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Abstract

In this paper we prove two different generalizations of Kummer’s Lemma that
describes when a unit of a cyclotomic field is a p-th power of another unit. One
of these results is then used to prove a theorem about the Picard group of the
integer group ring ZC', where C is a cyclic group of prime power order. The
theorem was first proved by Kervaire and Murthy; we use a more elementary
method to reprove it in the case where p is a regular prime.
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1 Introduction

Fermat’s last theorem has undoubtedly been one of the greatest sources of in-
spiration for the development of number theory. One of the first breakthroughs
in the search for a proof was made by Kummer in the mid eighteen-hundreds.
Kummer proved the theorem in the case when the exponent, p, is a so called
regular prime. This means that p does not divide the class number of the p-th
cyclotomic field. One of the main steps in Kummer’s proof is the following
result.

Kummer’s Lemma. Let p be a regular prime and let ( be a primitive p-th
root of unity. If € is a unit in Z[C] such that € is congruent to a rational integer
modulo p, then € is the p-th power of another unit.

There are several ways to prove this. The proof in [B-S] relies on the fact
that the p-adic integers with zero trace can be uniquely presented as a (finite)
sum Y ¢ log 92’71, where the ¢, are p-adic integers and 6y are the so called
cyclotomic units. As it is done in for example [W], one can also use class
field theory to prove Kummer’s Lemma. In this case one first use the p-adic
logarithm and exponential functions to show the result in the A-adic completion
of Z[(], where X is the prime above p. Class field theory then implies that the
result must also hold in Z[(].

In chapter 2 we will generalize Kummer’s Lemma in two directions. Let (, be
a primitive p"*!-th root of unity. Theorem 2.3 says that if p is regular and
€ € Z[{o]* is congruent to 1 modulo p™, then € is a p™-th power of another unit.
The proof is similar to the first one of the proofs described above and the only
extra ingredient is some calculations.

For our second generalization we consider prime power cyclotomic fields, Q(¢,,)
and their rings of integers Z[(,]. Let A, be the (unique) prime above (p) in
Z[(p)- Theorem 2.7 says that if p is a regular prime and e € Z[(,]* is congruent
to 1 modulo )\%ﬂ+1_1, then € is a p-th power of another unit. Note that this
restricts to the usual version of Kummer’s Lemma when n is zero. The proof
of this generalization is similar to the second one of the proofs of Kummer’s
Lemma described above. The main extra ingredient is Lemma 2.15 that tells
us that if a unit is congruent to 1 modulo )\%Hl*l, then it is also congruent to 1
modulo )\ﬁnﬂ. This important Lemma was proved in [ST1] but for completeness
we prove it here too.

The second part of this paper is devoted to algebraic K-theory. In 1958, in his
work on the Riemann-Roch theorem, Grothendieck introduced the functor K,
now known as Ky ([BSG]). The best known application of this functor is the
topological K-theory developed by Atiya and Hirzebruch in [A-H]. The next
step was taken by Bass (see [B]) who defined K; functors in the category of
rings. These functors turned out to be the same as the ones introduced by



Whitehead in [W] 1939. In 1969 Milnor showed how, starting from a Carte-
sian square (or pullback), one could construct an exact sequence involving Ky
and K of the respective rings. This sequence is now called the Mayer-Vietoris
sequence of algebraic K-theory after the Mayer-Vietoris exact sequence of al-
gebraic topology to which it is similar in appearance.

One important problem in algebraic K-theory is simply to compute Ky(R) for
various rings R. Because of important topological applications, rings ZC', where
C is a cyclic group, are of particular interest. In the article [K-M], Kervaire and
Murthy took a step towards a solution of this problem in the case when C is
a cyclic group of prime power order. When p is a so called semi regular prime
(meaning that p does not divide the class group of the maximal real subfield
of Q(¢o)), they explicitly gave an exact sequence involving the group Ko(ZC).
(Ko(ZC) = 7Z & Ko(ZC)).

The aim of this paper is to reprove the result by Kervaire and Murthy in the
case where p is regular, using a different method. Our proof relies on one of
our generalizations of Kummer’s Lemma and we thus link Kummer’s work on
Fermat’s theorem with our K-theoretical problem.

