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Abstract

Let R be an integral domain with quotient field K and let A D R be an R-
algebra finitely generated as an R-module. Let z +— T be an R-involution
on A, that is, an R-linear mapping of A such that Ty = yZ and T = z. A
left R—module M has a hermitian structure if there is an R-bilinear mapping
h: M x M — A such that h(Az,y) = Ah(z,y) and h(y,x) = h(z,y) for all
A€ ANand z,y € M.

This paper presents a survey of some of the known results concerning classi-
fication of hermitian lattices when A is the ring of integers S in a quadratic
field extension over a local field or a maximal order in a quaternion algebra
over such a field. We also investigate relations between classification of her-
mitian S-lattices (M, h) and classification of certain classes of orders over R
contained in the endomorphism ring Endg(M) and invariant with respect to
an involution corresponding to h. For example, we prove that under suitable
assumptions on the extensions R C S, two lattices (M, h) and (M’', h') are
isomorphic if and only if the corresponding orders are isomorphic.

Keywords: hermitian lattice, hermitian form, involution, endomorphism
ring, quaternion order.

AMS 1991 Subject classification: 11E39, 16H05, 16550, 16 W10.
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1 Introduction

Consider an integral domain R with quotient field K and an R-algebra A
finitely generated as an R-module. We assume that R C A and do not
exclude the case when R = K. Let x — T be an R—involution on A, that is, an
R-linear mapping of A such that 7y = Z and T = z. A left R—module M has
a hermitian structure if there is an R-bilinear mapping h : M x M — A such

that h(Az,y) = Mh(z,y) and h(y,z) = h(z,y) for all A € A and z,y € M.

Hermitian modules (M, h) over algebras with involutions play a very impor-
tant role in many situations. They are studied in connection with different
types of applications as well as for their own sake. Let us only mention ex-
tensive presentations of this subject in [8], [9] and [15]. In some cases, there
is a close relation between hermitian and quadratic modules. If the set of
fixed points for the involution x — Z on A is a ring S contained in the center
of A, then every hermitian module (M, h) over A defines a quadratic module
(M, q) over S, where ¢(z) = h(z,z) for £ € M. A well-known theorem of
N. Jacobson (see [7] or [5]) says that if A is a field or a quaternion division
algebra, then two hermitian modules over A are isomorphic (as modules with
hermitian structure) if and only if the corresponding quadratic modules are
isomorphic over S.

Even if the theory of hermitian modules is much better developed over fields
(that is, in the case R = K) than over more general rings, there are several
papers concerned with arithmetical questions related to hermitian modules
over R-algebras, where R is a Dedekind domain. In particular, R. Jacobowitz
gives in [6] a complete classification of hermitian A-lattices M (that is, M
is finitely generated and projective as an R—module) when R is a complete
discrete valuation ring and A is a quadratic or quaternion R-algebra with
the standard R-involution (that is, z + Z,2Z € R). Hermitian lattices over
maximal quaternion R-orders, where R is the ring of all integers in a local
or a global field, were investigated by G. Shimura in [16] in order to prove
approximation theorems for their similitude groups (an R-order is a finitely
generated projective R—algebra).

The present paper is concerned with hermitian lattices over R-algebras with
involution, where R is a Dedekind domain. The purpose of this paper is to
give a survey of some of the known results in this area and also to investigate
a class of R-algebras closely related to the endomorphism rings of hermitian



lattices in order to get information about relations between the hermitian
lattices and the corresponding R-algebras with involution.

For the remainder of this introduction, let K C L be a separable quadratic
field extension and let S be the integral closure of R in L. If A is a quaternion
L-algebra (that is, a central simple algebra of dimension 4 over L), then
according to a theorem of A. Albert, A has an involution ¢ of the second kind
(that is, oy, is the non-trivial automorphism of L over K) if and only if there
is a quaternion K-algebra A, such that A = KA,. We get such a situation
in the particular case, when (V) h) is a hermitian space of dimension 2 over
L and A = End; (V). According to the general theory (see Proposition 3.7),
h defines an involution op, on A with the desired property. A,, can always
be defined as a subring of A on which the involution ¢, coincides with the
standard S-involution on A.

Our interest in this situation is motivated by a theorem of H. Franke in [4],
saying that two skew-hermitian lattices (M, h) and (M', h') of rank 2 over
the ring of integers S in a quadratic extensions over the rational numbers
whose discriminant is a prime p congruent to 1 modulo 4, are equivalent
if and only if the determinants of these lattices are equal assuming that the
determinants are not divisible by p?. If the last condition is not satisfied, then
there exist exactly two equivalence classes of lattices with given determinants.
This result shows that the determinant is a very strong invariant. It can be
expected that the determinant of the lattice (M, h) on a hermitian space
(V,h) over L is closely related to the discriminant of its endomorphism ring
or some rings associated to it. This is the reason why we study S-orders
in A and R-orders in A,, which correspond to (M, h). In fact, we define in
Section 3

A(M, h) = Ends(M) N oy (Ends(M)),

which is an S-order in Endg (V) invariant under the involution oj,. We
compute the discriminant of this S-order and the R-order A(M,h), =
A(M,h) N A,,, when R is a local ring and (V,h) is a hermitian space of
dimension 2 over L. Equivalence of hermitian lattices can be translated to
isomorphism of the corresponding orders at least for some types of extensions
K C L (see Corollaries 6.12 and 6.14).

The paper is organized as follows. Assume that R is a Dedekind domain with



quotient field K, such that char(K) # 2. In Section 3, we give a generalization
of Theorem 4.2 in [9], which says that, given a regular e-hermitian form h
(that is, h(z,y) = €h(y,z), where ¢ = £1) on a A-lattice M, there is a
bijection between the set of certain classes of e-hermitian forms on M and

the set of involutions on the endomorphism ring of M.

In Section 4, we mention some well-known properties of the quaternion al-
gebras and we present the theorem of A. Albert described above. We also
study the corresponding arithmetic situation, where we show that given an
S—order A in A, invariant under an involution ¢ of the second kind, we get
an R-order A, = A,NAin A,.

In Section 5, we give a summary of R. Jacobowitz’s paper [6]. We present the
theorem of N. Jacobson mentioned above. We give a proof of a corresponding
result in the case of hermitian lattices over a complete DVR, using the results
due to R. Jacobowitz [6]. In the case of hermitian spaces over a quaternion
algebra, with respect to an involution of the second kind, we show that a
similar attempt to reduce the classification problem of hermitian spaces to
quadratic spaces, fails. We exhibit non-isomorphic hermitian spaces whose
corresponding quadratic spaces are isomorphic.

In Section 6, we study how the S—order A(M, h) and the R-order A(M,h),
mentioned above depend on the hermitian lattice. In Section 6.3, we assume
that K C L is an unramified or a ramified non-dyadic separable quadratic
extension of local fields. We prove a statement similar to the theorem of H.
Franke in [4] described above, where we classify certain hermitian lattices
using their determinants (see Proposition 6.8).

Furthermore, let (M, h) and (M’', h) be integral (that is, for all z,y € M
h(z,y) € S) hermitian S—lattices on a regular hermitian space (V, h) over L.
We show that (M, h) and (M, h) are similar (that is, there isan r € R, 7 # 0,
such that (M,rh) and (M’', h) are isomorphic as hermitian S-lattices) if
and only if A(M,h) and A(M', h) are isomorphic S-orders, assuming that
A(M, h) is not a maximal order in My(L) in the case K C L is a ramified
non-dyadic extension. If the last condition is not satisfied, then there exist
exactly two classes of similar hermitian lattices with corresponding maximal
S-orders. We show that (M, h) and (M’, h) are similar if and only if A(M, h),
and A(M', h), are isomorphic R—orders. We examine to what extent the
determinant of the hermitian lattice determines the S-order A(M,h). We
also study the relationship between the orders A(M, h) and A(M, h),.



Section 2 contains definitions and some well-known properties of the objects
considered in this paper.



2 Basic definitions

We shall start by giving definitions and some well-known properties of the
basic objects considered in this paper.

Let R be a Dedekind domain with quotient field K.

2.1. Definition. Let A be an R-algebra with R C A. An R-involution on
A is an R-linear map o : A — A such that for all z,y € A,

o(z+y) = olx)+o(y),
o(zy) = o(y)o(z),
o*(x) = =z.
2.2. Definition. Let A be an R-algebra with an R—-involution ¢ and M a

left A-module. Let ¢ = =1. An e~hermitian form on M with respect to o
isamap h: M x M — A such that for all x,y,2 € M and a, b € A,

Mz +zy) = h(z,y)+h(zy),
h(az,by) = ah(z,y)o(b),
h(z,y) = eo(h(y,)).

If 0 = idj, then A is commutative and h is bilinear. In such a case, h is
called symmetric if ¢ = 1 and skew-symmetric if ¢ = —1. If ¢ # idy, h is
called hermitian if ¢ = 1 and skew-hermitian if ¢ = —1.

2.3. Definition. Let M be a left R—module. A map ¢ : M — R is called a
quadratic form if ¢(rm) = r?m for all r € R, m € M, and

is a bilinear form. We call b, the bilinear form associated with g.

2.4. Definition. Let V be a finite dimensional vector space over K. An R—
lattice on V is a finitely generated R—module M C V such that KM = V.

Note that if M is an R-lattice on a finite dimensional vector space V over
K, then M is R—torsion free and hence R—projective, since R is a Dedekind
domain (see [3], Introduction, §4D).



Moreover, any finitely generated R—-torsion free R—module M can be consid-
ered as an R-lattice on a finite dimensional vector space V over K. Namely,
choose V = K ®g M. Since M is R—torsion free the map m — 1 ®m is injec-
tive. Let us denote the image of M in K ®g M also by M. Then V = K M.

2.5. Definition. An R-order in a K-algebra A is a subring A of A, con-
taining the unity element of A, and such that A is an R-lattice on A.

2.6. Definition. Let A be an R-order in a K-algebra A. We say that an
R-lattice M on V is a A-lattice on V if AM = M.

Let A be a finitely generated R—torsion free R—algebra with an R—involution
0. Then A can be considered as an R—order in A = K ®g A. We can extend
o uniquely to a K-involution on A by ¢’(a) = o (ra) for some r € R, r # 0,
such that ra € A. It is easily checked that o’ is well defined. We also denote
the extension ¢’ by o.

Let M be a finitely generated left A-module, which is R-torsion free, and
let h : M x M — A be an e-hermitian form. Thus M is a A-lattice on
V = K®r M and V is clearly an A—module. We can extend, in the same
manner as above, the e-hermitian form h to V' with respect to the extension
of o to A.

2.7. Definition. Let A be a K—algebra with a K-involution ¢ and let A be
an R-order invariant under the involution. Let V' be a finitely generated left
A-module with an e-hermitian form A : V x V — A. By an e-hermitian
A-lattice (M, h) on (V,h) we mean a A-lattice M on V with h restricted
to M. Assume that R C K. We call (M, h) integral if h(z,y) € A for all
x,y € M.

We denote the e-hermitian A—lattice just by M when it is clear from the
context which e-hermitian form is considered. We also omit the A, when
it is clear over which ring we consider the lattice. If R = K in the above
definition, then A = A and M =V, and we say that (V, k) is an e-hermitian
space over A.

In a similar way, given a finite dimensional vector space V with a quadratic
form ¢ : V — K, a quadratic R-lattice (M, q) on (V,q) is an R-lattice M on
V' with q restricted to M.



Let A be an R-algebra with an R—involution ¢ and let M be a left A—module.
Then M* = Homy (M, A) is a right A-module by (fA)(z) = f(z)A. We can
consider M* as a left A-module by defining Af = fo()). We will always
consider M* as a left A—-module in this sense. Given an e-hermitian form
h:Mx M — A, we get a A-homomorphism of left A-modules by

h: M — M*, where h(m)(z) = h(z,m),
for all m,x € M.

2.8. Definition. We say that an e-hermitian form A is regular on M if his
an isomorphism. We say that a quadratic form ¢ is regular if b, is regular.

