay, ..., A;, where t = ty, denote the non-isomorphic
orders among O.(I;), i = 1,..., h, where I, ..., I, represent the locally free

left A-ideal classes and h = hy. Then

11



h= i: H(A).

Proof. We know that J(A) = U,_ ;N (A)a;A*, so

NMN\T(A)/AT = Ui N (A)\W (M) AT /A"

We also observe that N (A;) = a;lN(A)ozj and U(Aj) = a;ll/{(A)aj. Then
N(A)a;A* = ajN(Aj)A* and

UMV (M) AT /AT = [U(M)\N(A)/ (A" NN (A))] = H(A).

12



3 Even Clifford algebras and quaternion
orders
In this Section, we shall see that for an R-order A in a quaternion K-algebra,

one can always find an R-lattice L and a ternary quadratic form ¢ such that
the even Clifford algebra Cy(L, q) is isomorphic to A.

Let R be a principal ideal domain with quotient field K. If L is a free
R-lattice with basis ey, ..., e, and ¢ is a quadratic form,

n
qg:L— R, q(xle1 +-- 4 xnen) = Z (i T X,
2,j=1

then the Clifford algebra, which we denote by C(L,q) or C(q), is T(L)/T
where 7 (L) is the tensor algebra of L and T is the ideal in 7 (L) generated
by x ® x — q(z) for z € L. The even Clifford algebra is defined to be

Co(L,q) =To(L)/T

where To(L) = @ T®?"(L) is the even part of the tensor algebra of L. We
will denote the images of x and x ® y in C(L, ¢) by x and xy. We then have

22 =¢q(zx), z€ L

and

zy+yz=(z+y)’ —2° -y’ =qlz+y) —q(z) —qy).
We find that
(3.1) el = a; and eiej +eje; = a;; when i # j.

It is clear that the elements 1,¢;, ...e; , where £ < n and i; < i, for j < m,
generate C(L,q) as an R-module and it is not difficult to show that these el-
ements are linearly independent over R. The R-algebra Cy(L, q) is generated
by 1 and the images of €;, ® - - - ® e;,, € T¥*"(L), r > 0.

Let ¢ be a ternary quadratic form and ey, ey, e3 an R-basis for L. Then we
know that Cy(L,q) is generated by 1, F; = ese3, Ey = eze; and Ej3 = ejes.
Using 3.1, we get

13



(3.2) E} = ajxE; — ajjag
(3.3) EiE; = aip By + agp By + asp Bz — apaj

(3.4) EiE; = ag(ai; — Ej)

where 1, 7, k is an even permutation of 1, 2, 3.

3.5. Definition. Let f(21,22,%3) = > icjc30ijTi%T = q(z1€1 + Toez +
xses). The matrix

2011 aiz a13
Mf = a2 2&22 a93
a13 Qo3  2as3

is called the matriz of f and d(f) = %deth s called the discriminant of f.
Notice that

2 2 2
d(f) = 4a;11a92a33 + A12013093 — A11093 — Q22013 — (33019

so d(f) € R when a;; € R.

3.6. Definition. A gquaternion K-algebra A is a central simple algebra of
dimension four over the field K.

If char(K) # 2 one can show that A has a K-basis 1,1, j, k, where i* = q,
j*=0b,ij= —ji=k and a,b € K*. For a proof see [16], p. 236.

3.7. Definition. Let K be an algebraic number field. A quaternion K-
algebra A is called totally definite if every infinite prime B of K is ramified
in A, that is, Ay = H for each such B, where H denotes the Hamiltonian

quaternions over the real field Kgp.

14



For an R-order A in a quaternion algebra it can be checked that D(A) = a?

for some ideal a in R (see [1], p. 21).

3.8. Definition. For an R-order A the reduced discriminant d(A) is defined
as the square-root of D(A), where D(A) is defined according to Def. 1.14.

In the following propositions, we gather some information which we will need
later on.

3.9. Proposition. Let q(z1e; + z9e9 + x3€3) = > i<i<j<s QigTiTy, aij € R,
Then -

a) Co(L,q) = R+ RE, + REs + RE;5, where E1,E,, E3 satisfy the equalities
3.2, 3.3 and 3.4, is an R-order.

b) If q is non-degenerate, then Cy(L,q) ®r K is a quaternion K -algebra.

¢) The function x «— T, where © = xo+x1E1+x9Es+13F3, o, L1, T2, 23 € K
and T = xo + x1(ags — E1) + x2(a13 — F2) + x3(a1o — E3) is an antiinvolution
on Co(L,q)@rK such that tr(z) = x+7Z is the reduced trace and nr(z) = =%
15 the reduced norm of x.

Proof. a) Obviously Cy(L,q) is a finitely generated ring containing R. It is
not difficult to check that 1, Ey, Es, F5 is an R-basis for Cy(L,q) and that
K ® Cy(L,q) is an K-algebra. For a proof of b) see [12], Chap. IV, Prop.
3.2.4, Chap. III Thm. 5.1.1 and Lemma 5.1.3. ¢) Let A = Co(L,q) ®r K
and z = xg + o1 E1 + 29 FE5 + x3FE3. Then T = ¢ + 21093 + Toa13 + T3a12 —
xlEl—.TgEg—xgEg,$+f€Kand$f€K. O

3.10. Proposition. Let
f(.’L‘l, Zg, .’E3) = Z aijxixj = q(.’L'1€1 —+ xo€9 + CL'3€3).

1<i<5<3

Then the discriminant of Co(L,q) = Co(f) is D(Co(f)) = (d(f))%.
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Proof. Let A = Cy(L,q) = R+ RE; + RE> + RE3, with multiplication as in
3.2, 3.3 and 3.4. Using Prop. 3.9 ¢), we have

tT(EZ) = ajk,
tr(E;7) = a3, — a0k,
t’f'(EZE]) = tT(EJEZ) = aijakk,

and a straightforward calculation will give the result.

