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Abstract

Autonomous motion planning addresses the problem of finding collision-free paths
for moving objects — robots — among obstacles. In this report we consider robots
operating in workspaces occupied by stationary, completely known obstacles. We
describe a new approach to probabilistic roadmap planners (PRMs). The overall
theme of the algorithm, called Lazy PRM, is to minimise the number of collision
checks performed during planning. Our algorithm builds a roadmap in the con-
figuration space, whose nodes are the user-defined initial and goal configurations
and a number of randomly generated nodes. Neighbouring nodes are connected
by edges representing the straight line path between the nodes. In contrast with
PRMs, our planner initially assumes that all nodes and edges in the roadmap are
collision-free, and searches the roadmap at hand for a shortest path between the
initial and the goal node. The nodes and edges along the path are then checked
for collision. If a collision with the obstacles occurs, the corresponding nodes and
edges are removed from the roadmap. Our planner either finds a new shortest
path, or first updates the roadmap with new nodes and edges, and then searches
for a shortest path. The above process is repeated until a collision-free path is
returned.

Lazy PRM is tailored to efficiently answer single planning queries, but can also
be used for multiple queries. Experimental results presented in this report show
that our lazy method is very efficient in practice.

Keywords: Motion planning, path planning, collision avoidance, probabilistic
roadmap.

AMS 1991 subject classification: 05C80, 05C85 (68P10)
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Chapter 1

Introduction and Motivation

In the last few decades, the number of robots has grown dramatically in a wide
range of areas. Upon industrial applications these versatile machines are used in
surgery, in agriculture, in space, under water, and for transportation. Although
most methods and techniques discussed in this report are applicable to many
kinds of robots, e.g. mobile robots and free-flying rigid objects, we will focus on
industrial manipulators.

In industrial applications, robots are used for different tasks like welding, spray-
painting, pick and place operations, and assembly tasks. Most robots are used in
order to increase accuracy, reliability, speed, or to prevent humans from working
in hazardous environments.

Relying on the experience and knowledge of the operators, these robots are
still, to a large extent, programmed on-line, by more or less teaching them how
to move. By using, for example, a joystick, the operator maneuvres the robot to
different positions and stores a sequence of configurations into a program. When
the program is executed, the robot moves between successive configurations in the
simplest possible way, without considering the environment. The programming
generally takes a considerable amount of time, and meanwhile the robot and its
work cell are occupied, which may force an entire production line to stop.

To meet demands on flexibility, quality, and efficiency in modern manufactur-
ing systems, off-line programming is required. In off-line programming systems,
the programmer uses a 3-dimensional computer model of the robot and its work
cell, in which the virtual robot easily can be controlled and moved to the desired
configurations. When the program is complete, the motions can be simulated,
verified, and optimised before the program is transferred to the real robot. Thus,
the robot can execute other programs while new programs are created, and only
minor adjustments may be necessary to do on-line.

Another important advantage of off-line programming is the improved safety
for the operator as well as the robot. The operator avoids the risk of standing
close to the robot during programming, and possible programming errors, which
may cause collisions and damage the robot, can be corrected off-line.
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Although off-line programming improves efficiency in many aspects, the pro-
gramming work is still performed manually. When a robot is to be moved from
an initial configuration to a final configuration, it is unlikely that the straight line
path is feasible due to the obstacles in the cell. It is then necessary to add a
number of via-points to the path in order to avoid collisions. If the work cell is
complicated or cluttered, much time is spent on finding such via-points. Therefore
automatic motion planning is one of the most important areas in robotics research.

1.1 Path Planning

Autonomous path planning addresses the problem of finding collision-free paths
for moving objects — robots — among obstacles. In this report we consider robots
operating in workspaces occupied by stationary, completely known obstacles.

The robot in this context may be any moving object, or collection of objects,
associated with a certain configuration space. A configuration is a set of inde-
pendent parameters such that the position of every point of the robot can be
determined relative to a fixed frame in the workspace. The configuration space
C, of dimension equal to the number of degrees of freedom (dof) of the robot, is
the set of all configurations. The open subset F C C is the set of collision-free
configurations.

For instance, if A is a single rigid object in a 3-dimensional workspace, we
can specify its position and orientation by six parameters; three coordinates for
the translation, and three angles for the orientation. Thus, we can describe the
configuration by a point in a 6-dimensional configuration space C C RS.

A path P for the robot is simply a continuous curve in C. We will also refer to
a path as a sequence of points in C, in which case the path is the piecewise linear
curve obtained by linearly interpolating subsequent points.

The basic path planning problem can be formulated as follows: given an initial
configuration gq;,,;, and a goal configuration q,,,; in F, find a continuous curve in
F connecting these points, or determine that none exists [24]. This formulation of
the problem is usually favourable, since it is stated in terms of navigating a point,
rather than objects in the workspace.

The complexity of certain versions of the problem is proven to be very high. In
the case of a robot consisting of polyhedral bodies among polyhedral obstacles, the
problem is PSPACE-hard, see [34]. Hence, there is strong evidence that a solution
requires time that grows exponentially with the number of dof of the robot.

An algorithm is called complete if it always will find a solution or determine
that none exists. Most complete methods, however, are only applicable to prob-
lems in low-dimensional configuration spaces, say of dimension three, or less. A
complete algorithm, working for arbitrary dimension, was given in [9]. Although
the algorithm is exponential in the number of dof, it has the lowest time complexity
of all complete algorithms known so far. It is mostly used in theoretical analysis
as an upper bound on the complexity of the path planning problem, see [13, 24]
and the discussion in Section 2.1.



1.2. SINGLE QUERY PATH PLANNING 3

1.2 Single Query Path Planning

Of particular interest in industrial and real-time applications, are planners that
without preprocessing can answer single queries very quickly. Such high perfor-
mance planners are important in applications where the configuration space ob-
stacles sometimes change. This occurs, for instance, when the robot changes tools,
grasps an object, or a new obstacle enters the workspace. Ideally, the time required
for planning should relate to the difficulty of the planning task, i.e., a simple path
in an uncluttered environment should be found quickly, while a more complicated
path may require more time.

In a similar way, the planning time should relate to the desired quality of the
returned path. The quality of a path is difficult to quantify (see further discussion
in Section 3.2.1), but in general we prefer short paths in C, with respect to some
metric. Consider a case where we use a path planner to support the programming
of a robot that executes a certain task continually. Then the quality of the path is
more important than the planning time, and we need a parameter, tuned by the
user, that intuitively adjusts the properties of the planner.

We would also like the planner to learn to some extent, i.e., to use information
from previous queries in order to speed up subsequent queries. For example, if the
algorithm finds a path through a narrow passage in F, it should be able to use
that information when searching for a new path back through the passage.

Due to the complexity of the path planning problem, complete planners are
far too slow to be useful in practice. Trading completeness for speed, probabilistic
techniques have been successfully applied to many problems in high-dimensional
configuration spaces. However, current probabilistic algorithms either heavily rely
on fast collision checking, or require long preprocessing. Collision checking is
in many real applications with complex work cells very time consuming, making
current probabilistic planners yet too slow for single queries.