Remark: In this paper we actually study the picard group, Pic R, of a ring
R, but since K((ZC) = PicZC when C is a cyclic group of prime power order,
this is equivalent to the study of Ky(ZC).

1.1 A Short Introduction to K,, K; and Picard Groups

In this paper all rings will be commutative and have a identity element, usually
denoted by 1. All ring homorphisms f : A — B are assumed to satisfy f(14) =
1. As usual, A* denotes the multiplicative group of units of A.

An A-module P is called projective if there exists an A-module ) such that
P ®Q is free. A module M is called finitely generated if there exists a finite
subset N of M such that RN = M.

It is easy to see that a module P is finitely generated and projective if and only
if there exists a module @ such that P @ Q = A" := @], A for some natural
number n

Let p be a prime ideal of A and let A, denote the localization of A at p. If
M is an A-module the localization M, of M at p is isomorphic to A, ® 4 M.
Suppose M is finitely generated and projective. Then, since Ay is a local ring,
M, is a free, finitely generated Ay-module and hence M, = Ap for some n. We
can hence define rank, (M) = n.

An A-module M is called invertible if it satisfies any of the following equivalent
conditions:



i) M is projective and finitely generated of constant rank 1.
i) M* @4 M = A, where M* := Hom4 (M, A).
i17) There exists an A-module N with N ® 4 M = A.

We will now define the Picard group, Pic A of the ring A. If P is an invertible
A-module, let < P > denote the isomorphism class of P. If @ is another
invertible module, define an operation by

<P><Q>=<PR4Q >.

This set of isomorphism classes of invertible modules together with the opera-
tion defined above forms the group Pic A. The identity element is the class of
A, considered as a module over itself, and the inverse of an element < P > is
< P* >,

Let Ay, Ay and D be commutative rings with unity and let j : Ay — D, k =
1,2 be homomorphisms. A ring A and maps i : A — Ag, k= 1,2, is called a
pullback (of A; and As over D) if the following condition holds. For all rings
B and maps oy : B — Ag, k = 1,2 such that the outer part of the diagram
below commutes, there is a unique # such that the whole diagram commutes.

J2

A

=D

If A is a pullback of A; and Ay over D we will call the rectangular part of the
diagram above a pullback diagram. It is easy to see that a pullback is unique
up to isomorphism. One can show that

A ={(a1,a2) € A1 X A3 : ji(a1) = ja(az)}

is a pullback of A1 and As over D. Often we will identify any pullback with A
defined above. The following result is well known and easy to prove.

Lemma 1.1. If A is a commutative ring with unity and o and B ideals in A,
then

Af(anp

Ala

Al ——— AJ(a+p)



1s a pullback diagram.

Following Milnor, we now indicate how starting from a pullback diagram

A—2 A (1.1)
12 J1
AZ L;D

and projective (finitely generated) modules P and P, over A; and Ay respec-
tively, one can extract projective (finitely generated) modules over D and A and
get a commutative square of additive groups where each group has a module
structure over the corresponding ring in the pullback diagram. We will need to
make the extra assumption that j; or jy is surjective. For a full treatment of
the matters below we refer to [M].

First consider a ring homomorphism f : A — A’. If M is a projective (finitely
generated) A-module, then we can define a projective (finitely generated) A’-
module fxM := A’ ®4 M. We can also define a A-linear map f,: M — fuM
by f«(m) = 1® m. Now return to the pullback diagram above and suppose
that there exists a D-module isomorphism A : j14P1 — jouP>. Define

M = M(Py, Py, h) :={(p1,p2) € PL X P> : hji(p1) = ja(p2)}-
We get a A-module structure on M by setting
a(p1, p2) = (i1(a)p1,%2(a)p2).
The following results are Theorem 2.1, 2.2 and 2.3 of [M].
Proposition 1.2. Let M be the module constructed above. Then,

i) M is projective over A and if Py and P, are finitely generated over A;
and As respectively, then M is finitely generated over A.

i1) Every projective A-module is isomorphic to M(Py, Py, h) for some suitably
chosen Py, P> and h.

i) The modules Pi and P, are naturally isomorphic to i14M and ioy M
respectively.