Hence (d(f)) is the reduced discriminant of A = Cy(f).

3.11. Proposition. Let A be a quaternion K-algebra and A an R-order in
A with reduced discriminant d(A) = (dp), da € R. Let

Ay={r e A:tr(z) =0}
and
A* ={x € A:tr(zA) C R}.

Then L = A# N Ay is an R-lattice on Ay and
q(z1fi + mafo + 23 f3) = danr(z1f1 + 22 fo + 23f3),

where f1, f2, f3 1s an R-basis for L and nr = nr 4k denotes the reduced norm,
is a ternary quadratic form such that A = Cy(L, q).

Proof. We follow the proof of Prop. 3.2 in [1]. Every R-lattice in A is free
since R is a principal ideal domain. Let A = R + Re; + Res + Res. Then
A* = Rfy + Rfi + Rfy + Rfs, where fo, f1, fa, f3 is the basis for A over K
dual to 1, ey, €5, e3 with respect to the reduced trace form. Since tr(f;) = 0,
fori=1,2,3, we get Ay = K f; + K fs + K f3. Hence

L=AyNA*=Rfi + Rfo + Rfs
and

nr(rofy + rafo + rsfs) = nr(fu)rf + nr(fo)rs + nr(fs)r — tr(fufo)rire—
tT‘(fgfl)Tgrl — tr(f2f3)7“2r3.
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One can easily check that

(a) fifi = tr(fififo) +tr(fifafs)ex,

(b) ex = tr(fifofs) ' (fif; — tr(fififo)),

where (i, 7, k) is an even permutation of (1,2, 3).

We know that the element d = tr((e1e2 — exe1)€3) generates the ideal d(A),
where z +— Z is as in Prop. 3.9.c) (see [1] Lemma(1.1)). Using (b), we
get d = —tr(fifofs) L. Let dy = tr(fifofs) ! and denote by N(A#) the
ideal generated by all norms nr()\), where A € A#. Then N(A#)d(A) C R
(see [1], p. 21) , and N(A#)"*A#A# is an R-order (see [11] Thm. 6). Since
d(A)A#A# C N(A#)~'A#A# the products dy f; f; are integral over R. Using
this fact and (a), we get, datr(fif;jfo) € R. Hence

A =R+ Rdpfifo+ Rdpfsfi + Rdpfofs.

Observe that all products da f;f;, where 4,5 € {0,1,2,3}, are in A. This
follows from the equalities

&= fo—nr(fy), ff=—nr(f;) for i =1,2,3

and

3
fifi =Y tr(fififa)en with e = 1.
n=0
Let E; = df;fx, where (i,4,k) is an even permutation of (1,2,3). Choose
a basis of Cy(L,dpnr) according to Prop. 3.9.a). Denote this basis by
1, Ey, Ey, E3. 1t is now easy to check that F; — —FE; defines an isomor-
phism. O
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4 Representations by ternary quadratic forms

If f is a positive definite ternary quadratic form over Z, Aut™(f) the group of
integral automorphisms of f with determinant 1, rf(N) the number of inte-
gral representations of a positive integer N by f and f; = f,..., f; represent
all classes in the genus of f, then

AGE
Z | Aut*( fz

can be expressed as a product of h(Z[\/—c;N]) for an integer ¢; > 0, de-
pending only on the genus of f, and some locally computable factors. This
result was obtained in [4] applying a combinatorial class number formula to
quaternion orders. Using the same approach and some results from [4], we
will now give a generalization.

Let R be a principal ideal domain such that K, its quotient field, is a totally
real algebraic number field. A number a € K is called totally positive if for all
embeddings i : K — R we have i(a) > 0. We will denote this by a > 0. Let
f : R* = R be a totally positive definite quadratic form. We let Aut™(f)
denote the group of integral automorphisms of f with determinant 1 and
r;(IN) the number of integral representations of N by f, where N € R is a
totally positive integer. It can be checked, without difficulty, that |Aut™(f)]
is finite for a totally positive definite quadratic form f.

4.1. Definition. Two quadratic forms f and g in R[z:,...,z,] are equiva-
lent over R if there is a linear mapping ¢(x;) = ) a;;x;, where a;; € R, such
that det[a;;] € R* and f(p(21),...,¢(zn)) = g(21,...,2,). The quadratic
forms f and g are in the same genus if they are equivalent over Rp for each
prime tdeal p # 0 in R.

The following proposition is a generalization of Prop. 3.2 in [4]. It describes
a relation between representations of integers by ternary quadratic forms and
solutions to quadratic equations in quaternion orders.

4.2. Proposition. Let f be a totally positive definite ternary quadratic form.
There is an R-order A in a quaternion algebra A over K and a totally positive
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constant ¢y € R, such that the integral representations of N € R, N > 0, by
[ are in one-to-one correspondence with the solutions X € A to x> = —c¢;N.

Proof. Let
_ 2 2 2
f(x1, 22, x3) = a112] + a0ex5 + a33x3 + a12T1T9 + 137123 + Ao3T2T3

where a;; € R. Let V = Ke; + Key + Kes, q(zg’zl zie;) = f(z1,x9,23) and
T(z,y) =q(x+vy)—q(zr) —q(y). Let L = Re; + Rey + Rez and Ty, = T|.
Recall that

2a11 a2 a13
Mf = a2 2a22 a93
a13 Qg3 2as3

Since ¢ is non-degenerate over K, we have det(M;) # 0. Let

Y11 Y12 Y13
Mt =1 Mo 722 73
Y13 Y23 Y33

and L#¥ = {v € V : T(v,L) C R}. We then have the dual basis f; =
Y15€1 + Yoj€2 + y3jes such that T'(e;, fi) = 1 and T'(e;, f;) = 0 for ¢ # j and
L#* = Rf| + Rfs + Rf3 by Prop. 1.4. We observe that

T(fis f3) = vii» T(fis f5) = 5

and

q(@ifr +zofo +23f3) =

1
5(’)’1136% + 72236% + 733$§) + Y12T1T9 + V137123 + Y23T2X3.