1.3 Contributions and Outline of this Report

In this report, we present a new probabilistic path planning algorithm, called
Lazy PRM. The algorithm is tailored for single queries, but it is also useful for
multiple queries. The planner is applicable to general robots and has the properties
discussed in Section 1.2. The algorithm is described in detail in Chapter 3. Its
performance is theoretically analysed in Chapter 4, and experimentally evaluated
in Chapter 5 using a realistic industrial environment.



Chapter 2

Path Planning Techniques

The path planning problem has been extensively studied in the last two decades,
and there exist a large number of planners based on a variety of approaches.
See [13], [17], and [24] for overviews. We can distinguish between deterministic
and probabilistic algorithms. In this chapter, we only give a brief overview of
deterministic algorithms, and focus on probabilistic algorithms. Particularly the
Probabilistic Roadmap Method is described in detail, since that method forms the
base of our solution.

2.1 Deterministic Planners

As mentioned earlier, the complexity of the path planning problem increases
rapidly with the dimension of the configuration space. In the simplest case we
have a 2-dimensional workspace and point robot .4 among polygonal obstacles O.
Then the workspace and the configuration space coincide. We can also represent
the configuration space obstacles by polygons if A itself is a polygon which is only
allowed to translate. If we fix a reference point on A4, and specify the position
of A by the coordinates of the reference point, we obtain the configuration space
obstacles as the Minkowski set difference O © A, see Figure 2.1(b).

The 2-dimensional problem with polygonal configuration space obstacles can
be solved efficiently by constructing the visibility graph, see [24]. It is obtained by
interconnecting q;,,;;, 4404, a0d all vertices of the obstacles by edges which do not
intersect the interior of the obstacles, see Figure 2.1(c). Thus, we allow the robot
to be in contact with the obstacles, and we consider a path in the closed set F as
being collision-free.

It turns out, however, that this procedure generates too many edges. It is
proven that the reduced wvisibility graph, where only tangent edges are retained,
always contains a shortest feasible path, see Figure 2.1(d). A line is tangent to
a polygon B at a vertex z if in a neighbourhood around z the interior of B lies
entirely on a single side of the line. An edge between two vertices is a tangent
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A
. qgoal

U\ .

qinit

(a): The 2-dimensional workspace with  (b): Corresponding 2-dimensional con-
A in the initial (left) and final config- figuration space. The obstacles are the
urations. The lower left corner of A is Minkowski set difference O © A.

the reference point.

(c): The visibility graph. (d): The reduced visibility graph.

Figure 2.1: Example of a polygonal robot A among polygonal obstacles O (light
grey). The robot is only allowed to translate.
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edge if the line passing through the vertices is tangent at both vertices, see [24].

If the polygonal robot also is allowed to rotate, the configuration space is 3-
dimensional. Since rotations are involved, the configuration space obstacles can no
longer be represented by polyhedra. However, efficient planners exist for this kind
of problems as well. One way is to discretise the angle of rotation, and for each
fixed value construct a slice of polygonal obstacles. The slices can then be merged
into polyhedra to approximate the obstacles. Another method is to decompose
the configuration space into disjoint cells which are classified either as feasible or
infeasible. To find a path, we identify in which cells g;,,;; and q,,,; are located,
and then search for a sequence of adjacent feasible cells between g;,;; and q o4,
see [24].

Most techniques for solving problems in low-dimensional configuration spaces
are based on some kind of simple and explicit representation of the configuration
space obstacles. The difficulties in dimensions higher than three, and particularly
if rotations are involved, arise from the complexity of such a representation.

However, by a suitable parametrisation of the configuration space, the obstacles
can be represented as a semi-algebraic set, see [9]. This representation handles
any kind of rotation, including free-flying rigid objects and linked robot arms with
revolute joints (manipulators).

The silhouette method in [9] make use of this representation, and works in any
dimension. The idea is briefly to reduce the dimension of the configuration space
by recursively sweeping with a hyper plane. The boundary curves of the obstacles
— the silhouette — is traced out in the hyper plane. At certain critical points,
where the topology of the silhouette changes, the algorithm is called recursively
to sweep the current hyper plane. The outcome of the algorithm is a network of
paths on the boundary of the obstacles. The algorithm is single exponential in
the number of dof and, as mentioned in Section 1.1, it is the best known complete
algorithm. However, due to the difficulties of implementing the silhouette method,
the algorithm has, as far as the author knows, not yet been implemented for
arbitrary dimension.

We will mention two more path planning methods applicable to problems in
high-dimensional configuration spaces. The planner in [10] heuristically places
subgoals in the configuration space. The subgoals are not points, but disjoint
subsets of C. Initially, large subgoals are generated, and a global planner searches
for a sequence of adjacent subgoals connecting q;,,;; and q,,,. A local planner
then tries to find paths between adjacent subgoals in the sequence. If the local
planner fails in finding a feasible path between g;,;; and g4, the global planner
searches for a new sequence of subgoals. If no sequence can be found, the subgoals
are repeatedly divided into smaller subgoals until a sequence between g,,;; and
4 0q can be found.

The virtual springs method in [29] considers a robot manipulator as a dynam-
ical system in which the links of the robot are somewhat flexible springs. While
the end effector is attracted to a hare following a prescribed trajectory in the
workspace, the rest of the arm is repelled from the obstacles by a force field. The
planner is fast, and the returned paths are smooth and can immediately be used
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with a real robot. However, due to the difficulty of generating suitable trajectories
for the hare, the robot sometimes get stuck in local minima without reaching the
target. Within the interactive OxSim framework, described in [8], the trajectories
can be specified by the user.

2.2 Probabilistic Planners

Lately, probabilistic planning techniques have gained considerable attention, due
to their capability of solving problems in high-dimensional configuration spaces,
and in configuration spaces where the obstacles cannot be explicitly represented.
The Randomised Path Planner (RPP) in [5] has successfully solved problems for
robots with more than 60 degrees of freedom, see [23]. The planner uses a potential
field as a guidance towards the goal, and random walks to escape local minima.

Another interesting approach is presented in [28] — the Ariadne’s clew algo-
rithm. Considering the initial configuration as a landmark, the algorithm incre-
mentally builds a tree of feasible paths as follows. Genetic optimisation is used
to search for a collision-free path from one of the landmarks to a point as far as
possible from previous landmarks. A new landmark is then placed at this point,
and a path to the goal configuration is searched. New landmarks are placed until
the goal configuration can be connected to the tree.

2.3 Probabilistic Roadmap Method

The idea behind the Probabilistic Roadmap Method (PRM), described in [21], [22],
and [32], is to represent and capture the connectivity of F by a random network,
a roadmap, whose nodes and edges respectively correspond to randomly selected
configurations, and path segments. In a preprocessing step, or a learning phase, a
large number of points are distributed uniformly at random in C, and those found
to be in F are retained as nodes in the roadmap. A local planner is then used to
find paths between each pair of nodes that are sufficiently close together. If the
planner succeeds in finding a path between two nodes, they are connected by an
edge in the roadmap.

