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Abstract

The thesis consists of two papers related to a method in statistical
genetics called linkage analysis.

Estimation of Ag(non—pmra) in coeliac disease.

We focus on the question if it is possible to find other genes than the
known coeliac disease HLA-component with a linkage analysis of 100
ASP families. The siblings relative risk Ag is a strong determinant for
the power in linkage studies. Assuming a multiplicative model, Risch
has shown that the relative risk at HLA for siblings can be estimated
by po/0.25, where pg is the probability of two affected sibs sharing no
haplotypes ibd at HLA. When not only linkage to HLA, but also the
disease alleles are known we derive an alternative way of estimating
the sibling relative risk for the nonHLA component.

Model based sampling and weights in affected sib pair analysis.

When running a genome scan with affected sib pairs and a nonpara-
metric statistic in the form of sums of IBD counts, it turns out that,
depending on genetic model, some families are more useful than oth-
ers if we consider the phenotypes of all family members. This can be
utilised by performing selective sampling and/or putting weights on
the IBD counts. Some different approaches are introduced and com-
pared on simulated examples.
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1 Introduction to genetic concepts

The key to the development of all living species is the DNA. For humans it
consists of 23 pairs of chromosomes that are long sequences of nucleotides
of four different kinds. These are adenine (A), guanine (G), cytosine (C)
and thymine (T), a four letter alphabet of life. The nucleotides are also
called bases and each chromosome is many millions of bases long. Since
the chromosomes come in pairs a commonly used term for a unit is base
pair (bp). Subsequences of a chromosome consists of functional units called
genes. They are the templates for building proteins. The position of a gene
on a chromosome is called a locus. During evolution genes are targets for
mutations that are changes of letters in the sequence. This gives rise to
variants of genes. The variants are called alleles. The variation of the genes
cause variation in functions. A pair of alleles from a chromosome pair at a
specific locus is called a genotype.

Between the genes are monkey typed messages that don’t code for pro-
teins, but are still carried around from generation to generation. These non
coding regions on a chromosome also have variations. Loci with known po-
sition and several alleles are called markers.

In each pair of chromosomes one comes from the mother, maternal, and
one comes from the father, paternal. The maternal chromosome is an al-
ternating sequence of the mothers maternal and paternal chromosome. The
positions where the sequences switch are called crossovers. This mixing is
done during the meios when the egg is formed. Similarly, in the male meios,
when the sperm is formed, the paternal chromosome becomes an alternating
sequence of the fathers maternal and paternal chromosomes.

The locations of the crossovers are seemingly random. A common sim-
plified way to model this randomness is to assume that the crossovers follow
a Poisson process and that the starting state is maternal or paternal with
equal probability.

A disease is hereditary when an observed familiar clustering is not only
due to the affected family members common social and physical environment.
One general measure of the familiar clustering is the relative risk for siblings
As = Kg/Kp where Kp is the population prevalence and Ky is the sibling
prevalence. Similar measures exists for other kind of relatives. A necessary
criteria for a hereditary disease is thus that Ag > 1

Our focus will be on finding disease loci by linkage analysis. Two loci are
said to be linked if they are physically linked in the sense that they reside



on the same chromosome. Two alleles at different loci from the same parent
are said to be recombined if one comes from grandfather and the other from
grandmother. If the loci reside on different chromosomes the recombination
probability, called recombination fraction 6 is 1/2 due to the independence
between chromosomes in the meios. If they reside on the same chromosome
the recombination fraction is equal to the probability of an odd number of
crossovers between them. In this case # < 1/2.

In linkage analysis we test whether a possible disease locus resides on a
certain chromosome by studying how markers have segregated in a pedigree
in relation to the phenotypes (affection status) of the pedigree members. So
the collected data consists of genotypes and phenotypes of members of the
pedigree.

One way of formulating hypothesises for testing linkage is as

Hy : 60 =1/2 (no linkage) vs Hy : 8 < 1/2 (linkage)
As a test statistic we can use the likelihood ratio

Ly
Ly

In parametric linkage analysis an assumption of a genetic model is explic-
itly made. For a biallelic monogene disease the parameters (p, fo, f1, f2) are
specified. Their meaning are p = P(disease allele frequency) while f; =
P(affected|i disease alleles) are the genotype penetrances. For example a
monogene, fully penetrant diease has the parameters (p,0,1,1)

Another approach to linkage testing is known as affected sib pair analysis.
The idea is to count the numbers of alleles at a marker loci that are identical
by descent (ibd) in a sib pair. The outcomes are 0,1,2 with probabilities
P = (po, p1,p2) = (1/4,1/2,1/4) and expected value p = 1 when there is no
linkage.

The hypothesises is then formulated as

Hy:p=1(1/4,1/2,1/4) (no linkage) vs Hy : p # (1/4,1/2,1/4) (linkage)

which is tested with a likelihood ratio Ly/L(1/4,1/2,1/4)
or
Hy : =1 (no linkage) vs Hy : u > 1 (linkage)

which is tested with a sum of ibd counts.



This was a rather condensed description of the concepts used in the pa-
pers. For more details refer to any textbook in genetics, e.g. Human Molecu-
lar genetics, Strachan and Read, Wiley, 1997 and for the statistical aspects of
linkage consult, Analysis of Human Genetic Linkage, Jurg Ott, John Hopkins
University Press, 1999.
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Abstract

We focus on the question if it is possible to find other genes than the
known coeliac disease HLA-component with a linkage analysis of 100
ASP families. The siblings relative risk Ag is a strong determinant for
the power in linkage studies. Assuming a multiplicative model, Risch
has shown that the relative risk at HLA for siblings can be estimated
by po/0.25, where pg is the probability of two affected sibs sharing no
haplotypes ibd at HLA. When not only linkage to HLA, but also the
disease alleles are known we derive an alternative way of estimating
the sibling relative risk for the nonHLA component.