Let I be the R-ideal such that I = {c € R : ¢T'(L*,L*) C 2R}. Let c
be a generator of this ideal. We may choose ¢y = %ﬁ, where () is the
greatest common divisor of the elements in the adjoint matrix of M;. Let
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cy = ﬁ?’w) and A = Cy(L#,coq). We find that ¢; € R. Since cyq is non-

degenerate K ® A = A is a quaternion algebra, by Prop. 3.9 b), so A is a
quaternion order. We have A = R+ RE; + RE, + RE; with E; = f; f and

1
(a) E} = co(vjuBi — ZCO’ij’Ykk)a
1
(b) EiEj = Scovr(corij — Er),
1
(C) E]EZ = CO(f)/ikEi -+ f}/jkEj -+ §7kkEk — Co’yik’}/jk),

where 4, j, k is an even permutation of 1,2,3. Let A € A, A = rq +rE1 +
roFy + rgF5. Then

2
C
(*) A =rf— 20(7“3722733 + 31733 + T3v117e)+
, 1 1 1
00(7“17'2(5’)/12733 — Y13723) + 7“17“3(5722’)/13 — Y12723) + 7“27“3(5’)/11’)/23 — Y12M13))+

(270 + co(r1723 + ro1s + T3712) ) (11 By + 12 Eo + 13 E3).

If N = f(ri,r2,73), we let 7o = —S(r17v23 + 72713 + r3712). This is an
element in R, since c¢yy;; € 2R for all ,j. With this choice of rj, we have
A = —¢;f(r1,79,73) and we can choose 71 = 21, r9 = T3 and r3 = z3. Then

the element A € A is such that A> = —¢;N.

Assume now that we have A € A such that A? = —¢;N, N > 0. We observe,
using (%), that 0 = 27 + ¢o(r1723 + r2713 + r3712)- Substituting ry in (%) we
get A* = —c; f(r1,r2,73) Le. f(r1,r,73) = N.

U

4.3. Definition. Two quadratic R-lattices (L,q) and (L',q) are similar,
(L,q) ~ (L',q), if and only if there is an R-linear mapping ¢ : L — L,
(L) = L' and an element ¢ € R* such that q (p(z)) = cq(z) for all x € L.
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We need the following fact about a correspondence between similarity classes
of quadratic lattices and isomorphism classes of quaternion orders.

4.4. Proposition. There is a one-to-one correspondence between similarity
classes of quadratic R-lattices (L,q), where q is a ternary non-degenerate
form, and isomorphism classes of quaternion orders over R.

Proof. Let 7 be a mapping from similarity classes of lattices to isomorphism
classes of quaternion orders such that the similarity class of (L, ¢) is mapped
to the isomorphism class of A = Cy(L,q). This mapping is well-defined
since (L1,q1) ~ (L2,q2) means that there is an element ¢ € R* such that
(L1,eq1) = (La, g2) and it is easily seen from the definition of Cy(L,q) that
Co(L,q) =2 Co(L,eq) for any € € R*.

Let @ be the mapping from isomorphism classes of quaternion orders to
similarity classes of lattices such that ¢ maps the isomorphism class of A to
the similarity class of (L, q), where L and ¢ are found using Prop. 3.11. If
A=A let o: A — A" be an isomorphism. We can extend this isomorphism
to an automorphism of the quaternion algebra A, also denoted by (. This
automorphism is an inner automorphism by the Skolem-Noether theorem so
¢(z) = a'za for some o € A*. Using this we see that nr(z) = nr(e(z)),
tr(zy) = tr(p(zy)) and also that ¢ restricted to L is an isomorphism of L
and L'. We also know that d(A) = d(A'), since A = A', so dy = ed, for
some € € R*. Hence (L,q) ~ (L',q) and 1 is well-defined.

We know that Cy(¢»(A)) = A (by Prop. 3.11), so all we have to check is that

Let L = Re; + Res + Res and q(rie; + reey + r3es) = Z” a;;rirj. We then
have Cy(L,q) = A = R+ RE; + RE> + REj3, with the usual multiplication
rules. An easy calculation will show that Fi, F5, F5 in the dual basis are given
by

2
F; = M(aiiaﬂc + aijai — 20;E; — a;;Ej — aiEy).

We know that nr(riFy + roFy + r3F3) = 2?21 nr(F)r? — tr(FiFy)riry —
tr(F3Fy)rirs — tr(FyF3)rors, see the proof of Prop. 3.11. Calculating these
norms and traces, we get

nr(ri Fy 4 roFy + r3F3) = q(rie; + roes + r3es)

detM f
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and since detM; generates d(A), we have dy = sedetM; for some € € R*.
Thus, (Co(L,q)) = (L',q), where L' = RF, + RF, + RF; and ¢ (r F; +
Tl + 13F3) = eq(rie1 + raes + r3e3). Hence ¢(Co(L, g)) ~ (L, q).

U

Let L = Re; + Rey + Resz and let ¢ be a quadratic form defined on L. Define
by f(ri,me,m3) =Y. aijrir; = q(rie1 +raea+13e3) and let A = Co(L¥#, ¢oq),
with notations as in Prop. 4.2. Let 0 : L — L be R-linear, o(L) = L and
o such that g(o(l)) = ¢q(l) for some ¢ € R* and for all [ € L. Denote by
A the matrix representing o in the basis e, es, e5. We have A'M,A = cM,,
so (det(A))? = ¢3, which implies that ¢ = ¢® for some ¢ € R*. We can now
define oz : L — L, where oz(e;) = ec 'o(e;), € is 1 if det(A) > 0 and —1
otherwise. Let A be the matrix for o;. We have oz(L) = L, det(A) = 1 and
q(oz(1)) = q(1) for all [ € L. Using this we find that |Aut(A)| = |Aut™(f)|-
Also note that for f; in the genus of f, the determinants of My, and M; are
equal up to multiplication by a unit in R, moreover {1, and {1; are defined
up to multiplication by a unit, so ¢y, can be choosen equal to cy.