In the query phase, the start and goal configurations are connected to the
roadmap by the local planner. Then the roadmap is searched for a shortest path
between the given points.

Even though a powerful local planner will require few nodes to obtain a well
connected roadmap, most implemented PRMs show that it is computationally
more efficient to distribute nodes densely and use a relatively weak, but fast, local
planner, see [22, 32]. The local planner may for instance only check the straight
line between two nodes. Other local planners are discussed and evaluated in [1].

A subsequent node enhancement step is used to increase the connectivity of the
roadmap by adding more nodes in difficult regions of F. Different techniques are
used to identify these regions; one way is to distribute new points close to a number
of seeds randomly selected among the existing nodes. In [21], the probability that a
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node is selected is proportional to 11@, where b is the number of edges connected to
the node. An alternative selection can be based on a node’s ratio of failed attempts
by the local planner to find paths to other nodes, see [22]. Other techniques to
increase the connectivity of the roadmap are described in [2] and [14].

The PRM has shown to work well in practice in high-dimensional configuration
spaces, see [21]. Indeed, it is useful for multiple queries, since once an adequate
roadmap has been created, queries can be answered very quickly.

2.4 Variations of PRM

Although the node enhancement step was developed to increase the connectivity
of the roadmap, the PRM still has a weakness in finding paths through narrow
passages in F. Several recent approaches are intended to improve PRM in this
respect by using different sampling strategies. The underlying idea is to distribute
nodes close to the boundary of F.

The planner in [15] initially allows the robot to penetrate the obstacles to a
certain extent. Small neighbourhoods around the configurations just in collision
are then re-sampled in order to place nodes close to the boundary of F. The Ob-
stacle Based PRM (OBPRM) in [2] and [3], repeatedly determines a configuration
in collision to be the origin of a number of rays. Binary search is then used along
each ray to find points on the boundary of F, where roadmap nodes are placed.
In [6], the planner identifies the boundary of F by distributing points in pairs.
Each pair is generated by first picking one point uniformly at random in C, and
then picking another point close to the first one. One of the points is added to
the roadmap only if it is in F and the other point is not. Another technique to
increase the number of nodes in narrow passages of F is presented in [36]. Points
are picked uniformly at random in C and then retracted onto the medial axis of
F.

A few methods using probabilistic roadmaps do not divide the planning process
into a learning phase and a query phase. Given an initial and a goal configuration,
the planner in [31] inserts randomly distributed nodes in F, one at a time, and
connects them to the different components of the roadmap by a local planner.
New nodes are inserted until the initial and goal configurations can be found in
the same connected component of the roadmap. See also [11] and [18] for related
algorithms. The latter paper gives an adaptive scheme for adjusting the power of
the local planner.

Other methods, described in [16] and [25], build two trees rooted at the initial
and goal configurations respectively. As soon as the two trees intersect, a feasible
path can be extracted. In [16], the trees are expanded by generating new nodes
randomly in the vicinity of the two trees, and connecting them to the trees by
a local planner. The planner in [25] iteratively generates a configuration, an at-
tractor, uniformly at random in C. Then, for both trees, the node closest to the
attractor is selected and a local planner searches for a path of a certain maximum
length towards the attractor. A new node is placed at the end of both paths. A
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new attractor is selected until the two trees intersect.

The general theme for roadmap algorithms is to construct a network of paths
verified to be collision-free by a local planner. Unfortunately, it is difficult to find
a global strategy that can use these local planners efficiently in order to avoid
regions from where the algorithm cannot proceed to the goal. This often means
that too much time is spent on planning local paths that will not appear in the
final path.

Our solution is to avoid using local planners as much as possible, and instead
keep the global view through the entire planning process. In the next chapter,
we present Lazy PRM — a path planning algorithm tailored for single queries, but
which is also useful for multiple queries. To make the planner fast, the main theme
is to minimise the number of collision checks.



Chapter 3

Lazy PRM

This chapter describes a new algorithm for single and multiple query path plan-
ning. The algorithm is similar to the original PRM in [21] in the sense that the
aim is to find the shortest path in a roadmap generated by randomly distributed
configurations. In contrast with existing PRMs, we do not build a roadmap of
feasible paths, but rather a roadmap of paths assumed to be feasible. The idea is
to lazily evaluate the feasibility of the roadmap as planning queries are processed.

In other words, let g;,;;; Q4001 and a number of uniformly distributed points
form nodes in a roadmap, and connect by edges each pair of nodes being sufficiently
close together. We find a shortest feasible path in the roadmap by repeatedly
searching for a shortest path, and then checking whether it is collision-free or not.
Each time a collision occurs, we remove the corresponding node or edge from the
roadmap, and search for a new shortest path.

This procedure can terminate in either of two ways. If there exist feasible
paths in the roadmap between g;,,;; and g, we will find a shortest one among
them. Otherwise, if there is no feasible path, we will eventually find g;,;, and
4g0q in two disjoint components of the roadmap. In the latter case, we can either
report failure, or, if we still have time, add more nodes to the roadmap (node
enhancement) and start searching again. A high-level description of the algorithm
is given in Figure 3.1.

The rest of this chapter explains the different steps of the algorithm in more
detail, Chapter 4 gives a proof of its probabilistic completeness, and Chapter 5
shows some experimental results.

3.1 Building the Initial Roadmap

The first step in the algorithm is to build a roadmap G in C. There are two
parameters that determine the size of G; the number of nodes, N;,;, and the
expected number of neighbours, M,,¢;gns, connected to each node.

10
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Qinit qgoaJ

Build initial
roadmap

Remove colliding Node Add smoothing

node/edge N ) enhancement nodes
Search for a f

shortest path No path found

Main

loop
Check path
Collision for collision

Needs smoothing

Collision-free path

Figure 3.1: High-level description of Lazy PRM.

3.1.1 Imitial Distribution of Nodes

Initially, we distribute N;,;; points uniformly at random in C. These points, to-
gether with q;,,, € F and q,,, € F, form nodes in G. We can, of course, use
heuristics to increase the density of nodes in regions we in advance believe are of
particular interest, but this is in general difficult.

The initial density of nodes, determined by Nj,i, is strongly correlated to
the probability of finding a short path, if one exists. The correlation is hard to
quantify, but the following example may give an illustration. Assume there exist
only two ways to get to the goal configuration; either a short path through a narrow
corridor, or a somewhat longer path through a wide corridor. If G is sufficiently
dense, the algorithm will find a short path through the narrow passage, see Figure
3.2(b). If G is sparse, the algorithm will find a longer path through the wide
passage, see Figure 3.2(a). In the worst case, if the roadmap is too sparse, there
will be no feasible path at all in the roadmap, and the algorithm has to go to the
enhancement step.

