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Abstract

A simulation method for generation of marker data given a specified genetic
model is presented, especially for nuclear families with affected sib-pairs.
We describe how powers in nonparametric linkage analysis can be obtained,
combining the marker simulations with calculations by the GENEHUNTER
software and a multivariate normal approximation. This stepwise method is
illustrated and tested by an example, using MS data. Finally, the approach
is used to find the appropriate thresholds in partial genome scans.

Keywords: Affected sib-pair, GENEHUNTER, Multiple Sclerosis, the mul-
tivariate normal distribution, NPL-scores
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Chapter 1

Introduction

In the search for (disease causing) genes, the use of statistical analysis is a
necessity. Undertaking a whole genome scan, blood is collected from a large
number of individuals, ascertained through some specified sampling criteria.
The scanning process searches through the genome (the genetic material in
the chromosomes) and types the individuals at a large number of known posi-
tions on the chromosomes called markers, which are segments of DNA whose
pattern of inheritance can be determined (the “typing” can be performed, us-
ing electrophoresis). Having typed individuals, linkage analysis can be used
to find the relative position of the gene. Since the cosegregation between
two locations is dependent of the distance between them, the cosegregation
between a disease causing gene and the markers in its neighbourhood will be
high. The crucial idea of linkage analysis is that if affected relatives share a
“significant” amount of similarities at a certain marker locus, the conclusion
is that there is linkage between this marker and a disease related gene, i.e.
there is a disease gene located in the neighbourhood of the marker (at least
on the same chromosome). If the scan suggests some candidate regions for
disease genes, it can be followed up by further studies, using a denser map
of markers in the particular regions of interest. Obviously, there are prob-
lems involved in the process concerning the multiple testing and it is hard
to get clear-cut results, especially for complex diseases where several genes
(+ environment) interacts, each one providing only a small contribution to
the disease so that the tendency of cosegregation is not very strong at any
marker loci. For more details, the reader is encouraged to check the existing
literature on the subject ([Ott91], [GMS196]).

The main purpose of this thesis is to find a method to estimate the power
of a future linkage study. The method was brought to life during the planning
stage of an affected sib-pair study, regarding the Multiple Sclerosis disease.

Before starting to collect real data (from blood samples etc), it is impor-
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2 CHAPTER 1. INTRODUCTION

tant to get an idea of how much and what kind of data (number of families,
family sizes, structures etc) that will be needed to, say, locate a disease sus-
ceptibility locus if there are any or rather to detect linkage to such a locus.
Of course, there is no way to find an exact answer to this question, due to the
limited amount of knowledge regarding the disease and the many assump-
tions that have to be made to make calculations feasible, but at least some

upper bounds for the power can be obtained, providing answers to questions
like:

e “We will be able to collect data from 50 families of a certain structure,
will it be enough to have a fair chance of finding linkage to a disease
locus, when in fact there is such a locus?”

o “We have collected blood from two affected sibs. There is a third
healthy (unaffected) sib. How much better results can be obtained
from collecting blood also from this third sib? Is it just a waste of time
and money?”

e Before undertaking a large-scale study we wish to be sure to find “some-
thing” with probability at least 0.8. What is the implied lower bound
of the number of families to collect?”

e “To confirm whether an individual has a certain disease, the individual
has to undergo a trying procedure, associated with some risks. Sibs of
known affected patients have already been tested. Is it worth the effort
of testing the parents of the patients?”

The data will consist of marker genotypes (from blood samples) and disease
status (affected/unaffected, in our situation from lumbal puncture). The
natural first step in the power calculations is therefore to, given a speci-
fied genetic model (Chapter 2), simulate marker data for a large number of
families (Chapter 3).

Having a large amount of marker genotypes the appropriate linkage statis-
tic can for each family and at every marker locus be calculated. Here the
focus will be on the NPL (nonparametric linkage) score, implemented in the
GENEHUNTER software [KDRDL96| [KL98| and the score distribution is
approximated by a multivariate normal distribution (Chapter 4).

In Chapter 5, the method is illustrated and tested by an example, using
the MS data and in Chapter 6 the same approach is used to find the ap-
propriate thresholds and pointwise levels of significance to use, for instance
when performing partial genome scans. Unlike the power simulations, the
simulations used to find thresholds are performed under the null hypothesis
of no linkage. Finally, some concluding remarks (Chapter 7).



Chapter 2

The Genetic Model

In the model we assume a single disease locus D (location of the disease
related gene), with a trait (disease) allele A and a normal allele a (or rather
a set of normal alleles, i.e. a = {a1,as,...,a4}), existing in the population
of interest in the proportions ps and p, (of course, p, = 1 — p4). Each
individual has a set of two alleles at this disease locus, belonging to different
chromosomes, one inherited from the mother and the other from the father.
The possible sets of two alleles give rise to the “three” genotypes AA, Aa
and aa, existing in the population under study in the proportions p%, 2papa
and p2, under the assumption of Hardy-Weinberg equilibrium. The number
three put between quotation marks because Aa being the set

{An (Ul a)}
of all genotypes with exactly one trait allele and
aa = {(UL i) N (U ai)}

all genotypes without the trait allele. Other “standard assumptions” which
are made are crossovers according to Haldane’s [Hall9] map function (see
Chapter 3) and random mating, i.e. two individuals (male and female) mate
independently of each others genotypes. Of course, it is not clear whether this
(random mating) is a realistic assumption. However, it is hard to substitute
and makes calculations possible (moreover, it is also a natural framework in
which the Hardy-Weinberg assumption is plausible).

The phenotype (affected/unaffected) of an individual is conditioned on
the genotype, assumed independent of the genotypes and phenotypes of all
the other individuals in the family or pedigree. The penetrance vector

(fAA; an7 faa)

3



4 CHAPTER 2. THE GENETIC MODEL

is defined as the probabilities of being affected conditioned on the genotypes,
ie.

fe = P(being affected | genotype G),

for the genotypes G = AA, Aa,aa. The penetrance vector describes the
affection mechanism;

® fan, faa 0, foo = 0 : dominant model, i.e. at least one trait allele
is needed to get affected (if faa = faqa = 1, we say we have a fully
penetrant dominant model)

o faa# 0and fa, = faa = 0: recessive model, where two trait alleles are
needed for affection (fas = 1 gives a fully penetrant recessive model)

o f.. # 0: allows for phenocopies, i.e. there is a small probability of being
affected through environmental causes, without having the trait allele.
This might be a different disease, which is impossible to distinguish
from the one under study.

The simplified assumption of faa, fa, and f,, being constants is made,
which in many diseases is an unrealistic assumption because the affection
event often depends on, say, the individual’s age. This is the case in for
instance the MS disease, where the affection usually occurs in the ages 20-
40. Therefore it seems reasonable to use some kind of age dependent survival
functions to model the penetrance events. Such functions would probably be
easy to incorporate into the simulation method (however not implemented)
and thus the penetrances are treated as constants with no loss of generality.
From pa, faa, fae and f,, the population prevalence

Kp - the proportion of affected individuals
and the sib prevalence

K - the probability of being affected for

an individual with an affected sib
can be calculated. One obtain (in this model)

KP == fAAp?q + 2anpApa + faapg



and

P(2 affected offspring in a two-sib family)
K

P
=Kp 'Y Y P(ASP|Gu,Gr)P(Gu,Gr)
Gy Gr
_ 1 1 1
= Kp '[pafin+40apa( G faa+ 3 faa + 5Faafa0) + 2040 fha
1 2
].6 aa

1 1 1
+ 4pAp2(Zf31a + Z 3(1 + Eanfaa) +p§ 3(1]7

KSZ

1 1 1 1 1
4 W AC ~fa n n alaa o aa
+ pApa(16fAA+ + 4an+ 4fAAan+ 4fA Jaa + 8fAAf )

where G, and G denote the genotypes of the mother and father and ASP
denotes the event that the parents and the two offspring constitute an affected
sib-pair family, i.e. a family with two affected offspring (identical twins
excluded). The six terms in the Kg expression are associated with parental
genotypes (AA, AA), (AA, Aa), (AA, aa), (Aa, Aa), (Aa,aa) and (aa,aa),
where for instance (AA, Aa) is the notation for the event

{(Gu =AANGF = Aa)U (G = AaNGr = AA)}.

However, the values of p4, faa, fae and f,, are usually not known, but some
sample based estimates of the prevalences Kp and K5 can be used to estimate
the parameters using some “backwards calculations”. In the recessive case
there are only two parameters to estimate (pa and faa) and these can be
unambiguously estimated through the equations

{ Kp = p’ifaa
Kg=144(14py)? >

leading to the expression

(14 pa)®

Ag =
4p?

3

where

Ao =
STK,

is the risk ratio for sibs of affected individuals compared to the population
in general. In the dominant case however, there are three parameters to
estimate (pa, faa and fa,) and thus one of the parameters has to be fixed
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to obtain the others. By letting fsa = faa = f the prevalence equations
become of the form

{ Kp = fpa(2—pa)
Ks = W(Pi — 6p% +5pa+4)

resulting in

P — 6p% + bpa + 4
4pa(2 —pa)?