2.9. Definition. Let (M,h) and (M’,h') be e-hermitian A-lattices. We
say that (M, h) and (M', h') are isometric, which we denote by (M,h) =
(M', 1), if there exists a A—isomorphism ¢ : M — M’ such that for all
z,y € M W(p(z),0(y)) = h(z,y).

In a similar way, we say that two quadratic R-lattice (M, ¢) and (M',q") are
isometric, which we denote by (M, q) = (M’, ¢'), if there is an R—isomorphism
@ : M — M’ such that for all x € M, ¢'(¢(z)) = q(x).

For any matrix T = [t;;] in My,xn(A), m,n € N, let 'T" denote the transpose
and 7 the matrix [o(¢;;)]-

Let (M, h) be a free left e-hermitian A-lattice and let my,... ,m, be a basis
for M over A. If x € M and z = Z?:l x;m;, let x denote the row vector
[%1,...,2,). Let H be the matrix [h(m;, m;)], 1 < ¢,j < n. Then h(z,y) =
xHly”.

If the matrix H is diagonal, we say that M has an orthogonal basis with
respect to A and we write

M =(a)®--- & (an),

where h(m;, m;) = a; for i = 1,...  n. In this case, we sometimes denote H
by < ai,...,a, >.

Let (M, h) and (M', ') be isometric free e-hermitian lattices of rank n over A.
Let H and H’ be the matrices of h, respectively h’, with respect to some bases
of M and M'. The definition of isometry implies that there is a T € GL,(A)
such that H' = TH'T°.



Let us now look at a commutative situation. For the remainder of this section,
let L be a field with an involution o such that K = {l € L : o(l) = 1}. Let
S be the integral closure of R in L. Note that S is invariant under o.

2.10. Definition. Let (M, h) and (M',h') be e-hermitian S-lattices. We
say that (M,h) and (M’ ,h') are similar, which we denote by (M,h) ~
(M', h'), if there exists an r € R,r # 0, such that (M,rh) = (M', h').

Let (M, h) be a free e-hermitian S-lattice. Given two matrices H and H' of
h with respect to two bases for M over S, det H and det H' differ by a factor
from Nrp x(S*) = {zo(z) : z € S*}.

2.11. Definition. With the notations above, we denote the class of det H
in K*/Nrp x(S*) by d(h) and call it the determinant of A.

We get a well-defined map, (M, h) — d(h), which sends free e-hermitian
S-lattices into K*/Nry g (S*). In a similar way we get a well-defined map
from e-hermitian spaces over L into K* /Nry /g (L*).

For a quadratic S-lattice (M, q), we define d(g) to be the determinant of the
associated symmetric bilinear form b,.

2.12. Definition. Let (A, h) be an e-hermitian S-lattice on a regular e-
hermitian space (V, h) over L. We define the dual M# of M as

M#*={veV :VYme M h(v,m) € S}.

Then M# is an S-lattice which is isomorphic to M* = Homg(M, S), since
M*# is the inverse image of M* under the isomorphism h:V = V*, where
h(v)(z) = h(z,v) for all v,z € V. Since S is a Dedekind domain, M## = M
([15], Chapter 6, §1).

2.13. Definition. Let M and M' be S—lattices on a vector space V over L.
By the index [M' : M], we mean the S—ideal in L generated by determinants
det 9 of all L-linear transformations ¢ : V' — V such that (M"') C M.

If M C M’, then [M': M] C S and it is easily checked that [M': M| = S if
and only if M' = M.

2.14. Definition. Let (V,h) be a regular e-hermitian space over L. Let
(M, h) be an e-hermitian S—lattice on (V, h). The index [M# : M] is denoted
by D(M) and called the discriminant of M.
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If M is free over S with basis my. ... ,m,, then one checks easily that D(M) =
(det[h(ms, mj)]).

2.15. Definition. Assume that R is a UFD and (V,h) is an e-hermitian
space over L. Let (M, h) be a free integral e-hermitian S-lattice on (V,h).
We say that h is R-primitive if there is no r € R, r # 0, such that (M, 1h)
is an integral e-hermitian S-lattices on (V, 1h).

Let (M, h) be a free e-hermitian S-lattice of rank 2, where h is R—primitive.
This means that, given a basis for M over S, the matrix of h is of the form,

ap + a1w b() + blw

H= Co + Cc1w d0+d1w ’

where S = R[w], a;, b;,¢;,d; € R, i = 0,1, and the non-zero elements among
the a;, b;, c;,d;, © = 0,1, are relatively prime in R.



3 Involutions and forms

In this section, we are going to see that certain classes of e-hermitian forms
on a left A-lattice M correspond bijectively to involutions on the endomor-
phism ring of M.

Moreover, given a hermitian lattice M over a commutative ring and an in-
volution ¢ on the endomorphism ring of V = K ®z M, we define an order
invariant under the involution o, which is contained in the endomorphism
ring of M. In Section 6, we investigate, in some special cases, to what extent
this order determines the hermitian lattice. We start with some well-known
results concerning involutions on algebras.

Throughout this section, let R be a Dedekind domain with quotient field K
such that char(K) # 2.

3.1 Involutions on algebras

Let A be an R-algebra with R C A. It is easily checked that the center of
A, Z(A), is mapped to itself by any R-involution. The R-involutions are
divided into two classes according to the following definition.

3.1. Definition. We say that an R-involution on an R-algebra A is of the
first kind if its restriction to the center of A is the identity. If the restriction
to the center is not the identity, we say that the involution is of the second
kind.

In order to study the two kinds of involutions at the same time, we use the
following notation.

3.2. Definition. Let A be an R-algebra . By an S/R-involution o on A,
we mean an R-involution on A, where S = Z(A) and R={s € S : o(s) =

s}

The following theorem from [15], Chapter 8, §7, describes all involutions on
a central simple algebra over a field given one fixed involution.

3.3. Theorem. Let A be a finite dimensional central simple L—algebra with
an L/ K-involution o.

10



(1) If n € L satisfies no(n) = 1 and a € A* is such that a = no(a), then
o, A— A, defined by o,(b) = a~'o(b)a, is an LK -involution on A.

(2) If conversely T is an arbitrary L/ K —involution on A, then there is a unit
a==+0(a) in A such that T = o,.

(3) If the involution o is of the first kind, a is uniquely determined up to a
scalar factor | € L*. If the involution o is of the second kind, one can find
an a such that a = o(a), and this a is uniquely determined up to a scalar
factor k € K*.

Proof. (1) is easily checked.

(2), (3) If 7 and o are L/K—involutions then ¢ o7 is an inner automorphism
on A. According to the Skolem-Noether Theorem ([15], Chapter 8, §4) there
is ¢ € A* such that (o o7)(b) = ¢ 'bc for all b € A. Then 7(b) = a 'o(b)a
for all b € A where a = o(c)™!. We get that

b=1(7(b)) =a'o(r(b))a = a 'o(a)bo(a)  a.

This implies that o(a)™'a = n € L*. {From a = o(a)n, we get that o(a) =
ac(n) = o(a)no(n) and hence o(n)n = 1 since n € L*. We have 7 = o,.

If o is of the first kind, no(n) = n? € K* and hence n = +1. It is clear that
b is uniquely determined up to a scalar factor in L*.

If o is of the second kind, then we can choose according to Hilbert’s Theorem
90 ([11], Chapter VI, §6), a € L* such that ao(a)™" = 5. We replace a by
c¢=a'a. Then 7 = g, = 0. and o(c) = c. This ¢ is uniquely determined up
to a factor in K*. d

We now turn to the arithmetic situation. Let A and o be as in Theorem 3.3.
Let S be the integral closure of R in L and let A be an S—order in A.

3.4. Lemma. With the notations as above, Z(A) = S.

Proof. Observe first that Z(A) C Z(A) = L. Every A € A is integral over S

and since S is integral over R, Z(A) is integral over R. But S is the integral
closure of R in L and hence Z(A) = S. O

In general, an L/K-involution 0 on A does not have to preserve A (see

Example 3.15), but we can always find an S—order in A contained in A on
which ¢ is an R-involution.

11



3.5. Proposition. Let A be a finite dimensional central simple L—algebra
with an L/K-involution o. Let A be an S—order in A. Then o is an S/R-
involution on the S—order AN o(A) in A.

Proof. 1t is clear that ANo(A) is a subring of A containing the unity element
of A and that AN o(A) is finitely generated over S. Now L(ANo(A)) = A,
since for every a € A there are s,s’ € S such that sa € A and s'a € o(A)
and hence ss'a € ANo(A).

Let x € ANo(A), then o(z) € AN o(A). Thus o is an R-involution on
ANo(A). {From Lemma 3.4, we get that Z(ANo(A)) = S. We need to prove
that R = {s € S : o(s) = s}. It is clear that every element in R is fixed by
o. Let s € S such that o(s) = s, so s € K and since R is integrally closed,
s € R. We have showed that ¢ is an S/R-involution on A N o(A). O

3.6. Definition. Let A and A’ be R-algebras with involution ¢ and ¢’ re-
spectively. A homomorphism of algebras with involution f : (A,0) —
(A';0") is an R-homomorphism f : A — A’ such that foo =o' o f.

3.2 The adjoint involution

In this section, let A be a finitely generated R-torsion free R—algebra con-
taining R, with an S/R-involution o, where S = Z(A) is a Dedekind domain.
Let M be a finitely generated left A—module such that M is R—torsion free.
We are now going to study a connection between e-hermitian forms on M
and involutions on the endomorphism ring of M.

Note that we have a map from Z(A) to End, (M) given by A — ), where
©a(m) = Am for m € M. The map is injective since M is R-torison free. We
will always consider Z(A) embedded in Ends (M) in this sense.

The following proposition is a generalization of Proposition 4.1 in [9], Chapter
1.

3.7. Proposition. Let the notations be as above. Then for each reqular e—

hermitian form h on M, there exists a unique R—involution o, on Enda (M)
such that op(a) = o(a) for all a € Z(A) and

h(z,on(f)(y)) = h(f(z),y) for all x, y € M and f € Endp(M).

12



The involution oy, is called the adjoint involution of Enda (M) with respect to
h.

Proof. Let h be a regular e-hermitian form on M, that is, the map h -
M — M* is an isomorphism. Given f € End, (M), we define its transpose
ft € Endp(M*) by f'(¢) = @o f for ¢ € M*. The desired involution is given
by

on(f)=h""ofloh,

since h(z, (h™" o f" o h)(y)) = ((f* o h)(¥))(z) = (h(y) o f)(z) = h(f(z),y)
for all z,y € M and it is clear that o, is an R-involution. From the fact
that h is regular, it follows that o, is unique and that o,(a) = o(a) for all
a € Z(A). O

Observe that all the rh, with » € R, r # 0, define the same involution on
Ends(M). Therefore we consider classes of e-hermitian forms. We say that
two hermitian forms h and A’ on M belong to the same class if and only if
there are 7,7’ € R, 7,1’ # 0, such that rh = r'h’. Denote the class of h by [A].
Note that if A’ € [h] and h is e-hermitian, then A’ is also e-hermitian.

3.8. Lemma. With notations as above, let h' be an € —~hermitian form on M
with respect to o and h a reqular e—hermitian form on M. Let g = h=toh' e
Endy (M) then

b (z,y) = h(z,g(y)) for all x,y € M.

Proof. We have h'=ho g and

A A

W (x,y) = W (y)(z) = ((ho g)(y))(z) = h(z, g(y))-

O

Assume that A = K ®p A is a simple K—-algebra. Thus Z(A) = L is the
quotient field of S. It is easily checked that the extension of ¢ from A to A
is an L/K-involution on A of the same kind as o.

Let V = K®gr M. From Lemma 3.4, we get that Z(End,(M)) = Z(A), since
End, (M) is an S-order in the central simple L-algebra End, (V).

Consider e-hermitian forms on M whose extensions to V' are regular. The
classes of such forms on V define K-involutions on End, (V') according to
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Proposition 3.7, and we get the following generalization of Theorem 4.2 in
[9], Chapter 1.