On the other hand, if N;y; is too large, we will distribute more nodes than
necessary. Although we may obtain better paths, this will lead to longer planning
times, see Figure 3.2(c). The number of nodes required to find a path is further
explored in Chapter 4.
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Dinit

[

()

Figure 3.2: Example of a 2-dimensional configuration space with rectangular ob-
stacles (grey). The thick lines show the shortest feasible paths between g;,,;; and
Q400 in three different roadmaps. The roadmap in (a) is too sparse and no short
feasible path exists. The roadmap in (¢) is very dense, and the shortest feasible
path will take longer time to find than the shortest feasible path in (b).
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3.1.2 Selecting Neighbours

We connect each node in G by edges to a set of neighbour nodes. An edge represents
the straight line path in C between two nodes. Since it would require far too much
memory to connect all pairs of nodes, and it is unlikely that the straight line path
between two nodes far apart is feasible, it is natural to only consider nodes which
are sufficiently close.

In order to select appropriate neighbours, we need a metric peon : CxC — [0, 00)
such that the distance between two configurations under this metric reflects the
difficulty of connecting them by a collision-free straight line path. Then we connect
each pair of nodes (g,q') such that pcou(q,q’) < Rpeigny. For any fixed radius
Ryeighp, the number of neighbours of a node is a random variable, so depending
on the initial number of nodes Njni, we choose Ryeignp such that the expected
number of neighbours equals the parameter Mpy.isny mentioned in the beginning
of Section 3.1.

In many cases it is harder to make feasible connections in certain directions
than in others. Consider for instance an articulated robot arm; then it is more
likely that a collision occurs when the base joint is moving one unit, than if a joint
close to the end-effector is moving one unit. With this in mind, we let p..; be a
weighted Euclidean metric,

d

1/2
Peott(T,y) = (Z wy (; — yi)Q)
i=1
T 1/2
= (@-y)W-y)", (3.1)
where d is the dimension of C, {w; }_, are positive weights, W = diag(w?, ..., w3),

and 27 is the transpose of . The weights are chosen in proportion to the maximum
possible distance (Euclidean distance in the workspace) travelled by any point on
the robot, when moving one unit in C along the corresponding axis. This metric
is easy to use and has been shown to work well in our experiments presented in
Chapter 5.

3.2 Searching for a Shortest Path

The second step in the algorithm is to find a shortest path in G between q;,,;; and
Qg0q1> OF determine that none exists. We use the A* algorithm [27], and a metric
Ppath : C X C — [0, 00) to measure the length of a path and the remaining distance
to qgoa,l'

If the search procedure succeeds in finding a path, we need to check it for
collision. Otherwise, if no path exists in the roadmap, we either report failure, or
go to the node enhancement step to add more nodes to the roadmap and start
searching again. The choice is determined by the overall time allowed to solve the
problem.



14 CHAPTER 3. LAZY PRM

3.2.1 Choosing an Appropriate Metric for A*

The tool available to give preference to certain paths and reject others is the metric
Ppath- Thus, by defining this metric we decide which paths are of high quality and
which paths are of poor quality.

In this report we focus on articulated robots and use the Euclidean configura-
tion space Iy X --- X Iz, where I; is the range of joint i and d is the number of
dof. Thus, we do not identify angles equal modulo 27 as being equal, although
they define the same position in the work space. This is because a real robot in
general has supply wires, etc., which otherwise would be entangled. The metric
Ppath is & weighted Euclidean metric, similar to (3.1), where the weights are equal
to vli, i = 1,...,d, where v; is the maximum angular velocity of joint 7. This tends
to give preference to paths with short execution time, which in many applications
is the most interesting response variable.

In the general case, however, there are a large number of other response vari-
ables to consider. Some of them are measurable such as energy consumption,
dynamic forces on joints, etc. Others are more subjective; for example, the mo-
tion should look natural and smooth from the user’s point of view. Under any
Euclidean metric, the straight line path in C between two configurations is the
shortest, but considering all of these response variables, the straight line path is
not necessarily optimal. Thus, the choice of a configuration space and an appro-
priate metric is an intricate task itself.

As already pointed out, angles equal modulo 27 define the same position. If any
joint of the robot, or the robot itself, is allowed to rotate freely, it is necessary to
take this into account. Then the configuration space parameterised by angles is no
longer Euclidean, but nothing prevents us from using other metrics more suitable
for non-Euclidean configuration spaces. Note that the metric p.o; in Section 3.1.2
should be changed accordingly, otherwise not all appropriate neighbours will be
selected.

3.3 Checking Paths for Collision

When the A* algorithm has found a shortest path in the roadmap between g,,,;;
and g,,,, we need to check the nodes and edges along the path for collision. In
most applications it is straightforward to perform a collision check for a given
configuration, i.e. determine whether a point is in F or not [35]. It is considerably
more complex to obtain more information, for instance to calculate the minimum
distance between the robot and the obstacles, or to check whether a path segment
is entirely in F or not [7, 26]. Our algorithm only requires a collision checker for
points in C. Path segments, i.e. edges in the roadmap, are discretised and checked
with a certain resolution. However, in Section 3.3.3 we describe a variation of the
algorithm which makes use of a function giving the minimum distance between
the robot and the obstacles.

The overall purpose of the Search, Check, and Remove steps of our algorithm
(the Main loop in Figure 3.1), is roughly to identify and remove colliding nodes and
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edges of the roadmap until the shortest path between g;,;, and g, is feasible.
Accordingly, when checking a path for collision, we are not primarily interested in
verifying whether an individual node or edge is in F or not, but rather to remove
colliding nodes and edges as efficiently as possible. Since a removal of a node
implies all its connected edges to be removed, it seems reasonable to first check
the feasibility of the nodes along the path, before checking the edges.

3.3.1 Checking Nodes

Starting respectively with the first and the last node on the examined path and
working toward the centre, we alternately check the nodes along the path. As soon
as a collision is found, we remove the corresponding node, and search for a new
shortest path.

The reason for checking the nodes in this order is that the probability of having
the shortest feasible path via a particular node is higher if the node is close to either
Qinit OT Qgoq- Consider, for instance, the nodes connected to q;,;; a shortest
feasible path (if one exists) must pass through at least one of them. Since we, in
a cluttered space, cannot give preference to certain directions, the probability of
having the shortest feasible path via a particular neighbour of q;,,;; is at least 1/b,
where b is the number of neighbours of g;,,;;. Nodes connected to q,,, have a
similar probability, whereas nodes further away from both g;,,;; and g, have a
much lower probability of being in the shortest feasible path. Therefore, we check
the nodes along a path starting from the end-nodes and working toward the centre.

3.3.2 Checking Edges

If all nodes along the path are in F, we start checking the edges in a similar fashion;
working from the outside in. However, to minimise the risk of doing unnecessary
collision checks, we first check all edges along the path with a coarse resolution,
and then do stepwise refinements until the specified resolution is reached. As with
the nodes, if a collision is found, we remove the corresponding edge, and search
for a new shortest path. If no collision is found along the path, the algorithm
terminates and returns the collision-free path. Figure 3.3 shows an example of a
simple planning query.

To make this algorithm efficient, we of course record which nodes have been
checked for collision, and to which resolution each edge has been checked, in order
to avoid checking any point in C more than once.