1 Introduction

Coeliac disease is defined as a permanent intolerance to dietary gluten, i.e.
the main storage protein in wheat, rye oats and corn. It has a genetic compo-
nent, which is assumed to be multifactorial. Association to the HLA-region
on chromosome 6 is well established |Petronzelli:1997]. However this does
not explain all the relative risk seen in siblings and other relatives, which
indicates that there should be a nonHLA component.

In an ongoing study we have access to 108 nuclear families, where at least
two children are affected by coeliac disease. We use the software GeneHunter
[Kruglyak:1996] to perform non-parametric linkage (NPL) analysis.

In an early phase of the project we were concerned whether linkage anal-
ysis would have enough power to detect an assumed nonHLA component.
The doubts were based on [Risch:1996] and [Camp:1997|. Thus, admittingly
too late, we decided to perform power calculations for some reasonable al-
ternatives. To this end we needed to examine the strength of the nonHLA-
component.

One general measure of the genetic strength of a disease is the relative
risk \; = Kg/Kp, where Kp is the population prevalence and Kg is the
sibling prevalence. The size of Ag will obviously influence the power of a
genome scan.



A similar measure can be defined for each of the various genetic subcom-
ponent of the disease. For a subcomponent A we have A\ 1) = KS(A)/KP(A)
[Risch:1990a]

2 Estimating Ag(,onmr4) through two methods

In order to estimate Agonmra) We need to model the interaction between
HLA components and nonHLA components. We assume that all patients
carry risk alleles in HLA, we adopt a multiplicative model [Risch:1990a).

A multiplicative model has the property that if we have two loci, A and B,
with genotypes G 4; and Gpj, where f;; is the penetrance for the composite
genotype, then for all (i,j), the penetrances have a structure f;; = r;s;,
r; and s; being penetrance factors. We define Kp1) = > r;P(G;) which
we can think of as the population prevalence for an unobserved “A-disease”
caused by locus A. With this interpretation in mind we consequently define
Kga) = P(A affected|A affected sib) and similar for Kp(p), Kg(p).

With the assumptions and definitions in the last paragraph, the model can
thus be viewed as if coeliac disease was the result of having two independent
diseases caused by an HLA component and a nonHLA component.

If we further assume that the nonHLA component is not linked to HLA

g = Ks  KspayKsmonnra) AstrriA ,
- 5 — AS(HL S(nonHLA)-
Kp  KpmrayKpmonaLA) (HEDASC )

With a multiplicative model it was derived in [Risch:1987]

0.25
== 1)
Do

AS(HLA)

where
po = P(sharing 0 HLA-haplotypes|2 affected siblings)

can be estimated by genotyping markers at HLA in the nuclear families.
This gives finally

poKs
2
0.25Kp’ ( )

where Kg and Kp are estimated from population data and pg can be esti-
mated by observing the ibd-sharing at HLA in the family material.

As (nonHLA) —
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We can roughly think of the estimate of py as a simple relative frequency.
In practice problem arises with partially observable meioses and even with
fully informative meioses, an MLE in Holmans triangle [Holmans:1993| would
be an alternative to the relative frequency.

Estimating py with accuracy will require large samples of sib pair fam-
ilies and genotyping at HLA. If there was a phenotype “HLA affected” we
could directly estimate Kggray and Kpgray from population data. For
us “HLA affected” is merely an abstract concept. When we know, not only
the location of the disease locus, but also the alleles involved (as in our case
DQA1*0501,DQB1*02) [Sollid:1989] we could perhaps calculate Kg(1.4) and
Kp(mra directly. For instance

Kpra) = ZTiP(Gi) (3)

where 7; is the penetrance of the disease genotype G;. But we don’t know
all the genotypes G; and we don’t know the penetrance for the one we know.
Still, we will use our knowledge of one of the genotypes to derive an alterna-
tive formula.

Let G be a class of genotypes that are all sharing the same penetrance f =
P(HLA affected|G), in our case at least one DQA1*0501 and one DQB1*02.
Then

FKs(nonHLA)

JKp(nonHLA)

P(HLA aff]) P(nonHLA afflnonHLA aff sib)
P(HLA aff|G)P(nonHLA aff)

P(aff|G, nonHLA aff sib)

AS(nonHLA) =

- P(aff|G) W
_ P(aff|G, aff sib) P(G) (5)
P(Glaff) K, '

In equality (4) the independence of “nonHLA aff” and the HLA-genotype
class G together with the multiplicative model is used in both the numerator
and the denominator.

In equality (5) Bayes formula is applied on the denominator. For the
numerator the common but perhaps questionable assumption that the affec-
tion status depends on a siblings affection status only through the genotype
is used.



We estimated the different factors in (5) from results in a previous study
[Ploski:1996] to get an estimate of Agmonsra)-
To compare the two methods we can from the expression (5) derive

\ _ P(Glaffected, aff sib) P(G) K (6)
StonHLA) = "p(G|aff sib) P(G|affected) Kp |

The expression (6) has Kg and Kp in common with (2). Note that we have
implicitly shown
) _ P(G|aff sib) P(G|affected) 7)
SUHLA) ™ P(Glaffected, aff sib)P(G)

The fact that the known genotype G is fairly common in the population and
very common in affecteds implies that all quantities P(G), P(G|affected),
P(G|aff sib) and P(G|affected, aff sib) are large compared to p, resulting in
less variance of the estimate.

There will be no need to genotype the parents at this stage, but it will be
necessary to estimate the population frequency of G. The latter is of course
something that is normally already done if GG is really known to be disease
causing.

It would be possible though to avoid estimating P(G). Formula (7) is
true for any G as long as there is a risk associated with it. If all genotype
classes G; are at risk we could calculate a separate estimate /\gg mra) for each
of them and then as a total estimate take a weighted sum of the separate
estimates, with P(G;) used as weights,

As(HLa) = Z)‘gZHLA)P(Gi)
-y P(G;]aff sib) P(G;|affected)
- 4~ P(G;|affected, aff sib)

K3

P(Gi)

=P (o) In this

If there is a class Gy with no risk, we can use the weights
way we only need to estimate P(Gy).

