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Abstract

In this thesis we consider two applications of Galton-Watson branch-
ing processes. The first application concerns the estimation of the
age of a disease-causing founder mutation of autosomal dominant in-
heritance. A Galton-Watson branching model is proposed, resulting
in an estimate of the mutation age. Also, the problem of combining
estimates based on several markers is discussed. Simulations illus-
trate the various methods and the mutation age estimate is applied
to real data. The subject of homozygosity mapping, a method using
differences in marker lengths to find the disease locus, is our second
application.

Keywords: Age estimation - Galton-Watson process - composite like-
lihood - homozygosity mapping - BRCA1
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CHAPTER 1

Introduction

One of the matters discussed in this work is the problem of estimating
the time since a disease-causing mutation arose in a population. The
model proposed for solving this problem is a multitype Galton-Watson
branching process, earlier described by (Pankratz, 1998).

We consider an autosomal dominant founder-mutation causing a
rare disease, and assume that the disease-gene location is known. In
Chapter 3, a Galton-Watson branching process model is constructed,
describing the evolution of some genetic marker in the disease-carriers
along the family tree. An estimate of the mutation age is derived using
the method of moments and, further, a couple of simulation examples
illustrate the method.

In the literature, other methods for estimating the age of a founder
mutation are proposed. One of them can be found in (Risch et al.,
1995). This method is based on the probability that a disease-mutation-
bearing chromosome does not carry a founder marker allele, the fre-
quency of that allele among normal individuals (p,;) and the recom-
bination frequency () between the marker and the disease locus. It is
used in several earlier age estimations in rare diseases among others in
Finnish populations (Moisio et al., 1996) and among Ashkenazi Jews
(Risch et al., 1995).

A model using haplotypes is introduced in Chapter 4, resulting
in formulas containing large matrices. As early as in the two-marker
case, the formulas become cumbersome. There seems to be no simple
formula describing the marker allele transitions among disease-carriers
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for ¢ generations. This method seems to be a dead end, but can be
used in various computational investigations.

The problem of combining several age estimates, one for each
marker, is mentioned. The simplest way of combining estimates, and
the one used in the simulation examples to follow, is to use the mean
estimate. It is also possible, and probably better, to use weights, ap-
propriately chosen. A simulation study is included to illustrate some
results.

Another way of finding a combined estimate using several markers
at the same time is the method of composite likelihood. The estimate
is obtained by adding log likelihood functions and finding the maxi-
mum. An example comparing the method of moments estimate and
the composite likelihood estimate is included. As is also the conclu-
sion in (Pankratz, 1998), this method does not yield great results in
estimating the age of a disease.

In chapter 5, data from a mammary cancer study, conducted in
the western part of Sweden, is analysed using the herein described
method.

Eighteen families with a specific cancer-causing mutation have
been collected and genotyped for thirteen polymorphic markers. The
haplotypes are found using the GENEHUNTER software. From family
data, 18 — 20 disease-allele carrying individuals are collected as a sam-
ple of the disease population, and 31 — 38 healthy relatives are used as
the normal population sample. The distances from the genetic link-
age map used in the study are translated to recombination frequencies
using the Haldane map function. Because of some constraints on our
estimate, all markers do not yield an estimate. The mean value of our
10 estimates results in an age estimate of 128 generations.

One simulation of 20 and another of 50 generations have been per-
formed, using marker distances and marker allele frequencies obtained
in family data. The resulting estimates were 72.1858 and 90.0115 gen-
erations respectively. Thus, the estimate obtained above is most likely
much larger than the true value.

In chapter 6, mutations are introduced in the earlier G-W model.
The microsatellite markers are assumed to follow the Stepwise Muta-
tion Model. Again a formula for the transitions of marker alleles in ¢
generations is deduced.

The concept of homozygosity mapping is then introduced, being



our second Galton-Watson application. Our goal here is to localise a
disease gene. Shortly described, homozygosity mapping works by us-
ing differences in marker allele lengths to compare normal and disease
populations to find the most probable location for the disease gene.
Again, we consider a disease caused by a founder mutation, but with
the distinction that we are dealing with a recessive disease. Thus, af-
fected individuals are carrying two disease alleles, inherited one from
each parent.

The concept used is that due to homozygosity by descent, in-
dividuals carrying the disease allele are homozygous in the area of
the chromosome surrounding the disease locus in much larger extent
than expected (cf. (Kruglyak et al., 1995) and (Lander and Botstein,
1987)).
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CHAPTER 2

Basic Genetics

Introduction

The genetic blueprint of every living organism is found in the nu-
cleotides, stacked in chromosomes which are gathered in the nucleus
of each cell as the entire genome of that organism. The nucleotides are
paired together, two by two, forming a string of nucleotides attached
to a singularly determined complementary string of nucleotides, build-
ing up the chromosome in the form of a ladder.

When an organism has one set of chromosomes, it is said to be a
haploid organism, and if it has two sets of chromosomes, i.e. pairs of
chromosomes, it is called diploid.

The process that produces gametes (a gamete is a haploid cell that
fuses with a corresponding haploid cell from the opposite sex to form a
new individual) is called meiosis (see Figure 2.1). During this process,
certain crossovers may occur, where the sister chromosomes exchange
parts. If an odd number of crossovers have occurred between two loci,
we call that a recombination event.

The chromosomes carry genetic information in the protein-coding
regions called the genes. Non-coding regions are not totally informa-
tion free, since certain polymorphic sequences can be used as genetic
markers. This matter is further explained in the next section. By
the term polymorphic, we mean that in the population, several phe-
notypic forms (alleles) exist at a certain site (locus). As guides to
the genome, genetic maps are constructed, containing markers and
distances. The unit used is mostly cM, where the distance of 1 ¢cM
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Diploid cell with a homolog pair
of sister chromatids. Only focusing
on one set of chromosomes.

Chiasma - the sister chromatids

exchange pieces. This is the
crossover event.

First meiotic cell division:
The sister chromatids split up
leaving one in each cell.

Second cell division:

© © © © Resulting in four haploid cells.
One of these will, together with
a similarly created haploid cell,
form a new individual.

Figure 2.1: Simplified scheme over the meiosis

between two loci corresponds to the recombination probability be-
tween them of 0.01 (i.e. one product of meiosis out of 100 will in
average be recombinant).