The total number of collision checks depends on the resolution with which the
edges along the path are checked. Again, since p.oy reflects the probability of
collision, we determine the resolution with respect to this metric. The resolution
is quantified by a step-size §, but we prefer not to let the user specify the step-
size by a certain number, because the resolution should depend on the scale of
C and the weights defining the metric. A more intuitive way is to introduce a
parameter M., specifying the number of collision checks required to check the
longest possible straight line path in C. In other words, assuming that C is a



16 CHAPTER 3. LAZY PRM

d-dimensional rectangle and ¢ and q' are two opposite corners, the step-size is
related to the length of the diagonal of C according to

§ = pcoll(Qa ql)
Mcoll

3.3.3 Collision Checking Using a Distance Function

We have so far assumed that the collision checker is a simple boolean function
returning whether a given configuration is in collision or not. The algorithm may
of course be used with a more sophisticated distance function D : C — R giving
the minimum distance in the workspace between the robot and the obstacles, and
possibly also a penetration distance in case of collision [7, 26, 30]. We can use
such a function to determine a feasible region around a configuration q € F, and
slightly modify our algorithm to efficiently use the extra information given by D.

Let z be an arbitrary point on a robot 4. The point x may be given in some
local frame attached to the robot, for example a frame attached to a certain link.
When the robot is in configuration g, the corresponding point in the workspace is
denoted W (z,q). Let

£= sup |W(Z’,q) —W(.'L',q')l‘

zeA peou(q:q")
a,9'€C, q#q’

Then

|W(.’E, q) - W(JI, q’)| S §p60ll(qa q,) (32)

for all z € A and q,q' € C, which particularly means that if A4 moves from ¢
to q’, then no point on 4 moves more than £p.ou(q,q’), cf. [33]. Accordingly, if
D(q) > 0 (i-e., g is collision-free), then all configurations in the ellipsoid

{4 : peou(a,q') < %D((I)}

are also collision-free.

Thus, any collision-free path can be covered by a set of ellipsoids which are
guaranteed to be in F. Conversely, verifying that a path is collision-free can be
considered as a problem of covering the path by ellipsoids.

This suggests a somewhat different scheme for checking edges than described
in Section 3.3.2. As before, we check the nodes along a path working from outside
in, until a collision occurs. Colliding nodes are removed from the roadmap. If
all nodes along the path can be covered by feasible ellipsoids, we check the edges
along the path by repeatedly checking (and covering by an ellipsoid) the mid-point
of the longest path segment not yet covered. The process stops when the path is
completely covered, or if a collision occurs. In the latter case the corresponding
edge is removed from the roadmap.
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(a): Lazy PRM searches for a shortest (b): Then Lazy PRM searches for a new
path and checks the nodes. A collision shortest path, detects a new collision
is detected (*) and corresponding node (%) and removes corresponding node.
is removed from the roadmap.

(c): After a few iterations, a sequence (d): Eventually, the planner finds a
of feasible nodes is found. When check- path whose nodes are collision-free, and
ing the edges with a coarse resolution whose edges are collision-free to a cer-
a collision is found (). The edge is re- tain resolution.

moved from the roadmap, and the plan-

ner searches for a new shortest path.

Figure 3.3: Example of a planning query in a 2-dimensional configuration space
with rectangular obstacles (grey). All collision checks performed are marked with

* (collision) or e (collision-free).
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3.4 Node Enhancement

If the search procedure fails, no feasible path between g;,,;; and g, exists in
the roadmap, and new nodes are necessary in order to find one. In the node
enhancement step, we generate N, new nodes, insert them to G, and select
neighbours in the same way as when G was initially built.

We may not only distribute the new nodes uniformly, but rather use the in-
formation available in the roadmap (or what is left of the roadmap), in order to
distribute them in difficult regions of C. In a method similar to the node enhance-
ment in [21], we select a number of points in G, called seeds, and then distribute a
new point close to each of them. Our experience is that it is better to select many
seeds and distribute one new node around each of them, instead of selecting few
seeds and distribute several nodes around each of them.

Although the seeds may help us identify difficult regions of C, we still want
to maintain a smooth distribution all over C, because the knowledge about C is
limited and we do not want to rely too much on the selection of seeds. To ensure
probabilistic completeness, we also distribute new nodes uniformly at random in
each step. In our algorithm, we let half of the enhancement nodes be uniformly
distributed, and the rest distributed around seeds.

3.4.1 Selecting Seeds

The set of edges which have been removed from the roadmap and have at least one
end-point in F, will certainly intersect the boundary of F. Using the mid-points
of these edges as seeds, may help us distribute points close to the boundary of F.

However, if the enhancement step is executed several times, this may cause
problems with clustering of nodes. Assume that we add a new node q. This node
will give rise to a number of edges which in the next enhancement step may increase
the probability of adding even more nodes close to g. Thus, the distribution of
new enhancement nodes depends on the preceding enhancement steps, and may
eventually cause undesired clusters of nodes. To avoid this phenomenon, we only
use edges whose end-nodes are generated uniformly at random when selecting
seeds.

3.4.2 Distributing New Nodes

The multivariate normal distribution is smooth, easy to use, and allows us to
control the distribution of a new point g around a seed m in terms of the metric
peotr- Hence, we can stretch the distribution in directions where the probabilities
of making feasible connections are higher.

Introducing two parameters @ € (0,1) and A > 0, we can choose the distribu-
tion such that

Pcoll (q; 'rl) S )\Rneighb (33)
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{q eC: Pcoll (q; n) = )\Rneighb}

g2

ARncighb
Q1 w;

Figure 3.4: Example of a seed 7 in a 2-dimensional configuration space. If a new
point q is distributed Ny4(n,X), with ¥ as in (3.4), then g is distributed within
the confidence ellipse (solid line) with probability 1 — a. The dashed ellipses are
contours of the distribution function. w; and wy are the weights defined in (3.1).

is an event with probability 1 — a, see Figure 3.4. R,i4np is the maximum length
of an edge defined in Section 3.1.2. To achieve this property, we define a covariance
matrix X as follows:
AR2 .
= D reighbyy -t (3.4)
Xa(@)

Here W is the same as in (3.1) and x%(a) is the upper a percentile of a x?-
distribution with d dof. Then we let the new point ¢ ~ Ny(n,X), ie., q is
multivariate normally distributed with d dof, mean 7, and covariance matrix X.
Since ¥ is diagonal, this simply means that each component ¢;,7 = 1,...,d, of g
is normally distributed with mean n; and variance ¥, ;.

To show (3.3), we use that (g — n)" % ~!(g—n) is x2-distributed with d dof [19].
Thus, the event

(@—m)"S"(g—mn) < x5(a)

has probability 1 — «.. Using (3.1) and (3.4) gives the confidence ellipsoid in (3.3).