3.9. Theorem. With the notations above, assume that there exists a reqular
e—hermitian form hg : M x M — A.

(1) If o is of the first kind, the map [h] — oy, defines a one-to-one correspon-
dence between the set of classes of e~hermitian and classes of —e—hermitian
forms on M regular on V' such that oy preserves Endy (M), and the set of
involutions of the first kind on Endy (M).

(2) If o is of the second kind, the map [h] — o}, defines a one-to-one corre-
spondence between the set of classes of e~hermitian forms on M regular on 'V

such that oy, preserves End (M), and the set of involutions T of the second
kind on Endy (M) such that 7(x) = o(x) for all x € Z(A).

Proof. jFrom the remark following Proposition 3.7, the map [h] — o, which
sends a class of e-hermitian forms to the adjoint involution on End, (M), is
well-defined.

(From the fact that Z(A) = Z(Enda(M)) C L and o(a) = op(a) for all
a € L, it follows that o, on Ends (M) is of the same kind as of o on A.

Let us now prove the injectivity of the maps in (1) and (2). Let n,n’ = £1.
Let h be an n-hermitian form and let A’ be an r’~hermitian form on M,
regular over V. Suppose that o,(f) = o (f) for all f € Enda(M). Then the
equality holds for all f € End4(V) since KEnda(M) = Ends(V). Lemma

3.8 gives us
() W (z,y) = h(z, 9(y)),

with g = h™' o A’ € End4(V))*. This implies that g o oy (f) = on(f) o g for
all f € End4(V). So goop (f) = ow(f)ogforall f € Ends(V) which means
that g € Z(Ends(V)) = Z(A) = L, since A is a simple algebra. By (x),
h' = ho(g).

If the involution o on A is of the first kind, then the extension of o to A is
also of the first kind and hence L = K. Then h and A’ belong to the same
class of forms, since h' = ho(g) and o(g) € K.

If the involution o on A is of the second kind, the equality ' = ho(g) with
g € L implies that g is fixed by the involution and hence g € K. Therefore h
and h' belong to the same class of forms. So the injectivity is proved in (1)
and (2).
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We now want to prove the surjectivity. Let us start with (1) and assume that
o is an involution on A of the first kind, so R = Z(A). Let 7 be an involution
on Endy (M) of the first kind. We want to show that there is a class of e-
hermitian forms or a class of —e-hermitian forms with 7 as adjoint involution.
Let 0p be the adjoint involution on Endy (M) with respect to hg. Now extend
7 and oy to involutions on End 4(V'). From Theorem 3.3, it follows that there
is v € End4(V)* such that o¢(v) = +v and 7(f) = v~loy(f)v. Define for
x,y €V,

(*%) h(z,y) = ho(z,v(y))-

Then h is an e-hermitian form if o(v) = v and a —e-hermitian form if
o(v) = —v. It is clear that h is regular on V. We get h(f(x),y) = h(z,7(f)(y))
since

h(f(z),y) = ho(f(z),v(y)) = ho(z, 00 (f)(v(y))) =
ho(z, v(7(f)(y))) = Mz, 7(f)(y)),

for z,y € V and f € Enda(V). Take r € R,r # 0, such that rv € End,(M).
Then rh is an e-hermitian form or a —e-hermitian such that rh(z,y) € A
when z,y € M. The class of rh has 7 as its image.

Finally, the surjectivity of (2). Assume that ¢ is an S/R-involution of the
second kind on A. Let 7 be an involution on Ends (M) of the second kind
such that 7(z) = o(z) for all z € Z(A) = S. (From this, and the fact that
Z(A) = Z(Endp(M)), it follows that R = {f € Z(Endx(M)) : 7(f) = f}-
In other words, 7 is an S/R-involution of the second kind on Ends(M). Let
oo be the adjoint involution on End, (M) with respect to hy. We can extend
oo and 7 to L/K-involutions on the central simple L-algebra End4 (V). We
can now proceed as in the proof of (1) with the only difference that oy is of the
second kind and therefore according to Theorem 3.3 there is a v € End4(V)*
such that o¢(v) = v. (From this it follows that A, defined as in (*x*), is an
e-hermitian form. Exactly as in (1), we get that the class of rh, r € R, r # 0,
has 7 as its image. O

In the previous theorem, we proved that given an involution of the first kind

on A and a regular e-hermitian form on M, certain classes of e-hermitian
and classes of —e—hermitian forms on M correspond to involutions of the first
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kind on Enda(M). We will now describe the involutions on Endy (M) corre-
sponding to classes of e-hermitian forms respectively classes of —e— hermitian
forms.

Suppose 0 = id, in Theorem 3.9 so A = Z(A) = R. Given a regular bilinear
symmetric or skew-symmetric form on M, we get a correspondence between
classes of symmetric and classes of skew-symmetric bilinear forms b : M x
M — R, regular on V, such that o, preserves Endg(M), and involutions of
the first kind on Endg(M).

Moreover, if we put R = K, we see that classes of regular symmetric and
classes of regular skew-symmetric bilinear forms b: V' x V — K correspond
to involutions of the first kind on Endg (V). With this in mind, we have the
following definition:

3.10. Definition. Let A be a central simple L-algebra. An involution ¢ on
A of the first kind is said to be of orthogonal type if for any splitting field
L' of A and any isomorphism of algebras with involution (A®y L', o ®idr/) =
(Endy/(V), 0p), the bilinear form b is symmetric. If b is skew-symmetric then
o is said to be of symplectic type.

Let A be an S-algebra, where S = Z(A), and such that A = A®g L is a
central simple L-algebra. We say that an involution o on A of the first kind,
is of orthogonal (symplectic) type if the extension of o to A is of orthogonal
(symplectic) type.

It is possible to show ([9], Chapter 1) that the property of b being symmetric
or skew-symmetric only depends on the involution and not on the choice of
the splitting field L' nor on the choice of b.

Take R = K in Theorem 3.9. Thus A = A and M =V and we get a part of
Theorem 4.2 in [9]. If o is of the first kind, we get that classes of e-hermitian
and classes of —e-hermitian forms h: V' x V' — A correspond to involutions
of the first kind on End (V). The following is also proved in [9], Theorem
4.2:

3.11. Proposition. With notations as above, let o be an involution on A
of the first kind.

(1) If 0 = ida, then o on A and o, on End (V') are of the same type if and
only if h is a symmetric bilinear form.

(2) If 0 # idga, then o on A and o, on End (V') are of the same type if and
only if h is a hermitian form.
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Using this result and Definition 3.10, we get the following corollary to The-
orem 3.9.

3.12. Corollary. With notations as in Theorem 3.9, let o be an involution
on A of the first kind.

(1) If o = idy, then o on A and o, on Enda (M) are of the same type if and
only if h is a symmetric bilinear form.

(2) If o # idy, then o on A and o, on Endp (M) are of the same type if and
only if h is a hermitian form.

3.13. Endomorphism and matrix algebras. We now introduce some
matrix notations and translate involutions on endomorphism algebras into
involutions on matrix algebras.

Let A be a simple K—algebra with a K—involution o. Let V be a free left
A-module and let vy, ... ,v, be a basis for V over A. If f € Ends(V) and
f(vi) = 375 tiju; then f(z) = xT where T' = [t;;] € My,(A). This gives us
an isomorphism between End 4 (V) and M, (A).

For any matrix 7 in M, (A) recall that ‘T denotes the transpose and T° the
matrix [o(¢;;)]. We can construct an involution on M, (A) by T — *T°.
Suppose ¢ is an L/K-involution on A, where L = Z(A). Given a regular
hermitian form h on V, we get an involution o, on End4 (V) by Theorem 3.9,
such that h(f(x),y) = h(x,on(f)(y)). This corresponds to the involution on
M,,(A), which maps T to H'T° H~'. We also denote this involution by oy,.

3.14. Definition of an invariant order. Let o be an involution on a field
L and let S be the ring of integers in L. Let (M, h) be an integral hermitian
S-lattice on a regular hermitian space (V, h) over L. Consider A = End(V)
and A = Endg(M). Then A is an S-order in the central simple L-algebra
A. The involution o}, does not have to preserve Endg(M) as the following
example shows.

3.15. Example. Let V = Qu;+Quy, where vy, v9 € V is a basis for V over Q
and let M = Zv; + Zv,y. Thus A = Endg(V) = M5(Q) and A = Endy(M) =
M(Z). Let 0 = idg and let h be a hermitian form on V' with respect to o
with a matrix H =< 1,2 > . The adjoint involution of h on My(Q) is given
by o,(T) = H'TH™!, for T € M,(Q). But o, does not preserve My(Z) since

[0 8])=18 2] e mem
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Let us denote

(3.16) A(M, h) = Endg(M) N oy, (Endg(M)).

This S-order is invariant under the involution o, according to Proposition
3.5. We study A(M, h) in Section 6 when A(M, h) is an order in a quaternion
algebra in order to get information about the hermitian lattice. This order is
also considered by W. Plesken in [13], where he studies sets of certain forms
on a lattice M over this order and classifies these sets of forms by means
of the endomorphism ring of M @ M*. The following proposition gives us a
different way to look at A(M, h).

3.17. Proposition. With the notations above,
A(M, h) = Endg(M) N Endg(M#).
Proof. Given f € Endg(M)Noy(Endg(M)), then for allv € M# and m € M,

h(f(v),m) = h(v,on(f)(m)) € S,

since A(M, h) is invariant under the involution. So f € Endg(M*) and hence
A(M, h) C Endg(M)NEnds(M#). Let f € Endg(M)NEndg(M#*). We need
to show that o, (f) € Endg(M). For all m € M and v € M¥,

h(on(f)(m),v) = h(m, f(v)) € S.

So on(f)(m) € M## = M, since S is Dedekind, and hence o (f) € Endg(M).
0

3.18. Remark. If M = M#, or in other words if 4 is regular on M, then
oy, preserves Endg(M) according to Proposition 3.7 or Proposition 3.17. In
Remark 6.6, we show that the converse is not true in general, that is, there
exists involutions o, which preserve Endg(M) with A not regular on M.
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4 Quaternion algebras

We now present a theorem due to Albert [1], Chapter X, §10, which describes
an interesting property of the involutions on quaternion algebras: Given an
involution ¢ of the second kind on a quaternion algebra A, let K be the
field consisting of all elements in the center of A fixed by o. Then the set
of all elements in A, for which o coincides with the canonical involution on
A, forms a quaternion algebra A, over K. In this section, we also study the
corresponding arithmetic situation, where we take an order A in A, invariant
under ¢ and define an order A, in A,. In Section 6, we will study the orders
A and A, when the quaternion algebra A splits. In that situation, A is the
order already considered in (3.16) in a particular case.

We start by mentioning some well-known properties of quaternion algebras,
which we will need in Section 5, where we study hermitian spaces over quater-
nion algebras and hermitian lattices over the maximal order in a quaternion
division algebra.

Let S be a Dedekind domain with quotient field L.

4.1. Definition. A quaternion algebra A over L is a central simple alge-
bra of dimension 4 over L.

Let us assume that char(L) # 2 for the remainder of this section. It can be
showed that there is a base of A, denoted by 1,14, j, k, such that

where a,b € L*. The quaternion algebra A is denoted by (a,b),. We can
embed (a, b);, in the matrix algebra My(L(y/a)) by

(4.2) il—)[\/g_\/g},jl—)[_g(l)].

If two quaternion algebras A and A’ are isomorphic, we denote thisby A == A’
We mention some properties of quaternion algebras (see [15], Chapter 2, §11).

4.3. Proposition. For all a,b,c,a, (3 € L™ :
(1) (a,b)r = (ac?, 6%z,
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(2) (a,b)1, = (b,a)y,
(3) (1,1), = (L,a)p = (b,—b), = (c,1 —¢), = My(L),
(4) (a, a)L = (a, —1)L-

There is an involution of the first kind = : A — A defined by
oy + ot + agg + a3k = ag — a1t — Qof — O!gk',

such that @aa € L for all a € A. If A = M,(L), then ~ is given by

[ 11 Q2 ] N [ Qa2 —012 ] ’

Qg1 Q2 —021 a1

where a5, € L, forr,s =1,2,t =1,...4. It is well-known that this is the
only involution of the first kind on A with the property that aa € L for all
a € A. We call ~ the canonical involution on A. We have Try,z(a) = a+a
and Nry/ r.(a) = @a, where Tr /1 18 the reduced trace and Nrp/y, is the reduced
norm in A ([9], Chapter 1, §2C).