Genotype is what we call the specific allelic arrangement of one or
several genes and the phenotype is the detectable outward manifesta-
tion of a specific genotype.

A recessive trait will only be visible in an individual carrying two
copies of that trait, i.e. inherited from both parents. If only one
copy of the disease allele is enough to express the trait it is said to
be dominant. Autosomal dominant is when the trait is not located on
the sex chromosomes, X and Y.

For more detailed information, we refer to existing literature. Two
sources used in this introduction are (Griffiths et al., 1996) and (Liu,
1998).

2.2 Markers and Microsatellites

Genetic markers are DNA subsequences that exist in several poly-
morphic forms in individuals within a species. Several kinds of mark-
ers have been detected and are used for various reasons. One of these
are further explained in the next subsection.

A large number of certain molecular markers have been collected to
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be able to describe and find our way around in the genome. These are
detected by probes: one short sequence finding the beginning of the
marker and another to find the ending, which ’cut out’ our marker of
interest and show us the contents, simply explained. These markers,
being evolutionary neutral, have a high level of heterozygosity for
some type of neutral DNA variation (i.e. polymorphic).

Microsatellites

As mentioned earlier, DNA contains a vast amount of information
in regions coding for proteins but there is also a huge amount of
pieces that seem to carry no information at all. Among these are
short strings of DNA called microsatellites or simple sequence repeats
(SSR). As the name suggests, they consist of several repeats of short,
simple sequences. As a rule, a microsatellite is a short sequence of 1
to 6 basepairs repeated after each other up to 100 times (Liu, 1998).

The most common kind of microsatellites is repetitive DNA based
on dinucleotide repeats, like the CA-repeat. This microsatellite con-
sists of the two nucleotides C and A repeated n times, and is some-
times denoted by (CA),.

Even though these DNA pieces seem to be nonsense, we can use
them as markers when trying to make something out of the enormous
amount of information contained in the genome. The reason why these
pieces of DNA are useful is that the number of repeats differ from one
chromosome to another. We inherit one set of chromosomes from each
parent and thereby also one marker from each. It is feasible to visually
see the difference in length of markers using appropriate methods,
such as the polymerase chain reaction, PCR. The microsatellites are
useful when, among other things, we want to reconstruct phylogenetic
relationships, for forensic science, parentage testing and as it seems,
in population genetics (cf. (Harding et al., 1993)).

Mutation Mechanisms

IAM - Infinite alleles model

A motivation for using this model is the following. Consider a gene
coding for a protein with 300 aminoacids - it has the length of 900
nucleotides. We thereby have 4% = 10542 possible ways of placing
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one of four nucleotides at each position. That is, we have such large
number of possible combinations that the probability that the same
combination will occur more than once is negligible. Thus, when a
new mutation occurs, a new allele is created that did not exist in the
population earlier.

This model is called the infinite alleles model, since there are in-
finitely many states to which an allele can mutate and every mutation
state is equally probable irrespective of the state of the allele. Since
we have infinitely many possibilities and the probability of mutating
to an already existing number of repeats is tiny, we have few states
represented in the population and every mutation will be unique.

What makes this model less useful, though, is that the difference
in the number of repeats between two markers gives us information
about how far back in time they have a common ancestor allele. This
information is not taken into consideration by this model (Goldstein
et al., 1995). When a mutation occurs, we get a new mutant that is
related to the ‘original’ allele, with respect to the number of repeats.
Mutation tends to change the size of the allele very little, by a few
repeats more or less. These two facts are the reasons why we need a
model better suited for microsatellites.

2.3.2 SMM - Stepwise mutation model

This model can be interpreted in two slightly different ways.

Strict stepwise mutation model

This model states that when a microsatellite loci mutates, it always
changes size with one repeat more or less, i.e., an allele with ¢ re-
peats mutates to 7 — 1 or 7 + 1 repeats with the same probability 6/2
respectively.

The probabilities for adding and deleting one repeat does not nec-
essarily need to be the same. This model can also be generalised to
permit other variants of mutations.

Stepwise mutation model

The more general model allows other changes in the number of repeats
than the strict stepwise mutation model. It is thus consistent with
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Figure 2.2: The transition probabilities in the SMM model

the distribution of alleles at microsatellite loci, (Valdes et al., 1993),
but at the same time also a bit more difficult to implement.

Mutations resulting in a state already represented in the popula-
tion are the most common ones. In the SMM, there are fewer possible
alleles than in the TAM for the same population size and mutation
degree. Since our alleles consist of tandemly repeated sequences, this
model is more appropriate than the TAM. Also, this model does not
predict as high levels of heterozygosity as the IAM (cf. (Harding et al.,
1993)).

2.4  Genetic Linkage

Genetic linkage is what we call the association of genes located
on the same chromosome. For genes on the same chromosome, the
segregation ratios for the genotypes depart from the Mendelian inde-
pendent assortment ratios. If the position of a marker is close to the
disease locus, resulting in a low probability of crossover at meiosis, we
say that we have linkage between them. Thus, linked to the disease
locus are some markers. Being linked implies that they are inherited
together with the disease allele most of the time, but recombinations
and mutation events occasionally break this inheritance pattern.
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CHAPTER 3

Estimating the Age of a Disease
using Galton-Watson Processes

Introduction

We consider an autosomal dominant disease which arose in a nor-
mal, homogeneous population by a genetic mutation in the DNA of
an individual, (from now on called the founder), some unknown time
ago. This disease has seemingly no negative effect on the fertility (at
least until the carrier has reached a certain age) so the disease-causing
mutation has spread to the offspring due to normal segregation for
generations. The propagation of the disease is conveniently modelled
using a Galton-Watson branching process (further explained in 3.2.1).
As of today, we know the disease did not die out, so the branching
process considered is supercritical.

On the same chromosome as the disease locus we have several
linked genetic markers.

In this chapter, we only have interest in one polymorphic mi-
crosatellite marker at a time, chosen at a suitable, known distance
from the disease locus.

We assume that the disease-causing mutation is relatively recent,
so the population of individuals carrying normal alleles is considerably
larger than the disease allele carrying population.

Our interest herein lies in finding an estimate of the time since the
disease allele appeared in the population. We will later in this chapter
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propose an estimate, found both using the method of moments and
the maximum likelihood method, for the number of generations since
the founder mutation arose in the population. This estimate is based
on information gained from the marker allele frequencies.