In the model we also need a set of marker loci, flanking the disease locus
(on the same chromosome), and the “distances” in centiMorgan (cM) between
these markers and the disease locus (the human genome has a total “length”
about 33M=3300cM). The distance in Morgan between two loci is defined
as the expected number of crossovers between the loci (expectation of one
crossover per Morgan, see Chapter 3 for more details). Let N be the the
number of markers to be generated and denote those markers by

As =

MlaMQa"' ,MN-

Let n;, i =1,2,... N, be the number of possible alleles at M; and {m;;,m;s,
. ;Min,; } that allele set. Corresponding to the ith allele set there is a fre-
quency vector

q,/\/[q; = (qmila QTnna LRI QMml)a

where gy,,; is the population frequency of allele m;;, satisfying the equality

n;
Y m, =1, i=12,...,N.
j=1

Of course, the assumption of random mating holds for the marker genotypes
as well and linkage equilibrium is assumed, i.e.

N
P(D =d, My =myj, My =my,, ..., My =myjy) =deqmiji-
i=1

Suppose the disease locus is located between the Kth and the (K + 1)th
marker locus and let C' be a distance vector

C: (01,62,... ,CN),

where



c1 denotes the distance in ¢cM between M; and M,
Co between M, and M

Cx between My and D
ck+1 between D and Mg

cN between Mpy_; and My.

From these distances recombination probabilities can be calculated, using
Haldane [Hall9] or some other map function (see Chapter 3). In the model
presented here, there are no differences in recombinations between the sexes,
i.e. recombinations between marker loci on chromosomes of males occur with
the same probabilities as for females. However, such differences can easily
be incorporated by using different distance vectors for the sexes (substitute
C with some vectors C,, and C,).
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Chapter 3

Simulation of Marker Data

Here, the focus will be on ASP (affected sib-pair) families with two parents
and two affected offspring, motivated by their usefulness (and usualness) in
medical studies. One obvious way to generate marker data for such families is
of course to randomly assign alleles at the disease and marker loci to each one
of the parents (according to the population frequencies), generate genotypes
and affection status of two children and if the children are affected, keep the
family, else throw it away and start all over with fresh parents. This must
be the easiest way to generate the families, but also very time consuming.
Instead, the strategy will be to first consider the assumed disease related locus
D and obtain genotypes at this locus for ASP families before considering any
markers. This is done by simulating directly from the conditional distribution
of family genotypes, given the information that the two sibs are affected. L.e.
sampling from the conditional distribution

P(GM’ GF’ G017 G02 ‘ ASP),

where Gy, G are the genotypes at locus D of the mother and father and
Go, the genotype of the ith offspring, rather than to use a rejection proce-
dure (i.e. generate families until the “the right ones” are obtained) which
tends to be very time consuming for low prevalences and penetrances and
therefore inefficient when dealing with rare diseases. By using this method
the computation time will be independent of the prevalences and penetrances
(equal computation times for all diseases). To gain more in time we actually
simulate parental genotypes from the distribution

P(Guy, Gr | ASP)
first and then, after having obtained G, and G, simulate offspring from

P(GOU G02 | GM, GF, ASP)

9



10 CHAPTER 3. SIMULATION OF MARKER DATA

Parental group | Pop Freq | Possible offspring' | P(ASP | OG;;)
PG P(PG,) | 0G,
(AA,AA) pj14 (AA, AA) w.p. 1 ffm
(AA, Aa) 4p% Pa (AA, AA) wp. 1 | faa
(AA, Aa) wp. 5 | faafaa
(Aa, Aa) w.p. i fa.
(AA, aa) 2p%ps (Ag, Aa) wp. 1 | f3,
(Aa, Aa) Ap4ps (AA,AA) wp. 5 | fia
(AA,Aa) wp. 1 | faafaa
(AAa CLCL) W.p. % fAAfaa,
(Aa, Aa) w.p. ; fia
(Aaa (J,CL) w.p. % anfaa
(aa, aa) w.p. % 2
(Aa, aa) 4p Ap3 (Aa, Aa) w.p. i fa.
(ACI,, CLG,) W.p. % anfaa
(aa, aa) w.p. % 2
(aa, aa) Do’ (aa,aa) w.p. 1 2

Table 3.1: Inheritance probabilities.

The correct distributions can be obtained from Table 3.1. In the first
column, the table displays the six possible parental groups, say

PGy, PG,,... , PGg.
Each parental group occurs with a probability
P(PG;), i=1,2,...,6

(column 2). Given the parental group PG;, there are some number n(PG;)
of possible offspring groups, say

OGila OGiQa RIS OGin(PGi)a
each with probability

conditioned on the parental group (column 3). The fourth column shows the
conditional probability of obtaining an ASP family (both offspring affected)

lw.p. - with probability.
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for the different offspring groups. The conditional probability for PG;, con-
ditioned on the family being an ASP family, is

P(PG; N ASP
P(PG;| ASP) = ( PCASP) )
S P0Gy N PG; N ASP)
P(ASP)
S P(OGy; N PG;)P(ASP| OGy; N PG))
P(ASP)
S0 P(PGiP(OG; | PG)P(ASP | OGy)
P(ASP)
_ P(PGy) 1B P(OGy; | PGy)P(ASP|OGy)
P(ASP) ’
where
6 n(PG;)

P(ASP) =) P(PG;) Y  P(OG;;| PG;P(ASP|OG)

i=1 j=1

(P(ASP|OG;; N PG;) = P(ASP|OG;;) since the probability for the two
offspring to be affected does not (by assumption) depend on the parental
genotypes when conditioning on the offspring genotypes). For a parental
group (A;As, A3A4), the parental genotypes becomes

{ (GM = A1A2, GF = A3A4) W.p.
(GM = A3A4, GF = A1A2) W.p.

N[0 [ =

Conditioning on PG; and the family being ASP, the probability for offspring
group OG,; is
P(OG;; | PG;, ASP)
_ P(OG;;n PG; N ASP)
P(PG; N ASP)

_ P(OG;; N PG; N ASP)

— >rPEIP(0G;;. N PG N ASP)

_ P(OG; | PG;)P(ASP | OG;))

- P0Gy

PG;)P(ASP|0G;;-)

Having obtained the offspring group, G, and Go, are picked at random
(we also need to keep track of which chromosomes the alleles are inherited
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from). For instance, one parent becomes homozygous AA and the other
heterozygous Aa with probability

4pipa(3/3a + 5Saafn0 + 1f30) _ Phpa(fan + fad)®
P(ASP) P(ASP)

and given these parental genotypes the two offspring are assigned genotypes

(AA, AA)  with probability( Jha

(AA, Aa)  with probability m:fiﬁ
(Aa, Aa)  with probability m
With probability
2P4Paf4a
P(ASP)

both parents will instead become homozygous, one with genotype AA and
the other aa. Given these parental types the offspring will be heterozygous
at D.

That the sampling scheme gives the desired distribution follows from the
equality

P(Gu, Gr,Go,,Go, | ASP)
= P(Gu, Gr | ASP)P(Go,, Go, | Ga, G, ASP).

It is easy to see that the formulas for P(PG; | ASP) and P(OG;; | PG;NASP)
still hold when adding more offspring, simply by modifying the ASP condi-
tion to denote at least two offspring affected, exactly two offspring affected,
at least three offspring affected and so on. However, the number of possible
offspring groups will increase drastically and a larger table will be needed.

This first simulation step results in the genotypes at D for the families
and also information about the inheritance (from parents to offspring). If the
parental affection status are of interest, these are easily checked. For each
parent, simply generate a random number U from the Uniform(0,1) distri-
bution and compare it to the penetrance fg, associated with the parental
genotype G.

U< fe = affected
U> fg = unaffected -

For each family the next step is to randomly assign marker alleles for each
of the parental chromosomes according to the population frequencies {qmij }.
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The final step is then to pass down marker alleles from the parents to the
offspring, but first let us try to understand the underlying processes in the
meioses, motivating the use of Haldane’s map function [Hall9].

The meioses is the cell division process where the chromosomes, later
passed down to the offspring, are constructed. In the meioses two cell divi-
sions occur, resulting in four cells, each containing one chromosome from each
of the pairs in the original cell (see [GMST96] for more details). Consider two
copies of each of the two chromosomes of a parental pair (see Figure 3.1(a)).
The non-sister chromosomes start to cross over each other (see Figure 3.1(b)).
Two point processes are needed to describe the crossovers [SQ99]. The first
process determines the locations of the crossovers and for this a Poisson point
process can be chosen. The second process tells us between which chromo-
somes the crossovers occur and the reasonable choice for this process is to let
each of the four pairs of non-sister chromosomes be the pair involved in the
crossover with probability 1/4. The assumption of no chromatid interference
is made, i.e. the pair involved in a crossover is independent of all the previous
crossovers and the location of the cross-over.

Now, consider two marker loci M; and M, at distance ¢; from each other.
What is the probability of recombination between these loci? Let N; o be the
number of crossovers of the four non-sister chromosomes occurring between
M1 and M,. The result of the meisoses is four possible chromosomes. If
N2 = 0, none of the four choices will be recombinant and the probability
of recombination between M; and My will be 0. If Ny, =1 (like in Figure
3.1(b)), the meioses results in two recombinant and two non-recombinant
chromosomes, i.e. recombination with probability 1/2. As it turns out, 1/2
will be the probability for all N; 5 > 0, i.e. the probability of recombination
between M; and M, is

1
5P(NLQ > 0).