3 Power calculations

Using the sib pair family material gives an estimate of pg = 0.05 from Gene-
Hunter 2.0. Together with the estimates Ks = 0.08 and Kp = 0.004 from
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a previous study [Ascher:1997| this gives an estimate of Agponmra) = 4 by
Risch method.

Other studies that estimated p, are |Greco:1998| that found py = 0.09
and [Petronzelli:1997] with py = 0.07.

Using the data in [Ploski:1996] we were able to estimate P(G) = 0.22,
P(G|affected) = 0.92 and P(affected|G, affected sib) = 0.16 resulting in
)‘S(nonHLA) =9.

To get some idea of the power to find the nonHLA components we chose
to study a medium complex model. Heterogeneity was assumed between two
dominant loci, i.e. each of the two disease genotypes are, together with the
necessary HLA component, sufficient to cause the disease. We also speculated
that there could be a lot more loci, but if the two most common causes are
much more frequent than the rest this model will be sufficiently close for our
purpose.

Even with this rather specific model there are infinitely many sub models
that fits with the same Ag(nonmra). We varied the frequencies of the disease
allele at the two loci from equal to more skewed (table 1). The penetrances
were arbitrarily set to 1, but the impact on the power is negligible as long
as the penetrances are equal at the two loci. The significance levels were
varied between suggestive (0.00074) and significant (0.000022) in accordance
with [Lander:1995]. The power was calculated for an ASP method with 100
sib pairs and a dense set of completely informative markers. In reality there
will of course not be any completely informative markers, but on the other
hand we run multi-locus linkage and among the 108 coeliac disease families
there are several with more than two affected sibs.

4 Discussion

We have compared two methods of estimating Ag(nonHLA). With the
method from [Risch:1987] no knowledge of the disease susceptibility alle-
les at HLA are necessary. Thus it can be used directly in the same genome
scan that discovers linkage, although the argument for a multiplicative model
must be much weaker when the gene is not yet found. In coeliac disease this
knowledge is however available and we use it to derive an alternative esti-
mator. (In the current situation this gave a better estimate in the sense of
having less variance.) Since the methods require different kind of samples it
is not straightforward to compare them, but in general it is a good principle
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Table 1: Power to detect linkage for various models

AS(HLA) allele freq o power

1 2 1 2 any
4 0,061 0,012 0,000740 0,94 0,01 0,94
4 0,061 0,012 0,000022 0,69 0,00 0,69
4 0,049 0,025 0,000740 0,69 0,08 0,72
4 0,049 0,025 0,000022 0,32 0,01 0,33
4 0,037 0,037 0,000740 0,32 0,32 0,55
4 0,037 0,037 0,000022 0,08 0,08 0,15
9 0,025 0,005 0,000740 0,99 0,02 0,99
9 0,025 0,005 0,000022 0,92 0,00 0,92
9 0,020 0,010 0,000740 0,88 0,14 0,90
9 0,020 0,010 0,000022 0,57 0,02 0,58
9 0,015 0,015 0,000740 0,50 0,50 0,77
9 0,015 0,015 0,000022 0,17 0,17 0,32

to use all available knowledge.

The main purpose of estimating Ag(nonzra) Was to be able to perform
power calculations for a genome scan and an important use of power calcu-
lations is a base for choosing suitable sample sizes, although in the current
application the sample was already collected. By using (5) we can estimate
AS(nontra) before we collect a large amount of sib pairs. The only sib pairs
we need are for the estimation of the entity P(affected|G,aff sib). In con-
trast (2) requires that we collect a large amount of the final sample in order
to be able to estimate how many we finally need, with the risk of collecting
nuclear families in vain since the amount needed to achieve reasonable power
is not possible to reach.

When applying the two methods we got the estimates Asqonmra) = 4
with (2) and /\S(nonHLA) = 9 with (6)

Although we have made lots of more or less well founded model assump-
tions, the results of the power calculations illustrates the impact of the size
of Ag(nonmrra) and thus the importance of an accurate estimate.

With A\ggray = 9 the worst case (power 32%) under the assumption of
nonHLA heterogeneity is, not surprisingly, dominant inheritance with equally
frequent disease alleles and a conservative significance level.
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With such power one would generally not start an expensive investigation.
However there are several reasons to not be that pessimistic.

e There is no reason why the frequencies should be equal, since they come
from different mutation.

e The power is calculated for a pure ASP method, i.e. the parents af-
fection status is not taken into account. The affection set method of
Genehunter is generally more powerful in dominant cases.

e We have DNA samples of healthy siblings and could include them to
look for decreased allele sharing between pairs of affected - unaffected
that both have disease haplotypes in HLA.

e The point wise significance level 0.000022 corresponds to a probability
of 0.05 of any false positives in a whole genome scan. If we use sugges-
tive linkage we expect 1 false positive. The time that will be wasted
on deeper investigations of a few false positive could be acceptable as
long as a true positive is among the candidate regions.

Based on all this, and perhaps a flavour of hope, we decided to continue with
a full genome scan.
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Model based sampling and weights in
affected sib pair methods

Staffan Nilsson
Chalmers University of Technology

Abstract

When running a genome scan with affected sib pairs and a non-
parametric statistic in the form of sums of IBD counts, it turns out
that, depending on genetic model, some families are more useful than
others if we consider the phenotypes of all family members. This can
be utilised by performing selective sampling and/or putting weights
on the IBD counts. Some different approaches are introduced and
compared on simulated examples.