3.2 The Model

3.21

We fix a suitable genetic marker linked to the disease locus. The
marker considered is a polymorphic microsatellite whose position in
relation to the disease locus is exactly known.

We need to know the true marker allele frequencies in the normal
population, assumed being stable and homogeneous.

The marker allele will not always be inherited together with the
disease allele due to recombination events. In the case of cross-over,
we presume the new marker allele randomly chosen according to the
allelic distribution in the normal population due to panmixia (i.e.
random mating in a population).

Our disease should not be too old. The size of the disease pop-
ulation need to be considerably smaller than the normal population,
i.e., the disease is not so widely spread in the population. We can
then assume that the probability of two carrier chromosomes meeting
is negligible. We also disregard mutation events since the disease ap-
peared relatively recent in time and the normal allele distribution is
thought to be stable.

Time is measured in number of generations. The fact that the
generation span can differ a lot in different branches of the family
tree is not taken into consideration.

We use the Galton-Watson branching process to describe the spread
of the disease through time, tracing the disease chromosome labelled
by the marker allele.

Galton-Watson

Let My, My, ... M, denote the k marker alleles. Let further r be
the recombination frequency between the loci of the disease gene and
the marker and Z; is the number of individuals in generation ¢t. The
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Z; variables are based on earlier events as
Zy

L1 = E Xjt,
j=1

where Xj; denotes the number of offspring of individual j in generation
t. To emphasise the multitype nature of this process we take

Z1(i) = # individuals carrying allele 7 in generation ¢, ¢ € {1,2,...,k}.

We assume that the reproduction law is such that E[Xj;] = 14+ X
for all 4 and ¢ and that the process is supercritical, i.e. that A > 0.
Moreover we assume that the Xj;:s are independent.

Denote M = (m;;);; as the matrix consisting of
mi; = E[# offspring of type j from a type 7 individuall.
Now it is easily shown that

mij = { 1+ )\)Tpnj Z 7’é]
A+ NA=r)+rpn] i=7
where p,,; is the proportion of individuals carrying marker allele ¢ in
the normal population. If the marker allele is changed, it is due to
recombination. When instead the progeny inherits the same marker
allele it can be for one out of two reasons: either no recombination
has occurred or a recombination occurred giving back the same marker
allele, randomly chosen according the normal allele distribution.

Let Z; = [Z4(1), Z¢(2), ..., Z(k)], where Z;(i) is as above. A well
known result for Galton-Watson processes (cf. (Jagers, 1975)) allows
us to write

ElZ:|Zo] = ZoM'

where M" stands for the matrix (mg))i,j where mz(t-) is the expected

number of progeny of type 7 born to an individual of type ¢ t genera-
tions later.
Define the founder generation as

Zo=[1,0,...,0]

We are interested in the first row of the matrix M, that is ZyM*.
The reason being that we assume that the probable founder allele is
placed in the first position. First, we need to find a formula describing
M?. This is done in the next section.
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3.2.2 Finding M?

It is not difficult to see that in this case
M=>01+MN[1-7r)I+rP]

(recall the formula for m;;). As earlier, 1+ X is the expectation of the
offspring distribution. The P-matrix gives the transition probabilities
between the different alleles
Pn1 Pn2 *°° Dnk

P = Z : :

Pn1 Pn2 *°° Dnk

where p;,; is the proportion of individuals with allele j in the normal
population. Since it is assumed that the population in which the
disease appeared is stable and homogeneous, p,; is a fixed quantity
from generation to generation. The corresponding quantities in the
disease population, pg; are defined as the proportion of individuals
with allele 7 in the disease population in the present time, but the
true frequencies are unknown. As an estimate we use the observed
allele proportions.

If we expand the model, adding the possibility of mutations, we
get another kind of matrix describing transitions from one allele to
another. This case will be discussed in a chapter 6.

We now have the following marker allele distribution for the off-
spring:

Recall that
M = E[# offspring with marker allele ; when the founder had allele ]
where 7,5 € {1,2,...,k} and notice that
Mt
(1+ M)

— Pt 4 2:; (:) [(1 = r) I (rP)] + (1 — )T

=[1-r)I+rP]

t—1
t . )
t pt 2, t—1 trt
=r'P"'+ P g 1-— +(1—r)1T

=r'"P+(1-r'—(1-7) )P+ (1—-7)'I=
=(1-n'IT+(1-(1-r"P
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where we use that >°;_; (©)(1 — r)ir*~% = 1 and that P’ = P.
We now make a simple but crucial approximation:

M ~Y
1+X

(P(oﬁspring has marker j, founder had marker z)) .
i

From this we get

Mt
—— ~ ( P(offspring has marker j after ¢ generations )
S (( pring has marker j g )i’j
which can be obtained by replacing the actual empirical ratios by the
ratios of expectations.

The Estimate

First assume that we have a sample of n,4 individuals from genera-
tion ¢ carrying the disease allele. Let ng; be the number of individuals
carrying marker allele j in the sample. We can then use that infor-

mation to estimate pg;, namely as pgj = %iii.

We will now show how to find the same estimate

In(245et)

b= In(1—r)

using two different methods: The method of moments and the maxi-
mum likelihood method.

Method of Moments Estimate

Using the formula for ¢ generations (1 —7)'T + (1 — (1 — r)})P
obtained earlier, we have two cases:

1 = 1: Using the first row of the above matrix, corresponding to the
founder allele, we get (1 —7)" + (1 — (1 — r)")pp1 = pra + (1 —
pn1)(1 — )t and thus

pa1 = Pp1 + (1 —pp1)(1 — 1)’

where pg; is replaced by its estimate pg1. The equation is solved
for the unknown variable ¢, as
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In(Pg)

b= In(1—r)

Note that we require that pg1 > py1.

i # 1: Here we use the i*" row in the matrix above:

Pdi = Pni — pni(l - 'r)t
which also gives us an estimate of ¢ as:

ln( pn; ;?id )

b= In(1—1r)

In this case we have the requirement of p,; > pg;-

As we see here, we get an estimate of ¢ also in the case where
the individual does not carry the original marker allele. This
case will not be further studied in this work.

3.3.2 Maximum Likelihood Estimate

The same estimate as above can also be derived from the Maxi-
mum Likelihood method. One condition for using this method is that
the individuals are independent of each other. In reality, however, we
have individuals who are related, e.g. siblings, cousins, second cousins
etc, and hence not independent. When sampling from the last gener-
ation, we will get individuals who are likely to be less related, and we
get approximately independence, which should suffice.