If Ny o ~ Poisson(2¢;/100), which follows from the assumption of the Poisson
point process, Haldane’s map function

%[1 — exp(—2¢,/100)]

is obtained. Although the Poisson assumption is not the only the way to
obtain this map function, it is the only natural way to get it.

In principle, given the parental marker pattern, the markers passed down
from one parent to one of the offspring are simulated as two discrete inhomo-
geneous Markov chains, to the left and to the right of the disease allele, each
with two possible states, say 0 and 1, where state 0 denotes the chromosome



14 CHAPTER 3. SIMULATION OF MARKER DATA

@ —
I

(b)

|

Figure 3.1: (a) Two copies of a chromosome pair. (b) Crossover between two
non-sister chromosomes.

from which the D allele is inherited. Changes from 0 to 1 and vice versa
occur with probabilities

1
0; = 5[1 —exp(—2¢;/100)], i=1,...,N.

This simulation method works because of the Markov property of the Poisson
process. As an illustration, let Yy, denote the state at M; and consider the
chain (from one parent to one of the offspring) to the left of the disease locus.
Then the transition probabilities will be of the form

1—0 ifs,=0
P(YMKZSQ):{ HK K ifsz:]_

and fori=1,... , K —1

1—-0; ifs;=s
P(YMi:SQ‘YMi+1:81):{ 0; ifsi#; '

The chain to the right of the disease locus will instead be specified by

82):{ 1_91(—1—1 lfSQZO

P(YMK+1 - 91(4.1 lf S9 = 1

and fori=K+1,... N—-1

1 _0i+1 if S1 = S

P(YMi+1 = 52 ‘ YMi - Sl) - { 9i+1 if 51 7é sy



15

RECOMBINATION INTERVAL RECOMBINATION INTERVAL
PATERNAL
( A ] r ] r ] r ] r 1 r CHROMOSOME

91 62 63 64 65
(a2 - MATERNAL
CHROMOSOME
‘ theinheritance process

900 e
or
®

Figure 3.2: An example of the inheritance process from one parent to an
offspring.

The Markov chains are independently simulated for the other offspring in the
same manner.

Figure 3.2 shows an example of the inheritance process from one parent to
an offspring. Here, the parent is heterozygous Aa at D with the trait allele
on the paternal chromosome and the normal allele on the maternal one.
Furthermore, let the alleles at the five marker loci Mg 1, Mg 9, ... ,Mrg,s
to the right of D be mg 1,1, Mr12,1, MK43,1, MK+4,1, MK45,1 on the paternal
chromosome and mg 12, MK422, MK 432, MK14,2, MK+52 On the maternal
one. If two recombinations occur, one between D and M1, the other
between Mg 4 and Mg 5, the offspring will inherit marker alleles m g1 o,
MK+22, MK+32, MK+42, Mi451 if it has inherited the disease allele A at D
and otherwise MK+1,1, MK42,1, TMK43,1, K441, TMK+45,2-

Let us end this chapter with a brief summary:

e Sample parental genotypes G, Gr at D, from the distribution

P(Gum,Gr | ASP)

e Sample offspring genotypes Oy, Oy at D, from
P(G017 GOQ ‘ GM; GF, ASP)
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e Assign parental genotypes at marker loci
M17M27' .- 7MN
according to population frequencies {gy,, }

e Pass down marker alleles from parents to offspring, according to the
Markov chains previously described (and keeping track of from which
chromosomes the D alleles were inherited).



Chapter 4

The Power Calculations

Given a specified genetic model (with the structure described in Chapter 2)
marker data can be generated using the method from the previous chapter.
This means that for a set of families or pedigrees we can make a large number
of marker data simulations and for each replicate calculate some appropriate
statistic to study the probability of finding linkage. Here the focus will be
on the NPL-score statistic, which is a nonparametric measure of linkage,
calculated by the GENEHUNTER software [KDRDL96] [KL98].

4.1 The NPL-Score

Assume for an ASP family that at a certain marker locus the father has
genotype mymsy and the mother mgmy (see Figure 4.1).

If both of the offspring have inherited the m; allele from the father, they
share one allele IBD (identical by descent), meaning that the offspring’s pa-
ternal alleles have the same ancestral origin (come from the same ancestral
chromosome). Since one allele is inherited from each parent, the two sibs
will have either 0, 1 or 2 alleles IBD at the particular marker locus. Under
the null hypothesis of no linkage, i.e. the disease and marker locus are at
such a far distance from each other that alleles from these loci are inherited
independently of each other, each affected sib-pair shares 0, 1 or 2 alleles
IBD in proportions , 3 and 1 (Bin(2, 3)). Under the alternative hypothesis
(linkage) the rate of IBD sharing is expected to be higher (2 alleles IBD with
probability greater than i)

The NPL-score statistic used in GENEHUNTER for testing linkage to a
disease locus is based on this theory of IBD sharing and is for a fixed position

17
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/\%

Figure 4.1: ASP family.

on the genome of the form
X =) Z/Vm,
i=1

where the sum runs over the families (pedigrees) and Z; is a normalised vari-
able, depending on the number of IBD alleles shared by affected individuals
[KDRDL96]. To keep things as general as possible, Z; should be looked upon
as a variable assuming “large” (positive) values when the IBD sharing is
high and “small” (negative) values when the sharing is low. By keeping this
general level, the results can be transferred to other measures of the same
structures. Therefore, the details regarding the NPL-score are treated in
Appendix A, where Z; also is calculated for a hypothetical ASP family.

If the IBD sharing can be unambiguously determined, X “~ N(0,1),
under the null hypothesis (due to the Central Limit Theorem). Otherwise
(the IBD sharing not known with certainty), it can be shown that the variance
of X is less than or equal to one [KDRDLY6], i.e. treating X as ~ AN(0,1)
will provide conservative results. This NPL statistic is calculated at the
predetermined N marker loci on the genome and the focus will therefore
rather be on the vector

X =xWx®@  x™y

where X @ is the score at M; and the score at two adjacent loci are highly
correlated. A more general form for the scores is

x@ — 'w'Z(i),
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where
29 = (2.2, ... 2y
and
w = (wy,Wa, ... , W)
satisfying the condition
ww =1,

allowing different weights for different family structures and disease patterns.
However in this thesis, only the case of equal weights

1 1 1

will be treated.

Figure 4.2 shows the result from one GENEHUNTER run of simulated
data for 50 sib-pairs without any parents (recessive disease locus with pa-
rameters py = 0.2, faa = 0.5, faa = faa = 0, 24 marker loci at distance
5¢cM from each other, each with five equally likely alleles and the disease
locus centred between the 12th and 13th marker). As seen in the figure, the
computation of NPL-scores is not limited to the N marker loci, but can also
be carried out in the intervals between the loci. However since we, when
looking at the chromosome containing the disease locus, believe the peak
(maximum score) in almost every case to be at a marker locus and the score
between marker loci M; and M, to be < max{|X®| | X¢*+V|} (an assump-
tion supported by simulations and the limited amount of knowledge in the
course of events between the markers), the interest is restricted to the vector
X = (XMW, X®@ . XM This restriction will simplify the multivariate
normal approximations in Section 4.2.

Powers can thus be obtained by doing a large number of simulations of
m families and then look at the proportion of these simulations with scores
above, say, the recommended thresholds for suggestive and significant linkage
[LK95] (for details, see below). This will be denoted the ezact approach’.
If the main interest is to get the probability of finding linkage at any of
the selected marker loci, the maximum score in each simulation replicate is

LThe reader should not be confused by the word exact, which only means that there
has not been any distributional approximations along the calculations like in the method
about to be presented. The exact approach is based on simulations and is by no means
exact.



20 CHAPTER 4. THE POWER CALCULATIONS

Z-all  thile =family)

e 115cM
i g | g | | | | | | | | | | g g g | g | i g g
PR R R R R OEOEREOEEEOEREEOEOROFREGRGE

ToeHow 2 1$:4255 |99

Figure 4.2: NPL-scores at 24 marker loci.

recorded. I.e. in each simulation generate N markers for m families, cal-
culate NPL-scores at these markers and finally look at the maximum score
only, at whichever marker it occurs, to see if it is higher than the recom-
mended linkage thresholds. The power is approximated with the proportion
of simulation replicates reaching the desired threshold, i.e. (given a threshold

©),

Zreplicates l{maxlgigN X @ >c}
F#replicates

Y

where 1 is the indicator function defined by

1. — 1 if F is true
E 0 if E is false °

The threshold for significant linkage corresponds (roughly) to a multi-
ple level of significance 0.05 when performing a whole (dense) genome scan,
i.e. on average 0.05 false positives due to randomness on the whole genome
[LK95]. The threshold for suggestive linkage gives a total expected number
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of one such false alarm for each genome scan. Using these thresholds for link-
age, suggestive linkage will be found on average at one marker locus unlinked
to the disease locus per genome scan and significant linkage on average at
0.05 unlinked loci. When analysing ASP families, the thresholds correspond
to pointwise levels of significance of 2.2 x 1075 (significant) and 7.4 x 1074
(suggestive) [LK95], that is in the situation of interest the values 4.0854 and
3.1786 (®(1 — 2.2 x 10°°) and ®(1 — 7.4 x 10~*) from the standard normal
distribution).