4.5. Lemma. Let (Li,q1) = (L,q),--., (L, q:) represent all classes in the
genus of (L,q). Then the orders Ay = A, ..., Ay, constructed as in the proof
of Prop. 4.2, represent all the classes in the genus of A.

Proof. The notations will be same as in the proof of Prop. 4.2. Since
(Li,q1) = (L,q), ..., (L, q) represent all classes in the genus of (L,q), we
know that (Lf&, Coq1), - - -, (Lf’b , coq) will represent all classes in the genus of
(L#,coq). Assume that A" and A = Cy(L#,coq) are in the same genus.
Then d(A) = d(A') and we may choose dy = d,. Using Prop. 3.11,
we have A" = Cy(L',q') and A = Cy(L",q"), where ¢ = dymra/x and
q” = danra k. Let qu and qu be matrices corresponding to the lattices
(L',q") and (L",q") respectively. We find that the determinants det(M, )
and det(M ) can only differ by the square of a unit in R*. This implies that
(L', q') and (L", q”) are in the same genus, so A’ is isomorphic to one of the

orders A;.
O

4.6. Definition. Let A be an R-order in the quaternion algebra A over K
and S an R-order in a commutative K-algebra B. An R-embedding ¢ : S —
A is called optimal if A/@(S) is R-projective.
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Let Sy = R[\/—cyN]|. Then the integral representations of N by f, where
N > 0 and f is as in Prop. 4.2, are in one-to-one correspondence with
all embeddings Sy — A. Notice that each embedding can be extended to
an optimal embedding of an R-order S such that Sy C S C K(y/—c¢fN).
We have 7¢(N) = > g e(S,A), where e(S, A) denotes the number of optimal
embeddings S — A.

A* acts on the set of embeddings ¢ : S — A by inner automorphisms, that
is, for a € A*, we define (a0 ¢)(s) = ap(s)a™!, s € S. The isotropy group
for ¢ consists of all elements o in A* such that oo ¢ = ¢, that is, those
elements o € A which commute with each element in ¢(S) i.e. the isotropy
group is K(S) N A*. Since ¢ is an optimal embedding K(S) N A* = S*
and the number of elements in each orbit of A* is [A* : S*]. Let ex«(S, A)
denote the number of A*-orbits on the set of embeddings of S in A. We know
that [A* : S*] < oo since [A* : R*] < oo, see [9], Satz 2. Thus, we have the
equality

47)  e(S,A) = [A": S*er- (S, A) = [A*/R* : S*/R*]en-(S, A)

Using 4.7 and the expression of 7y, by e(S, A;), we get

4s) Y -y e

AR o
%3 ey e 50

i=1 S
We will now see that the first factor in this expression does not depend on z.

4.9. Proposition. |Af/R*|/H(A;)|Aut(A;)| is the same for all .

Proof. Let Aut(A) = {0 = (0p)p: 0p(2) = ey, a = (ap), € J(A) and
op(Ap) = Ay}, where p € SpecR, p # 0, and J(A) is the idele group of A.
Denote 0 = [a]. Then [o] = [4] if and only if o', € K; (lo] = [0] &
oy ' Bpr = zay ' By, where x € A, & o, ' B, commutes with all elements of
A, & o' f, € K;) Let Aut*(A) be the subgroup of Aut(A) consisting of
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0 = [(ay)p] such that o, € A*. There is a surjective group homomorphism
¢ Aut(A)/ Aut*(A) — H(A) such that o = [«] is mapped onto the class of
Aca. The kernel of this homomorphism will be

Aut*(A)Aut(A) ., Aut(A)
Aut*(A)  Aut*(A)’
where Aut(A) is the automorphism group of A and Aut*(A) is the subgroup
induced by the elements of A*. Hence we get

(4.10) |Aut(A) [ Aut*(A)] = |Aut(A)/Aut*(A)| H(A).

Every automorphism of A can be extended to an automorphism of A, so we
know that this is an inner automorphism, (by the Skolem-Noether theorem),
given by an element o € A* and hence Aut*(A) = A*/R*. We also notice
that |Aut(A;)/Aut*(A;)| remains the same for all orders A; in the genus of
A. This observation concludes the proof. O

We also need the following proposition from [4], p. 204.

4.11. Proposition. Let A = A, ..., A; represent all the isomorphism classes
in the genus of A. If S is a mazrimal commutative suborder of A, then

t

> " H(Aiea: (S, Ay) = h(S)ev(a)(S, ),

i=1

where H(A;) is the two-sided class number of A;, h(S) is the locally free class
number of S and ey(a) (S, A) =TI, e(Sp, Ap), p € Spec(R), p # (0).

Interchanging the summation order in 4.8 and applying Prop. 4.9 and 4.11,
we get

4.12. Theorem. Let f be a totally positive definite ternary quadratic form
and A = Cyo(L#,coq) the quaternion order corresponding to f according to
Prop. 4.2. Let fi = f,..., f; represent the classes in the genus of f. Then
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sz
Z ‘Aut“L Z |S*/R* (A)(Sa A)

where 6\ = % and the sum is taken over all R-orders S such that

R[\/—c;N| C S C K(y/—¢sN) and S is a mazimal commutative suborder
of A.

We make the following observation.

4.13. Lemma. Let f be a totally positive definite ternary quadratic form
and let A be the quaternion order constructed as in the proof of Prop. 4.2.
Denote by r9(N) the number of primitive solutions to f(x1, s, z3) = N (that
is, solutions such that GCD(x1,zy,x3) = 1). The primitive solutions corre-
spond to optimal embeddings of S = R[\/—csN| in A.