As earlier, let

S { i+ (1—pp)(1—7)t i=1
/ Pni — Pri(1 —1)° i#1

The likelihood function is
L(ngi,...,nax;t) =

ndj = (pnl + (1 _pnl) 1 - T ndl
Jj=1 J

E?r

pn] pn] 1 - 'r) )ndj

k
=2
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and the log likelihood is

k

l=InL= ndl-ln(pnl—f—(l—pnl)(1—T)t)—f—z ngj - In(pp; — pnj(1 — 1)) =
7j=2

k
nar - (pp1 + (1= pa) (1 —1)") + D ng - In(pri(1 — (1 — 1))
j=2

Maximum is obtained by solving the equation

0lnL
0= 5t
nar(1 = pu)(1 =)' In(1 —7) z’“: ng(1—r)tn(l—r)
Pl + (1 —pp1)(1 —7)t = 1—(1—r)t
k
nq1(1 — pn1) > j—2 Ndj

put+ (1L =pu) (1 =7)t 1T (1—r)

where Z_I;:Q ngj = ng — ng1- Thus, we have that

ng1(1 — pn1) _ _n—na
Pni(l—pp)(1—r)t 1-—(1—r)t

Solving this equation for ¢ (in several steps) yields

ng1 (1 —pn1)(1 — (1 = 7)") = (ng — na1) (pn1 + (1 — pp1) (1 — 1)")

and then

ngt —na1(1— 1)  + ngipp(1 —r)t =

npp1 +n(1 = pp1)(1 —1)" = na (1 — pn1)(1 —r)".
Now, divide by n4 on both sides and use that pg = ng1/nq,
par — (1 —7)" + parpm (1 — )" =

Pn1 + (1 _pnl(l - 7")t _ﬁdl(l _pnl)(l - T)t

Notice that pg1(1 — pn1)(1 — 1)t = (Pa1 — Parpn1)(1 — 7)t, which is a
term on the left side of the equation. Dividing on both sides yields

pdl =pPn1+ (1 - pnl)(l - ,',.)t



18 Estimating the Age of a Disease using Galton-Watson Processes

which can be solved for ¢, resulting in the ML-estimate

(2

In(1 —r)
Notice that this estimate uses the distance between py; and p,1 in
an intuitively natural manner. It also has a certain resemblance to
the so called peycess as is described in (Weir, 1996). To investigate the
behaviour of the estimate we have performed a simulation study.

t=

3.4 Preliminary Simulations

The simulation source code was written in MATLAB. Some details
can be found in Appendix A.

We start with the first generation with one founder individual
carrying the marker allele named 1. The subsequent generation will
consist of a certain number of disease-allele carrying individuals (ob-
tained by a formula described below), some with other marker alleles
but most with the same as the founder. If a recombination changes
a marker allele from the founder allele, it is possible to retrieve it by
recombination since this allele also exists in the normal population.
The family tree is then built up, generation by generation, consisting
only of disease allele carriers, where individuals are represented by
their marker allele.

As described in the previous section and using the same notation,
we use the Galton-Watson branching process resulting in the following
model:

Take Z;(i) = # individuals in generation ¢ carrying marker allele 3.
As before, the marker allele carried by the founder is named allele 1
and the other alleles are numbered 2,...,k. The founder generation
can be written as

Zo(1) =1, Zo(2) = 0, Zo(3) =0, ..., Zo(k) =0

or in vector form
Zy=11,0,...,0].

The (t 4+ 1) generation is generated according to the formula (cf.
(Kaplan and Weir, 1997))

Zi41(2) ~ Poi (1 + X) [(1 = 7) Z4(2) + 7Pni Ziot(t)])
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where ¢ = 1,...,k, A > 0 is the population growth factor in a su-
percritical Galton-Watson branching process, r is the recombination
frequency between the marker and disease loci, p,; is, as described
earlier, the frequency of marker allele ¢ in the normal population and

k
Ziot(t) = Z Z4(j) = # of individuals in generation .
j=1

The expected number of children of each individual is 1+ A as earlier.

3.4.1 Simulation 1

The first simulation is of a population of 20 generations and the
population growth rate was set as 1.50. That is, each individual will
get the expected number of 1.50 disease carrying children. The re-
combination probability between the marker and disease loci is 0.03.
We fix the number of marker alleles in the population to be 5. The
simulation was iterated 2000 times, but all simulations where the dis-
ease population died out before the 20" generation were removed,
here resulting in 1077 full iterations.

Using the previously described estimate for each iteration, we get
the age distribution in Figure 3.1 below, with a mean value of 18.9809
and standard deviation 15.3634.

300

Figure 3.1: Distribution of sample estimates
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3.4.2 Simulation 2

The second simulation is also of a population of 75 generations,
but to illustrate the importance on the choice of marker locus, we here
illustrate the case when the distance between the marker and disease
loci is smaller than in the previous simulation. The recombination
probability is set to 0.01. The other parameters are the same as in
the first simulation example. Here we got the estimated number of
generations 62.9196.

To get a feeling for the robustness of the estimate especially when
based on a small number of individuals, 1000 samples of size 20 was
collected. Individuals, here represented by their marker alleles, are
chosen with a probability obtained from the observed allele frequencies
in the last generation of the simulation. 1000 samples of size 20 from
the last generation resulted in the mean estimate 65.5629 with the
standard deviation 28.1057.
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Figure 3.2: Estimates

As is evident in the Figure 3.2, we here got an underestimation
of the number of generations. The probable cause could be that the
disease is somewhat older and the marker locus is chosen a bit too
closely to the disease locus. Many recombinations have had time to
occur, and the allele distribution has already begun to resemble the
one from the normal population.



CHAPTER 4

Haplotypes and Composite
Likelihood

4.1 Introduction

In this chapter, we consider the same situation as in the previous
chapter except for the fact that we allow for more than one marker.

Our starting point is that we know how to estimate the age of a
disease using every marker separately. The question now is how such
estimates could be combined.