4.2 The Multivariate Normal Approach

Although the marker simulations and the computations in GENEHUNTER
can be performed within reasonable time, there still is a need for improve-
ment. The reason being that a simulation method where the number of
families m is fixed, forces the user to repeat the simulations using different
values of m, until the desired power is obtained. Although the marker sim-
ulations only have to be performed for the largest m of interest, say mmax,
(by picking families from this set for all other m < myay) still the NPL
calculations must be repeated for all m.

By sampling independent families under the alternative hypothesis H;
corresponding to the specified model, a large number of Z-scores at the N
locations on the genome (marker loci) can be obtained, i.e. we get a large
number, say R, of observations from the vector

Z =29,z . zM™Yy

Y

where Z®) denotes the score at M;, i = 1,2,...,N. Let Z®") denote the
observed score at M; from simulation r, » = 1,2,..., R. For the score of
one family the sample mean

Z=(zW,Z2®  zMy

where
| &
7(1) — — (2,r) .
A —RTE:1Z , 1=1,2,... N,

and the sample covariance matrix

gy g12) ... gON)
Sy g(22) ... g(2N)
S=1. : L ;

SN g(N2) ... g(NN)
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where
R
D (20— ZE0)(Zbn) — 26D) iy = 1,2, N,

r=1

1

Glinsiz) —
R-1

can be used to get perfectly good estimates of its expectation

po= (M, u®, oy
and covariance matrix
o) 502 ... SON)
o) S22 ... N
> =
SN) G(N2) . (V)

Being interested in m families, i.e. the vector
X = (X(l),X(Q), N X(N))'

c Y

where
m

X@ — sz(i)/\/ﬁ, i=1,2,... N,
7j=1

we use instead /mZ to estimate the expectation of X and again S for the
covariance matrix. This is motivated by the equalities

E[X] = % — V/mp

and

m
Cov(X)=———5=2X.
(vm)?
The next step is to use the central limit theorem to approximate the distri-
bution of X by an N-dimensional multivariate normal distribution, i.e.

X ap{gﬁox NN(\/EHH 2)5

where the parameters are replaced by the observed estimates v/mZ and S.
This approximation can be used to get good power estimates. If for instance
the main interest is the probability of finding linkage anywhere on the piece
of the genome under study, we look at the distribution of

max X®.
1<i<N

This is the problem of finding the distribution of the maximum in a N-
variate normal distribution, which can be solved by sampling from such a
distribution, or by numerical integration.
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4.2.1 Sampling From A Multivariate Normal Distribu-
tion
Sampling from a Ny (u, X) distribution can be accomplished by several meth-
ods [BS72]. Below, one of them is described:
(1) Calculate £'/2. Any matrix A, satisfying
AA' =X
can be used as $'/2 and A can be obtained, using Cholesky factoriza-

tion [BFS83]. To do so, ¥ must be nonsingular. Problems will occur if
any of the correlations will be equal to one?.

(2) Generate a N-dimensional vector V' = (V;,V3,... ,Vy)' of independent
random variables from the standard normal distribution (V; ~ N (0, 1),
i=1,2,...,N).

(3) Form the vector Y2V + p.

We have now obtained a random observation (N-dimensional) from the de-
sired distribution Ny (u,X). That (1)-(3) result in the right distribution is
easily seen from the equalities

E[ZY2V 4+ p] = £Y2(0,0,... ,0) + p=p
and
Cov(ZV2V + p) = SV2Cou(V)BV2 = 2121 22 = 5,
where I'y is the (N x N) identity matrix,

10 --- 0
01 ---0
Iy=1|. . . .
00 - 1

This means that
SV +mZ

provides (approximately) a random sample of scores from the different lo-
cations on the genome. By getting a large number of such samples (by
generating new V’s only) and varying the number of families m we can re-
ceive nice power graphs depending on m. Observe that only a single set of
simulations (V' vectors) is needed and can be used for all m simultaneously,
resulting in nice monotonicity properties.

2Will probably not happen since the sample covariance matrix is based on a large
number of simulations.
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4.3 Summary

In the previous sections, two power calculation techniques were introduced.
First, the straight forward method called the the exact approach was de-
scribed and by using an approximation step it was later improved into the
MYVN approach (multivariate normal approach). Before using them, we now
summarize the two techniques.

Suppose one is interested in the probability of finding linkage at any of the
marker loci M, M, ..., My, for the different family sizes® S;, S, ... ,Sr.

e The Exact Approach
— For §p = max;<;<r S; ASP families, simulate marker genotypes
at the N marker loci, a large number R’ of times.
— For each of the R’ replicates, calculate NPL-scores.

— Approximate the power with the proportion of replicates yielding
a maximum score higher than the given threshold ¢, i.e.

RI

1
E Z l{miﬂqgigN XG>}
r=1

where X(7) is the score at marker i for replicate r.

— For family sizes S; < S, pick S; x R’ families out of the Sy x R’
simulated ones and proceed as before.

e The MVN Approach

— Simulate marker genotypes for a large number R of families.
— Calculate NPL-scores for each family.

— Approximate the mean vector and covariance matrix for the scores
of one family by the sample mean vector Z and sample covariance
matrix S. By using \/S;Z as the mean vector and again S as the
covariance matrix, the approximate distribution for the scores of
S; families is obtained, using the multivariate normal distribution.

— The power can be obtained by looking at the distribution of the
maximum in a multivariate normal distribution. This is easily
done by simulations. A single set of simulated observations from
a standard normal distribution can be used to obtain the power
for all family sizes.

Snumber of families
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Certainly, a strategy to get simultaneous power curves, using a pure sim-
ulation technique is also possible, simply by adding families one by one to
the sample and check for each sample size whether the relevant threshold
is reached by any of the components. This gives a more complicated pro-
gramme structure and moreover does not a priori give as smooth curves, as
the multivariate normal approach.

When the number of family sizes to be tested grows, the MVN approach
will be superior to the exact approach from the computation time perspective.
However, the gain is not limited to computation time, since we also end up
with a score distribution that may turn out useful. Next, the MVN approach
is illustrated and tested in a simplified example.



26

CHAPTER 4. THE POWER CALCULATIONS



Chapter 5

A Power Study for MS

MS (Multiple Sclerosis) is a disorder of the central nervous system, involving
destruction of myelin. Reduced eyesight, difficulties with coordination and
disturbance of balance are some of the recurring symptoms. Also the mental
health is affected. The cause of the disease is believed to be genetic as well
as environmental. MS is a worldwide disease, but with a varying prevalence.
For instance, Scandinavia has a higher prevalence than, say, countries near
the Equator. Studies have shown a change in occurrence risk of MS due to
migration. The varying prevalences together with the influence of migration
provide evidence for environmental factors involved in the disease. The fact
that the occurrence risk for relatives of MS patients is much higher than
for the population in general and that the risk for monozygotic twins is
higher than for dizygotic twins, support the existence of genetic factors. In
Scandinavia the population prevalence is about 0.1% and the sib prevalence
about 4%. The age of onset is usually between 20-40 years. Although the
course of the disease can be alleviated, there is today no existing cure for MS
([BO99], [McG97], [Nat94]).

5.1 The Family Study

It has been known for quite a long time that MS patients have what is called
CSF-enriched oligoclonal 1gG bands in higher proportions than healthy con-
trols. Recent clinical studies have shown that healthy sibs of MS patients
have > 2 such bands in significantly higher proportions than unrelated con-
trols. This condition (> 2 bands) will be denoted MS-trait [HAR'99).

In a recent study in Goteborg of 47 sib-pairs, each one involving a MS
patient and one healthy sib, the MS-trait phenotype was observed in almost
every MS patient (45 of 47 cases) and in 9 of 47 cases of the healthy sibs

27
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[HAR'99]. The trait phenotype was observed in 2 of 50 healthy individuals
(blood donors) leading to the suspicion of an MS-trait locus being one of
many components giving rise to the MS disease. Since the bands are known
to be caused also by some child diseases, it is hard to distinguish between
the inherited and environmental factors behind the trait condition. However,
the neurologists in Goteborg involved in this research have decided that it
is worth testing the hypothesis that MS-trait is really an MS trait, caused
at least partly by genetic conditions. A whole genome scan is planned and
families with a MS patient as proband, a sib with MS-trait and if possible
parents or extra sibs will be collected. In this example, we want to get
an idea of the number of such ASP families that are necessary to collect, to
have a fairly good chance to detect linkage if there is any, provided the rather
optimistic scenario that this MS-trait is caused by a single dichotomic trait,
which is either recessive or dominant and a penetrance event (in reality, it is
believed to be much more complex and the power results in the sequel should
be looked upon as optimistic upper bounds).