1 Introduction

In the planning of a genome scan with nuclear families we can get a rough
idea about suitable sample sizes for an Affected Sib Pair (ASP) statistic
by performing power calculations. Later on, when the samples have been
collected, the power calculation can be made more precise by taking into ac-
count the fact that the expected contribution to the over all sib pair statistic
varies between sib pairs from different families due to difference in size and
affection statuses of family members.

The fact that the contribution is different implies that some sib pairs will
be better to use than others. This observation can be utilised in two ways
to achieve higher power. We can take a selective sample [McCarthy:1998] by
preferring good sib pairs and we can use different weights [Sham:1997] for
different sib pairs.

The two approaches can of course also be combined. It is perhaps easiest
to illustrate the idea by giving examples of bad families.

e Phenocopies

If the phenocopy rate is high, as it is in e.g. breast cancer, an affected
pair from a nuclear family, where all the parents and other siblings are
healthy, will often be a pair of phenocopies. In this case the segregation
at the risk locus will be random.
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e Gene overdose

Think of a simple monogene dominant disease. A family with many
children, where all have the disease, is most likely the result of one of
the parents being homozygous for the disease allele. The segregation
at the disease locus is random from this homozygous parent. Since
it requires both a large family and a homozygous parent, it will be
a problem of practical importance only for common disease alleles in
populations where the family sizes are large.

2 Derivations of ibd expectation and variance

If we intend to collect n sib pairs and use a statistic of the form 7" = " X
where X; is the number of alleles shared ibd in the ¢’th sib pair, we will
need p, = Py( ibd at disease locus|2 affected) for £ = 0,1, 2 to calculate the
power.

These quantities will, when the alternative hypothesis is a biallelic mono-
genic disorder, depend on the disease allele frequency p and the genotype
specific penetrances fo, f1, fo [Suarez:1978|] through

1 i
P T ¥ v, + D)
_1 VD
=5 A(K3+ vy +1vp)
1 %VA + %VD
p2= -+ 2 1 1 )

where

Kp = p’fo+2pqfi + ¢*fo (population prevalence)
Va = 2pq(q(fa— f1) +p(fi — £o))? (additive variance)
Vb = p°¢*(f2 — 2f1 + fo)® (dominance variance).
Now we easily get u = F(X;) and 02 = Var(X;). The power to detect

linkage at significance level o with n sib pairs can with a normal approxima-
tion be calculated as

Zo — MUY .
® here 2z, = ® (1 — a).
(0\/ﬁ)werez (1—-a)
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This formula assumes that all sib pairs come from different families and it
doesn’t take the affection status of any other family members into account.

In reality however we will know the affection statuses of the family mem-
bers and we will also occasionally have a > 2 affected siblings in which case
we have (;) sib pairs in the family.

Conditioning on the affection status of the entire family will give different
ibd probabilities for different family affection structures. By doing this more
detailed calculations on a collected sample of nuclear families we can get a
more accurate power estimate.

We will generalise P(k ibd|2 affected sibs) to P(I|A), where I is an ibd
configuration for a set of affected sibs and A is the affection status of all
family members.

Applying Bayes formula

P(A[T)P(I)

P(Il4) = =50 (1)

P(I) is easy to derive by Mendels laws. Conditioning on the parents geno-
types G

P(A) = zG:P(A|G)P(G)
P(AlI) = ) P(A|G,I)P(G|I)

= S P(AIG,I)P(G).

If we let I = I; in (1) be the ibd count between the sibs 7 and j, we can
derive the family specific formulas for py, p; and p,. This is sufficient for
calculating the total expectation of all (‘2‘) sib pair ibd counts in one family,
but for the total variance in a family we need the covariances between all
pairs of sib pair ibd counts in the same sibship. There are three different
kind of pairs of sib pairs to consider. If 7, 7, k, [ all refer to different sibs we
need
Co = CO’U(Iij, I’L])

(G COU(I,']', I]l)
Co = COU(IU,]M),

where the index of ¢ refers to the number of siblings in common, so ¢, is just

the variance. To calculate ¢; we set I = ([;;,1;;) in (1) and similar for c.
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This is partly done in [Sham:1997| but with the mistake of assuming ¢y = 0.
The results of the calculations are shown in appendix A.

If the genome scan is going to be performed with a dense set of markers we
need not worry about the recombination distance. But with a more sparse
set of markers, say 10 cM between adjacent markers, we might prefer to
optimise the weights on the maximum possible distance 5 cM, corresponding
to the recombination fraction 6 ~ 0.05. So rather than observing I;; at the
disease locus we will observe the ibd-count Y;; at a marker locus a fraction ¢
off the spot. We have

P(Yy|A) =Y P(Yy4|A, 1) P(I;|A) = Y~ P(Yy|1i;) P (1| A). (2)

I;; I;;

It is straightforward to calculate P(Yj;|l;;). The results are taken from
[Sham:1997] and shown in appendix table 13. This is all we need to cal-
culate expectations, but for the variance we also need P(Yj;,Yj|A) and
P( ZJﬂ}/}k|A)

With 4, 5, k, [ all different

P(Yij, Yiu|A)
= ZP zgaY;cl| Z]a-lkl’A)P( Zja-lkl|A)
= > P(YlLij, Ir, A) P (Yui|Lij, I, A)P(Lij, Iia| A) (3)

= ZPYiﬂfij) (YerlIit) P (Lij, Ina| A),

but if j = k the equality (3) does not hold as is claimed in [Sham:1997] since

Y;; and Yj; are not independent conditional on (I;;, I;;, A).