In what follows we will consider three possible ways to do this:

1. Studying the haplotypes, using multi-type Galton Watson pro-
cesses

2. Using weighted averages

3. Using composite likelihood

4.2 Haplotypes

Rather than using both sister chromosomes in the diploid individ-
uals, we concentrate on the sister chromosome carrying the dominant
disease. Thereby we get a useful simplification of the model: Shortly
explained, we trace the disease carrying chromosome throughout the
generations.
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Let us first examine the case with two markers and a disease locus,
as illustrated in the Figure 4.1 below.

1 1
1 1 i i,

———
1 i, i, 1

Figure 4.1: Two markers

As can be seen, there are five possible haplotypes resulting from
a disease-allele carrying individual. The fifth case, not shown in Fig-
ure 4.1, is the case where the recombination results in an individual
who did not inherit the disease allele and our interest lies only in
individuals carrying the disease.

i)

ii)

The first case seems trivial since the haplotype is identical to
the original. Considering that recombinations can have given
back the same marker /markers as before, there are four different
possibilities to acquire this result.

One of the markers seem to be unchanged. Thus, case i implies
a recombination between the two markers, disregarding the pos-
sibility that the recombination gave in return the same allele on
one of the two markers. Thus, there might instead have been a
recombination between disease locus and the first marker, leav-
ing the first marker unchanged by chance.

The third case can occur either by a recombination between
the disease locus and the first marker where the new piece is
carrying the same allele at marker 2 as the founder, or by two
recombinations, exchanging the piece between the disease locus
and the second marker.

To obtain case iv with two entirely different markers but still the
disease locus, the recombination has to have occurred between
the disease locus and the first marker.
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For simplicity, let us use the notation described in Figure 4.2 be-
low, when describing the possible transitions. The aim of the follow-
ing is to show how complicated things become in this relatively simple
case with only two markers. The results arrived at can however be
used as the basis of various computational investigations.

—

D M, M,

Figure 4.2: The notation

Transitions from the marker allele pair (z,7) to the four different
haplotypes are shown below with the corresponding probabilities.

(ij: (1—r1)(1 —72) no recombination
(1 —=r1)rep.; rec. between M, & My
T1T2P;. rec. between D & M; and My & Mo
r1(1 — r2)pij rec. between D & M
ij =] ib: (1 —r1)ropy rec. between My & My
r1(1 — r2)ps rec. between D & M
aj: T1T2Pa. rec. between D & M; and My & Mo
(1 — 72)paj rec. between D & M
L ab: r1(1 —79)pap rec. between D & M

Thus, we have the following four terms: (1—71)(1—r2), (1—71)79,
r1(1 — 7r9) and r172. Also note that p;. = Ej pij and p.j = D, pij.
The expectation matrix M will get the following appearance:
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MLl Miline ' Milmgl ** Mil;gine \
mlng,ll ot mlng,lnz e mlnz,nll e mlng,nlng
ma1,11 Tt m21,1no e mM21,ni1 e M21,n1no
M =
m2’n,2,11 e m2n2,1n2 e m2n2,n11 e m?ng,nlnz
Mp, 1,11 ttt mn11,1n2 e mnll,nﬂ e mn11,n1n2
Mnping, 11 " Mpingdne " Muinanil  “° Mpyngnine )

Recall that the elements m;; ., of M can be seen as the transitions
from allele ¢ to a in the first marker locus and from allele j to b in
the second. Here, 2,0 = 1,2,...,n1 and j,b = 1,2,...,n9. These
transitions are further described in
(1=r)(1=ry) (a,b) = (i,5)

(1 —=r1)rops aF1
r1(1 —r2)pab (a,b) # (2, 7)
T17T2Pa. b#j

The allele frequencies in the normal population are assembled in

the P matrix:

Mij.ab =

pll ca p1n2 p21 “a p2n2 “a pn11 cee pnlnz
P — . . . . . .

Pi1 - Pine P21 *°° P2ne " Pnil " Pnane

The dimensions of the matrices M and P are ning X nins.

We need a formula describing the M matrix. This is done a bit easier
by first rewriting the form of the matrices M and P. Let

My My -+ My,
Mgy My -+ Moy,

My1 Myo -+ My,
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where M ;; is an ny X ng matrix. Thus, the mutation matrix M is
decomposed into several matrices M ;;, where

mitg1 My1,52 =t T4l jng

M mi2,51 M4q252 - 142 jne
ij = . . .

Ming,j1  Mhng,52 - Mipg,jns

In the same way, the P matrix is split up in elements P; with the
same dimension ng X 19

Pi1 Pi2 ' Ping
P, = . . ]
Pi1 Pi2 " Ping

giving us the new form of P as

P1 _132 . Pn1
P=| i :
_131 _132 . Pnl

In the formula for M we also need the following matrix

p1 p2 - Pny

P.=| i : :
b1 p2 - DPny

And so, the mutation matrix consists of smaller matrices of the fol-

lowing form

(1—=r)1 =7r2)Inyxn, + (1 —r1)reP.+

M;; = 172 Pj-Inyxn, +11(1 —12) P; 1=
179 Dj-Lnyxny +11(1 —12) P; i1 #£]

where as usual, I,, denotes the n X n identity matrix.

The problem starts when trying to see what happens in ¢ generations.

There seem to be no simple formula for describing M*.
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4.3 Combining Estimates

With many markers we can use the formula

In (2

b= In(1—r)

to obtain an estimate of ¢ for each marker. A simple way to combine
these is to take the average. Note, however, that if a marker is situated
too close to the disease locus, few recombinations will occur and thus
the age estimate will become nonsense. If instead the distance is too
large, several recombinations have had time to occur and the time
estimate will be less accurate. That is why the different estimations
should be weighted.

One way of obtaining a combined estimate of the time ¢ using
weights, is to set { = D w;t;. The w;’s should be chosen so that
> ;wi = 1. One criteria of choosing the weights is to require the
variance Var(t) to be minimised subject to the condition Y, w; = 1.

In the simulations to follow, the mean of the estimates is used as
combined estimate. If the markers are chosen at nice symmetrical
distances, we should get an acceptable estimate.

4.3.1 Simulation example - combination of estimates

The computer language used in this example to implement this method
is JAVA. Further descriptions of this application can be found in the
Appendix B. As long as either the number of generations or the prob-
ability of having two children is kept low, it runs painlessly.

The simulation is repeated 100 times. Having the pairwise map
distance of 1 cM, we fix the number of alleles for each of the eight
markers to 5. The probability of having one offspring is 0.85 and we
continue the simulation for 50 generations.