This gives us a commutative diagram of additive groups

M P
hjl*
Py — oy Py



The definition of pullbacks for abelian groups is similar to the one for rings. It
is easy to see that our in commutative square M is actually a pullback of P;
and P, over jouPs.

In this paper we are not concerned with the groups Ky and K; but we will still
devote this section to a short description of them as they are closely related to
the Picard group.

Let A be a ring. The group KyA can be seen as the group of (differences of
isomorphism classes of) projective finitely generated A-modules. Formally, if
P and @ are such modules we let brackets denote the isomorphism class and
define an operation by

[P]+[Q]:=[P® Q]

The set of all isomorphism classes with this operation is a monoid. The group
KyA is defined as the quotient of the free abelian group generated by this
monoid modulo the subgroup generated by all expressions [P] + [Q] — [P & Q).
It is easy to see that every element of KyA can be represented as [P]-[Q] for
some suitably choosen P and Q.

The group K1 A can be seen as a group of infinite matrices. Let GL(n, A) be
the group of n X n invertible matrices. For each n = 1,2,..., consider the
embedding of GL(n, A) into GL(n + 1, A) defined by

H 0
Hr—>(0 1)

for H € GL(n, A). Define the group GL(A) as the union of the sequence
GL(1,A4) C GL(2,4) C GL(3,4) C --- .

A matrix in GL(A) is called elementary if it coincides with the identity matrix
except for a single off-diagonal entry. It can be shown that the multiplicative
group E(A) generated by the elementary matrices coincides with the commuta-
tor subgroup of GL(A). We define the group K; A as the quotient GL(A)/E(A).
If f: A— A’is aring homomorphism we can in the obvious way define a group
homomorphism f, : K1A — K1 A'.

For more facts about these groups and proofs of the statements above, see [M]
and [Si].

We are now ready to present the (K7, Kj)-Mayer-Vietoris Sequence, originally
obtained by Milnor. The reason why the sequence below bears the name Mayer-
Vietoris is the resemblance with the Mayer-Vietoris long exact sequence of
algebraic topology (see [R] p. 177).

Proposition 1.3. Consider the pullback diagram of rings ( 1.1) with j1 or jo
surjective. There is an exact sequence of additive groups

KA ﬂ KA & Ki1As g KD 2) KyA 03 KyA| & KyAs @ KoD.



Consider the groups as additive. The homomorphisms «; and §;, ¢ = 0,1, are
defined by

ai(ar) = (i1«(a1), 24 (a1))
Br(b1,c1) = Ji«(b1) — jox(c1)
ag(ao) = (i1«(ao), i2«(ao))
Bo(bo, co) = jix(bo) — j2+(co)

for a; € K;A, b; € K;A1 and ¢; € K;Ay. To define 9 we first observe that an
element d of K1D can be represented by a matrix in GL(n, D) for some n. This
matrix determines an isomorphism hg from the free D-module j;4 AT to the
free D-module jox AY. Let M = M (AT, A%, hy) and define

a(d) = [M] — [A"] € KoA.

The verification that 3 is a well defined homomorphism and that the sequence
is exact is routine. We will now indicate how one can obtain from the (Kjy, K )-
Mayer-Vietoris sequence a similar sequence involving unit groups and Picard
groups.

Proposition 1.4. Let A be a ring. There exist surjective maps dety : KgA —
Pic A and det; : K1A — A*

The proof of this can be found in [Si] p. 57 and p. 112. The map det is defined
using exterior (or alternating) product A’y (see [L] p 731). If M is a projective
finitely generated A-module of constant rank m, then A’y M is a projective
finitely generated A-module of constant rank (ZL) One can show that there
exists subrings H and RKyA of KyA such that KgA = H @& RKyA, where every
module in RKyA can be presented as [M] — [A"] for some M and n. The map
detg is defined as the composition of the surjection KgA — RKyA with the
map

RKyA — PicA [M] —[A"] — NI M,

where m = rank M.

With our definition of K1 A we can define det; : K1A — A* as the map in-
duced by the usual determinant GL(A) — A*. This is well defined since any
elementary matrix has trivial determinant.