Proof. Let A= R+ RE, + RE; + RE;. We have an embedding ¢ : § — A,
where ¢(y/—c;N) = A\, A2 = —¢;N and ¢(S) = R+ R\. R+ R\ C A
and R is PID, so there exists a basis, ag, a1, as,as, for A such that A =
Ray + Ra; + Ras + Ras and ¢(S) = Rdyag + Rdia,, where dy,d; € R and
d0|d1. Then

A/p(S) = R/(do) ® R/(d1) ® R?

so A/p(S) is R-projective if and only if do,d; € R*. Let f(ry,re,r3) = N
be a primitive solution, that is, GCD(ry,re,73) = 1. Using Prop. 4.2, we
get A = ro + r1E; + m2Fy + r3E3 such that A2 = —¢;N. We know that
1 = rydoag + rydia; and A = rydoag + r,dya;. Then dy|1, since dy|dy, so
do € R*. We also know that

roon no
;o ‘ =ryr; —ToT € R

We observe that Ary — 7y = (rgr; — ro7)diai. Then di|r, and d;|ry, since
GCD(ry,re,73) = 1, so d; divides the determinant and we find that d; € R*.
Hence the embedding of S in A is optimal. Now we assume that f(ry,re,r3) =
N is not primitive. Let d = GCD(r1,72,73). Then we know that d|r;,
i = 0,1,2,3, where r; denote the coefficients of A\ € A. But then ¢(S) =
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R+ RX C R+ R3, that is, (S) is not a maximal commutative subring of

A. Hence A/p(S) is not projective.
U

Using this lemma, we have a Corollary.

4.14. Corollary. With the same notations as in Prop. 4.12,

L0 (N :
Z % =0a |S*/R*|h(s)eU(A)(S, A),

where S = R[\/—c;N].
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5 Stability of the embedding numbers

In this Section, we will obtain a result concerning the stability of the embed-
ding numbers in a special case. This result will be needed later on when we
calculate the number of primitive representations of N € Z[HZ—‘/‘F’], N >0,
as a sum of three squares.

5.1. Lemma. Let K = Q(\/d) where d € Z, d > 0 and d is squarefree.
Denote by R the integers in K. Let S = R[\/—«a] where o € R, a« ¢ R* and
a> 0. Then S* = R*.

Proof. Let K' = K(y/—a) and denote by R the integers in K'. Then S C
R’ is a suborder and by Thm. 12.12 in [15], rank(S*) = rank(R*) and
|R*/S*| < co. Then |S*/R*| < oo since |R*/R*| < oo and furthermore,
S* is a fintely generated Z-module, so S* = T @ ZF, for some k, where T
denotes the torsion elements in S*. Using Dirichlet’s unit theorem, we have
R* 2 Wy xZ and R* = Wy x Z, where Wy and W, denote the sets of roots
of unity in R* and in R* respectively. R* C S* C R™*, so S* = Wy x Z. We
will now consider possible roots of unity in S. We know that Wy = {1, —1},
R=Z[Vdifd=2or3 (mod 4) and R = Z[*¥4] if d = 1 (mod 4). Let
en denote an n:th root of unity. Then the minimum polynomial m._ is of
degree ¢(n), where ¢ is the Euler function. In our case, ¢(n)|4, so the only
possibilities are n = 2,3,4,5,8,10,12. Observing how these roots of unity
are related to each other, we find that it is enough to check if any of the
following numbers

~1+iV3 V2+iv2 V5 —-1+ivV10+2V5

2 ’ 2 ’ 4 ’
is an element of S. This can be performed without difficulty and the result
is that none of these numbers belong to S, so Ws = {1, —1}. Now we let ¢
denote the fundamental unit in R and let € denote the fundamental unit in
S. We then have that (¢')¥ = ¢ for some k. Since e € Rand S = R+ Ry/—a,
weget e € R,s0¢ =e¢. O

i

5.2. Definition. An R-order A is called left hereditary if every left ideal of
A is a projective A-module.
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Remark. An R-order A in a quaternion algebra A is hereditary if and only
if d(A) is square-free (see [2] Prop. 1.2).

5.3. Definition. An R-order A is called Gorenstein if A* is projective as a
left A-module. A is a Bass order if each R-order A', in A, containing A is
Gorenstein.

Given an R-order A, we use Prop. 3.11 to find a ternary quadratic form
f(x1,22,23) = > a;;jx;z; such that A = Cy(f). A is a Gorenstein order if
and only if the greatest common divisor for the a;;’s is equal to 1 (see [1]
Thm. 3.4).

A is a Bass order if and only if each completion Ap is a Bass order for every
prime p in R (see [7] p. 778). We also recall that an R-order A in a quaternion
algebra is a Bass order if the reduced discriminant d(A) is cube-free according
to Cor. 1.6 in [2].

For a quaternion order A there is a Gorenstein order G(A) containing A such
that A = R+b(A)G(A), where b(A) is an R-ideal. G(A) and b(A) are unique
(see Prop. 1.4 in [2]).

Let f be a totally positive definite ternary quadratic form, such that G(Ay)
is a Bass order, where Ay is the order corresponding to f according to Prop.
4.2. We then have the following generalization of Thm. 3.4 in [6].

5.4. Theorem. Let K = Q(\/a), where d is a positive squarefree rational
integer, d Z 1 (mod 8), such that the ring of integers in K, denoted by R, is
a principal ideal domain. Let

as in Cor. 4.14, where T%(N) denotes the number of primitive representations

of N by fi, S = R[\/—csN] and

. |A*/ R¥| A
" = Dy s L1 4
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Then there is a positive rational integer My such that v has the following
property: Let ¢;N = NZN; and ch' = N(')QNi be two totally positive non-
units in R, where No,Nl,N('),Ni € R and Ny, N, are squarefree, such that
for all p|d(Af) we have

!