We see in (3.4) that ¥ depends on the the ratio A?/x2(a). Since both A2, A > 0,
and x3(a), @ € (0,1), are continuous functions whose ranges are (0, 00), one of the
two parameters a and A is redundant, so we can without loss of generality choose
a = 0.05. Then, the parameter A controls the size of the 95% confidence ellipsoid
relative to Rpeighs, see Figure 3.4. In our experiments we found that A = 11is a
suitable choice.
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Another possibility of distributing the new point g, is to let it be uniformly
distributed in a rectangular box centred at . If we let the sides of the box be
of equal length under p.o;, we stretch the box in a similar way as the ellipsoids
above. In our path planning algorithm, however, the normal distribution has
a major advantage compared to the uniform distribution; the contours of the
distribution function are ellipsoids around 7 (see Figure 3.4). Hence, under the
metric peor, which reflects the difficulty of making connections, the distribution is
symmetric around 7. In contrast, the uniform distribution favours the directions
of the corners of the box, and nodes are more frequently distributed there than in
other directions.

3.5 Smoothing

The roadmap consists of randomly selected points, so the shortest feasible path
P returned by the main loop, may be somewhat jerky and unnatural. In this
section, we will describe a smoothing procedure that fits perfectly into the algo-
rithm described so far, see Figure 3.1. We simply add new points locally around
the collision-free path, and run the main loop again. The main loop either finds
a shorter feasible path, which probably also is smoother than P, or, if the new
points did not contribute to a shorter path, eventually returns P.

The new nodes around the path can be generated in many ways, for example
randomly. In our current implementation however, we add nodes using a simple
heuristic rule. To describe the rule, we need some notation. We define the bounding
rectangle of a set of points {g;}™_; in a d-dimensional configuration space C, as the
intersection of all axis aligned d-dimensional rectangles containing all of the points
g;, ¢ = 1,...,n. The bounding rectangle may be degenerated, e.g. the bounding
rectangle of a single point, but it is still well-defined.

Let p,q, and r be three consecutive nodes along P, and {p,q,r} be the sub-
path between p and r. Denote by A the bounding rectangle of p and g, and B
the bounding rectangle of g and r. Let C = AN B and {c;};.S; be the corners
of C. Then the rule is to insert into the roadmap G the points {¢;};.¢, which are
not already in G. The points are inserted in a similar way as described in Section
3.1. Figure 3.5 shows which points are added to the roadmap in four cases in a
3-dimensional configuration space.

Since p and q are opposite corners of A, it follows that

Ppath(P> @) < ppatn(p,q) forallae A
Similarly,

Ppath(b,7) < pparn(g,r) for all b e B
Particularly, since C C A and C' C B, we have

Ppath (D, €i) + Ppath (i, 7) < Ppath(P; @) + ppatn(@,7), i =1,...,nc,
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Figure 3.5: The points marked with ® are added to the roadmap in order to find
a smoother and shorter path. Which points are added close to a node g depend
on the position of the preceding node p and the subsequent node r.
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i.e., any path {p,c;,r} is shorter than {p,q,r}.

This smoothing procedure particularly prevents each joint from undesired over-
shooting — which generally looks awkward to the human eye. Over-shooting occurs
if a motion of a joint changes direction when moving along a path. By adding the
extra nodes to G, we obtain paths whose peaks are cut off, and looks smooth and
nice to the user.

3.6 Multiple Queries

When the planner has found a collision-free path, it terminates and returns the
path. The information about which nodes and edges have been checked for collision
is stored in the roadmap, and as long as the configuration space remains the same,
we use the same roadmap when processing subsequent queries, thus benefiting
from the information already obtained. The new initial and final configurations
are simply added to the roadmap, and the same algorithm, except for the initial
generation of nodes, is run again.

As several queries are processed, more and more of the roadmap will be ex-
plored, and the planner will eventually find paths via nodes and edges which have
already been checked for collision. This makes the planner efficient for multiple
queries.

Even in the long run, many nodes and edges may never be explored since they
are located in odd regions of C. Thus, given a fixed size of the roadmap, the
number of collision checks performed by Lazy PRM will never exceed the number
of collision checks performed by the original PRM described in Section 2.3.



Chapter 4

Probabilistic Completeness

In this chapter we give a proof of probabilistic completeness of Lazy PRM. First we
need some notation. Let v : [0, L] — F be a curve (also called path) parameterised
by arc length and with continuous tangent. A tube 7 of radius r around (s) is the
set of points at distance r from - measured perpendicular to the tangent +'(s).
Similarly, the corresponding solid tube is the set of points at distance < r from -y.
For simplicity, we usually omit the word solid.

A regular tube is a tube that does not intersect itself. If v is enclosed by a
regular tube of radius r, this particularly implies that its curvature, k(s) = |y (s)|,
is bounded from above by 1/r. Otherwise the tube would be folded. The following
lemma, proved in [12], states a useful property of regular tubes.

Lemma 1. The volume enclosed by a regular tube around a curve in a d-dimensional
Euclidean space is the product of the length of the curve and the (d—1)-dimensional
area of a cross-section.

In other words, if B¢ is the ball of radius r in a d-dimensional space, and p,
the Lebesgue measure, we can express the volume of a regular tube 7 of radius r
around v as

pa(r) = Lpa-1(BE™") = Lr* ™ pg_1(B{ 1), (4.1)

where L is the length of .

Assuming there exists a path enclosed by a regular tube in F between g;,;
and g, the following theorem gives an upper bound on the probability of failure
to find a path between g;,;; and gq,,,. Moreover, the theorem says that the
probability of failure decreases exponentially in the total number of uniformly
distributed nodes N. Since N increases in each enhancement step (Figure 3.1 and
Section 3.4), the probability of failure vanishes as time tends to infinity. This
is equivalent to the definition of probabilistic completeness, see [17]. Thus, Lazy
PRM is a probabilistically complete path planner.

23
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Figure 4.1: Illustration to the proof of Theorem 1.

Theorem 1. Let N be the total number of nodes generated uniformly at random
in C. If there exists a path v between @;,,;; and q,o,;, enclosed by a regular tube T
of radius R < %Rneighb entirely in F, then Lazy PRM will fail to find a path with
probability at most

Ld

S BN

R

where 3 = %_—1) and L is the length of .

Proof. Let w = R/d, r = R(1 — 1/d), and k¥ = |L/u|. The idea of the proof is
to take a tube of radius r, divide it into k — 1 cells of length u, and calculate the
probability of having at least one node in each cell. We will show that any two
points in adjacent cells can be connected by a straight line, and that one node in
each cell is enough for the planner to succeed.

Let s; = iu, i« = 1,...,k, and let 7; be the tube segment around ~(s) for
5 € [8iy8i41), 4 = 1,...,k — 1. The tube segments {r;}*~ are pairwise disjoint
and, by (4.1),
pa(n) _ g g pa1(BiY)
= ur .
pa(C) pa(C)
Now, since
Ri,  1yd-1 R R
d-1 ~1
Ly —) > L
ur d ( i) = d° “3d
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we get that
, d d—1
l‘l’d(TZ) Z R l‘l’d—l(Bl ) — ,B (42)
pa(C) 3dpa(C)
The N points generated by the algorithm are uniformly and independently

distributed in C. Thus, the probability that 7; is empty equals (1 — %)N

which, by (4.2), can be estimated:

pa(mi)\N
(1—%(0)) <(1-p)". (4.3)

Let B (s) be a ball of radius R centred at y(s), i.e., B%(s) has the same radius
as 7. Unless B}(s) is close to the end-points of v, it will be covered by 7, see
Figure 4.1. If it is close to the end-points, however, it might intersect the circular
discs at the ends of the tube. Nevertheless, the intersection between B%(s) and 7
is still convex, a property we will need later.