Proposition 1.5. Consider the pullback diagram of rings ( 1.1) with j1 or js
surjective. The diagram



KA LKA @ K1 Ay L - KD —°
dety det; @ dety det;
A* aq ’ AT S A; 6 ~ D* P
0 )
= KA = KyA1 @& KyAs KoD
detg detg @ detg detg
5 PicA ac Pic A1 @ Pic Ay N PicD

is commutative and the rows are exact.

The bottom row is called the (*, Pic)-Mayer-Vietoris exact sequence correspond-
ing to the pullback diagram 1.1. The maps in the this sequence are defined as
follows:

ai(a

) = (i1(a), iz(a))
(a'la )
)

(i
ji(a1)ja(az)”
(i1
Ji

1

ag(P «(P),i2+(P))
Bo(Pr, Py) = j1u(P1)jas(Po)

fora € A*, a; € A;, P € Pic A and P; € Pic A;. To define 0 we first observe that
an element d of D+ can be thought of as an isomorphism between jixA; = D
and jox Ao = D. Let 0(d) := M(A1, Az, h). The proof of the proposition can
be found in [Si].

ome generalizations o ummer’s Lemma
2 S g lizat f K ’s L

Kummer’s Lemma is one of the fundamental parts of Kummer’s proof of Fer-
mat’s theorem for regular primes. In this section we will genarilize Kummer’s
result in two different directions. We start by stating the original result.

Kummer’s Lemma. Let p be a regular prime and let ( be a primitive p-th
root of unity. If € is a unit in Z[C] such that € is congruent to a rational integer
modulo p, then € is a p-th power of another unit.

The first of our generalizations is Theorem 2.3 where we exploit Kummer’s result
a little further, staying in the field Q(¢). The second of one is Theorem 2.7.
Here we find a result in the prime power case, that is when ( is a primitive
p"-th root of unity, comparable to the original result.



We start by stating some preliminary, well known facts about prime power
cyclotomic fields. Fix a prime number p. For n =0, 1, 2..., let {,, be a primitive
p"t1th root of unity and consider the field Q((,)- Let A, = ¢, — 1 in Q((y)-
By abuse of notation we will also denote the ideal ({, — 1) in Z[(,] by A,. The
following well known facts can be found in for example [J].

Lemma 2.1. The following statements hold:
i) Q C Q(¢n) is a Galois extension of degree p™(p — 1).
i) When p"t! > 2, no embeddings of Q((,) into C are real.

i11) Z[Cp] is the ring of integers in Q((yn), and the ideal Ay, is a prime ideal in
Z[(n)-

w) If p"t1 > 2, then (p) is the only prime ideal in Z that ramifies in Q((y).
v) An NZ = (p) and the ramification index e(\,/(p)) is p"(p — 1).
An = (Co — ¢, 1Y) as ideals in Z[(,).

The mazimal real subfield of Q(¢y) is Q(Cn) T = Q(¢n +¢, L) and the ring
of integers in Q(Cn) T is Z[Ca)T = Z(C + (Y.

The following lemma, is also sometimes called “Kummer’s lemma”. In this paper
we will for obvious reasons refrain from doing this.

Lemma 2.2. For every unit € in Z[(,]|* there is a natural number k and a unit
& € (Z[Ca]T)* such that € = e,CF.

The proof can be found in for example [W] p. 3.

2.1 The p-adic logarithm and a generalization in Q({p)

Here we will prove the following theorem.

Theorem 2.3. Let p be a reqular prime. Let € € Z((y) be a unit. Then, if
e = 1 mod p", there exists a unit vy such that e =P .

The proof, which can be found at the end of this section, uses induction, starting
with the regular version of Kummer’s Lemma. The induction step itself is
similar to one of the proofs of Kummer’s Lemma, where one uses the fact that
one can find a certain basis for Ap-adic real integer with zero trace. The main
extra ingredient we need is lemma 2.5, about the the p-adic logarithm function.

Suppose p is an odd prime. Let n =0, A = Ao = (o —1, ¢ = (o, and A\, =
¢ — ¢! = (¢ —{( Recall that ()\) is a prime ideal and that (p) = (\)P~L

Moreover, A, = C*1(§2 —-1) = g*l(g +1)(¢ —1) and since  and ( + 1 = 11—_§C2




are units, (A\) = (\;) as ideals (Lemma 2.1 vi)). We let v) denote the valuation
on Q(¢p) with respect to the prime ideal .