If (L;j, 1) # (1,1) we can proceed by conditioning on the number of
recombinations R; in the common sibling j

P( zga}/}l‘ i laA)
= ZP iis Yildijs Livs A, R;) P(R;)
= ZP }/;J‘ Z]anlaA7R ) (}/;l| ’L]7I]laA7R])P(R]) (4)

= ZP Y;]‘IU,R])P(Y;”I]laRJ)P(RJ)

R;

The conditional independence used in equality (4) is obvious in the case
R; =0or R; = 2. For R; =1 the fact that one of I;; and I;; must be 0 or

16



2 is used. Assume it is [;;. Then Yj; depends entirely on the recombinations
in 1.
The case (I;;,1;;) = (1,1) needs a special treatment
P(Y;ja Y_;I‘(IZ]a I]l) = (1’ 1)’ A)
= > Py, Yal(Ly, L) = (1,1), A, R;) P(R;)
R;
= P(Yy, Yal(Iij, Iy) = (1,1), A, R; = 1) P(R; = 1)
+ Y P(YylLij =1, R)P(Yully = 1, R;) P(R;)
R;=0,2
Splitting (Z;;, I;1) = (1,1) in the two events (1,1)% = “The same ibd allele
in all three siblings” and (1,1)P = “Different ibd alleles in 7, j pair compared
to 7,1 pair” and setting

v = P((1,1)%|(Lj, I;) = (1,1), A) =

we get

P(Yij, Y| (Lij, L) = (1,1), A, R; = 1)
= P(Y;,Yul(1,1)% R; = 1)y

+P(Eja}/}l‘(1a I)D,Rj = 1)(1 - 7)

The details of the components that are necessary to finally calculate
P(Y;;,Yu|A) are given in appendix tables 14,15 and 16.

We illustrate the different contributions from different families with an
example where (p, fo, f1, f2) = (0.01,0.005, 0.005,1) = M;. Only two percent
of the cases have a genetic cause, while an affected sib pair has a genetic cause
in about half of the cases and with more than two affected sibs the cause is
most likely genetic.

For each family ¢ with a; affected children we create a score X; = 37, 4 I
where j, k are affected siblings in 7. We then normalise this score

X, — (4

(%)3
so that under the null hypothesis of no linkage Ey, (Z;) = 0 and Vary,(Z;) =
1. The coefficient of variation (CV) for Z; in various family structures is
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Table 1: CV for model (0.01,0.005,0.005,1)

affected total

parents children affected children

2 3 4 5 6 7 8
0.55

0.46 2.02

0.39 198 2.50

0.32 193 2.50 2.82

0.26 187 250 282 3.10

0.21 180 250 282 310 3.35
0.16 1.71 249 282 3.10 3.35 3.59
0.62

0.56 1.11

0.48 1.14 1.37

0.39 1.17 1.38 1.62

0.31 121 139 1.62 1.86

0.24 126 142 161 1.85 2.08
0.18 130 145 1.60 1.83 2.07 2.29
0.22

0.59 0.20

0.52 1.10 0.15

0.48 112 137 0.10

0.34 114 138 1.62 0.06

0.26 117 139 162 1.8 0.04
0.20 121 140 1.61 1.86 2.09 0.02

—_
CO ~J O UL i W INO IO Ui W N IO Uik W N

shown in table 2. Calculated for an affected sib pair, disregarding any knowl-
edge of other family members, we get CV=1.76. As we would expect, we
see reduced values in the column with only two affected siblings due to the
phenocopy effect. Even more reduced values are seen in the main diagonal
due to the gene overdose effect when two parents are affected.
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2.1 Weighting IBD scores

The statistic we will first consider is a sum of normalised scores
i

where Z; is defined in (6) and based on a sum of ibd counts for all possible
affected sib pairs in the family.

In a family with two affected sibs the segregation of the alleles has 16 dif-
ferent outcomes. Many ASP statistics are based on mapping these outcomes
into three categories, defined by 0,1,2 alleles identical by descent. The corre-
sponding score X has the admittingly natural values 0,1,2 with probabilities
> 3,7 under the null alternative of no linkage, but there are also statistics
that in principle map the three categories onto non equidistant scores 0,1, a
(where a # 2) [Knapp:1995|.

These simple mappings disregard pieces of information that are essential
in the alternative. One allele ibd from an affected parent tells us something
different than one allele ibd from an unaffected parent. This difference is
taken into account in [Whittermore:1994b| and is implemented in Genehunter
[Kruglyak:1996].

Other statistics focus on the estimation of the unconditional (pq, p1, ps)
with [Holmans:1993| or without [Risch:1990c| constraints.

All of these statistics have in common that they are considered non-
parametric. Their relative performance depends however on the underlying
model. So, already when we choose a statistic among them, we are implicitly
favouring some models before others, although we might not be aware of it.

We will adopt a semiparametric approach in modifying (7) by putting
model dependent weights, w;, on each family score

If we set the additional constraint |[w|| = Y w? = 1 on the weights, T
will be approximately standard normal under the null hypothesis for all set
of weights. A similar approach is taken in [Sham:1997] but with the sum
directly on sib pair level rather than family level. The resulting statistic is
equivalent, but the weights will be different.

We will assume that all meioses are informative. This is of course an
unrealistic assumption, but with highly polymorphic markers we will be close
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to this assumption and in any case the purpose of this study is to compare
strategies. In a real implementation of the method, the families with only
partially observed ibd counts would need to have special scores and weights
as well.

Our goal is of course to come up with some good weights, but one can
easily think of a number of goodness criteria. Some weighting schemes have
been proposed in [Suarez:1979] and [Hodge:1984]. These are compared in
[Sham:1997] with weights based on maximum power and equal weights on
each sib pair. We will consider the following weighting schemes.

¢ Maximum power

Choose your favourite significance level o and then optimise the normal
approximation power

b (szz:u'z 2_ Za) ) (9)
\/ Ww; 0;

Since ® is monotone the optimal weights are achieved by maximising
its argument and it turns out to be the solutions of a set of polynomial
equations.

In general we need to solve the optimisation problem numerically and
the solution is only optimal for a particular significance level . So
in order to choose weights we have to face the question of what is
most important, optimal power for significant linkage, suggestive link-
age |Lander:1995| or some other level.