It is possible to regard (a, b);, as a cyclic algebra (L(y/a)/L, 0,b). So (a,b);, =
My (L) if and only if b € Nrp /z),0(L(v/a)*), see [15], Chapter 8, §12.

Here is the theorem of Albert [1] mentioned above. The proof presented here
is from [15], Chapter 8, §11.

4.4. Theorem. Let A be a quaternion algebra over L. Let K C L be a
separable quadratic extension. Assume that o is an L/ K—involution on A of
the second kind. Then there exists exactly one quaternion algebra A, C A
over K such that the restriction of o to A, is the canonical involution on
A,. Conwversely, if A1 is a quaternion algebra over K contained in A, then
there is exactly one LK —involution o on A such that the restriction of o to
A s the canonical involution on A;.

Proof. Let ~— be the canonical involution on A and o be an involution of
the second kind on A. Let us first note that these two involutions commute.
Put 7(z) = o(o(x)) for € A. This is an involution of the first kind such
that 7(z)z € L for all € A. So 7 is the canonical involution and hence
o(xz) =o(z) for all z € A.
Let

A, ={z € A : o(x) =7}.

20



It is clear that A, is a K—subalgebra of A and o(A4,) = A,. The idea is
to show that A = A, ®x L, since this implies that A, is a central simple
algebra over K. The universal property of tensor products of algebras gives
us a unique L-algebra homomorphism f : A, ®x L — A. Write L = K(«)
with o(a) = —a. We show that A = A, ® aA,. It will then follow that f is
an isomorphism.

Let z = az € A,NaA, where z, z € A,. Then o(z) = o(a)o(z) = —azZ = -7
which implies that = 0. Therefore A, N a4, = {0}.

Since o commutes with the canonical involution on A, we get that for all

z €A x+o(x)€ A, and

(¢ +0(@) + 5ala(z — 7(2)

xr =

shows that A = A, ® aA,. It is clear that o4, = |4, is the canonical
involution and that A, is uniquely determined.

Conversely, let A; C A be a quaternion algebra over K. Let o be the canonical
involution on A; and p the non-trivial automorphism on L. Then there is a
unique extension of o to A1 @ L= LA; = Aby o(b® a) =0(b) ® p(a). It
is clear that o is an L/K-involution of the second kind on A and A; = A,.

O

4.5. Remark. This theorem also holds in the case char(L) = 2, see [15],
Chapter 8, §11.

For every unit a in A such that o(a) = a, we get an L/K—involution of the
second kind on A according to Theorem 3.3, by letting

-1

oq(x) =ao(z)a -, x € A.

Then A,, = {x € A : 0,(x) =T} is a quaternion algebra over K by Theorem
4.4.

4.6. Proposition. With the notations above, A,, and A,, are isomorphic
if and only if there exist k € K* and ¢ € A* such that a = kcbo(c).

Proof. Suppose that there exists a K—-algebra isomorphism ¢ : A,, — A,,.
Extend ¢ to an L—algebra automorphism of A. From the Skolem-Noether
Theorem ([15], Chapter 8, §4), it follows that there is a ¢ € A* such
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¢ tze. For all x € A,,, ¢(x) is an element of A4,,, that is,
= ¢(z). Thus bo(c)o(z)o(c)'b~! = ¢ 'Te, using that ¢! =
Nrp/k(c)7'e. Now T = ao(z)a™" and this give us that

bo(c)o(z)o(c) bt =c tao(x)a e

for all z € A,,, hence a~'cbo(c) € K*. We have showed that there is k € K*
and ¢ € A* such that a = kcbo(c).

Conversely, assume that a = kcbo(c), where k € K*, ¢ € A*, and define
¢0: Ay, = A, by @(x) = ¢ 'ze. Similar arguments as above show that ¢ is
a K-algebra isomorphism. O

Let us now turn our attention to orders in quaternion algebras. One can
check that the discriminant of an order in a quaternion algebra, with respect
to the reduced trace, is always a square (see for example [2]).

4.7. Definition. Let A be a quaternion L-algebra and let A be an S—order
in A. The reduced discriminant d(A) of A is defined to be the square root
of D(A), where D(A) is the discriminant of A with respect to the reduced
trace Try,; according to Definition 2.14.

For the rest of this section, let ¢ be an L/K-involution of the second kind
on a quaternion algebra A, and let A, be the quaternion algebra over K
given in Theorem 4.4. Let R be the ring of integers in K. Note that, for any
S—order A in A, A = A. This follows from the fact that Tra,z(z) € S for all
x € A ([14], Chapter 2, Theorem 8.6) and T = Try,.(z) — x € A. As seen in
Example 3.15, o does not have to preserve an S—order A in A, but we can
always consider the invariant S—order A N o(A) from Proposition 3.5. We
now introduce the following R-order.

4.8. Proposition. Let A be an S—order in A invariant under o. Then
Ao ={z €A : o(x) =7}
1s an R—order in the quaternion algebra A, over K.

Proof. 1t is clear that A, C A, is an R-algebra. Since A is finitely generated
over R and A, C A, it follows that A, is finitely generated over R.
It remains to show that A, is an R-lattice on A,. Take x € A,. There is an

22



s € S, s # 0, such that sx € A. Since S is invariant under o, o(s)sz € A.
Now o(s)s € R, since it is fixed by o and o(o(s)sz) = o(z)o(s)s = To(s)s =
(0(s)sx) implies that o(s)sz € A,. Thus we have shown that KA, = A,. O

Given an L/K-involution o of the second kind on A, there is an quaternion
algebra A, contained in A by Theorem 4.4, an invariant S-order A in A by
Proposition 3.5 and an R-order A, in A, by Proposition 4.8. The following
figure shows the various inclusions.

(4.9) A—

We have a surjective map from the set of S—orders in A invariant under the
involution o to the set of R—orders in A,, given by A — A, : If A’ is an R-
order in A,, then SA’is an S—order invariant under o on A and (SA’), = A'.

4.10. Proposition. Let A and A’ be S—orders in A invariant under o and
let W : A — A’ be an S—algebra isomorphism. Then the restriction of ¥ to
Ay is an isomorphism between A, and AL if and only if Voo =00 on A,.
Proof. Note that W(z) = W(Z) since after we extend ¥ to A, the Skolem-
Noether Theorem gives us a ¢ € A* such that U(z) = ¢ tzcforallz € A, and
U(z) = ¢ 'mc = U(T), using that ¢! = Nry/x(c)~'¢. (From this we get that
U(x) € AL for all z € A, if and only if o(¥(z)) = ¥(z) = ¥(T) = V(o(x))
forallz € A,. If ¥(z) € Al for all z € A, it is clear that ¥ is an R-algebra
isomorphism. O

In Section 6, we study the situation in figure (4.9) in a special case when
the quaternion algebra A splits. In Section 6.3, we give an example where
SA, = A. We also give an example where the o—invariant S—orders A and A’
are isomorphic even though the corresponding R-orders A, and A} are not
isomorphic.
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5 Hermitian lattices

In this section, we present some of the cases when the classification problem
of hermitian lattices over rings is solved. In Section 5.1, we give a short
summary of the results of Jacobowitz in [6], where hermitian lattices over a
complete DVR and over the maximal order in a quaternion division algebra
over a local field are classified.

One of the methods that was used in the classification of hermitian spaces
over fields and over quaternion division algebras with respect to the canoni-
cal involution ([15], Chapter 10) was to relate hermitian spaces to quadratic
spaces. This is based on a theorem of Jacobson [7], which we present in
Section 5.2. We also show a corresponding arithmetic result in the case of
hermitian lattices over a complete DVR using the results due to Jacobowitz
[6]. In the case of hermitian spaces over a quaternion algebra with respect to
an involution of the second kind, we exhibit a counter example to show that
a similar statement would not be true.

Franke showed in [4], Chapter 1, §2, the following simple criterion to de-
termine if two integral skew-hermitian lattices of rank 2 over Z[3(1 + /p)],
where p € N is a prime congruent to 1 modulo 4, are isometric:

5.1. Theorem. Let p € N be a prime congruent to 1 modulo 4. Let (M, h)

and (M',h') be two integral Z—primitive skew-hermitian lattices of rank 2
over Z[5(1+ /p)]. If d(h) # 0 mod p? and d(h') # 0 mod p?* then

(M,h) = (M', 1) if and only if d(h) = d(h').

There are exactly two classes of isometric Z—primitive skew-hermitian lattices
(M, h) of rank 2 over Z[3(1+ \/p)] with d(h) =0 mod p?.

We show a similar result in Section 6.3 in a slightly different setting.

In Section 5.1, we are going to see that every hermitian lattice over a complete
DVR is an orthogonal sum of submodules of rank 1 or 2. For hermitian spaces
over division algebras, we have the following result.

5.2. Proposition. Let A be a division algebra with an involution 0. Assume
that char(A) # 2. Let (V, h) be a hermitian space over A. Then (V,h) has an
orthogonal basts.
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Proof. The statement holds if h = 0 or dim4V = 1. Assume that h # 0 and
that h(z,z) = 0 for all z € V. Since h # 0 there are z,y € V such that
h(z,y) # 0. Put z = h(z,y) 'z. We get

h(y+z,y+z)=h(y,z) +h(z,y) =2#0

This is a contradiction. This means that there is z € V such that h(x,z) #
0. Put U = {v € V : h(z,v) = 0}. Since Az NU = {0} and v —
h(v,z)h(z,z) 'z € U for all v € V, we get that V = Az & U. Now we
can proceed by induction. O

5.1 Hermitian lattices over complete rings

We now give a summary of the paper of Jacobowitz [6]. We will see an
application of the theory presented here in Section 5.2 and in the study of
certain orders in Sections 6.2 and 6.3.

We shall begin with some well-known properties of complete discrete valua-
tion rings and of quaternion algebras over local fields. For more information
see [14], Chapter 3.

Let R be a complete DVR, that is, R is a principal ideal domain with a unique
maximal ideal p = 7R, and R is complete with respect to the standard p—
adic norm which will be denoted by | - |. Assume that the residue class field
R/p is finite. Let K be the quotient field of R, so K is a local field. We are
going to assume that either,

1) Ais a quaternion division algebra over K and ~ is the canonical involution,
or

2) A D K is a quadratic field extension and ~ is the non-trivial automorphism
of A.

In both cases, it is well-known that we can extend the norm to A in a unique
way by |z| = \NrA/K(a:)\% making A complete ([14], Chapter 2, Corollary
13.6). Let A = {z € A : |z| < 1} be the unique maximal order in A. Every
A-ideal in A is two-sided and principal. Let 8 = {z € A : |z| < 1} be the
unique two-sided maximal prime ideal in A with a generator II. Then A/
is a finite field ([14], Chapter 3, Theorem 14.3).

If 12| < 1, then A will be called dyadic, if |2| = 1, then A will be called
non-dyadic.
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Throughout this section let (M, h) be a hermitian A-lattice on a regular
hermitian space (V,h) over A.

Observe that M is free over A : Since A is maximal, M is isomorphic to a
direct sum of left ideals in A ([14], Chapter 1, Theorem 2.44). Every ideal in
A is principal and hence M is free over A.

5.3. Definition. Let o € K*. By a hermitian lattices (M, h) scaled by «,
we mean the lattice M with a hermitian form given by ah. A scalar a € A
is said to be represented by M if there is an element x in M such that
h(z,z) = a. A non-zero element x € M is called isotropic if h(z,z) = 0.
Let the scale of M, sM, be the left A-ideal in A generated by all h(z, y) with
x,y € M. By the norm nM of M we mean the left A-ideal in A generated
by all h(z,z) with € M. Note that nM C sM. If nM = sM we say that
M is normal, otherwise we call M subnormal.

5.4. Definition. For any non-zero scalar a, let aM = {ax : x € M}. We
say that an element x in M is maximal if « ¢ IIM.

Every element in a basis for M is maximal in M and a maximal element in
M can always be extended to a basis of M.