The set {1, Ar, ..., AL 2} forms an integral basis for Q((o) over @ and X, = —\,.
Hence if a € Z[(] is real there exists a; € Z, i = 0,1,..,p — 2 such that
a=ag+a A +..+ ap,z)\ff*2 and 0 = a—a = 2a1 )\, +2a3X\3 + ...+ 2ap,2)\$72
Hence a; = 0 for odd 7 and a = a¢ + a2>\3 +..+ ap,3/\$_3. It easily follows that
vy (a) is a multiple of 2 and that a is congruent to a rational integer mod A\2.

Let Q(¢)x be the A-adic completion of the field Q(¢). The logarithm function
is defined by

o0

log Z k—|—1 a*

k=1

for all z such that the series converges (in the norm induced by the A-adic
valuation). The following facts can be found for example in [B-S] p. 376, p.
370 and p. 362.

Lemma 2.4. Let E be the group of positive real units of Z(() and let Ey be the
subgroup generated by the units 0 = sin kr/p for k=23, ..., pTl. Then,

sin7/p

1. If p is a regular prime the real A-adic integers with zero trace are uniquely
represented as

m
Z ay, log Oﬁ_l
k=2

where the ay are p-adic integers.
2. If € is a unit such that e =1 mod A, then loge has zero trace.

3. The index [E : Ey) is finite

Lemma 2.5. Lety € Q(¢o) and suppose vy(y—1) > 2. Thenlogy = prnA mod p"™
for all positive integers n.

Proof. Let x =1 — . By definition,
1 k)+1x _— ( ) + ( 1)k+1‘7"k
0 E : § - o
gy = n\Y %

For k > p™ + 1, write k = p®k’ where (p,k')=1. Then p® < k so vy(k) <
e()\/p)logk =(p— l)logk Hence

log p logp®

zk log k

—) > 2k—(p-—-1 >
w2 %D >

(p"—l)k( logp logk)

= A U DA logp® ‘p"—-1 k-1

>p" > (p—1)n.



This implies that logy = Ly, () mod p".

Now,
n pn k n
7" 1 R )
La(y) - = Yyt R
z2 x3 P

= 11215'+'143zﬁ'%—.“ +'14pn—E?3

where
A = (D E-DI-" -1 —2)--- (" — (k—1)) =
= p"my

for some my, € Z. Hence p"|A* so vy(4;) > n(p — 1). Since v,\(z—’;) > 0if

va(z) > 1 ([B-S] p 285), we get that

-1 : ak
Uy (Ln(')’) - o ) > 251'113131;)71 vA(AkH) =
.’L'k
= mi A =) > np-1).
,oin (U,\( k) toa(ey)) 2nle—1)
This implies that Ly(y) — L = 0 mod p" which proves the lemma. O

pn

The following corollary can be seen as a p-adic version of the well known real
identity lim, . % = Ina.

Corollary 2.6. lim, % = log~.

Proof of Theorem 2.3. We will use induction on n. The case n = 1 is the
standard version of Kummer’s lemma and a proof can be found in [B-S] p.
377. Suppose the statement holds for n — 1. Then there is a unit €; such that

-1
n—1 . . .
e =€) . By assumption, 1pn7_1 = 0 mod p. We can assume that €; is real

since if €1 = C(l)“er for some real unit ¢,, then
n—1 n—lk n—1
€= 6111 = C(I)) eff =P

so we can, if we have to, replace €; by ¢,. This implies that ¢; = b mod A\? for
some b € Z. But then

S0

By lemma 2 p158 [B-S], this implies -

1 = 0 mod p and by Fermat’s
theorem, b = "~ = 1 modp so e — 1 = 0 mo

A. Since €1 — 1 is real,

o, O

10



n—1
€1 —1 = 0 mod A\2. By lemma 2.5, loge; = elljni,l_l = 0 mod p and hence by
y g ?