(5.5) vp(No) = vp(Ny) or min(v,(Np), vp(N ) > v, (M)
(5.6) Nlpfvp(Nl) = N:,[p_’l)p(N;) (mod vap(2)+1)
(5.7) N; = N, (mod 16)

Then v(N) = v(N') and furthermore, one may choose My = da,, where
d(Af) = (da,)- vy denotes the p-adic valuation.

Proof. Let L = K(y/—¢;N) = K(v/—N,) and L' = K(/—N}). If ¢;N ¢
R*, then |S*/R*| =1 and the factor
A"/ R
|Aut(A)[H(A)[S*/Rr|

is independent of V.

A

According to Prop. 2.4 and 2.5 in [6], we have e(S,, A,) = e ;,f\,,) if the
discriminants

(*) A(Ly/Ky) = A(Ly/Ky) (mod pitivto))

and the conductors

(%) fo = f;, (mod pi®),
where §(L,, ﬁ;) = 20, (2) + 1+ min(v,(A(Ly/Ky)), v (A ;/f{p))) and i(p) is

a given rational non-negative integer such that i(p) < v,(d(Ay)). Hence the
factor
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T4

p
depends on the conductor f and the relative discriminant A(L/K). Let R
denote the integers in L. R is a PID, so R = R+ Rw, for some w € R'. For
a suborder O C R', we have O = R + Raw for some a € R. Then f = q,
using the same notation for the generator and the ideal. Using the relation
D(0) = f2A(L/K), (where D(O) denotes the discriminant of the order O,
as before), and the fact that {1,1/—N;} is a basis for L over K, we find that
A(L/K) = —c*Ny and f = 2N, for some ¢ € R such that ¢[2. We use Thm.
1 in [18] and the classfication of possible cases given in [10] in Tables A-C to

see, that the factor ¢ of the relative discriminant will be the same for N; and
N, if Ny = N, (mod 16).

Assume that the prime p does not divide d(A) and let A denote a maximal
order in A such that A; C A. Then p does not divide d(A), so 4, = A® K,
is split, see Cor. 5.3 in [19]. Since p does not divide d(As) we also know
that Ay, is a maximal order and thereby hereditary, see Thm. 17.3 in [17].
According to Prop. 3.1.(b) in [5], we have e(S,, As,) = 1. Let plda,. Then
5.5, 5.6 and 5.7 will ensure that the conditions (*) and (*x) are satisfied.
Hence v(N) = y(N'). The choice My = dy, is possible since i(p) < vy(dy, ).

U

Remark. If we impose further conditions on N; and N, a similar Theorem
may still be true for d =1 (mod 8).

5.8. Corollary. The notations are as in Thm. 5.4. There exist positive
rational integers My and My such that the value of v(N) = ~v(No, N1) is
determined by the residues of Ny modulo My and N1 modulo M.

Proof. Let d; denote the product of all different primes p in R such that
p divides dj, but p does not divide 2. It follows from Thm. 5.4 that it is
possible to choose My = d(Ay) and M; = (4d;)?. O
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6 Examples and applications

As an application of the theory described in Section 4 and 5, we prove that
every totally positive number in R = Z[HQ—‘/E] has a primitive representation
as a sum of three squares and we calculate the number of primitive repre-
sentations. We will also demonstrate a different method to calculate the
number of primitive representations of totally positive integers in quadratic
real number fields K, by a quadratic form corresponding to a maximal order
A in a totally definite quaternion algebra over K, such that d(A) = R and
hy = 1.

We assume as before that R is a principal ideal domain such that its quotient
field K is a totally real algebraic number field. We now recall the definition
of the Eichler symbol:

6.1. Definition. Denote by J(A) the Jacobson radical of A. Then
ep(N) = =1 if A,/ J(A,) is a quadratic field extension of R,/m,
ep(A) =0 if Ap/J(Ay) = Ry /m,

ep(A) =1 if Ap/J(Ap) = Ry /m x Ry/m,

where m denotes the mazimal ideal in Rp.

Let f be a ternary quadratic form such that the even Clifford algebra Cy(f)
is isomorphic to A. If A, is not a maximal order in a matrix algebra over
K, then according to [3], (2.6), |ep,(A)| + 1 is equal to the rank of f modulo
p, and moreover, if e,(A) = 1, then f modulo p is a product of two different
linear factors and if e,(A) = —1, then f is irreducible modulo p.

Let K = Q(v/5), R = Z[*5] and let f : R® — R, f(21, %2, 73) = 23 +a3+13.
Denote by Ay the quaternion order Cy(L¥, coq) corresponding to f according
to Thm. 4.2 and denote by A the quaternion algebra K ® A;. We have
¢y = 1 and Ay = R+ RFE, + RE; + RE3, where E} = E7 = —1 and
E,E; = —E;E; = —Ej, where 1, j,k is an even permutation of 1,2,3. The
type number of Cy(f) = Ay is 1, since the type number of f is 1 (see [8] Satz
24). Since d(Ay) = 4 is cube-free, we know that Ay is a Bass order.

It was proved in [13] that every totally positive number N in R = Z[“’Q—‘/g]
can be represented as a sum of three squares. We will now give a proof of
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this, based on algebraic methods. Moreover, we will prove that there is a
primitive representation for every totally positive number.
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6.2. Theorem. Every totally positive number N in R = Z[1+2_\/5] can be
represented by f : R> — R, where

f(z1, 29, 23) = 23 + 23 + 23.

Moreover, there is always (z1,%o,73) € R® such that GCD(z1,xo,73) = 1
and f(z1,x9,23) = N.