5.5. Definition. Let i € Z. A hermitian lattice M is called [I*-modular if
h(xz, M) = II’A for every maximal element x € M.

If M is a IT*-modular lattice then sM = IT*A. We call hermitian lattices of
rank 1 and 2 lines and planes. Examples of IT*~-modular lattices are lines Am
with |h(m,m)| = |II|* and planes Am; + Amsy with |h(my, ms)| = |II!| and
|h(mk,mk)| < |HZ|, k=1,2.

For each i € Z, let H(i) denote the II*-modular plane with hermitian form

o

I ol
5.6. Definition. A direct sum M = M; @ --- ® M, is called a Jordan
splitting if all the M; are modular and sM; C --- C sM;.
Let M = M1 & ---® My and M' = M| & --- & M;, be Jordan splittings.

They are of the same type if £k = k' and for each i € {1...k}, sM; = sM],
ranky M; =ranky M] and M; and M] are both normal or both subnormal.
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Jordan splittings of isometric hermitian lattices are of the same type, in
particular, two Jordan splittings of the same hermitian lattice are of the
same type. If two hermitian lattices M and M’ have Jordan splittings of the
same type, we say that M and M’ are of the same type.

5.7. Definition. Let M = @M, be a Jordan splitting. Let s(j) denote the
integer such that sM; = II*UA.

We have the following result from [6], §4:

5.8. Proposition. Let M be a hermitian A—lattice with a basis mq, ..., my.
Ifa; = —% is an integer for each i > 2, then M = miA @ (myA)* with
(mi A= = 3% (mi + aimy) A
If
b, = h(mzaml)h(mQamQ) - h(mzamQ)h(mQaml)
' h(mg, m1)h(my, mg) — h(my, mi)h(ma, mg)’
¢ = h’(miam2)h(m1am1) - h(miaml)h(mlamQ)
¢ h(mz,ml)h(ml,mg) — h(ml,ml)h(mz,mg)

are integers for each i > 3, then M = (miA + maA) & (miA + moA)L and
(miA +myA)t = Efzs(mi + bymy + ¢;mg)A.

5.9. Corollary. M can always be written as an orthogonal sum of lines and
modular planes.

Proof. Let M = miA + --- + mpA and consider the maximum of the set
X = {|h(ms,m;)| : 1 < i,j < k}. If there is an ¢ € {1,...,k} such that
|h(m;, m;)| is the maximum of X, then M = m;A® (m;A)*. Otherwise, there
are i, € {1,...,k}, i # j, such that |h(m;, m;)| is the maximum of X and
thus M = (m;A + mjA) & (m;A + mjA)*. Tt is clear that m; A +m A is a
modular plane. Now we can proceed by induction. O

We are going to classify hermitian lattices over A by their Jordan splittings
and, in the commutative case, their determinants. In order to do this we
study the possibility of improving the result of Corollary 5.9, to find in some
sense, the “nicest” possible basis for a modular plane. We first look at the
non-commutative case as it turns out to be the easiest.
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5.1.1 Non-commutative case

Assume that A is a quaternion division algebra and ~ the canonical involu-
tion. Up to isomorphism there is just one quaternion division algebra over
a local field. We can therefore assume that A = (7, €)x, where € is a non-
square unit of the form 1+ 4n, n € R* ([12], Chapter VI, §63B). In other
words, with notations as in Section 4, A has a basis 1,1, j, k, over K where
i=Nand 2 =112=m, j2=¢, k =1ij.

5.10. Proposition. Let M be a II'-modular lattice of rank n. Then
(1) M= (n?)@---@ (7'/?) ifiis even,
(2) M=H@G) @ ---®H(@) ifiis odd.

Proof. By scaling M with an appropriate power of 7 we may assume that
1=0o0r:=1.

(1) Case i = 0. By Corollary 5.9, we can assume that n = 2. Suppose
M = Amy + Amy. If |h(my,ma)| < |h(mg,my)| for £k = 1 or k = 2 we
are done according to Proposition 5.8. Let us assume that |h(m, mo)| >
|h(mk,my)|, k =1,2. Let @ = 1 in the non-dyadic case and let a = £(1 + j)
in the dyadic case. It is easily checked that a has the property that |a| =
la +@| = 1. Changing the base to m| = am; + my and m{, = my gives us
that |h(m/, m})| =1 and we can apply Proposition 5.8.

Left to show is that given m € M such that |h(m, m)| = 1, Am represents 1.
But this is true for Am since, considering the quadratic space (AM, q) over
K with g(z) = h(z,x), x € M, we have dimg(AM,q) = 4 dima(AM, h) and
every quadratic space of dimension at least 4 over a local field represents
every non-zero scalar (see [15], Chapter 6, §4). So there is a € A such that
h(am,am) = 1. Thus |h(am,am)| = |a]> = 1, so a € A and hence Am
represents 1.

(2) Case ¢ = 1. Let us first note that M is II-modular if and only if its
orthogonal components are [[-modular. Therefore M must be an orthogonal
sum of II-modular planes, since lines never are II-modular. It thus suffices
to assume that M is a [I-modular plane. Considering (AM,q) and the fact
that every quadratic space of dimension at least 5 is isotropic, it follows that
AM is isotropic. Let m; € M be a maximal isotropic element. Consider
a base mi,my € M. Let b = —%h(mg,mQ) in the non-dyadic case and let
b= —5=(1 + j)h(ma, my) in the dyadic case. Then b € A and changing the
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base to m} = my and mi = bmy + my gives us M = H(1). O

5.11. Theorem. Suppose A is a quaternion division algebra over K. Then
two hermitian A—lattices are isometric if and only if they are of the same

type.

5.1.2 Commutative case

In this section, we assume A to be commutative, that is, A D K is a quadratic
extension of local fields. Let us denote A by L, Aby Sand ~ by o. If M is a
modular plane, we have the following possibilities of finding a nice basis for
M depending whether the extension K C L is unramified or ramified and
dyadic or non-dyadic.

5.12. Proposition. Let M be a II*~modular plane withi = 0 ori = 1. Then
we have the following.

(I) If K C L is an unramified extension then M has an orthogonal basis.
(IT) Suppose K C L is a ramified extension.
1) If K C L is non-dyadic, then
a) there is an orthogonal basis for M if i = 0,
b) M = H(i) ifi =1.
2) If K C L is dyadic, then either
a) M is normal and M has orthogonal basis or,

b) M is subnormal and h is of the form
™ I
o(M)t ex™tt |
where nM = 7™S, m,l € N, m # 0, and e € R* U {0}.
Proof. See Proposition 4.4 and §7 in [6] for a proof of (I).

If K C L is a non-dyadic ramified extension, see Proposition 8.1 in [6], and if
K C L is a dyadic ramified extension, see Proposition 10.2 in [6] for a proof

of (I1). 0
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5.13. Theorem. Let K C L be an unramified quadratic field extension.
Then two hermitian S-lattices are isometric if and only if they are of the
same type.

Proof. See §7 in [6]. O

5.14. Theorem. Let K C L be a ramified quadratic extension of non-dyadic
fields. Then two hermitian S—lattices (M, h) and (M', 1) are isometric if and
only if the following conditions holds.

(1) M and M' are of the same type.

(2) Given Jordan splittings, M = ®;M; and M' = ®;Mj, then for each index
J such that s(j) is even, we have d(hu;) = d(h|MJ<).

Proof. See Theorem 8.3 in [6]. O

5.15. Remark. A similar classification theorem is proved in [6], §11, in the
case of a ramified quadratic dyadic field extension.

5.2 Quadratic and hermitian lattices

Let R be a Dedekind domain with quotient field K such that char(K) # 2.
As in Section 5.1, we assume that either A is, a quaternion division algebra
over K and ~ is the canonical involution, or A D K is a quadratic field
extension and ~ is the non-trivial automorphism of A.

Let (V, h) be a regular hermitian space over A with respect to ~. The her-
mitian form h over A gives rise to a quadratic form over K by

(5.16) q(z) = h(z,z), z € V.

In this section, we present a theorem of Jacobson [7] which shows that classifi-
cation of hermitian spaces over A can be reduced to classification of quadratic
spaces over K defined by (5.16).

We study this theorem in two different aspects. First we look at hermitian
lattices over a complete DVR with finite residue class field and their corre-
sponding quadratic lattices, using the results in Section 5.1. Then we consider
hermitian spaces over a quaternion algebra with respect to an involution of

30



the second kind. We define a similar correspondence between hermitian and
quadratic spaces as defined in (5.16) and show that there exists non-isometric
hermitian forms for which the corresponding quadratic spaces are isometric.

5.2.1 Jacobson’s Theorem

In order to prove Jacobson’s Theorem, we need the following cancellation
theorem which is due to Witt (for a proof see [15], Chapter 1, §6).

5.17. Theorem. Let k be a local ring in which 2 is invertible and let M be
a finitely generated projective k—module. If (M,q) (M, q) (M, q) (M,q') are
reqular quadratic k—lattices such that

(M,q) & (M, q1) = (M, ') ® (M, g2)

and

(M,q) = (M,q'),
then (M, q1) = (M, ¢2).

Using the notations introduced in the beginning of Section 5.2, Jacobson’s
Theorem says:

5.18. Theorem. Two regular hermitian spaces (V,h) and (V',h') over A
are isometric if and only if the corresponding quadratic spaces (V,q) and
(V',q") over K are isometric.

Proof. Evidently, if (V,h) and (V', h') are isometric then (V,¢) and (V',¢)
are isometric.

Assume that (V,q) and (V’,¢') are isometric over K, that is, there is a K—
isomorphism ¢ : V' — V' such that ¢'(¢(x)) = ¢(x) for all z € V. ;From
Proposition 5.2, it follows that there is x € V such that h(z,z) = ¢(x) # 0.
Consider V = Az & (Az)*, where (Az)* is the orthogonal complement to
Az with respect to h. When A is a field, we can also regard (Az)’ as all
vectors in V' which are orthogonal, with respect to b,, to z and Vdz. When
A is quaternion algebra, with basis 1,4, j, k over L, we can regard (Az)* as
all vectors in V' which are orthogonal, with respect to by, to z,iz, jz, kr. In a
similar way, consider V' = Az’ @ (Az')L, where 2’ = ¢(z). Note that defining
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¥ Ar — Az’ by ¥(az) = az’ for all a € A, we get that (Az, h) and (Az', ')
are isometric.

Since (Az,q) & ((Az)*,q) = (A2',¢) & ((A2')*,¢) and (Az,q) = (A2',¢),
(Az)t, q) = ((Az")t,¢") according to Theorem 5.17. By induction, (V,h)
and (V', k') are isometric. O

Let K C L be an unramified separable quadratic extension of local fields.
Let R, p = 7R and |- | be as explained in the beginning of Section 5.1. Let
S be the integral closure of R in L and let @ be the unique maximal ideal
in S with a generator II.

5.19. Proposition. Two regular integral hermitian S—lattices (M,h) and
(M',B') are isometric if and only if the corresponding quadratic R-lattices
(M, q) and (M',q') are isometric.

Proof. Obviously, if (M, h) and (M’, h') are isometric then (M, g) and (M, ¢")
are isometric.

Assume that (M, q) and (M',q') are isometric over R, that is, there is an
R-isomorphism ¢ : M — M’ such that ¢'(¢(z)) = ¢(z) for all z € M.
From Proposition 5.8 and Proposition 5.12, we know that it is possible to
diagonalize (M, h) over S. Then there is a basis z1, ... ,x, of M over S such
that |¢(z1)| = max{|h(z;, ;)| : 1 <i,j <n}. It is easy to check that for all
z,y € M, |h(z,y)| < |q(x1)|. Then M = Sz, & (Sz1)+, where (Sxz1)* is the
orthogonal complement to Sz; with respect to h. We can also regard (Sz;)*

as all vectors in M which are orthogonal, with respect to b,, to z; and wzy,
where S = Rw].

Consider z} = ¢(z1). First note that 2 is a maximal vector in M’ since if

zy = mm/, for some m' € M', then |q(z1)| = |V (2!, z})| = |7 ?|h'(m', m')| <
lg(o=1(m'))| which is a contradiction. Extend z} to a basis zi,... ,z! for
M'.