We get the following distribution:

The simulation resulted in the mean estimate 52.9184 and the stan-
dard deviation 23.5796.
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20

4.4  Composite likelihood

To be able to use information from several markers at the same
time, the method of composite likelihood is convenient. An estimate is
obtained by combining information from several (possibly dependent)
sources by adding together conditional or marginal log likelihoods (cf.
(Devlin et al., 1996) and (Pankratz, 1998)).

Let L;(t) be the likelihood function for marker i. Then, /;(¢) is the
log likelihood function (marginal or conditional). These are combined
as the composite likelihood function according to

The value of the parameter ¢ that maximises the composite likeli-
hood function solves the equation

ot ot

OCL(t) _ 6(Xiili(t) _ i SLi(t)

The terms S;(t) = “(;Et) can also be called the (composite) score
functions.
Another way to obtain the most probably value of ¢, is to find the
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maximum of the CL(t) function,

where the log likelihood functions /;(t):s are found using calculations
similar to those in Chapter 3.3.2.

We can use what we already know, and find a somewhat more
simplified equation to maximise:

k
Li(t) = n el +(1-p) 1D+ P mEpl (1 — (1 -rO)h) =
=2

I (] + (1= p)) (1 =r)) +

ni

k k
> )+ 31~ 0 =700
j=2

=2

independent of t

Thus, maximum of CL(t) is obtained at the same parameter value
of ¢t as in the somewhat simpler
1i(t) = oy + (0 =) (1= p) (1 = r0)) +n(1 — (1 =),
The Figure 4.3 illustrates the composite likelihood estimate of the
age of a disease, where data is taken from a simulation of two markers
where the first marker is chosen at the distance of 1 ¢cM from the dis-
ease gene and the second marker is located 1 ¢cM from the first marker.
Both markers have 5 alleles each. 50 generations are simulated and
the result of the method of moment estimate of 886 iterations are
shown in the Figure 4.4. The data used in the above composite like-
lihood example is chosen from the simulation iteration for which the
method of moment yielded an age estimate of 50.1053 generations.
It is possible to get several composite likelihood estimates using the
simulation data, but we use only this example to illustrate that the
composite likelihood method seem to give rather low estimates of the
mutation age. The same result is obtained in (Pankratz, 1998).
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Figure 4.3: The maximum is the composite likelihood estimate of ¢
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Figure 4.4: Estimates using method of moments
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CHAPTER 5

The example of a BRCA1
mutation

5.1 Background

In this chapter, the model presented in the previous chapters is
applied to real data to find an age estimate of a founder mutation
found on the west coast of Sweden resulting in mammary cancer.

The study consists of 18 apparently unrelated families, where at
least one member in each family carries a specific mutation in the
BRCAL1 gene (called 3171ins5). All families seem to have their geo-
graphical origin in the western part of Sweden.

Thirteen polymorphic markers have been genotyped for all avail-
able family members and by using the software GENEHUNTER ((Kruglyak
et al., 1996) and (Kruglyak and Lander, 1998)) the haplotypes were
derived.

To estimate the time ¢ since the appearance of the mutation, an
estimate found using the method of moments, based on the theory of
Galton-Watson branching processes is used:

In(B45et)

t= :
In(1—r)
Time is measured in the number of generations since the appearance
of the mutation in the population.
For every marker, the founder allele frequency in the sample can
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be estimated by the observed allele frequency, pg1 = 7; L where ng;
is the number of individuals carrying both the disease allele and the
founder allele and ngq is the sample size.

We assume that the normal population is stable, i.e. that the
allele frequencies py;, are unchanged from generation to generation.
Here, i € {1,...,k} and k is the number of alleles at that certain locus
in the population. As estimates of the normal allele frequencies, the
observed frequencies are used.

Here, the allele frequencies were based on the haplotypes of 18 —20
disease-allele carrying individuals and 31 — 38 individuals assumed
normal (healthy family members not carrying the disease mutation).
The locations of the markers in relation to the disease locus is shown
in the linkage map in Figure 5.1.

The recombination frequency r is found using the Haldane map
function (see (Haldane, 1919)), translating map distances to recombi-
nation frequencies:

TAB — %(1 _ 672dAB/100)

where d 2p is the distance between two loci A and B, measured in cM
and hence r4p is the recombination frequency.

The criteria for choosing founder allele is the most common allele
among the families with confirmed disease-associated allele.

5.2 Results from family data

Using the methods described in the previous chapters, the follow-
ing table gives estimates of the age of the mutation, based on the
frequencies of the different marker alleles available.

Using the mean of these estimates result in an estimate of 127.7
generations. Assuming that a generation is 25 years long, we conclude
that the disease is about 3190 years old. One of the markers yield
an unreasonable result, probably out of one of the reasons stated
below. Removing that particular marker, gives us an estimate of
85.4 generations, implying an age of 2135 years. When removing all
markers situated at a distance less than 1 cM, we get the estimate
60.3 generations, or 1508 years.
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Marker ‘ Age estimate ‘ Founder allele
D17s1872 33.88 133
D17s946 61.55 126
D17s250 118.24 156
D17s800 99.47 173
D17s1299 62.83 192
D17s846 223.37 234
D17s1321 508.08 144
D17s855 - 144
D17s1325 122.92 195
D17s902 29.56 152
D17s588 16.74 154
D17s790 - 187
D17s787 - 137

Comments:

Our estimate can only be used when pg; > pp1, i.e. when the
founder allele is more common in the disease population than
among the normal population. Thus, the markers D17s855,
D17s790 and D17s787 will not provide any information.

The markers located at a distance less than 1 ¢cM from the dis-
ease locus result in estimates much larger than expected. This
effect can be out of several reasons, some of them mentioned in
the sources of error section below.

To get a feeling of the estimate variance, bootstrapping should
be performed. This will be done in a coming article by (Bergman
et al., 2000).

There are several sources of error:

Founder allele: 'The choice of founder allele is naturally of impor-
tance, since the difference between allele frequencies
in the two populations is the foundation of the estimate.

Genotyping: Genotyping errors caused in the laboratory will result
in errors in the observed allele frequencies and hence
give us a skew estimate.
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Haplotype: Haplotyping errors caused by the software GENEHUNTER
will result in errors in the observed allele frequencies and
hence give us a skew estimate.