Proof. Let A denote the order corresponding to f, described above, let N € R
be totally positive with N = N;NZ where Ny, N; € R and N; is square-
free. Let L = K(v/—Np). It can then be checked that the discriminant

A(L/K) = =Ny if =Ny =1, w+1 or (w+ 1) where w = Y% and
A(L/K) = —4N; otherwise. A is a totally definite quaternion algebra so it
ramifies at both infinte primes. We know that A ramifies at an even number
of primes and that the finite primes where A ramifies divide the reduced
discriminant of the maximal orders (see [19], Chap. II, Cor. 5.3 and Chap.
ITI, Thm. 3.1). Since dy = 4, we then know that A only ramifies at the
infinite primes. Furthermore, A, is not maximal, but Ap is maximal for all

primes p # 2 in R.

Using Lemma 4.13 and Cor. 4.14, all we need to show is that for a totally
positive integer N € R it is possible to embedd S = R[y/—N| as a maximal
commutative suborder of A, that is, ey(x)(S,A) # 0. We start by observing
that by Thm. 3.2. in [19], we have e(S,, A,) = 1, for all p # 2 and all orders

S in a commutative algebra of degree two over K, since A, is maximal.

The rank of f modulo 2 is 1, so ex(A) = 0. If 2 divides A(L/K), then

e(Sy, Ag) # 0, by 3.14 in [5] if S, is maximal in L, since L is ramified over
K, and by 3.17 in [5] if it is not maximal. If 2 does not divide A(L/K),
then the maximal order of L will be R[“+‘/—] where a = 1 for —N; =1,
a=w+1for =Ny = (w+1)*and a = (w+1)* for —N; =w+1. We have
S = R[y—N]. Hence, S, will not be maximal in L, so by 3.17 in [5], we
have e(S,, Ay) # 0. Hence eun) (S, A) # 0. O

To conclude the example we shall now calculate the number of primitive
representations. We have |Autt(f)| = 24. Using Cor. 5.8 we may choose
My = 4 and M; = 16. We also observe that for /N; not divisible by 2, M; =8
suffices (see Tables A-C in [10], Thm. 1 in [18] and Thm. 5.4). Choosing a
suitable limited set of numbers N to represent all congruence classes modulo
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My and M;, we compute h(R[v/—N]). We also compute the number of
primitive representations of N by f. ;From these results we deduce that the
only possible values for y(N) are %, 1, %,4 and 16. PARI-GP was used for
these computations. The values of 7}(N) for N = NgN; will be

( 384R(S) if Ny=0 (4) and N, = 3,2 +w,
3+ 3w (4),
96h(S) it No=0 (4) and N; # 3,2 + w,
3+3w (4),
or Ng=0 (2), Ng#Z0 (4) and Ny = 3,24 w,
343w (4),
32h(S) N, Z0 (2) and N, = 3,7,3 + 3w,
rHN) = 4 6+ w, 6 + 5w,
T+7w (8),
24h(S) i No=0 (2), NoZ0 (4) and N, 3,2 +w,
343w (4),
or Ng Z0 (2) and Vi =2+ w, 2+ bw,
3+ 4w,3+ Tw,

743w, 7+ 4w (8),

| 12A(S) otherwise,

where S = R[v/—N].

In the following example, we use a different method. We start with maximal
R-orders A in totally definite quaternion algebras over quadratic real number
fields Q(y/m) such that d(A) = R and hy = 1. There are only four such cases
and these are m = 2,5,13,17, see [19] p. 155. We will denote the maximal
orders by A™. We have A™ 2 Cy(f,,) with m and f,, as in the following
table.
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m fm

2| 22 + 22 + 22 + V21125 + 1123
5| 22+ 12+ 22 4wy +w T T3
13 | 222 + 222 + 22 + V132135 + 7173

17 | 622 + 323 + 23 + 2/ 172129 + 7123

We would now like to find the number of primitive representations of a totally
positive number N by f,,. We start with the following observation.

6.3. Lemma. Let A = Cy(f) be an R-order, in A, such that d(A) = R. Let
L = AN Ay and L# = A#* N Ay, with notations as in Prop. 3.11. Then

(Lynra/x) = (L#,nra k).

Proof. Let f(ri,re,73) =Y a;jrir; and let 1, By, Ey, E5 denote an R-basis for
A. We have A = Co(L#,nra/x) by Prop. 3.11. A# = {z € A: tr(zA) C R},
so A C A# and L C L#. We also know that L# = RF} + RF, + RF;, where
F;' = QA5 — Q3505 — QGMEZ — CLUE]' — a,-kEk (see Prop. 44), SO E € A for
i=1,2,3. Hence L# C L and (L, nra/x) = (L*,nra/x). O

For an element A € A/ we have A2 — tr(AA +nr(\) =0, so A2 = —nr())
for A € L = AN Ap. Using the condition tr(A) = 0 to substitute one of
the variables in the expression for nr(xzy + z1E1 + 22Fy + 13F3) we get a
ternary quadratic form f : R* — R. We then have a one-to-one correspon-
dence between representations of N by f and the solutions A € A to the
equation 22 = —N, that is, we have a one-to-one correspondence between
representations of N by f and the embeddings of Sy = R[v/—N] in A(™. We
observe that each embedding can be extended to an optimal embedding of
an R-order S, where Sy C S C K(v/—N), so 1;(N) =Y g e(S,A™). Using
(4.7), Prop. 4.11 and the fact that hym) = 1, we find that

O ) = IARTY o s (SA™).
S
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Since A is a maximal order and Ap is split for all finite primes p, we have
eam) (S, A(™)) =1 (see [5], Prop. 3.1 b)). Hence

(6.5 r(N) = (AR 3 % |

Using the lemma above and observing that Co(fm) = Co(L¥#,nra/x), by
Prop. 3.11, so 74(N) = 4, (N). Then we also know that 7}(N) = 7} (N).
We are interested in the number of primitive representations of a totally
positive integer N by f. We have to determine the maximal commutative
suborders S of A(™ and calculate %
will begin with the case m = 5.

to get an explicit formula. We

Calculating the norm of an element A\ = rq + r1 Ey + roEs + r3E5 in Cy(fs)
and using the condition tr(A) = 0, we get the quadratic form

f(z1, 9, 23) = 27 + 2w x5 + (7 — 4w)2s + (—3 + w)z 22—

2wz 113 + (10 — 6w)ToT3.