5.2 Power Calculations

The population prevalence Kp and the sib prevalence K¢ for MS-trait, have
been estimated by

Kp=004 and Kg=0.23,

yielding a Ag about 5.8 (the estimate Ky is very uncertain).

As before, the disease allele is denoted by A. Two models have been
used; one recessive and one dominant, each one with a Ag around 6. In the
recessive case, the parameters

pa =026, faa=06, faa=0, faa=0,
are chosen. In the dominant case we let
PaA = 0.045, fAA = 0.45, an = 0.45, faa =0.

In this example, N = 10 markers at 20cM distance from each other are
simulated, each with 10 possible equally likely alleles. The disease locus
is centred with 5 markers at each side (K = 5) and at the distance 10cM
from the two closest markers, i.e. using the notation from Section 2, allele
frequency vectors

11 1 1 1 1 1 1 1 1

S e —1.2.... .1
v =5 19° 10° 10’ 10° 10° 10’ 10’ 10" 10 P 210
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Figure 5.1: Power graph: The recessive case (pa = 0.26, faa = 0.6, fa, =
faa = 0). 2 affected offspring. 2, 1 or 0 parents (each with probability 1/3).

and the distance vector
C = (20, 20, 20, 20, 10, 10, 20, 20, 20, 20).

In GENEHUNTER the ’all’ scoring function is chosen (see [KDRDL96]
and Appendix A for details) and NPL-scores are calculated at each marker
locus.

To summarize: First marker data is simulated for 100000 ASP families,
where each family includes two offspring (affected with MS-trait) and two,
one or zero observable parents, each case with probability 1/3 (which seems
like a reasonable assumption). Then, for each family NPL-scores are cal-
culated at the 10 marker loci on the genome using GENEHUNTER. The
sample mean Z and sample covariance matrix S based on the 100000 simu-
lations are then fairly good estimates of p and 3, respectively, where Z is a
10-dimensional vector and S a 10 x 10 matrix. By sampling the distribution
of Zmax, according to the sampling scheme for a 10-dimensional multivariate
normal distribution in Section 4.2.1 (100000 random samples from the multi-
variate normal distribution), the probabilities of reaching the thresholds for
suggestive and significant linkage are estimated as graphs depending on the
number of families (Figure 5.1 & 5.2).
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DOMINANT MODEL

SUGGESTIVE

POWER
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Figure 5.2: Power graph: The dominant case (p4 = 0.045, faa = faq = 0.45,
faa = 0). 2 affected offspring. 2, 1 or 0 parents (each with probability 1/3).

To find suggestive linkage with probabilities 0.5, 0.8 and 0.9 in the reces-
sive case, about 35, 53 and 64 families will be needed. The corresponding
number of families in the dominant case are 56, 86 and 103 (not shown in
figure). To reach the critical value for significant linkage with probabilities
0.5, 0.8 and 0.9, about 61, 85 and 98 families are necessary in the recessive
case. In the dominant case however, as many as 99 families will be needed
just to reach this threshold with probability 0.5 (137 and 158 for the larger
probabilities).

It may also be of interest on what locations the maximum scores are
found. First, let us limit the interest to only concern the case of 60 families
(using the MVN approach). The model did contain 10 marker loci in a row
at 20cM distance from each other, and the disease locus centred between
the 5th and the 6th marker locus. Thus, the disease locus is tightest linked
to the marker loci 5 and 6, making us hope that a large part of the max
scores are located at these loci. This turns out to be the case. Considering
the recessive case we find, when plotting the locations of the first 1000 max
scores, that there are some scores also located at the 4th and 7th marker
locus and seven “outliers”, two of them at marker 3, three at marker 8 and
one each at marker 1 and 9 (Figure 5.3). If we instead focus on the first 1000
that reached the threshold for suggestive linkage, we get rid of four of these
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Figure 5.3: Locations of 1000 max scores (recessive case; pg = 0.26, fa4 =
0-67.an = jﬁa = 0)-

outliers (Figure 5.4) and furthermore when considering those having reached
significant linkage, there is only one max score (at marker 3) further than
30cM away from the disease locus.(Figure 5.5).

In the dominant case there is a larger variation of the max scores with
values at all markers (Figure 5.6). Again, the variation decreases when con-
sidering only the ones passing the first threshold (Figure 5.7) and for the
case of the second threshold there are, except for three (two at marker 3 and
one at marker 9), no observations further away from the disease locus than
30cM (Figure 5.8).

Corresponding results for all number of families m are shown in Figure
5.9-12, where the proportion of the suggestive, the significant and of all the
max scores that were found at marker 4-7 and 5-6, are plotted for the recessive
and the dominant case, respectively.

Further simulations show that if a window is placed in front of locus 4 to
locus 7, i.e. if the interest is restricted to the probability of finding linkage at
the four marker loci within 30 ¢cM from the disease locus, the loss in power
in the recessive case will not be greater than 0.5% for any number of families
(Figure 5.13). Furthermore, when only the powers obtained at marker loci 5
and 6 are considered, the loss is at most 1.5% (Figure 5.14).

The corresponding losses for the dominant case are about the same (Fig-
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Figure 5.4: Locations of 1000 suggestive max scores (recessive case; p4 =
0-26a.fAA,::O-65.an ZZanZZ 0)
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Figure 5.5: Locations of 1000 significant max scores (recessive case; pq =
0'26a.fAA.::0-67.an ::jhu:: 0)
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Figure 5.6: Locations of 1000 max scores (dominant case; pa = 0.045, faa =
an = 0.45, j;a = 0)'
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Figure 5.7: Locations of 1000 suggestive max scores (dominant case; py =
0045a fAA = an = 045: faa = 0)
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Figure 5.8: Locations of 1000 significant max scores (dominant case; ps =

0.045, faa = faa =0.45, foa = 0)

[N

©

©

al
T

©
©
T

©

o

a
T

©
o]
T

PROPORTION
o
~
al
T

SIGNIF' SCORES |

— = = = SUGG SCORES -

0.7 ALL SCORES
0.65R h
1
0.6+ .
0.55F b
0. 50 20 40 60 80 100

NO OF FAMILIES

Figure 5.9: Max scores located at marker 4-7 (recessive
faa =06, faa = foa =0).

case; pa = 0.26,
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RECESSIVE MODEL: PROPORTION OF MAX SCORES AT MARKER 5-6
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Figure 5.10: Max scores located at marker 5-6 (recessive case; ps = 0.26,
Jaar =06, faa = faa = 0)'

DOMINANT MODEL: PROPORTION OF MAX SCORES AT MARKER 4-7

l T T T T I T T T T e e e
\\\ . -
N 7
= 7
0.9 SR ]
= /
=1
i
-1
7
0. 8F o SIGNIF SCORES |
[
z r - — — —'SUGG SCORES
] E
[t -
o 1-
0 0.7r ALL SCORES |
[e] 1=
ox z
o I:
1z
RE
0.61" 8
I
I
1
0.5} .
0- 4 L L L L
0 20 40 60 80 100

NO OF FAMILIES

Figure 5.11: Max scores located at marker 4-7 (dominant case; p4 = 0.045,
fAA = an = 045, faa = O)
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DOMINANT MODEL: PROPORTION OF MAX SCORES AT MARKER 5-6
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Figure 5.12: Max scores located at marker 5-6 (dominant case; py = 0.045,
fAA = an = 0457 faa = 0)
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Figure 5.13: Loss in power when considering marker 4-7 (recessive case;
pa = 0.26, fAA = 0.6, an = faa = O)
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Figure 5.14: Loss in power when considering marker 5-6 (recessive case;
pa = 0.26, fAA = 0.6, an = faa = 0)

ure 5.15 & 5.16).

5.3 Performance of the MVIN Approach

How well does this MVN approach perform? To get a rough answer to this
question, we make for both the recessive and the dominant case (using the
models from the previous section), 10000 marker simulations with 20 families
in each. For each simulation replicate we calculate NPL-scores and look at the
proportions of suggestive and significant linkage obtained (this was denoted
the exact approach). This is repeated for 40 and 60 families and comparisons
between these values and the ones received in our graphs are printed in Table
5.1. Being based on a limited number of simulations, the exact approach is
of course not “exact”. Hence the deviations between the two approaches are
only natural, and would probably have been even smaller if the figures in both
approaches had been based on a larger number of simulations. However, these
deviations are quite small, stating that the use of the central limit theorem
works out just fine. Since we use a finite number of simulations, there will
also be some deviations between different runs of the MVN approach when
different initial states for the random number generator are used. Figure 5.17
shows the power graph for the recessive case, previously plotted in Figure
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Figure 5.15: Loss in power when considering marker 4-7 (dominant case;
pa = 0045: .fAA = an, = 045, faa = 0)
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Figure 5.16: Loss in power when considering marker 5-6 (dominant case;
pa =0.045, faa = faa = 0.45, fo, = 0).
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case

MVN approach
sugg link | signif link

exact approach
sugg link | signif link

recessive 20 fam
40 fam
60 fam

0.2111 | 0.0262
0.6126 | 0.1941
0.8730 | 0.4949

0.2065 | 0.0164
0.6153 | 0.1868
0.8732 | 0.4918

dominant 20 fam
40 fam
60 fam

0.0817 | 0.0047
0.2903 | 0.0422
0.5513 | 0.1448

0.0725 | 0.0034
0.2843 | 0.0377
0.5499 | 0.1385

39

Table 5.1: Comparisons between the MVN and the exact approach. The
figures displayed are the proportions of suggestive and significant scores,
obtained from the MVN and the exact approach, respectively .