We want to show that M’ = Sz @ (Sx})*. According to the proof of Propo-
sition 5.8, we need to show that |¢(z})| = max{|h(z},2})| : 1 < 4,5 < n}.
Note first that for all z € M, |W/(z,z)| = |h(o (z), o ()| < |h(z1,21)| =
|h' (2}, x})|. Let z,y € M'. We can assume that h'/(z,y) = 7% k € N
Then W(z +y,z +y) = b (z,z) + W (y,y) + 27%. ;From this it follows that
\h'(z,y)| < |W (2}, )| and hence M’ = Sz' @ (Sx)*. We can now proceed
as in the proof of Theorem 5.18. O
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5.2.2 A counter example

Let R be a Dedekind domain with quotient field K such that char(K) # 2.
Assume that K is a global field. Let A be a quaternion algebra over L with
an L/K-involution 0. As in the beginning of Section 5.2, let ~ denote the
canonical involution on A. Let (V,h) be a regular hermitian space over A
with respect to o. The hermitian form h over A gives rise to the following
quadratic form over K

(5.20) q(z) = h(z,z) + h(z,z), z € V.

Note that if 0 = ~, this quadratic form is twice the quadratic form defined
in (5.16). Assume that o is an L/K-involution of the second kind on A. We
will show that the quadratic form defined in (5.20) is almost independent of
the hermitian form h. We give an example of two non-isometric hermitian
spaces over (—1, —1)@( V3) with isometric corresponding quadratic spaces over
Q defined by (5.20).

We start by mentioning, without proof, a classification theorem for quadratic
spaces over global fields. First we need to define invariants which determine
whether two quadratic spaces over a global field are isometric. We also state
some of the properties of the invariants.

Let (V, ¢) be a quadratic space over R. It is well-known that (V,q) = (V*,q)®
(V7,q), where q(z) > 0 for all z € V', z # 0, and ¢(x) < 0 for all z €
V~=,z # 0. The dimensions of V* and V'~ are independent of the choice of
orthogonal decomposition.

5.21. Definition. Let (V,q) be a quadratic space over R. The signature
of (V,q) is defined by

sign(V, q) = dimg(V™") — dimg(V 7).

We sometimes use the shorter notation sign(q) for the signature when it is
clear on which vector space we consider the quadratic form q.

Let Br(K) denote the Brauer group of the field K.

5.22. Definition. Let (V,¢) = (a1) ® - - - @ (a,) be a quadratic space over
K. The algebra S(q) = ®i<i<j<n(i,a;)k is called the Hasse algebra. Let
s(q) denote the class of S(g) in Br(K). The class s(q) is called the Hasse
invariant of (V, ¢q).
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The Hasse algebra is independent of the choice of diagonalization of ¢ ([15],
Chapter 2, §13). Note that quaternion algebras over K have order 2 in
Br(K). We are going to use the following properties of the Hasse invariant
(for a proof see [10], Chapter 5, §3).

5.23. Proposition. Let (V,q) and (V',q") be quadratic spaces over K.
(1) s(e® ¢')x = s(q)s(¢')(det ¢, det ¢') k-
(2) If dimg V' = n is even, then for o € K s(aq) = s(q)(«, (—1)w det ¢)k.

Let p denote an archimedean or a non-archimedean prime spot of K. Let
f(p denote the corresponding completion of K. Thus f(,, is a local field or is
isomorphic to R or C, in which case we call p a real, respectively a complex,
prime spot. Let V, =V ®¢ Kp.

We are now able to state the theorem which tells us when two quadratic
spaces over K are isometric (for a proof see [15], Chapter 6 , §6).

5.24. Proposition. Let K be a global field. Then two quadratic spaces (V,q)
and (V',q") over K are isometric if and only if dimgV = dimg V', d(q) =
d(q'), s(q) = s(¢') and sign(V;, q) = sign(V},q') for all real prime spots p in
K.

Let L = K(v/d) where d € K* is square free. Suppose A = (1,7)r where
n,7 € K* and let 0 : A — A be an involution given by

(5.25) o(lo+ i+ 135+ 1sk) =o(ly) —o(lh)i—o(ls)j — o(ls)k,

where [, € L and o), is the non-trivial automorphism on L. Thus o is an
L/ K-involution of the second kind and A = A, ®VdA,, where A, = (n,7)x
according to Theorem 4.4. Put A, = {a € A : o(a) = a}. It is easy to check
that A, is a vector space of dimension 4 over K with basis 1, Vdi,/dj, k.
Let (V, h) be a regular hermitian space over A of rank 1. The hermitian form
h is given by an element in A%, that is, h(be, ce) = buo(c) for all b,¢c € A,
where V' = Ae and u = h(e,e) € AY. With a slight abuse of notations, denote
u also by h. Let us write h = a + aVd € A%, where a € K and a is a pure
quaternion in A,, that is, a = ay? + asj + ask, a,, € K. The corresponding
quadratic space (V, g) is of dimension 8 over K.
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Assume Tr 4,1, (h) # 0. Straightforward calculations, with respect to the basis
e, ie, je, ke, V/de, /die,/dje, Vdke of V over K, give us

(V,q) = (V,a?q) = (W, 2af) & (W, —2ad Nryy(h)f),

where (W, f) is the quadratic space (1) ® (—n) @ (=) ® (1) over K. ;From
this it follows that d(¢) = 1, independently of h. Using Proposition 5.23,
Proposition 4.3 and d(f) = 1, we get

s(q) = s(2af)s(—2adNry,(h)f)
= s(f)(20,det f)k s(f)(—2adNrap(h),det f)k
= s(f)*(2a, 1)k (—2adNry 1 (h), 1)k
= 1.

5.26. Proposition. Let A = (1,7)., where L = Q(v/d) with n,v,d € Q<, d
is square free. Let o be the involution on A defined in (5.25). Let (V,h)
and (V', k') be two regular hermitian spaces of rank 1 over A. Assume that
Tra/r(h)Tra/;n(h') # 0. Then (V,q) = (V',q') if and only if at least one of
n,7,d and Tr ), (h)Tra,(R') is greater than zero.

Proof. According to Proposition 5.24 and the previous discussion, we only
need to consider the signature of (V ®g R, ¢). It is easy to check, working
through all possibilities, that if n,+,d < 0, then sign(q) = 8|%|. In all other
cases sign(q) = 0, independently of h.

Let b/ =o' + d/Vd € A, where o/ € Q% and d’ is a pure quaternion in A,.
If n,7,d <0 and Tra/(h)Tra/L(h') = 4aa’ < 0, then sign(q) # sign(q’) and
hence (V,q) 2 (V',¢'). In all other cases, we get that (V,q) = (V',¢). O]

5.27. Example. Let A = (—1,—1)y /3 and let o be defined as in (5.25).

So A, = (=1, —1)g. We claim that h = 1+ (i +j + k)v/3 and &’ = 1 are not
isometric over A. Yet corresponding quadratic spaces (V,q) and (V,q’) are
isometric according to Proposition 5.26

Assume that (V,h) = (V' k'), that is, there exists ¢ € A* such that h =
ch'a(c) = co(c). Let ¢ = ¢y + c1V/3, where ¢y, c; € A,. Then h = co(c)
implies

(5.28) 1 = NI‘AU/Q(CO) — 3NI'AG/Q(01),
(529) 1+ ] +k = C1Cy — CoCi-
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Set t = ¢1¢y. By (5.29), t = s + —2— for some s € Q. Note that ¢y # 0 and
i+j+k

hence ¢y € A, since A, is a division algebra. Put ¢; = t/¢; in (5.28). Thus

NI'AU/Q(CO) = NrAU/Q(CO)2_3NrAU/Q(t)-

Using that Nry_,q(t) = s* + 3/4, it follows that the quadratic equation
X? — X —3(s> + 3/4) = 0 has a rational root X = Nryu,_sg(cy). Hence
10 + 1252 = r? for some r € Q*. Thus the equation

10X2+12Y2 =72

has an integer solution. It is easy to check that this equation has no integer
solutions. We have a contradiction and hence (V,h) 2 (V', h').
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6 Hermitian lattices and orders in quaternion
algebras

Let R be a Dedekind domain with quotient field K such that char(K) # 2.
Let L = K(v/d) where d € K* is square free and let o be the non-trivial
automorphism of L over K. Let S be the integral closure of R in L. Let
(M, h) be an integral hermitian S—lattice on a regular hermitian space (V, h)
of dimension 2 over L.

i From Theorem 3.9, we get an L/K—involution oy, of the second kind on A =
End (V). We can consider the S—order A(M, h) = Endg(M)Noy(Endg(M))
from (3.16) as an S—order in the quaternion algebra A = End (V) = My(L)
over L. According to Theorem 4.4, the set A,, of all elements for which oy,
coincides with the canonical involution on A, forms a quaternion algebra
over K. Let A(M, h), denote the R-order in A,, given in Proposition 4.8. In
this section, we study how the orders A(M, h) and A(M, h), depend on the
hermitian lattice.

In Section 6.3, we assume that S is a complete DVR with finite residue
class field. We prove a similar statement to Theorem 5.1, classifying certain
hermitian S—lattices with respect to the determinants. We determine to what
extent we can relate classification of certain hermitian lattices of rank 2 over
S to classification of orders in quaternion algebras over local fields. We also
study the relations between the orders A(M, h) and A(M, h),.

6.1 The endomorphism ring of a hermitian lattice

By the correspondence between hermitian forms and involutions from Section
3, the following proposition in [16], Chapter 1, §4, can be deduced from
Theorem 4.4 and Proposition 4.6.

6.1. Proposition. Let A =End.(V) and
Ag, ={f €Endr(V) : Va,y € V h(f(2),y) = h(z, f(y))},

where ~ is the canonical involution on Endy (V). Then the following holds:
(1) As, is a quaternion algebra over K.

(2) Aah RK L= EndL(V)
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(3) The restriction of ~ to A,, is the canonical involution on A,, .

(4) The isomorphism class of A,, is completely determined by d(h) and vice
versa. In particular, Ay, is isomorphic to My(K) if d(h) is represented by
—1.

Proof. We have an L/K-involution o, on End,, (V'), according to Proposition
3.7. Given a basis for V over L, we can consider End, (V) = Ms(L) as
a quaternion algebra. The involution o, on My(L) is given by o,(T) =
H'T°H™! for T € My(L). Then A,, consists of all T € My(L) such that
on(T) =T, where ~ is the canonical involution on My(L). Theorem 4.4 gives
us that A,, is a quaternion algebra over K with A,, ®x L = M,(L) and oy,
restricted to A,, is the canonical involution on A,,. So (1), (2) and (3) are
proved.

Left to prove is (4). According to Proposition 5.2, there is a basis of V over L
such that the matrix of h is H =< a, ab > for some a,b € K*. Take another
form h' and H' =< d',d't’ > with o',0' € K* and define A,,, similarly.
¢From Proposition 4.6 we have that A,, and A, , are isomorphic if and only
if H=kCH''C?, for some k € K* and C € GLy(L), which implies that
d(h) =d(n).

Conversely, if d(h) = d(h'), then b = co(c)b’ where ¢ € L*. Then H =
a(a’)"'CH''C? where C' =< 1,¢ > and hence A,, and A, , are isomorphic.

Straightforward calculations give us

Ao =] ooy oty ] ot H}

This is the image of (d, —b)x under the embedding in My(L) described in
(4.2). It is clear that A,, is isomorphic to M,(K) if and only if d(h) =
—1. U

For the remainder of this paper, let us fix a regular hermitian space (V, h) of
dimension 2 over L. Given an integral hermitian S-lattice (M, h) on (V,h),
let A(M,h), = {f € A(M,h) : ox(f) = f} be the R-order in 4,, from
Proposition 4.8, where — denotes the canonical involution on A. A natural
question to ask is how A(AM, h) and A(M,h), vary with the lattice. In the
following proposition, we show that isometric lattices yield isomorphic orders.
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6.2. Proposition. Let (M,h) and (M',h) be integral hermitian S-lattices
n (V,h). If (M,h) = (M',h), then A(M,h) is isomorphic to A(M',h) and
A(M, h), isomorphic to A(M', h),.