As an extreme illustration of the dependence of a we can study what
happens to the weights as &« — 0. Then z, — oo and the term " w;u;
becomes negligible, so (9) will be maximised when 3~ w?0? is maximum,
which happens when w; = 1 for the Z; with the largest variance o7 and
all other weights equal to zero.

e Maximum expectation

By this approach we hope that the power will be fair for all kind of
small significance levels. The simple solution to maximising > w;u;
when w is of constant length is to make w parallel to . With the
constraint ||w|| =1 this gives w; = p;/||p]|-
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This corresponds to the dual problem of fixing the power to 50%
(thereby setting Y w;u; = z,) and then design the weights in order
to get the smallest possible corresponding significance level, which oc-
curs when > w;u; is max.

Maximum asymptotic power

If we fix « and let the sample size n — oo as the power is maximised the
term —z, in (9) becomes negligible and we will end up with a solution
that does not depend on «.

Solving the polynomial equations with z, = 0 gives a solution where
w; are proportional to y;/o?. This solution can be achieved easier by

Swip 2 (wiog)(5E) < (E)Q

Ywio? /X (wio)? 2
i

where the inequality is Cauchy-Schwartz, with equality iff w;o; o o
i.e. w; oc 5. If n is very large though, we are not too worried about

the power.

Since we achieved the weights by setting z, = 0 these weights will
obviously give maximum power for the modest @ = 0.5 without the
asymptotic argument, although the sample size need to be large enough
to use normal approximation in the power calculation.

Equal weights on every family

The constraint ||w]|| = 1 gives weights 1/4/n to each family. This is the
solution adopted by Genehunter [Kruglyak:1996].

Equal weights on every sib pair

If we don’t consider the concept family score we can sum all sib pair

ibd scores from all families and then normalise it. This corresponds to
having family weights w; o (“2’)

Weights proportional to coefficient of variation

One way to compare the utility of two families is to compare the power
to detect linkage at significance level @ between two samples with n
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families of each type. This will reveal that family type 1 is better than
type 2 if
¢ (1 —a)(o2 —01) < (mo2 — p201)n. (10)

The RHS of inequality (10) is positive if the coefficient of variation
is larger in type 1, which means that, for sufficiently large n, type 1
should be preferred.

Thus CV is one reasonable way of ordering the families and the weights
reflect this order.

A simulation was done of a sample from the model in table 2 with the
family sizes following a Poisson distribution with intensity 3 truncated to
max 8 children. This size structure fits well with a large sample of 11,000
Swedish psoriasis families [personal observation]. The simulated sample of 40
families were distributed as shown in table 3 and the power was calculated
for optimum weights at significance levels 0.01, 0.00074 (suggestive linkage)
and 0.000022 (significant linkage) [Lander:1995|, equal family weights (EqF),
equal sib pair weights (EqSP) and weights proportional to expectation (Exp),
expectation /variance (E/V) and coefficient of variation (CV). Results are
shown in table 4. The maximal power is of course obtained, due to the
construction, at the corresponding optimal weights. For practical purposes
the power for all weights but the two equal weighting approaches are the
same. The difference is substantial although we admit that the example was
deliberately chosen for illustration purposes. Other models can show less
difference, but what we have seen so far the choice between the good weights
are not important. This indicates that the simple weights "proportional to
expectation" which is easiest to implement is a good candidate.

2.2 Deviations from the correct model

Our assumptions of the genetic model will be more or less founded. Study-
ing population data like the relative risk A for different kind of relatives
R will only give unique solutions when we put restrictions on (p, fo, f1, f2)
[James:1971]. The usefulness of weighting will therefore, not surprisingly,
depend on the accuracy of the assumed model. If for example the known
estimates of population parameters are population prevalence (Kp) and the
siblings relative risk (Ag), both the models M; = (0.01,0.005,0.005, 1) illus-
trated above and M, = (0.06,0.0045,0.0045, 0.165) fits the same population
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Table 2: Sample of 40 families from model (0.01,0.005,0.005,1)

affected total
parents children affected children
2 3 45 6 7 8

2 2
3 6 0
4 13 1 0

0 5 71 00
6 6 1 0 0 O
7 10 00 00
8 0 1.0 0 0 0O
2 0

1 3 0 0
4 1 0 0

Table 3: Power at 3 different levels and different weights

significance level
weights | 0.01 sugg sign
0.01 0.9788 0.8779  0.5967
sugg 0.9787 0.8780 0.5973
sign 0.9787 0.8779 0.5976
EqF 0.8338 0.5550 0.2278
EqSP | 0.9264 0.7297 0.3898
Exp 0.9786 0.8778 0.5976
E/V 0.9786 0.8766 0.5930
CV 0.9788 0.8779  0.5966

parameters Kp = 0.005 and Ag = 2. We see that when M, is true the opti-
mal weights strategy outperforms equal weights, under both the correct and
wrong assumption. When M, is true however the equal weights happen to
be somewhat better. It is sometimes argued that equal weights can be a kind
of assurance to get the best power for the worst case. However in our case
the gain of equal weights is small when M, is true compared to the loss when
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Table 4: Effects of model deviations

assumed M; assumed M,
weights | 0.01 sugg sign 0.01 sugg sign
0.01 0.9911 0.9437 0.7747 | 0.9665 0.8446 0.5569
sugg 0.9910 0.9441 0.7778 | 0.9757 0.8774 0.6176
sign 0.9907 0.9437 0.7790 | 0.9825 0.9048 0.6768
correct EqF 0.8359 0.5612 0.2349 | 0.8359 0.5612 0.2349
M, EqSP 0.9682 0.8542 0.5806 | 0.9682 0.8542 0.5806
Exp 0.9903 0.9425 0.7780 | 0.9820 0.9025 0.6714
E/V 0.9905 0.9388 0.7560 | 0.9321 0.7470 0.4151
CV 0.9911 0.9438 0.7754 | 0.9646 0.8386 0.5470
0.01 0.7487 0.4287 0.1391 | 0.7821 0.4727 0.1659
sugg 0.7500 0.4304 0.1401 | 0.7821 0.4727 0.1659
sign 0.7513 0.4320 0.1411 | 0.7820 0.4727 0.1660
correct EqF 0.7817 0.4722 0.1656 | 0.7817 0.4722 0.1656
M, EqSP 0.7817 0.4722 0.1656 | 0.7817 0.4722 0.1656
Exp 0.7488 0.4288 0.1392 | 0.7821 0.4727 0.1659
E/V 0.7446 0.4233 0.1359 | 0.7819 0.4722 0.1655
CV 0.7468 0.4262 0.1376 | 0.7821 0.4726 0.1658