5.1, compared to a similar run based on a different set of random numbers.

Considering the purpose of the power study, i.e. to serve as guidance
rather than to provide precise decimals for the power, the accuracy of the
MVN approach seems sufficient.

5.4 Three Offspring

So far, we have only considered families with two offspring. How much better
powers can be obtained when we instead use families with three offspring,
where at least two of them are affected? The simulations in this section were
performed by starting at the disease locus, randomly assign alleles to the
parents, pass down alleles to the three offspring, check if the family satisfied
some specified conditions and if that was the case, generate marker alleles
according to the scheme in Chapter 3. Obviously, not the most elegant
strategy (see Chapter 3), but justified by the circumstances under which the
simulations were made. However, as in the two offspring case, no marker
alleles are generated before a family has been accepted. A slight reduction
in computation time was made by not assigning any alleles at D to the third
offspring when none of the first two offspring were affected.

Consider the data from previous sections, with the slight change of only
taking the four marker loci closest to the disease locus into account (see
Figure 5.18). This reduction is made to get faster calculations and the loss
in power is small enough to be acceptable (Section 5.2). Remember, the aim
here is to compare the previously considered two offspring families to families
with three offspring, thus the actual values are not that relevant.

If we in the recessive case compare the power graphs obtained from using
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Figure 5.17: Two power simulations, using different sets of random numbers.
Recessive case (pa = 0.26, faa = 0.6, faq = faa = 0). 2 affected offspring.
2, 1 or 0 parents (each with probability 1/3).
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Figure 5.18: The disease- and the four marker loci considered in the compar-
isons between two- and three-offspring families.

two and three offspring, respectively (basing the normal approximations on
100000 simulated families and generate 100000 samples from these distribu-
tions), we notice that to obtain suggestive linkage with probability 0.8 we
need 55 families with two or 39 with three offspring and with probability 0.9,
about 66 families with two or 48 with three offspring (Figure 5.19). Le. a
gain of more than 15 families. To get significant linkage with probability 0.8
we need about 87 families with two or almost 63 with three offspring and
with probability 0.9, 100 families with two or 73 with three offspring, i.e. a
gain of more than 20 families (Figure 5.20).

In the dominant case, suggestive linkage is reached with probability 0.8
with 87 two offspring families or 68 with three offspring families, and with
probability 0.9 with more than 100 or 81 families (Figure 5.21). To get the
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Figure 5.19: Power graph: The recessive case (pa = 0.26, faa = 0.6, fa, =
faa = 0). Families with 2 affected offspring compared to families with 3
offspring, where at least 2 are affected. 2, 1 or 0 parents (each with probability

1/3).

corresponding values for significant linkage we need larger family sizes than
100 (Figure 5.22).

The previous results showed how powers could be raised by taking ad-
vantage of a third offspring. However, one disadvantage of the NPL-score
statistic is the fact that it does not make use of the IBD sharing information
from a healthy offspring, i.e. bringing a healthy sib into the examination will
only contribute to the information of the parental genotypes. The increase
in powers seen before could in fact be the effect of a small number of families
with three affected sibs. Discussing the gain from using an extra offspring,
perhaps somewhat more interesting than the previous situation is to examine
how much better result that can be obtained from using a healthy sib when
parental data is missing. For ASP families without parental data, power
comparisons are made between the cases with and without an extra healthy
sib.

In the recessive case, 55 and 66 families consisting of only two offspring
would be needed to receive suggestive linkage with probabilities 0.8 and 0.9.
Using an extra healthy sib in each family, the corresponding sizes could be
decreased to 38 and 45 (Figure 5.23). To receive significant linkage with
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Figure 5.20: Power graph: The recessive case (pa = 0.26, faa = 0.6, faq =
faa = 0). Families with 2 affected offspring compared to families with 3
offspring, where at least 2 are affected. 2, 1 or 0 parents (each with probability

1/3).

the same probabilities, 88 and about 100 families of two offspring would be
needed, decreasing to 60 and 69 when adding the healthy sibs (Figure 5.24).

In the dominant case there is a need of about 73 affected sib-pairs to
receive a suggestive linkage with probability 0.5, a figure to be compared to
58 if we add an extra healthy sib (Figure 5.25). To reach this level with
probabilities 0.6, 0.7 and 0.8, the corresponding number of sib-pairs are 83,
94 and >100, but only 66, 76 and 87 with the added sib. Considering the
threshold for significant linkage somewhat more than 100 sib-pairs would
be needed just to reach it with probability 0.3 without the third (healthy)
(Figure 5.26). Extracting the information from a third sib, significant linkage
is reached with probability 0.3 and 0.4, using 81 and 91 families.

What conclusions could be drawn from these data? It is clear that powers
can be increased when parental data is missing by using the information
given from a third healthy sib, but this procedure will not reduce the set
of individuals to be tested. When the parents were missing, the number of
families to be tested to show suggestive linkage with probability 0.8 could be
reduced from 55 to 38 in the recessive case, but the number of individuals
increased instead from 110 to 114. To get suggestive linkage with probability
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Figure 5.21: Power graph: The dominant case (pa = 0.045, faa = fas =
0.45, fse = 0). Families with 2 affected offspring compared to families with 3
offspring, where at least 2 are affected. 2, 1 or 0 parents (each with probability

1/3).

0.7 in the dominant case the number of families dropped from 94 to 76, but
the total number of individuals increased from 188 to 228. Collecting another
affected sib-pair would probably provide stronger evidence of linkage than the
examination of two healthy sibs from two independent ASP families. Still,
the data from healthy sibs can be the bridge between failure and success
when the number of ASP families is limited. Another advantage is that this
kind of data may be easy to get hold of. However, to extract all the available
information a healthy sib provides, another measure or a modification of
the NPL statistic would be needed. Remember that the only contribution
from the healthy sibs is information of the parental genotypes, when those
are not, or only partly, known. The fact that the sibs are healthy is not
relevant and the extra sibs could therefore be ones with affection status
unknown. Although not treated in this thesis, the reader should bear in mind
the possibility of using different weights for different families (see [Nil99]).
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Figure 5.22: Power graph: The dominant case (pa = 0.045, faa = faa =
0.45, fao = 0). Families with 2 affected offspring compared to families with 3
offspring, where at least 2 are affected. 2, 1 or 0 parents (each with probability

1/3).

5.5 Some Comments

Although this example certainly is connected with reality, its main purpose
in this thesis is to illustrate a method. To use an imaginary set of ten mark-
ers at 20cM distance between each neighbouring pair, is only a matter of
convenience. In a genome scan, a tighter set of markers is usually chosen
(10cM between two markers on average might be realistic). However, in the
complete power study, different distances have been tested. The use of a total
chromosome “length” of 180cM was somewhat arbitrary (the human chro-
mosomes are about 140cM on average), but only a part of the chromosome,
covering the disease locus, proved to be of value for the power calculations.

In the example, the parental data (when available) consisted of both
marker genotypes and affection status. In many families, the parental data
will consist only of marker genotypes, since a lumbal puncture must be per-
formed to find out the affection status. Calculations (not shown here) show
that this lack of data will in the dominant case reduce the power somewhat,
but hardly influence the recessive case.

Since the IBD sharing and inheritance generally are not known with cer-
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Figure 5.23: Power graph: The recessive case (pa = 0.26, faa = 0.6, fa, =
faa = 0). Families with 2 affected offspring compared to families with 2
affected 4+ 1 unaffected offspring. No parents.

tainty, the marker allele frequencies will enter the NPL calculations. These
frequencies are estimated through population data. If the frequencies vary
between different populations, incorrect estimates might provide misleading
powers. For instance, say that data for a large-scale study is collected in
Sweden and Finland. Let mq; be an allele, existing in the Swedish popula-
tion in the proportion g, , compared to gy, in the Finnish population. The
estimate, based on the total population, will be a weighted average between
@, and g, . Le. an incorrect estimate for all families, when ¢, = # ¢

mi1°
What influence will this kind of falsities have on the powers?

ko
mi1”

5.5.1 Example
The parameter set, used in the simulations, included marker allele frequencies

. Ly =12 10
q,/\/li_ 101105"'51(]’ 1= P BRI} .

What if the estimates

33 3 3 3 1 1 1 1 1

am; = (%a %a 2_0: %a 2_05 %a %a 2_0: %a %)
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Figure 5.24: Power graph: The recessive case (pa = 0.26, faa = 0.6, faq =
faa = 0). Families with 2 affected offspring compared to families with 2
affected 4+ 1 unaffected offspring. No parents.

are used in the NPL calculations?