lemma 2.4 we have a unique representation

m
log e; :pz:c;C 10g0£_1, (2.1)
k=2

where the c; are p-adic integers.
n—1

On the other hand, since (—e; )P" = —e) we can assume that €; > 0, that
is ¢ € E. By lemma 2.4 [E : Ep] is finite so there exists a positive rational
integer a such that € € Ey. Hence € = []}", 9,‘:’“ for some rational integers dy,
and m := ’%1. Since there are no elements of finite order in E we can assume
that (a,d1,...,dp) = 1. This gives us

alog’ ™' =log ((e2)P~!) = log (HHZ’“) = de log 67, L
2 2

By combining this with 2.1 we get
m m
> a(p —1)perlog ) = " dylog 67
2 2

so by uniqueness, a(p — 1)pcy = dg. Since a(p — 1)c; are p-adic integers, p|dy
so there exists dj, such that dj, = pd).. This gives

m N
€l = (Hﬁkk) = €b.
2

(a,di,...,dp) = 1 implies (a,p) = 1 so there exists u,v € Z such that 1 =
au + pv. Hence,

(=T = (@) = () = b

which proves the statement. O

2.2 The Norm Residue Symbol and the prime power case Q((,)
In this section we will prove the following theorem, which can be seen as Kum-
mer’s Lemma in the prime power case.

Theorem 2.7. Let p be a regular prime. Let ¢ € Z[(,]* and suppose € = 1
n+1
mod M\, Tl Then e = VP for some unit y € Z[(,]*.

Recall that in Z[(y] we have (p) = )\g_l so with n = 0 the theorem above
restricts to the classical version of Kummer’s Lemma, except that we have to
have € has to be congruent to 1, not just any rational integer.

11



The rest of this section is devoted to a proof of theorem 2.7. We start by
indicating how one could prove the usual Kummer’s Lemma with the help of
some class field theory. The proof can be broken down into four steps.

Step 1: Prove a version of the theorem in the Ag-adic completion of Z[(y] that
says that a unit is a p-th power if it is congruent to 1 modulo )\gﬂ. This can
for example be done by using p-adic exponential and logarithm functions (we
define these later in the general case) and observe that the series exp(1/plog(e))
converges.

Step 2: Show that e =1 mod )\gfl implies € =1 mod Aj. This can easily be
proved with the help of some simple observations and the norm map Ngo)/q-

Step 3: Show that € = 1 mod A} implies e = 1 mod Ag“. This follows from
the fact that our unit € must in fact be real and that the \g-adic valuation of
any real integer is an even natural number.

Step 4: Show that the extension Q({y) C Q((o, ¥/€) is of degree one. This
is done by observing that in this extension, the only prime that can possibly
ramify is Ag. Since ramification numbers does not change when we complete,
step 1 tells us that A\g does not ramify either. Then Q(o, ¥/€) is a subfield of the
maximal unramified extension which has degree C1(Q({p)) over Q((p). If the
degree of our original extension is not 1 it must be p, but this is a contradiction
since p is assumed to be regular.

Our proof of theorem 2.7 is based on the same four steps, lemmas 2.9, 2.15, 2.8
and 2.11 respectively. The only step that is significantly harder is step 2 which
in our proof correspond to lemma 2.15 which is due to Stolin (see [ST1]). In
our proof of this lemma we follow Stolin and use the so-called norm residue
symbol.

As in the case n = 0, it is easy to see that the numbers (¢, — ¢, 1) i =
0,1,...,m := p"(p — 1) — 1 form an integral basis for Q(¢,). If y € Z[¢,]™T
and y = ag + a1(Cn — ¢ Y) + oo + am (G — (7)™ we get that 0 = y — 3§ =
201 (Cr — C1) +2a3(C — G2+ v+ am1(Gr — €)™ L s0 a; = 0 for all odd
indices i. Hence y is congruent to a rational integer modulo ({, — ¢, 1)? = A2.

Lemma 2.8. Let p be an odd prime. Let € € Z[(,]* and suppose that € = 1
n+1 n+1
mod )\ﬁ+ . Thene=1 mod /\Z++1.