By the definition of a tube, for any point g € 7;, there exists an sy € [s;, Si+1)
such that |g — v(s,)| < r. Since 7y is parameterised by arc length, it follows that
|v(s) = ~v(t)| < |s — t|, and, by the triangle inequality,

?

lg —v(si)l < la—(sg)l + [7v(sg) —7(s)]
< r4+u=R.

Hence, the ball B%(s;) contains 7;. Similarly, we can show that it also contains
T;_1- Since both cells are covered by 7, they are contained in the convex set
B (s;) N7, which is entirely in F. Now, R < £ R,cigns guarantees that any point
in 7;_; is in the neighbourhood of any point in 7;, thus, any node in 7;_; can be
connected to any node in 7; by a straight line in F, see Figure 4.1. Moreover, since
Qinie € Bh(s1) and g, € Bfi(si), they can be connected to any node in 74 and
Tr—1 respectively. Consequently, it is enough to have at least one node in each of
the cells 71, ...,7,—1, in order for Lazy PRM to find a collision-free path between
Qinit O qgoal‘
The probability of failure for our algorithm, Pygjiyre, can now be estimated:

Proiture < P(some 7; is empty)
k—1
< Z P(7; is empty)
i=1

< (k-1a-HN,

where we used Boole’s inequality and (4.3) in the second and third step respec-
tively. Using that k — 1 < Ld/R and (1 — 8)" < e PN gives the desired estima-
tion. O

Note that a related theorem can be found in [4] and [20]. An important differ-
ence is that, given a failure probability, Lazy PRM has to reach a certain density
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of nodes in C, while in the original PRM it is enough to reach approximately the
same density in F. This seems like a weakness of our method, but in order to
reach the desired density in F, PRM has to distribute nodes uniformly all over C.
So whether the density is specified in F or in C does not matter. Thus, for both
algorithms to reach the same density, the number of nodes checked for collision
in the learning phase of PRM has to be the same as the number of uniformly
distributed nodes in Lazy PRM.



Chapter 5

Experimental Results

In this chapter we present performance tests of Lazy PRM when applied to a six dof
robot in a realistic industrial environment. The planner has been implemented in
C++ as a plug-in module to RobotStudio® — a simulation and off-line programming
software running under Windows NT. The collision checking is handled internally
in RobotStudio. The experiments have been run on a PC with a 400 MHz Pentium
IT processor and 512 MB RAM. In the tests we let Niniz = 10000, Mpeigns = 60,
Mcoll = 200, and Nenh = 500.

Figure 5.1: The work cell used in the experiments. The robot is
in its home configuration denoted by A.

1RobotStudio is developed by ABB Digital Plant Technologies AB, Goteborg, Sweden.

27
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5.1 Path Planning Tasks

The test example is a part of a manufacturing process in which an ABB 4400 robot
is tending press breaking. Metal sheets are formed by the hydraulic press shown
in Figure 5.1. In this particular example, plane sheets of metal are picked at a
pallet, bent twice, and then placed at another pallet.

The process is divided into several steps, and our aim is to automatically
plan the unconstrained paths of the robot. We let A to J denote ten different
configurations shown in Figures 5.1, 5.2, and 5.3. These are used as either initial
or goal configurations in eight planning tasks, denoted for example A — B, where
A is the initial configuration and B is the goal configuration.

The scenario is as follows. Starting from the home configuration A, the robot
picks a sheet of metal from the pallet at B (task A — B), adjusts the grip at C
(task B — (), and puts the sheet-metal at the press D (task C' — D). After the
breaking, the robot grasps the sheet-metal at E, moves to the re-gripper F' (task
E — F), places the sheet-metal, moves to the other side G (task F' — G), grasps
the sheet-metal, and moves back to the press H (task G — H). After the second
breaking, the sheet-metal is grasped at configuration I and placed at the pallet J
(task I — J). Then the robot returns to the home configuration A (task J — A).

Thus, we have eight paths to plan. Note that during this series of steps, the
configuration space changes several times. As soon as we grasp or place a sheet of
metal, the collision-free part, F, is changing. Neglecting the small displacement
of the sheet-metal caused by the centring operation at C, the tasks B — C and
C — D can be planned in the same configuration space. Accordingly, we have
seven different configuration spaces in which to plan, and we have to build one
roadmap in each of them.

The results include the number of collision checks, the number of enhancement
steps, and the planning time. The minimum, average, and maximum values, based
on 20 consecutive runs for each task, are shown in Table 5.1(a) - 5.1(c). The
average number of collision checks performed on nodes and edges respectively are
presented, as well as the average number of collision checks performed on the
collision-free paths that the planner returned. Since paths are checked for collision
with a certain resolution (see Section 3.3.2), the latter figures correspond to the
lengths of the collision-free paths.

The running times in Table 5.1(c) are divided into three parts. Firstly, graph
building, which includes distance calculations and node and edge adding, secondly,
graph searching, and finally collision checking.

In the last column of Table 5.1, the average values of the recorded data are
summed up. Thus, the last column indicates the average number of collision checks
and average planning times for the entire press breaking operation.

In Table 5.1(d), we have for comparison reasons included some results obtained
with a PRM-like algorithm. For each task, we simply checked all nodes and edges
for collision in one of the roadmaps built by Lazy PRM in the initial step (see
Figure 3.1). This corresponds to the learning phase without node enhancement in
the original PRM [21]. Due to the long running times, only one full roadmap was
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i) = o -
N
Configuration C

G

Figure 5.2: Configurations B to G used in the experiments.

explored for each task. Note that even with this long preprocessing, there is no
guarantee that the planner will find a feasible path immediately. We see in 5.1(b)
that several enhancement steps are needed with Lazy PRM, thus also needed here,
so we can expect even longer running times with the PRM than those shown in
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Configuration I

Configuration J

Figure 5.3: Configurations H to J used in the experiments.

Table 5.1(d).

5.2 Interpretation of Results

We clearly see in Table 5.1(c) that the collision checking represents the vast ma-
jority of the planning time (80%), but also that the graph building takes a lot of
time (18%). Note that for the task C' — D, the same roadmap is used as for the
task B — C, making the graph building time significantly shorter. Interestingly,
the time spent on graph searching is negligible, about 2%. Although we carefully
select the points to check for collision, and frequently search the roadmap for the
shortest path, the total time spent on that is still very short.