Proof. Suppose that there is an S—isomorphism v : M — M’ such that
h(¥(z),v(y)) = h(z,y). We claim that the map ¥ : A(M,h) — A(M', h),
where

U(f)=tpofoy™,

is an S-algebra isomorphism. First, it is clear that 1 o f o4~ € Endg(M')
since 1 is S-linear. ;From the fact that o, is the unique adjoint involution it
follows easily that ooy, (f)oy™" = oy, (o forp™t) and hence U(f) € A(M', h).
It is clear that ¥ is an S—homomorphism of algebras and we can construct
an inverse map by ®(g) = ¢t ogo for g € A(M', h). Hence A(M, h) and
A(M', h) are isomorphic.

Moreover, since ¥ o g, = 0, 0 ¥ and V¥ is an S-algebra isomorphism, it
follows from Proposition 4.10 that A(M,h), and A(M', ), are isomorphic
as R-orders. O

We will now study the converse of the previous proposition when S is a
complete DVR with finite residue field using the results in Section 5.1. We
also study the relation between the orders A(M,h) and A(M,h),. The first
task will be to compute the discriminant of these orders.

6.2 The discriminants in the complete case

For the remainder of this, we assume that K C L is a separable quadratic
extension of local fields. Assume R, p = 7R and |-| to be as in the beginning
of Section 5.1. Let S be the integral closure of R in L and let 8 be the
unique maximal ideal in S with a generator II.

In order to calculate the discriminants of the orders A(M, k) and A(M,h),
when K C L is a ramified dyadic extension, we need some more technical
facts.
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6.2.1 Auxiliary results in the ramified dyadic case

Assume that K C L is a dyadic ramified extension. Following [6], we divide
this case into two different subcases.

“Ramified-prime” case: L = K(y/m), where p = 7R and ‘B = IIS with
1=/

“Ramified-unit” case: L = K(v/1+ dn%+1) with k € N, § € R*,

4| < 7%+ < 1, p = 7R and P = I1S where IT = VT "l;L,fW.

Note that in both cases, S = RJ[II].

Assume that M is an IT*-modular plane with ¢ = 0 or ¢ = 1. Write nM =
™S, m € N. Then nM C sM C S implies that m > 0 if 4 = 0 and
m > 1if i = 1. According to Proposition 9.1 in [6], nH(i) C nM C S. We
have in the ramified-prime case nH(i) = 27*S and in the ramified-unit case
nH(i) = 27 %S for i = 0,1. The inclusions nH(:) C nM C S imply that in
the ramified-prime case ﬂn?_,- € S for i = 0,1, and in the ramified-unit case

ﬁ € S. This will be used in the proof of the following lemma.

6.3. Lemma. Let K C L be a ramified quadratic dyadic extension and let
M be a II'-modular plane, i = 0 or i = 1, and nM = ™S, m € N. With =
and II defined as above,

2ATo (1Y)  o(IT)

(M4 ()

(IT = o(TD))

Tm Tm

are elements in S.

Proof. First, note that Tryx(IT) = I+ ¢(IT) = 0 in the ramified-prime case
and Trpx(IT) = f—k € R in the ramified-unit case. Then

1 2
7Tm( + o(I)) — /x (IT) —tE €
We have
. 2(-m* _ 2 . P
2(To(IT))" —7— = T-m= €5 in the ramified-prime case
! —2(;,‘1“ €S in the ramified-unit case
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and finally,

U(I:gfni =+ 2 ¢ S in the ramified-prime case

Tm—i

T o) u-Tr, (1

) € S in the ramified-unit case

6.2.2 Computing the discriminants

Assume that K C L is a separable quadratic extension of local fields. Let
(M, h) be an integral hermitian S—lattice on the fixed regular hermitian space
(V, h) of dimension 2 over L. Let

(W ={h:MxM—S:3r,r" €R, r,r'#0, ' =rh}

be the class of h on M. Note that A(M,h) = A(M,h') for h' € [h], since
oy, = oy, by the remark following Proposition 3.7.

6.4. Definition. We call hy € [h] an R-primitive representative of the
class of h on M if it is R—primitive and such that, if M has an orthogonal
basis with respect to hg, 1 is represented by M.

It is always possible to find an R-primitive representative of [h]. It is clear
that h = rh', where A’ is an R—primitive form and r is a suitable element in
R. Since M is free over S, h'(z,y) € S for all z,y € M. If b’ =< ¢, pr > with
€,n € R*,r € R, with respect to some basis of M over S, then hy = e 1A' is
R-primitive, hy € [h] and 1 is represented by (M, hg), so hg is an R-primitive
representative of [A].

The norm of M and the discriminant of M are, by definition, ideals in S.
But since (M, h) is integral, there are generators in R, so we can also view
them as ideals in R.

Note that given a basis for M over S there is an isomorphism between
Endg(M) and M,(S). Let H be the matrix of hy with respect to this ba-
sis. Under this isomorphism, we have

AM,h) = {T € My(S) : H'TH " € My(S)},

AM,h), = {T € A(M,h) : TH =H'T"}.

41



Recall that the discriminant D(M) of the hermitian lattice (M, hy) is gener-
ated by the determinant of hy.

6.5. Proposition. Let K C L be a separable quadratic extension of local
fields. Consider the integral hermitian S—lattice (M, hg), where hg is an R—
primitive representative of the class of h on M. Then

d(A(M,h)) = (sM)"*D(M),
d(A(M,h),) = (nM)>D(M)D(S).

Proof. ;From Corollary 5.9, we have that either M is an orthogonal sum of

lines or M is a modular plane.

Let us first suppose that M is an orthogonal sum of lines, that is, M = (1) @
(nr), r € R\{0}, n € R*, since hy is primitive. Straightforward calculations
from the definition of A(M, h) and A(M, k), give us that

10 00 0 r 00
a-los] m-lia] m-lo] A-[07]

is a basis of A(M, h) over S and

EFH H’ El:[g gw}’

C IR By

is basis of A(M,h), over R, where S = R[w]. Let A = My(L). We get
D(A(M, h)) = (det[Tra/r(FiFj)]) = r2S, so d(A(M,h)) = rS = D(M)S =
(sM)=2D(M), since sM = S. In a similar way, we get d(A(M, h),) = rD(S) =
D(M)D(S) = (nM)~?>D(M)D(S), since nM = R.

Let us now assume that M is a I[T"-modular plane, i € N. Then i = 0 ori = 1,
since hg is primitive. The possibility of finding a nice basis for hy depends

on the extension. If K C L is an unramified extension, then according to
Proposition 5.12, M has an orthogonal basis.

Suppose now that K C L is a ramified extension. Let us first look at the case
when p is a non-dyadic prime ideal. If M is a II*-modular plane with ¢ = 0
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then, according to Proposition 5.12, M has an orthogonal basis. If M is a
[I-modular plane then, by Proposition 5.12, M = H(1) is a hyperbolic plane.
Straightforward calculations from the definition of A(M,h) and A(M,h),
give us that A(M,h) = My(S) and A(M,h), = My(R). Since we have a
ramified non-dyadic extension, S = R[/n| and from this it follows that
D(M) = 11?2, D(S) = I?R and nM = TI?R. Then we get d(A(M,h)) = S =
(sM)™2D(M), since sM = I1S and d(A(M,h),) = R = (nM)~2D(M)D(S).

Now let p be a dyadic prime ideal. If M is a normal plane, then according
to Proposition 5.12 (II), M has an orthogonal basis. Assume that M is
subnormal. By Proposition 5.12 (II 2(b)), the matrix of hg is of the form

™ I
HO - |:0'(H)Z 67Tm+l :| ’

with nM =7™S, m,l e N, m#0,e€ R*U{0}andi=0ori=1.

Suppose that M is a [I’~modular plane with ¢ = 0. Then d(hy) € R* and
hence [M# : M] = S. Then M = M# and by Remark 3.18, M,(S) is invariant
under the involution. Therefore d(A(M,h)) = S = (sM)™?D(M), since
sM =S.

Let us consider A(M, h), . Let

() ot

u v

with s, t,u,v € S and t =ty + t111I, s = sg + s1II, where sg, s1,%9,t1 € R. So
T € A(M, h), if and only if the following four equations hold

7" (v — o(s) t+o(t) =2ty + (II 4+ o(I))t4,

)
)

7" (o(u) + tn"e) = v—o(v),
7™ (u+o(t)t"e) = s—o(s) =1 —o(Il))sy,
et (s —o(v)) = u+o(u).

.From this it follows that 7" € A(M, h), if and only if

v = Wimto + Wim(n + o(T))t + o(s),
u = Wim(H —o(Il))s; — o(t)n"e,
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since from Lemma 6.3 we have that 2, —(II + o(II)), —= (Il — o(II)) € S.
We then get the following basis for A(M h), over R

g

(10 [ 11 0
E(): :|7 E1: 1 :|’

0 | L (- o) o)
0 1 [0 I
E, = | —erm 2 ] , B = | —er"o(Il) - (IL+ o(1I)) ]

Calculating det[Tr 4,1, (F;E};)] and taking the square root gives us d(A(M, h) )
= (nM)?>D(M)D(S).

Suppose that M is a [I-modular plane. Then d(hy) = II?n, n € R*, since
Tlo(TT)| = |n|. {From straightforward calculations, we get Ho'T H,™' €
M, (S) for all T € M,(S) using that [II?| = |o(I1?)| = |x|. Thus d(A(M, h)) =
S = (sM)™?D(M), since sM =1IS.

Let us consider A(M,h),. Let T € M,(S) be as in (x). Then T' € A(M,h),
if and only if the following four equations hold

7w —o0(s)) = Ho(t)+o(ll)t = (II + o(I1))te + 2Io(IT)t4,
7 (o(u) +tr") = I(v—o(v)),
™ (u+o(t)r"e) = o(ll)(s —o(s)) = o(I)(II — o(II))s1,

671_m—l—n (8 ( )

€)
) = o()o(u) + Mu.
We get that T' € A(M, h), if and only if

v = Tim(n +o(T)ty + %Ha(ﬂ)tl +o(s),
w = Wima(n)(n — o(TT))sy — o(t)ne,

since by Lemma 6.3, - (IT + o(I1)), QH;TSLH), UW—E)(H —o(II)) € S. We get the
following basis for A(M h), over R

[1 0 [ 11 0
EO:_O 1:|: EIZ-G(H) :|7

B — [0 1 B 0 Il
2T e M +o(M) |7 TP | —ero(ll) 2 o(IT)



Calculating det[Tr 4., (E;E;)] and taking the square root gives us d(A(M, h) )
= (nM)2D(M)D(S). O

6.6. Remark. By Proposition 3.17, we know that M# = M implies that
Endg(M) is invariant under the involution. The converse is not true in
general: consider M = H(1) when K C L is a ramified non-dyadic extension
or a [I-modular plane M when K C L is a ramified dyadic extension. In these

cases, we showed in the proof of the previous proposition, that Endg(M) is
invariant under the involution, but [M# : M] # S and hence M#* # M.

6.3 Correspondence between hermitian lattices and or-
ders in quaternion algebras in the complete case

Assume that K C L is an unramified or a ramified non-dyadic quadratic
extension of local fields. Throughout this section, let (M, hy) and (M, hy)
be integral hermitian S—lattices on the fixed regular hermitian space (V,h),
where hy and h{, are R-primitive representatives of the class of h on M,
respectively of the class of h on M’ according to Definition 6.4. In this
section, we prove a statement similar to Theorem 5.1 of H. Franke, which
describes to what extent the determinant of hy determines the isometry class
of (M, hy). Furthermore, we show that (M, h) and (M, h) are similar if and
only if A(M, h) and A(M', h) are isomorphic S—orders, assuming that A(M, h)
is not a maximal order in M, (L) if K C L is a ramified non-dyadic extension.
If the last condition is not satisfied, then there exist exactly two classes of
similar hermitian lattices with corresponding maximal S-orders. We show
that (M, h) and (M’, h) are similar if and only if A(M,h), and A(M', h),
are isomorphic R-orders. We investigate to what extent the determinant of
ho determines A(M,h). We also study the relationship between the orders
A(M, k) and A(M, h),.