Recombination frequency: If a marker is set at a location closer to

the disease locus than it is in reality, we
will get a larger estimate, implying an older mutation. The estimate
is very sensitive for changes in this parameter.
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(cM)
T  D17s1872
2.7
+  DI175946
1.6
04 +  D17s1299, D175800, D175250
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1  D17s790
02+ Dizsrsr

Figure 5.1: The linkage map: chromosome 17q21
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6.1

CHAPTER 6

Mutations and Homozygosity
Mapping

Introduction

Loosely speaking, homozygosity mapping is concerned with locat-
ing the locus of the disease gene for a recessive disease. Since an af-
fected individual is necessarily homozygous for the disease, we expect
such an individual to be homozygous also for markers surrounding the
disease gene.

The method of homozygosity mapping is generally used for map-
ping rare recessive traits in children of consanguineous marriages. The
disease is more probable to arise in inbred children due to the phe-
nomenon homozygosity by descent in the adjacent region around the
disease locus.

Homozygosity mapping is known to be convenient to use for map-
ping recessive diseases using data based on a very small number of
families with few affected offspring in each, since data from unrelated
individuals can be combined (cf. (Lander and Botstein, 1987)).

Recently (Amos et al., 1999) have proposed the use of homozygoc-
ity mapping based on population (as opposed to family) data. In this
chapter we propose a Galton-Watson model to describe such data.
This model has two new characteristics: We consider the case of a
recessive single-locus disease and assume that the disease is old. The
second assumption implies that mutations in the marker can no longer
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be ignored. For the exact nature of the marker, see below.

The use of Galton-Watson processes as models of recessive traits
has been criticised in the literature (Lange and Fan, 1997), but as
shown in (Kaplan and Weir, 1997) and (Pankratz, 1998) the results
based on such models are quite good.

6.2 The Model

Again, we have the transition matrix P as earlier. We assume a
stepwise mutation model (SMM) as described in the Chapter 2 and
the mutation matrix U,

1-v v 0

U l—-u—-v --- 0
U = )

0 0 1—u

We now have two cases:

1. Mutation occur before the recombination
M, =1+NU[1-r)I+rP]=(1+N)[(1—-7r)U+rUP| =
(1+X)[(1—-r)U +rP]

2. Recombination occur before the mutation
M, =04+NQ-r)I+rUJU=(1+MN[1-r)U+rPU]

So, do mutations occur before or after the recombination event? Most
likely, the mutations should occur in the process of DNA replica-
tion and since replication occur before recombination, then mutations
should also occur before recombination (cf. (Pankratz, 1998)). I will
thereby use M ,,, as mutation matrix, simply calling it M.

Assume that mutation events occur independently of recombina-
tion events. The formula w = wU gives us the stationary distribution
of U. Here, 7 is the stationary distribution and U is the muta-
tion matrix. Our transition matrix P will thereby get this form:

iy

7T
P=
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Since every row of P is the stationary distribution of U, the fol-
lowing is valid: PU = P, UP = P and P? = P.

Now, the interesting question was: What does M look like? Some
long calculations show that

i
% =1-n'Ut+1-01-r)hHP

where M = (1 — r)U + rP. The i"* row is obtained as

M’ trr(t) t
ST (I=r)U;y + (1= (1 —=7)")pn;

where e; = (0,...,0,1,0,...,0), i.e. a 1 at the 5** position, 0s other-
wise. The reason for our interest in the i*" row in this matrix is that
we wish to find the distribution of the founder marker allele which we
placed in the ** position.

The transitions of the SMM model are described in Figure 6.1. As

u v
¥ N/
i-1 i i+l

O

1-u-v

Figure 6.1: Transitions

an example of how U, w etc can look like, we consider an example.
Assume now that the evolution of the marker allele follows a SMM
model (cf. Chapter 2). Since we assume that a long time has passed
since the appearance of the disease, it is plausible to require that the
values of the marker have reached stationarity. Using the formula
7 = wU we obtain

Ty = 51

mg = vm + (1 — u — v)me + ums

& umy = um + vmTy — UMy =’U'§ﬂ'1

& 1= (2)%m

u
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Let p = 2 and hence m; = p’~!m. Since S pni = 1, where

Pri = Wlpifl, we get that
k k—1 k—1 1 pk 1 P
_ o i_ i_ - _-—P _
1—i§_1pm—i§_07"1p—WliE_Op—Wll_péﬂl—l_pk—c-

Finally, we get an expression for our transition matrix P

Pn1 Pn2 - DPnk c cp -+ Ccp
P=| : i =]

Pnl Pn2 - DPnk c cp -+ ocpt

Recall that r is the recombination frequency, that is, (1 —r)*

=P

P(no recombination in ¢ generations) and thus 1 — (1 — r)?
least one recombination). The formula

(at

M tyrt t

———=(1-r)'U 1—(1-— P

ES R EL AT ED
admits the following interpretation. It can be viewed as a probability
distribution f consisting of a mixture of two distributions, fi and fo,
according to

f(x) = ¢fi(z) + (1 — @) fa(x).

Misusing the notation we can represent the expectation and the vari-
ance of f(z) as

E[f ()] = $E[f1(x)] + (1 — §)E[fo(2)]

and

Var(f(z)) =
¢*Var(fi(x)) +2¢(1 — $)Cov(fi(z), f2(x)) + (1 — ¢)*Var(fa(z)).

Homozygosity mapping

The reasoning behind this method is shown in Figure 6.2. In-
dividuals with a recessive disease being homozygous for the disease
gene should also be homozygous for markers in the vicinity of that
gene. This provides a criteria for mapping the disease genes. More-
over comparing individuals homozygous for the disease with normal
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individuals allows us to find regions that differ considerably between
the two populations and hence to find the disease locus. Due to ho-
mozygosity by descent, individuals carrying the disease, should also be
homozygous in the adjacent area of the disease locus to much larger
extent than expected (cf. (Kruglyak et al., 1995) and (Lander and
Botstein, 1987)).