Comparing the average number of collision checks performed by Lazy PRM
(92 - 682) in Table 5.1(a) to the number of collision checks required to explore
the entire initial roadmap (of order 500 000) in Table 5.1(d), we see that Lazy
PRM only explores a small fraction, less than 0.1%, of the roadmap. This is the
strength of the algorithm; to either find a collision-free path or to conclude that
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none exists in the roadmap in a very short amount of time.

We also see in Table 5.1(a) that a large percentage, 26%, of the total number
of collision checks are actually performed on the returned collision-free paths, and
are therefore inevitable. This large percentage can be explained by two reasons.
Firstly, the algorithm finds a sequence of collision-free nodes before edges are being
checked. This prevents from planning local paths in regions from where no way out
exists. Secondly, we check the edges along the path with increasing resolution and
stop as soon as a collision occurs, i.e., we avoid using a local planner and instead
keep the global view throughout the planning process. As a consequence, very
few edges — often only the edges along the final path — are checked with the finest
resolution. This also makes the algorithm relatively insensitive to the resolution
with which the paths are checked.

Since all the nodes in the initial roadmap are uniformly distributed, the number
of collision-free nodes found by the PRM-like algorithm will give a good estimation
of the relative size of 7. We see in Table 5.1(d) that for the tasks A — B,
F — @, and J — A approximately 40% of C is collision-free. For the other tasks
approximately 30% of C is collision-free. As expected, the free part of C is reduced
when the robot grasps a sheet of metal.

Furthermore, from the planner’s point of view, the robot’s tool includes both
the gripper and possibly also a sheet of metal attached to it. If the tool is large and
irregularly shaped, then its orientation becomes more important, whereas if the
tool is small (e.g. the gripper only), the wrist motions of the robot, which basically
determine the orientation, become less important. In this kind of environment,
the planning problem is significantly easier if the tool is small. This explains why
all of the tasks A - B, F — G, and J — A are all successfully planned without
any node enhancement.

5.3 Discussion

The aim of Lazy PRM is essentially to minimise the number of collision checks
while searching the shortest feasible path in a roadmap in the context of a PRM
planner. This is done on the expense of frequent graph search. For a complex
robot working in a complex workspace, like our six dof example, collision checking
is an expensive operation, and careful selection of the points being checked for
collision reduces the planning time considerably.

However, if the robot is very simple, like the line segment robots in [21] and [22],
then collision checking is a very fast operation, and it is probably not worth re-
planning the entire path every time a collision is found. Trading some collision
checking for less graph searching may increase performance of Lazy PRM. We
can, for instance, in the step described in Section 3.3.1, check all nodes along the
path before searching for a new path. Then we can remove several nodes from the
roadmap in each iteration of the Main loop, see Figure 3.1.

Another modification of Lazy PRM is necessary when the configuration space is
very cluttered. This is, for instance, the case with the ten dof robot in [21], where
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Table 5.1: Performance data for Lazy PRM based on 20 consecutive
runs for each task. Table 5.1(d) shows data for PRM based on one
run for each task. The initial number of nodes, N;,, is 10000 in
all tests.

Task
A-B|B—-C|[C—>D]|E—F
Lazy PRM
Collision checks
for nodes ave 9 41 172 263
for edges ave 83 125 273 235
for returned path ave 78 60 86 82
min 74 45 143 154
total ave 92 166 445 499
max 131 463 701 1010

Table 5.1(a).

No. of enh. steps

min 0 0 0 0

ave 0 0.3 0.8 1.9

max 0 1 2 5

Table 5.1(b).
Running time (sec.)

graph building ave 6.6 6.7 0.8 8.3
graph searching ave 0 0.1 0.5 1.3
coll. checking ave 6.1 13.3 35.4 42.3
min 11.2 9.7 10.8 19.7
total ave 12.7 20.2 36.8 52.0
max| 16.2 45.7 60.9 97.3

Table 5.1(c).

PRM
Collision checks
for nodes 10000 10000 10000 10000
of which in F 4085 2942 2975 3047
for edges 763063 | 409561 | 423443 | 451254
total 773063 | 419561 | 433443 | 461254
Running time (sec.)
total 56625 | 31428 | 32299 | 35840 |

Table 5.1(d).



5.3. DISCUSSION

Table 5.1: continued.

Task
FoG|GoH[I-J[J—-A Total

129 134 320 18 1088 (40%)
283 158 361 124 1643 (60%)
121 80 114 82 704 (26%)
175 135 139 81

412 293 682 142 2730

820 442 1290 299

Table 5.1(a).

0 0 0 0
0 0.8 1.6 0
0 2 4 0
Table 5.1(b).
6.5 7.3 8.2 6.6 51.0 (18%)
0.9 0.4 3.0 0 6.3 (2%)

38.3 24.7 59.8 11.6 231.6 (80%)

22.1 16.8 17.8 13.0
45.7 32.5 71.0 18.2 289.0
87.3 47.8 129.5 31.2

Table 5.1(c).

10000 10000 10000 | 10000

3976 3038 3090 4121

728012 | 447541 | 447000 | 787507

738012 | 457541 | 457000 | 797507

| 51774 | 35097 | 35200 | 56234 ||

Table 5.1(d).
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more than 99% of the configuration space is infeasible. If we run our algorithm, we
would need a large number of nodes in the initial roadmap, and then remove from
the roadmap approximately 99% of the nodes being checked, which would take a
lot of time. Fortunately, we can easily modify Lazy PRM to check all nodes before
we insert them into the roadmap. This would certainly cause unnecessary nodes
to be checked for collision, but on the other hand, we would save many inserting
and removing operations in the roadmap. After that, we still have the efficient
way of exploring the edges along paths.

Consequently, by using either or both of the two modifications of the algo-
rithm suggested above, we can tune the amount of graph search according to the
application and the time required to perform a collision check, so that Lazy PRM
becomes efficient for a wide range of problems.

Lazy PRM has essentially one parameter that is critical for the performance —
Ninit, the initial number of nodes. As indicated in Theorem 1, N;,; is strongly
correlated to the probability of finding a feasible path without using the node en-
hancement step. The optimal choice depends on the dimension of C, the workspace,
the planning task, and the desired quality of the collision-free path. Our future
work includes an investigation of the dependence between N;,;; and the planning
time in different environments, as well as different distributions of the nodes.

Probabilistic techniques, like Lazy PRM, often gives very fast planning. How-
ever, in Table 5.1(c), we can see that the maximum planning time is approximately
twice as long as the average planning time. New improved enhancement tech-
niques, in order to make the algorithms more robust in the sense that the worst
case performance is improved, will also be a topic of our future research.



Chapter 6

Summary and Conclusions

We have described a new probabilistically complete path planning algorithm ap-
plicable to virtually any kind of robot. The planner is particularly useful in high-
dimensional, relatively uncluttered configuration spaces, and when collision check-
ing is an expensive operation. However, variations are proposed that easily handle
the cases of cheap collision checking and cluttered configuration spaces.

Single queries are handled very quickly; indeed, no preprocessing is required.
Moreover, as subsequent queries are processed the algorithm learns more about
the configuration space, since it automatically retains information obtained during
previous queries. Thus, the planner works efficiently also for multiple queries.
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