Figure 5.27 shows that these errors have a slight positive effect on the
powers; in the recessive case almost negligible and in the dominant, less than
2.5% (the largest difference is reached in the dominant, significant case, for
about 120 families). The error will probably also inflate the error of the first
kind, so that the interpretation of suggestive and significant linkage will not
be rigorously valid (see Chapter 6 below).
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Figure 5.25: Power graph: The dominant case (pg = 0.045, faa = faa =
0.45, fua = 0). Families with 2 affected offspring compared to families with
2 affected + 1 unaffected offspring. No parents.
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Figure 5.26: Power graph: The dominant case (pg = 0.045, faa = faqs =
0.45, fuo = 0). Families with 2 affected offspring compared to families with
2 affected + 1 unaffected offspring. No parents.
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Chapter 6

Further Applications

The thresholds previously described, called suggestive and significant linkage,
are the proposed limits to use, to get the right multiple levels of significance
when performing a whole genome scan [LK95]. Suppose the interest is re-
stricted to a partial genome scan. For instance, knowledge about the disease
(or previous scans) may point out a few chromosomes or a particular region
on a certain chromosome that are of interest for the disease. If this in fact
is the scenario, the limits based on whole scans seem unnecessarily strict,
but of course some multiple adjustments must be made. The thresholds are
depending on the number of chromosomes, the number of marker loci, their
polymorphism and the distances (recombination fractions) between them.
In other words, to choose the correct thresholds and pointwise levels of sig-
nificance for the situation in question, is not a trivial problem. Of course,
the Bonferroni method can always be used, i.e. using the pointwise levels
~ when dealing with N markers. This procedure will guarantee a multiple
significance at most « (the probability of rejecting the null hypothesis at any
marker when there is no linkage will be at most «, from Boole’s inequality).
However, due to the high dependence between adjacent marker loci, the mul-
tiple level will be much smaller than « and the inequality will not be very
sharp. Instead the thresholds (and pointwise levels of significance) can be
simulated, using the method described in previous sections, but now under
the null hypothesis of no linkage (Hy).

Again, let M, M,, ... , My be the markers of interest and consider first
the case when all the marker loci are located on the same chromosome.
Remember that the random vector for the scores of one family was denoted

Z=(zW,z3 . z™)y
where Z(®) was the score at M;, i = 1,2,... , N. Under Hy, the mean vector

49



a0 CHAPTER 6. FURTHER APPLICATIONS

is
u=FE[Z]=(0,0,...,0)

and the purpose of the simulations is restricted to estimate the covariance
matrix

Cov(Z) =X.

E[X] = \/m“ = (0’ 07 R 70),’
(where
X =xW x@  xWH,

is the mean vector of scores for m families, and X is the covariance matrix
for all m, we make (for m “sufficiently” large) the approximation

X "2 Ny(0,%).

3 is approximated by the sample covariance matrix S, obtained from the
simulations, where (using the notation from section 4.2) the elements are of
the form

R
Slinsiz) — %ZZ(iI’T)Z(iQ’T), i1,79 =1,2,... , N,
r=1

due to the knowledge of the mean vector. From this approximation, the
threshold c,, corresponding to a multiple level of significance « and satisfying

P(max X <¢,)=1-aq,
1<i<N

can be obtained. The correct pointwise level will be
1—®(cq),

where ® is the cumulative standard normal distribution function.
If instead H different chromosomes are considered, a “chromosomewise”
level of significance (multiple level of significance for each chromosome)

1—(1—a)YH
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can be used. Due to the independence between marker loci at different
chromosomes, the correct multiple level of significance

1-1-(1-(0-a)/f)=1-(1-0a)=a

is obtained. Allowing for different levels of significance for different chromo-
somes, more general chromosomewise levels

a1,09,...,0H,

satisfying

H
(1 _ah) =1- «,
h=1

can be chosen.

6.1 Example 1

Consider the following hypothetical example. Previous investigations con-
cerning a certain disease have pointed out a particular region on a chromo-
some, covering about 50cM. To examine this region, 10 marker loci, each
with ten equally likely alleles and the distance 5¢cM between each other, have
been investigated. What pointwise levels of significance should be chosen to
get a multiple level of 0.057

Simulations of 100000 sib-pairs (no parents) yielded a sample covariance
matrix

1) (12 L (1,10)

§@)  g22) ... (210
S =

5(1071) 8(1052) . e 8(10510)

and simulations (100000) of max;<;j<10 X, where
X ~ NIO (07 S)a

suggested a threshold of 2.1681 to get the multiple level 0.05, the value
obtained from plotting the empirical distribution

) 0 . ifz < 0(1)
Flooooo(.f) = 1001% if O(Z) S Tz < 0(i+1), 1= ]., 2, e ,99999 y
1 if x > 0(100000)
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Figure 6.1: The empirical distribution of maxi<;<10X (@),

where 0(1), 0(2), - - - , 0(100000) 1S the ordered sample from max;<;<io X (@) (see
Figure 6.1). This threshold corresponds to a pointwise level of significance
0.0151, which can be compared to 0.005, using the Bonferroni method. The
corresponding results when the number of possible alleles are varied between
5 and 10, and the distances between 5, 10 and 20cM (10 marker loci in each
case), are listed in Table 6.1.

number of Distances (¢cM)
alleles 5 10 20
) 0.0221 | 0.0220 | 0.0237
10 0.0151 | 0.0135 | 0.0129

Table 6.1: Example 1: Pointwise levels of significance.

The pattern (or lack of pattern) in the table may seem illogical. Since
the dependence between two marker loci decreases with the distance between
them (high correlation between adjacent marker loci), the pointwise levels of
significance should (in the case of a fixed number of marker loci) be larger the
closer the marker loci are to each other. This is also the case when marker
loci with 10 possible alleles have been used. However in the case of 5 alleles,
the levels of significance are larger and the largest being obtained in the case
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of the largest distance. This “phenomena” can be explained by distributional
differences. Remember that in the case of only one marker locus, the score
is approximately standard normal distributed when the inheritance can be
unambiguously determined, otherwise (inheritance not known with certainty)
the variance is < 1. Simulations (not included in the thesis) show that
the variance increases with the polymorphism (increases with the number
of possible alleles, at least if all alleles are equally likely), explaining the
larger levels of significance in the case of 5 alleles (compared to 10 alleles).
The lack of information can however be compensated by using a dense set
of marker loci and analysing the inheritance at these loci simultaneously,
pushing the thresholds for distances 5 and 10cM over the threshold for the
case of 20cM when marker loci with 5 possible alleles are used (see Appendix
A). Simulations show that the variances decrease when the distances increase.
However, the differences are larger in the cases of 5 alleles than the ones
involving 10 alleles.

6.2 Example 2

Consider the situation from Example 1, but instead of the assumption of
equal allele frequencies, use

q,, = (0.25,0.25,0.20,0.15,0.15), i=1,2,...,10,
in the case of five possible alleles and in the ten allele case, frequencies
q,, = (0.15,0.15,0.15,0.15,0.15, 0.05, 0.05, 0.05,0.05,0.05), i=1,2,...,10.

The correct pointwise levels of significance, corresponding to a multiple level
0.05, are listed in Table 6.2. Again we observe a similar pattern.

number of Distances (cM)
alleles 5 10 20
) 0.0226 | 0.0225 | 0.0245
10 0.0163 | 0.0151 | 0.0148

Table 6.2: Example 2: Pointwise levels of significance.
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Chapter 7

Concluding Remarks

Simulation based multivariate normal approximations, in connection with
evaluation of the performance of nonparametric linkage analysis with the
GENEHUNTER software, have been introduced. The approach has been
tested in various examples and has been found a quite applicable tool, to
use when studying a variety of different scenarios. It can be used to study
many other situations than the ones described in this thesis and probably
will be so in the future. The test statistic used to test for linkage throughout
these pages was the NPL-score. However, too much importance should not
be attached to the particular statistic. Similar approaches would probably
be feasible when dealing with other statistics.

The possibilities to use the derived technique to study various robustness
properties of the used statistics are also obvious. The effects of using the
wrong genetic distances, the assumption of no sex dependence involved in
the genetic distances and the Poisson crossover assumption, can be examined
simply by changing the family simulations in an appropriate manner. In
this context, the computational time aspects are important and the use of
multivariate normal approximations thus motivated.

%)
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Appendix A

The Nonparametric Linkage
Score

On the following pages the NPL-score statistic(s) will be described. However,
to keep the mathematics as simple as possible, only the situation of one
(fixed) marker locus (see section A.3 for a comment on the multipoint case)
is fully considered. The NPL-score was defined (at a certain marker locus)
in the previous sections as

X = Z Zi[\/m,

where the sum runs over the m families (pedigrees) (the notations differ
somewhat from the ones used by Kruglyak et al [KDRDL96|). For a fixed
pedigree, let a be the number of affected individuals, g the number of non-
founders, i.e. individuals with both their parents in the pedigree, and

— ; — 29
'vi—(xil,yig,...,xig,yig), ’L—1,2,...,2 X

the possible inheritance vectors associated with the nonfounder individuals.
Each v; is a vector of Os and 1s, where

o 0 if nonfounder [ has inherited the mother’s maternal allele
T =1 1 if nonfounder [ has inherited the mother’s paternal allele

and

~_ J 0 if nonfounder [ has inherited the father’s maternal allele
Yil 1 if nonfounder / has inherited the father’s paternal allele

Kruglyak et al KDRDL96| consider two different NPL-score statistics. NP Lygrs
is based on IBD sharing between pairs of affected individuals, whereas NP L

29
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takes IBD sharing between all the affected individuals in a pedigree into ac-
count in a more complicated manner, than just summing the pairs. Although
NPLpgrs is the least complicated one of the two statistics, we have chosen
to treat NPL,y; first, since this is the statistic used throughout Chapter 5.
NP Lygrs is described for comparisons and as a service to the reader.