Under the above assumptions, Propositions 5.8 and 5.12 give us that
(67) (Ma hO) = (1) @ (777Tj) or (Ma hO) = H(l)a

where n € R*, 7 € N. In order to prove the results in this section, we will use
the following table, where we have computed the determinant of the lattice
and the discriminants of the orders in the different cases using Proposition
6.5:
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Table 1 Determinants and discriminants.

‘ KclL H unramified ‘ ramified non-dyadic ‘

(M, ho) | )& () | (D)@ (n?) | H()
d(ho) nm? nm? m
d(A(M, 1)) S S S
d(A(M, h),) TR TR R

In a similar way, (M’, hy) = (1)@ (n'7*), where ' € R*, k € N, or (M, h})) &
H(1).

6.8. Proposition. Let K C L be an unramified extension or a ramified
non-dyadic extension in which case we assume that d(hg) # w. Then

(M, ho) = (M', hy) if and only if d(ho) = d(hy).

Assume that K C L is a ramified non-dyadic extension. Then d(ho) = 7 if
and only if (M, ho) is isometric to one of the non-isometric lattices (1) @ ()

or H(1).

Proof. 1t is clear that isometric hermitian lattices have equal determinants.
Conversely, suppose d(hy) = d(hg) and assume that d(hg) # 7 if K C L
is a ramified non-dyadic extension. By Table 1, M and M’ have orthogonal
bases. The orthogonal decomposition of M in (6.7) is a Jordan splitting if
and only if 7 # 0, otherwise a Jordan splitting of M is a modular plane.
Similar conditions hold for M’.

If d(ho) = d(h}) € R*, then j = k = 0 and M and M’ are both modular
planes. If d(hg) = d(h{) ¢ R*, then M and M’ are orthogonal sums of lines.
In both cases, the type of the Jordan splitting of M, respectively M’, is the
same. Hence d(hg) = d(hy) implies (M, hy) = (M, hy) by Theorem 5.13 and
5.14.

Suppose that K C L is a ramified non-dyadic extension and d(hg) = 7. By
Table 1, (M, ho) is isometric to (1) & (nm) or H(1), where n € Nry/x(S*).
These integral hermitian lattices have equal determinants but they are not
isometric, since their Jordan splittings are of different types. Since (1) &
(nm) = (1) & (7) by Proposition 5.14, the proposition is proved. O

6.9. Proposition. Let K C L be an unramified or a ramified non-dyadic
extension in which case we assume that A(M,h) is not a mazimal S—order
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in My(L). Then
(M, ho) = (M', hy) iff A(M,h) and A(M', h) are isomorphic S—orders.

Assume that K C L is a ramified non-dyadic extension. Then A(M,h) is a
mazimal S—order in My(L) if and only if (M, hy) is isometric to one of the
non-isometric lattices H(1) or (1) & (n), n € R*.

Proof. In Proposition 6.2 we showed that if (M, hy) = (M', h{), then A(M, h)
and A(M', h) are isomorphic S-orders.

First note that since hy and hj belong to the same class of hermitian forms
on V, we have that d(ho) = d(hf) in K*/Nry/x(L*). In other words, nm’ =
lo(l)n'w* for some | € L*. ;From this it follows that d(hg) = d(h}) in
R/Nrp gk (S*) if and only if j = .

Let K C L be an unramified or a ramified non-dyadic extension in which case
we assume that A(M, h) is not a maximal S-order in My(L). Suppose that
A(M, h) and A(M', h) are isomorphic S—orders, so d(A(M, h)) = d(A(M', h)).
Since d(A(M,h)) = d(A(M',h)) # S in the ramified non-dyadic case, it
follows from Table 1 that d(hg) = ed(hj) for some ¢ € R*. So j = k and
hence d(hy) = d(h}). By Proposition 6.8, (M, hy) = (M', hy) if d(hy) # ,
and (M, hy) = (M',hy) =2 (1) @ (w) if d(hy) = 7.

Assume that K C L is a ramified non-dyadic extension and suppose that
A(M, h) is a maximal S—-order in My(L). Thus d(A(M, h)) = S and according
to Table 1, M is isometric to (1)@ (n) or H(1). These lattices are not isometric,
since their Jordan splittings are of different types. ;From Table 1, it follows
that their corresponding S—orders are maximal. O

6.10. Corollary. Let K C L be an unramified extension or a ramified non-
dyadic extension in which case we assume that d(hg) # . If d(ho) = d(hy),
then A(M,h) and A(M', h) are isomorphic S—orders.

Moreover, if K C L is a ramified non-dyadic extension and d(hy) = m, then
A(M, h) is isomorphic to My(S) or to the S—order consisting of matrices

s mt
u v |’

where s, t,u,v € S.
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Proof. Let K C L be an unramified extension or a ramified non-dyadic
extension in which case we assume that d(hg) # w. By Proposition 6.8,
d(hy) = d(hf) implies that (M, hy) = (M',hy) and hence A(M,h) and
A(M', h) are isomorphic S-orders.

Assume that K C L is a ramified non-dyadic extension. If d(hg) = 7 then
(M, hy) is isometric to H(1) or (1) & (m). The result follows from the proof
of Proposition 6.5. O

6.11. Remark. Note that the converse of the first statement in Corollary
6.10 is not true, that is, there exists isomorphic S-orders where the determi-
nants of their corresponding hermitian lattices are not equal. For example,
assume that K C L is a ramified non-dyadic extension. Consider (M, hy) =
(1) ® (—1) and (M',hy) = H(1). Thus A(M,h) and A(M',h) are maximal
S—orders, and therefore isomorphic, but d(hy) # 7 and d(hg) # d(hy). This
shows also that the converse of the second statement in Corollary 6.10 is not
true, since A(M, h) is isomorphic to Ms(S) but d(hg) # .

6.12. Corollary. Let K C L be an unramified or a ramified non-dyadic
extension in which case we assume that A(M,h) is not a mazimal S—order
in My(L). Then

(M,h) ~ (M', h) iff N(M,h) and A(M', h) are isomorphic S—orders.

Assume that K C L is a ramified non-dyadic extension. Then A(M,h) is
a mazimal S—order in My(L) if and only if (M, h) is similar to one of the
non-isometric lattices H(1) or (1) & (n), n € R*.

Proof. By the discussion following Definition 6.4, hjys = rho and hyp = 1'hy,
where 7,7 € R,r,r" # 0, and hy and h{ are R-primitive representatives of
the class of h on M, respectively of the class of h on M'. If % € R then
according to Proposition 6.9, (M, h) = (M’, 5h) if and only if A(M, h) and
A(M’, h) are isomorphic S—orders. We get a similar result if %' € R. The last
statement follows immediately from Proposition 6.9 O

6.13. Proposition. Let K C L be an unramified or a ramified non-dyadic
extension. Then

(M, hy) = (M', hg) iff A(M, k), and A(M', h), are isomorphic R-orders.
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Proof. If K C L is an unramified extension or a ramified non-dyadic exten-
sion, in which case we assume that A(AM, k) is not a maximal S—order in
M, (L), the proof is exactly as in Proposition 6.9.

Let us assume that K C L is a ramified non-dyadic extension. By Table 1,
d(A(M,h),) = D(M)D(S) = m"™'R when M = (1) @ (nn?),n € R*, j €
N. ;From this it follows that d(A(M,h),) = R if and only if M = H(1).
Therefore the discriminant determines the hermitian lattice and hence if
A(M,h), and A(M', h), are isomorphic R-orders then (M, hy) = (M’, hy).

O

With the same argument as in the proof of Corollary 6.12, we get the following
corollary of the above proposition.

6.14. Corollary. Let K C L be an unramified or a ramified non-dyadic
extension. Then

(M,h) ~ (M', ) iff A(M,h), and A(M',h), are isomorphic R-orders.

Let us now look at the relationship between the two orders A(M,h) and
A(M, h),. Consider the case when K C L is a ramified non-dyadic extension.
Let (M, hy) = (1) ® (—1) and (M', hy) = H(1). These are non-isometric lat-
tices over S with A(M, h) and A(M’, h) conjugated, since they are maximal.
But A(M, k), and A(M’', h), are non-isomorphic R-orders in A,, = M,(K)
according to Proposition 6.13. Note that A(M,h) = aA(M',h)a™!, a € AX
where o ¢ A,, since otherwise A(M, k), and A(M’', h), would be isomorphic
by Proposition 4.10.

In the case of an unramified extension, we are going to compare SA(M,h),
and A(M, h). We need the following:

6.15. Lemma. D(S ®z A(M,h),) =S @ D(A(M, h),) = SD(A(M,h),).

Proof. To simplify the notations in this proof, let ® g be denoted by ®,
A(M, h) by A and A(M, h), by A,. We claim that D(S®A,) and S ®D(A,)
are generated over S (where S is identified with S®id,) by the same elements.
Let e1,...,eq be a basis for A, over R. Then D(A;) = (det[Tra, /x(eie;)])
and thus S ® D(A,) is generated by 1 ® det[Tr,, /x(eie;)] over S.

We have that 1 ® e;,...,1 ® e4 is a basis for S ® A, over S and since
Tran((1 ® €)(1 ® €5)) = Tra, /x(eie;) ([14], Chapter 2, Theorem 9.27),
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D(S® A,) = S ®D(A,).
Since D(A,) is R-torison free as an R—module, we can identify D(A,) with
1 ® D(A,), and hence S ® D(A,) = S(1 ®r D(A,)) = SD(A,). O

6.16. Proposition. Let K C L be an unramified quadratic extension of
local fields. Then

A(M,h) = S ®g A(M, h), = SA(M, h), .

Proof. 1t is clear that SA(M,h), C A(M,h) and according to Lemma 6.15
and Table 1,

d(SA(M, h),) = SA(A(M, h),) = d(A(M, h))

and hence, SA(M,h), = A(M, h). O

a0



References

[1] A. A. Albert, Structures of algebras, American Mathematical Society,
Revised Printing 1961.

[2] J. Brzezinski, A Characterisation of Gorenstein Orders, Math. Scand.
50 (1982), 19-24.

[3] C. W. Curtis, I. Reiner, Methods of representation theory, Vol. I, John
Wiley & Sons, Inc., New York, 1981.

[4] H. Franke, Kurven in Hilbertsche Modulflichen und Humbertsche
Flachen im Siegel-Raum, Bonner Mathematische Schriften, 1978.

[6] D. Husemoller, J. Milnor, Symmetric Bilinear Forms, Springer-Verlag
Berlin-Heidelberg, 1985.

[6] R. Jacobowitz, Hermitian forms over local fields, Am. J. Math. 84, 441-
465 (1962).

[7] N. Jacobson, A note on hermitian forms, Bull. Amer. Math. Soc. 46,
264-268 (1940).

[8] M. A. Knus, Quadratic and Hermitian Forms over Rings, Springer-
Verlag Berlin-Heidelberg, 1991.

[9] M. A. Knus, A. Merkurjev, M. Rost, J. P. Tignol, The Book of Involu-
tions, American Mathematical Society, 1998.

[10] T. Y. Lam, The algebraic Theory of Quadratic Forms, American Math-
ematical Society, 1973.

[11] S. Lang, Algebra, Addison-Wesley Publishing Company, 1993.

[12] O. O’Meara, Introduction to Quadratic Forms, Springer-Verlag Berlin-
Heidelberg-New York, 1973.

[13] W. Plesken, Lattices of covariant quadratic forms, Preprint.

[14] I. Reiner, Maximal Orders, Academic Press, London, 1975.

51



[15] W. Scharlau, Quadratic and Hermitian Forms, Springer-Verlag Berlin-
Heidelberg, 1985.

[16] G. Shimura, Euler Products and Eisenstein Series, American Mathe-
matical Society, 1997.

[17] G. Shimura, Arithmetic of alternating forms and quaternion hermitian
forms, J. Math. Soc. of Japan, 15 (1963), 33-65.

52