When we use the condition ¢r(\) = 0, we may choose to substitute a dif-
ferent variable (this would give us an equivalent form). We observe that if
f(r1,m2,73) = N, then A = r3+r E)+roFo+(—2r3w™ ' +w™2ry) E3 is such that
A2 = —N. Using this correspondence and assuming that we have a primitive
representation by f of N = NZN;, where Ny, N; € R and N; is square-free,
we find that S = R[NO@] if 2|GCD(ry,75), where a = 1,1+ w, (1 4+ w)?
for Ny = 3,2+ w,3 + 3w (mod 4) respectively, and S = R[\/—N]| otherwise.
Hence, for Ny = 3,2 + w,3 + 3w (mod 4), there will be contributions from
Sy = R[Ne**Y"] and Sy = R[v/—N]. In all other cases only Sy = R[v/—N]
will contribute.

To calculate |A"™*/R*|, we start by observing that nr(A\) > 0 for A € A™),
Hence, for A € A™* we have nr(\) = ¢2 € R*. It is then enough to find the
elements A € A(™ such that nr()\) = 1 and look at these modulo R*. We get
|AB)*/R*| = 60.

Calculations similar to those in the proof of Lemma 5.1 will give us the value
of |Sf/R*| for i =0, 1.
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The other cases have been calculated in the same way. For m = 2,13, [18]
was used to find relative integral bases. Our final results are given by the
formula

(6.6) ry(N) = [ATV/R ) |shf}g§*| |

and the following tables:
m=2

Then R = Z[/2]. We choose f (21, 2, 23) = 23+ 322+ 22+ 221,29 + 1125+
2v/2z523. The explicit correspondence between the solutions to f (1,29, 13) =
N and elements A € A® will be that A = ro + 7 E; — (2ro + \/§r3)E2 +r3ks
corresponds to f(ri,72,73) = N. We also have [A®*/R*| = 24. The summa-
tion in (6.6) should be done according to the following:

N; (mod 4) | Sum over a

3,1+2v2 | Sy = R[V—N]
S = R[NOH*://%M]
Sy = R[No2=21) 1 1 for Ny =3

14+ V2 for Ny =1+2V2

1,3+2v2 | Sy = R[V/—N]

S, = R[NOL\\//ENI]

otherwise So = R[v/—N]
The values of |S/R*| will be

3 if Ny=3 and Ny € R*
1 otherwise,

53/ = {
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4 if Ny=1 and Ny € R*

IS;/R*|=1¢ 2 if Ny=1 and Ny =2¢,¢ € R*
1 otherwise,
ol ) 2 ifNy=1 and Ny € R*
S5/ 1| = { 1 otherwise.
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m=>

Then R = Z[1*¥5] = Z[w]. We choose f (1,9, x3) = a3 + 2w a3 + (7 —
4w) 3+ (—3+w)z1 92— 2w 221 23+ (10—6w)z923. The explicit correspondence
will be that A = r3 + 7 E; + 19Ey + (—2r3w™" + w™?ry) E3 corresponds to
f(ri,ra,m3) = N. We have |A®*/R*| = 60 and the summation in (6.6)
should be done according to the following:

N; (mod 4) Sum over a

3,24+ w,3+ 3w | Sy = R[v/—N]
Sy = R[Ny*™ 21 | 1 for Ny =3
l+wfor Ny =2+ w
(1+w)?for Ny =3+ 3w

otherwise So = R[v/—N]
The values of |S;/R*| will be

5 fNy=2+w and Ny € R*
|S’1K/R*|: 3 if Ny =3 and Ny € R*
1 otherwise,

2 ifNy=1 and Ny€ R*
1 otherwise.

53/ = {
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m=13

Then R = Z[*YB]. We let pu = Y18, We choose f (1, za, 73) = 202+ Ta3+
173:% + 2v/13z129 + 112123 + 64/132925. The explicit correspondence will be
that A = 7 +71Fy — (2ry+/13r3) Ey + 73 F3 corresponds to f(r1,72,73) = N.
We have |[A(13)* /R*| = 6 and the summation in (6.6) should be done according
to the following:

N, (mod 4) | Sum over a

3,/1,,1—}‘3/1 S() :R[\/ —N]
S1 = R[Ne®"=MT | 1 for Ny = 3

1+ pfor Ny =p
ufor Ny =1+ 3u

otherwise So = R[vV/—N]

The values of |S;/R*| will be

% x| _ 3 lfN1:3 andNOER*
ST/ = { 1 otherwise,

/el ) 2 Ny =1 and Ny € R
S5/ 7| = { 1 otherwise.
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m=17

Then R = Z[2Y7]. We let v = Y17 p, = 1+ and py = —2 + . Then
pip2 = 2. We choosee f(z1,%9,23) = 32?7 + 2322 + 358232 + AIN1Tx 19 +
652123 + 44v/17x923. The explicit correspondence will be that A\ = ro +
rEy — 2(ry + V/17r3) Ey + r3F5 corresponds to f(ri,72,73) = N. We have
|A0D* /R*| = 4 and the summation in (6.6) should be done according to the

following:

N; (mod 4) Sum over

3 So = R[V—N]

Sl - R[NOHP%NI]
Sy = R[Ny "]
Sy = R[Ny

3+7,3+27,3+3y | So = R[V—N]
Sy = R[Ny "]

37,1+ 27,247 So = R[v/—N]
S1 = R[NoY =]

otherwise So = R[v/—N]
The values of |S/R*| will be

3 1fN1:3 andNOER*
1 otherwise,

53/ = {

S5/ R = |57/ R*| = 1.
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2 if Ny=1 and Ny € R*
1 otherwise.

53/ = {
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