Al NPLy

For a fixed inheritance vector, let
w; = (uji, Ujo, . - ,Uja), J=1,2,...,2°

be the possible vectors where one allele is chosen from each affected individual

and define h(u;) as the number of nontrivial permutations w1y, %j(2), - - - , Uj(a)
of uj1,u 9, ... ,Ujq, satisfying
Uj(k) 12) Ujk, k=1,2,... , Q.

h(u;) will assume large values when the vector w; contains a “large” number
of IBD alleles. If f is the number of founders, h(u;) can also be expressed as

2f
h(u;) = H[ (#times the [th founder allele appears in u,;)!| — 1.
=1

For each inheritance vector v,
204
S(’Uz) =2¢ Z h(Uj)
j=1

is calculated [WH94]. S(v;) will increase with the number of affected indi-
viduals sharing alleles IBD. Forming the weighted sum

229

S = Z S(vi)Paata(vs),

i=1

where Pguq(v;) is the probability of v; being the true inheritance vector
conditioned on the marker data and under the null hypothesis of no linkage,
Z is calculated as

_S—up
o

A
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ms My my M3
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Figure A.1: An ASP family of two healthy parents and two affected daugh-
ters.

p = E[S] and 02 = Var(S) are calculated under the hypothesis that all
vectors v; are equally likely, i.e. following the discrete uniform probability
distribution Py orm(vi) = 2729 (corresponding to the null hypothesis of no
linkage to the disease locus in question). The total score X is referred to as
NPLygy;.

A.1.1 Example 1

Suppose a family consists of two healthy (unaffected) parents, the mother
with genotype m;ms and the father with genotype momsy at the marker locus
(no information regarding which alleles are matern/patern) and two affected
daughters with genotypes moms and m;ms (Figure A.1). The sibs share
either zero or one allele IBD, since they obviously have inherited different
alleles from the mother and we do not know what alleles have been inherited
from the father. Using the notation previously specified, « = g = 2. Since
Ti1 7 Tig, 1 = 1,2 (different alleles inherited from the mother),

Pdata((fﬂﬂa Yi1, Ti2, in)) =0, ifzy=zp.
The probability of the inheritance vector (0,0, 1,0) is
Paata((0,0,1,0)) = P((0,0,1,0) | data)

B P(data ‘ (0, 0, 1, O))Pum‘form((ov 07 1a 0))
- P(data)

Gy Gmimeig 1
%q'rQnQQTnlqmg 8
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and the remaining alternatives are equally likely, i.e.

Paata ((Zi1, Yi1, Tio, Yi2)) = é, if zi1 # i
The relevant values are listed in Table A.1. Using these values,

i U; Puniform (vz) Pdata (vz) 8(’0,‘)
1 1(0,0,0,0) | 1/16 0 1/2
2 1(0,0,0,1) | 1/16 0 1/4
3 1(0,0,1,0) | 1/16 1/8 1/4
4 |(0,0,1,1) | 1/16 1/8 0
5 1(0,1,0,0) | 1/16 0 1/4
6 |(0,1,0,1) | 1/16 0 1/2
7 1(0,1,1,0) | 1/16 1/8 0
8 |(0,1,1,1) | 1/16 1/8 1/4
9 |(1,0,0,0) | 1/16 1/8 1/4
10 | (1,0,0,1) | 1/16 1/8 0
11 | (1,0,1,0) | 1/16 0 1/2
12 | (1,0,1,1) | 1/16 0 1/4
13 | (1,1,0,0) | 1/16 1/8 0
14 | (1,1,0,1) | 1/16 1/8 1/4
15 | (1,1,1,0) | 1/16 0 1/4
16 | (1,1,1,1) | 1/16 0 1/2

Table A.1: Calculated values for each inheritance vector.

16

1

s = E S(vi)Pdata('vi) = ga
=1

16 1

n= E[S] = Zs(vi)Puniform(vi) = Za

i=1
16

2 _ qy 1o = 1
o° = VCLT(S) = 12:1:(5(1%) - Z) Pum’form(vi) - 3_2’

resulting in the score

The contribution of this hypothetical family is therefore a negative one.
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A.2  NPLpis

The pair statistic is obtained by defining S(v;) as the number of pairs of
alleles from affected individuals that, given the inheritance vector v;, are
IBD. Again, the score is obtained from calculating

229

S = Z S('Ui)Pdata('vi)a

=1

and

A.2.1 Example 1 (continued)

Using the pedigree from Example A.1.1., the new s(v;)-values are listed in
Table A.2. From the new values,

1 V; Puniform ('vz) Pdata (vz) S(Ui)
1 |(0,0,0,0) | 1/16 0 2
2 | (0,0,0,1) | 1/16 0 1
3 1(0,0,1,0) | 1/16 1/8 1
4 |(0,0,1,1) | 1/16 1/8 0
5 |(0,1,0,0) | 1/16 0 1
6 | (0,1,0,1) | 1/16 0 2
7 1(0,1,1,0) | 1/16 1/8 0
8 | (0,1,1,1) | 1/16 1/8 1
9 |(1,0,0,0) | 1/16 1/8 1
10 | (1,0,0,1) | 1/16 1/8 0
11 | (1,0,1,0) | 1/16 0 2
12 | (1,0,1,1) | 1/16 0 1
13 | (1,1,0,0) | 1/16 1/8 0
14 | (1,1,0,1) | 1/16 1/8 1
15 | (1,1,1,0) | 1/16 0 1
16 | (1,1,1,1) | 1/16 0 2

Table A.2: Calculated values for each inheritance vector.

16 1
§= Z S(Ui)Pdata(vi) = 5:
=1
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my My

Figure A.2: An ASP family, consisting of two parents (the mother affected)
and three offspring (two of them affected).

16

M= E[S] = Zs(vi)Puniform(vi) = 17

=1

16
_ 1
02 = V(M”(S) = Z(S(’UZ) - 1)2Puniform(vi) = 5;
i=1
resulting in the score
1

2—1_ 1
Vioov?
2

i.e. NPLy; = NPLp,rs in this example. This is always true for cases with
only two affected individuals.

z =

A.2.2 Example 2

A pedigree, which does not end up in the equality NP Lgy; = NP Lygys, is seen
in Figure A.2. Calculations show that NPLy; (~ 0.894) gives a somewhat
higher value than NPL,,;,s (= 0.707). The contribution of this family is a
positive one, regardless of which of the two statistics that are used.

If all the offspring were affected, we had instead received NPL,; =
—0.516 and NPLygrs = —0.408. Furthermore, if all the offspring had been
affected and inherited the m, allele from the mother, the result had been
NPLy = 1.549 and NPLygs = 1.225 (calculations performed by GENE-
HUNTER).
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A.3 Comments

The NPL-score Z at a certain marker locus for one family has mean 0. How-
ever, the variance will be 1 only in the case of full information, i.e. when
the inheritance can be unambiguously determined, since u (= E[S]) and o?
(= Var(S)) are calculated under full information. It can be shown that
the variance of Z always is < 1 [KDRDL96]| (increasing with the amount of
information). The use of the standard normal distribution thus provides con-
servative results. The problem can be reduced by using highly polymorphic
markers.

The score functions were described only for the case of one marker.
Analysing several marker loci, the probabilities Py, (v;) are calculated, tak-
ing all loci into account. This multipoint technique will also reduce the
problems when not knowing the inheritance at each marker locus with cer-
tainty.
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Appendix B

Comments on the Computer
Implementations

The family simulation technique was implemented in MATLAB (version
5.3.0). However, the program is not yet fully developed and will be im-
proved in the future. Just as an illustration, the version for generation of
two-offspring ASP families takes as input

Number of families to simulate

Disease locus information (pa, faa, faa, faa)

Marker loci information (N, {n;}i-1,.. n, {@um, }i=1,..,N)

Position of the disease locus (K)

Distances in ¢cM (C')

Probabilities of including parents (P(0 parents), P(1 parent), P(2 parents))

Parental affection status (known, unknown)

and returns as output a (4 x No of families) x (6 + 2N) matrix where each
row represents an individual and

Column 1: family number
Column 2: individual number

Column 3: father’s number if the row corresponds to an offspring, 0
otherwise

67
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Column 4: mother’s number if the row corresponds to an offspring, 0
otherwise

Column 5: sex (1 male, 2 female)
e Column 6: affection status (1 unaffected, 2 affected, 0 unknown)
e Column 7 to (6+2N): marker alleles

The output file is scanned into GENEHUNTER (version 1.3) [KDRDLY6]
[KL98], where NPL-scores are calculated. The last step, involving the multi-
variate normal calculations, we feel no more need to comment on (see section
4.2.1).