Mj is true. In case we are indifferent regarding the models, in the sense that
our prior probability is % for each of them, this assurance strategy is a very
pessimistic one. A better alternative for assurance is to design weights for a
mixed assumption by looking at the expected value over both models

Bz = %E[Zi\Ml] + %E[Zi\MQ]. (11)

In principle this idea could be generalised to cases where we have a more
complex prior probability distribution of the model space and we could cal-
culate E[Z;] = E[E|Z;|M]] where M is a random model. But to be honest,
who would have any clear idea of this distribution?

2.3 Sampling strategies

The idea is that we shall of course preferably collect good families before bad.
In [McCarthy:1998| a number of general strategies for collecting sib pairs are

24



Table 5: Power comparisons between mixed strategy and equal weights

model weights | 0.01 sugg sign
M,  mix 0.9898 0.9384 0.7618
EqF 0.8359 0.5612 0.2349
EqSP 0.9682 0.8542 0.5806
My mix 0.7762 0.4645 0.1605
EqF 0.7817 0.4722 0.1656
EqSP 0.7817 0.4722 0.1656

compared with a random collection at different models, both one and two
locus models. However they only collect one sib pair from any family. This
is too much when gene overdose is likely, but a waste of useful information
when gene overdose is not likely, which it rarely is.

The concept good is as we saw before somewhat unclear. One way is to
order the families according to coefficient of variation of Z; as was indicated
in (10).

We can describe the sampling strategy as a two step strategy, where we
first examine the phenotypes of an available population A of families with
at least two affected sibs and then select the N best families in A, i.e. the
families with largest coefficient of variation.

We do not claim that these /N families necessarily is the best theoretical
choice among all subsamples of size N, on the contrary, it is not hard to
construct counterexamples, but we trust it is good enough.

In table 7 we have simulated an available population of 100 families, with
M; as well as M,. For each of these two populations we select the 40 best
families according to an assumption of M; or My, We could apply a mixed
strategy as well, with weights based on (11) and with a selection criteria
where for each family CV;™™ = min(CV;""*, CV;"*) and the 40 families are
selected according to the largest CV;™",

If we do not weight the families, a peculiar situation might occur with
selective sampling of fix sizes. The power can be larger with some of the
families removed. Return to the example in table 4 and define T}, = Y% Z;
for £ = 1,..40 where the Z; are ordered according to their coefficient of
variation such that Z; has the largest.

The four families with 3 affected children had the largest CV. Using only
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Table 6: Power to detect significant linkage with selective sampling

Correct | M, M,y M, M,

Assumed | M, M, M, M,

0.01 0.466 0.427 0.977 0.916
sugg 0.469 0.431 0.978 0.939
sign 0.470 0.435 0.979 0.959
EqF 0.351 0.351 0.694 0.694
EqSP 0.440 0.440 0.955 0.955
Exp 0.470 0.437 0.976 0.964
E/V 0.452 0.417 0.972 0.844
(G4 0.465 0.427 0.979 0.921

them gives a power as high as 0.32. When we increase the sample by adding
the remaining 36 families with only two affected children, the power of the
optimal weights statistic slowly increases up to 0.60, while the power for the
equal family weights statistic rapidly decreases, oscillates and remains low
ending in 0.23.

Table 7: Power to detect significant linkage at various sample sizes

weights
size | sign  EqF
410325 0.325
10 | 0.402 0.200
15| 0.453 0.196
20 | 0.494 0.202
251 0.533 0.219
30 | 0.561 0.227
351 0.583 0.231
40 | 0.598 0.228
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2.4 Discussion

We have studied two methods of increasing the power in a genome scan
with affected sib pairs; selective sampling and weighting. The strategies can
also be combined. If our model assumption is correct the power can be
considerably increased.

To use weights with maximum power we have to decide what significance
level that is most important, but for the cases we have presented, and for
other cases we have seen during several trials, it is for practical purposes
sufficient to maximise the expected value of the statistic. This has a simple
solution.

The selective sampling rejects the "bad" families and selects the "good"
families. It is possible to further increase the power by putting the highest
weights to the very best families amongst those selected. If we are so sure
of our model assumptions, that we deliberately bias our sample, we should
definitely go for a weighted statistic as well in order to further increase the
power.

In case we hesitate between models we propose weights that are propor-
tional to the expected values taken over the model candidates, rather than a
unreflected arbitrary choice of equal weights.