) 1, ] Db
U/ U/ U/

Al Al N

A A A

T UL [ Nommat

N

Figure 6.2: Difference in length between marker alleles

We have thus two ways of mapping a disease gene:

i) search for approximately homozygous markers bearing in mind
that homozygocity can be lost due to mutations.

i1) to amplify the affect in 7 we focus on the difference in length of
marker allele pairs (in Figure 6.2 called AT for the m*® marker
in the disease population and A% for the same marker in the
normal population), comparing this measure between individu-
als in the disease population and in the normal population. For
markers tightly linked to the disease locus, the A distance will
be very small due to homozygosity by descent but the A dis-
tance will be normal. Looking instead at markers situated at
the other end of the chromosome, hence not linked to the disease
locus, the distances A; and Ay will both be normal.

To find a measure to help us search for the disease locus by comparing
these two populations, we can form the distance measure A = |A; —
Ag|. This measure is calculated for a sample of individuals from each
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population by performing a gene-scan. When A is large in some sense
for a marker, it will be close to the disease locus.

Consider an individual homozygous for the disease locus, and thus
hopefully for the marker locus. Let D1 = I — J, where [ is the length
of the marker allele on the first chromosome in the pair, and J is the
length of the marker allele on the second. I and J are independent
and have the distribution in the formula above (%) . Then D; can
be considered as a distance between the two alleles. Since E[D;] = 0,
D; cannot give us that much information so we need to find a better

measure, for example
A =D?=(I—-J)?=I*+J%-2IJ
Hereby, we get that
E[A1] = 2E[1?] — 2(E[1])* = 2(E[I*] — (E[1))*) = 2Var(I).

Now we need the variance of I, that is the variance of the length of
the marker allele. Recall the distribution of I, f(t) = (1—7)'U*+ (1—
(1 —r)!)P. That is, we have a mixture of fi(t) = U’ and fy(t) = P.
Let E; and Var; refer to the former and E; and Vargy to the latter. We
have that

Eoll] = kmy, = pa,

where 7, is the stationary distribution, and

Vary(I) = Y (k — p2)’my = 03

is the variance.

Let I = ), X;, where X; is the mutation in step i. We use
the strict stepwise mutation model (SMM) with equal probabilities of
adding and subtracting one, that is, P(X; = 1) = P(X; = —1) = 6/2
and P(X; = 0) = 1 — 0 (see Figure 2.2) and, of course, the X;’s are
considered independent. We get

B[] =0

and

Vari (I) = E;[I?] = Van, (Z XZ-) - i Var (X1) = t6.

=1
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Notice that this formula shows that, knowing Var;(I) and 6, ¢ can be
estimated.
Now, the expectation of A; can be calculated:

E[A,] = 2Var(I) = 2(1—r)t0+2(1—(1—r) ) os+2(1—r) (1—(1—7)") 3.

As mentioned earlier, the effect of homozygosity mapping can be
amplified by looking for regions with large A-values between affected
and normal individuals. For this reason, it is of interest to consider
the case of a person showing no symptoms of the disease. We are
interested in a rare disease, and thus very few people in the population
should be carrying the disease allele in any of the two loci. We thereby
assume that the people in this category carry some other allele than
the disease allele.

Let Dy = I —J as before. I and J follow the distribution P, which
is the distribution of alleles of the marker loci for 'normal’ persons.

Again, E[Dy] = 0, so we use Ay = D? instead. E[Ay] = 2Var(I) =
202 is the expectation.

Under the assumption of no linkage,

E[A1] — E[As] ~ 0.

No linkage: 7 = 1/2 = E[A;] — E[Ag]
= 2(1/2)140 + 2(1 — (1/2)%) 02 +2(1/2) (1 — (1/2)!) 2 — 203
=2(1/2)"t0 - 2(1/2)" 05 + 2(1/2)' (1 — (1/2)") 43
=2(1/2)"(t0 — o3 + (1 — (1/2)")s3

What we hope to find, using a gene scan, is a marker linked to the
disease allele.

In (Amos et al., 1999), a simulation study is performed which
confirms the usefulness of this method. The same reference contains
an application to real data.
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APPENDIX A

Simulation, one marker

Consider the case with one marker locus linked to the disease locus,
chosen at an appropriate distance.
Parameters:

k = # alleles at marker locus
t = # generations
r is the recombination frequency
1+ X is the expected number of offspring of any given person
Assumptions:

o We keep track of the number of individuals in each generation
carrying one of the k£ marker alleles.

e For simplicity, the marker allele quantities are assumed to be
uniformly distributed in the normal population.

e The (¢ + 1) generation is generated according to the formula
Zy41(2) ~ Poi (1 +X) [(1 —7) Zi(2) + 7Pni Zior (1)),

where

k
Ziot(t) = Z Z1(j) = # of individuals in generation t.
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e The age of the disease is estimated using the formula

in(2p)

b= In(1—1r)

where p41 is the observed allele frequency in the disease popu-
lation.

e We are sampling individuals from the last generation.



APPENDIX B

Simulation, eight markers

Each individual is represented by haplotypes. We do not need
information of the sister chromosome not carrying the disease.
The rest of the genome is also irrelevant in our case.

Since we are only interested in the carriers in the last genera-
tion, we only include carriers in the simulation. Each individual
begets one or two offspring carrying the disease allele.

We track eight markers surrounding the disease locus, four on
each side of the disease locus, preferably chosen at somewhat
symmetrical distances surrounding the disease locus.

Iy r, r;r, Ig Ig I, I'g
I I L1 I I I I
I I 1 . I I I I

Recombination events are allowed.

The implementation is as follows: for each interval, we compare
a random number with the recombination probability and if it
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results in a recombination event, the marker alleles in the area
from the interval of interest and the end, seen in the opposite
direction of the disease locus, is exchanged. The new marker
alleles are chosen from the stable population of normal alleles,
here assumed to be uniformly distributed.

The map distances are translated to recombination frequencies
using the Haldane map function (see (Haldane, 1919)):

TAB = %(1 _ 672(1,43/100)

Note that d4p is the distance between the two loci A and B,
measured in cM.

We calculate eight estimates of the number of generations, t,

ln( Pd1—Pn1 )

using the formula: i = lnzl—if%

the observed mean value of these.

. As a final estimate, we use

Only the last generation is saved to save computer memory, so
we cannot backtrack our simulation.

The computer language used to implement this method is JAVA. As
long as either the number of generations or the probability of having
two children is kept low, it runs painlessly.

The simulation parameters are:

p
Thus,

= P(individual begets one offspring)
1 — p = P(individual begets two offspring)
= # of generations

is a vector describing the number of alleles of each of the eight
markers.

is the vector containing the eight distances between pairs of
markers.