Every now and then we will of course be wrong in our model assumption.
With selective sampling the most severe risk is that we select bad families
rather that good. There will be no magic way to repair this damage, while if
we recruit families randomly, we can apply a weighted statistic and if we fail
to find linkage, we could try another model with other weights. This would
of course be fishing, with all of its danger, but at least we would have a sea
to fish in.
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A Appendix

Table 8: IBD count probabilities given mating types

G | poc Pic P2

DDxDD | f2 12 13

DDxDd | fo f1 (fo+ f1)2/4  (fE+ f1)/2
DDxdd | (fofe + f2)/2 fi(fo+ f2)/2 (fE+2f2+ f3)/4
DdxDd | f2 fE ft

Ddxdd | fifo (fi+ )24 (fE+13)/2
ddxdd | f2 f2 f3

G = mating type, p;c = P(i IBD alleles|mating type Q)

Table 9: Disease probabilities of family members given mating types

G | fa hog hig hog
DDxDD | f, (1— fo)? 2f2(1— fo) f5
DDxDd | (f1 + f2)/2 A-fi)X=fo) fi+fo—2fife fife
DDxdd | fi 1= fo)(I—fa) fo+ fa—2fofe fofe
DdxDd | (fo + 2f1 + f2)/4 E gz 2f1(1 = f1) fi

2

Ddxdd | (fo + f1)/2 1= fo)I=fi) fo+fi+2fofi fohi
ddxdd | fo (1— fo) 2fo(1—fo)  f3
G = mating type, f¢ = P(affected|G, h,,g = P(m affected parents|Q)
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Table 10: Two sib pairs with one sib in common

G |IBD P(A|L; I;,G)

DDxDD | any  hpma(l — fo)" *f&

DDxDA | 0,0  hpg(l — fo)" 5‘3(f12f2 + f1f2)/2
0,1 hma(l— fa)" f& > (fifa+ f13)/2
0,2 hma(1 = fa)" & (fifa+ f113)/2
L1 hma(l— fa)" f&2(fr + f2)*/8
L2 hma(l— fa)"f& 2 (f2 + fifa+ Fuf3 + f3)/4
2,2 hme(l = fo)" & (f2 + £3)/2

DDxdd | any  hpg(l — fo)" *f&

DdxDd [ 0,0  hmg(1 — fo)" “f6 > (fi f2 + fofs +27)/4
0,1 hma(l — fe)"f& 2 f1(2fofo + fofi + fif2)/4
0,2 hma(l = fa)" " f&>(fofs + 217 + f3.f2) /4
L1 (1 — fo)" &3 fi(2f1fa + 2fofi + 2fofo + f2 + £2)/8
L2 hma(l— fe)"f& 2 Fu(fE+ fofu + fufe + f2)/4
2,2 hna(1— fa)" “f&7°(f5 + 2f + £3)

Ddxdd | 0,0  hma(l — fa)" *f& > (f5 f1 + fof7)/2
0,1 hma(l— fe)"f&2(ff1 + fof?)/2
0,2 hma(l — fa)"f& > (fefr + foff)/2
L1 hme(l— fe)"fE3(fo + f1)%/8
L2 hag(L— fa)" *f&(f5 + fofir + foff + f1)/4
2,2 hma(1 = fa)" & (f + f2)/2

ddxdd | any  Apma(l — fo)" O f&

n = number of children, a = number of affected children,
pic = P(i IBD alleles|mating type G), G = mating type,
fe = P(affected|G), by = P(m affected parents|G)
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Table 11: Two sib pairs with no sib in common

IBD (A| zg;Ikl:G)

0,0 | hma(1 = fo)" “fa 4p(2)a
0,1 | hma(l— fo)" of& poaplc
0,2 | hma(1 — f&)™ “f& *Pocpac
L1 | el —fG)“ “f& 4p%G
L2 | hme(l = fo)"~ ”fG PiaP2c
2,2 | hma(1 = fo)" “f& " pb

n = number of children, « = number of affected children,
pic = P(i IBD alleles|mating type G), G = mating type,
fe = P(affected|G), by = P(maffected parents|Q)

Table 12: IBD probabilities at marker given IBD count at disease locus

Disease Locus IBD
Marker Locus IBD 0 ‘ 1 ‘ 2
0 i v(1-—1) (1—0)?
1 20(1—0) |1 —-20(1 - T) [ 20(1 — D)
2 (1—0)? V(1 - ) P2

U =6+ (1-6)*
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Table 13: IBD probabilities at marker given IBD count at disease locus.

Three siblings.

Disease Locus IBD
Marker IBD 0 | 1 | 2
0 (1-0)? 0(1 — 6) 62
1 200—0) | *+(1—0) | 201—0) |R;=0
2 6? 6(1—0) (1—6)?
0 0(1—0) +(1-6)%/2] 0(1-0)
1 02+(1—9)2 20(1 — 0) 0>+ (1-0)?°|R; =1,(Li;, L) # (1,1)
2 0(1 —0) +(1=-6)2%2] 01-0)
0 0° 0(1—0) (1—0)?
1 20(1 — 0) 67 + (1 - 6)? 201—60) |R;=2
2 1-0)y2 9(1— 0) 02

Table 14: Joint IBD probabilities at marker in special case with three siblings.

YZJvY'l ( ijs ]l‘( ijs ) = (Ll)ij = 1714)
0,0 ;00 + (1 @)7+Wﬂ—ﬂfﬂ—v)
0,1;1,0 03(1 —-0)+06(1-6)3

0,2;2,0 | 3(0*+ (1 —0)")(1 — ) + 6%(1 — 0)*y
1,1 40%(1 — 6)?

1,2;2,1|6%(1—0) +6(1—0)>

2,2 S0+ (1= 0)Y)y+6%(1—0)%(1 — )

v = P((L, 1%Ly, I) = (1,1), A)

31



Table 15: Probabilities needed for calculations of ~y

G P(A|(1,1)°, R; =1,G)

DDxDD | hpa(1 — fG)” a f“

DDxD | hma(1 — fa)" &> (f2 + fifa + 1S3 + f3)/4
DDxdd | A (1 — fa)™~ afc:

DAxDd | hpe(1 — fo)™ @ g; 3f1(f0 + fofi+ fife+ f2)/4
Ddxdd hma( ) (fo +fof1+f0f1 +f1)/4
ddxdd | Amc(1 — fG)” @ f“

n = number of children, a = number of affected children,
pic = P(i IBD alleles|mating type G), G = mating type,

fe=P

(affected|G), hmg = P(m affected parents|G)
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