Proof. By lemma 2.2, € = ¢,¢* for some ¢, € (Z[¢,]7)*. Since ¢* = (1 + (¢ —
1)) =1+k(¢—1) mod A2, ¢, =a mod A2 for some a € Z and ,(f = e =1
mod A2, we get that A\, divides ¥ and hence that p divides k and k = pk; for
some k; € Z. It is easy to see that € ' = 1 mod )\ﬁnH and this shows that
26 = g1 =1 mod X . This in turn means that p|¢2k = ¢! in Z[¢,]. But
since then, ¢, /p € Z[¢,_1] we get that )\fln:lpnil = p|¢2*F = ¢F1 in Z[C,1)-
Since p" —p"~! > 2 this implies A, 1|(CZ* . 41 +1) =2k mod A, 4
0 An_1|2k;1 and hence we get that p|k; and p?|k. This argument can be repeated
in Z[¢,_2] to show that p3|k and so on until we, from a similar argument in

12



Z[¢o] get that p"*1|k. But this means that ¢ = e,(k = € s0 € is real. Since
(Cn — 1) = A\, as ideals, e =1 mod (¢, — ¢;71)P" " . By representing € in the

basis ((, — ¢, ')%, i=0,1,2,... ,p"(p—1) — 1 and observing that all coefficients
with odd index must be zero we get the desired result. O

We also need a local result. If R is the ring of integers of a number field K and
A a prime, we let K, denote the completion of K at A and R) the valuation
ring. By abuse of notation we let A\ denote the (unique) maximal ideal of the
local ring Ry. Note that with the notations above, (Z[(,])x, = Zp[Cn)-

In the proof of the following lemma we will use the (p-adic) logarithm function,
log, and exponential, exp. For z € (Q((,))x, we define

o0 k

log(1+z) = Z(—l)k_l%

k=1

and
exp(z) = Z R
k=0 "

It is well known that log(1 + z) converges if vy, (z) > 1 and that exp(z) con-
verges if vy, () > p™ + 1 (see chapter 4 of [B-S]). Moreover, provided that all
series converge, the usual logarithmic and exponential rules hold. In particular
exp(log(l + z)) =1 + z and ylog(z) = log(z¥).

Lemma 2.9. Let € be a unit in (Z[(,))x, withe =1 mod /\;ZRHH, then there

exists a unit v in (Z[(y])r, such that e =4P. Moreover, y =1 mod X, .

n

Proof. Let vy, denote the valuation with respect to A, and let ¢ = 14+z. Then
vy, (z) > p"t! + 1 and hence vy, (z¥) > k(p"t1 +1). f1 <k <p—1 we get

oa, (/) > k(™! +1).

Now suppose k > p. Let In be the usual natural logarithm. If k = [p" where
l €Z and (I,p) =1, then p" <k and

oA, (k) = e(An/(P))r = (" = p™)r > (™ —p™)(In(k)/ In(p))-
With this in mind,
o, (8 /R) = (" + 1) 2 (= )™ +1) — oy, (k) >
> (k=1DE" +1) = (""" —p")(In(k)/ In(p)) =

. k—1/(p"" +1)In(p) In(k)
= )1(p)( prit—pn k—1>>
e ).

13
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where the last inequality follows from the fact that ;-7 is strictly decreasing
for ¢ > 2. The calculation above shows that vy, (log(1 + z)) > p"*! + 1. Hence

1
wn(g log(1+z)) = wa,(log(l+z))—vx,(p) >
> pn+1+1—(pn+1—pn)=pn+1

and we can define y := exp(% log(1+ z)). Trivially, v? = € and since pvy, () =

lU)\n (71)) = lU)\n (6) Z O’ 7 e (Z[C’Il])A%' In the same wa‘y 771 e (Z[C’n]))\n SO ,y iS a
unit. To show that vy =1 mod M\, *1 we need to examine the sum

k

exp(y) = > T

k=0
where y = %log(l +2) =0 mod A *'. If i is a natural number, the number

of p-factors in 4! is given by [%] + [#] +..., where [a] stands for the (rational)

integer part of a. Hence v, (i!) < (p" ! —p”)p%1 and v)\n(yk—lj) > k. This shows
that

exp(y Ezy—| D YARES

To examine this sum it is enough to consider the worst case which is when
k = p"~l. By counting p-factors as above, we see that

vy, (pnfl!) — (pn+1 o pn)(pan _I_pnf?) +...+p+ 1) — p2n71 _pn_

This finishes the proof since now

pn—l
Vs (in—ll) PN+ = (T =) =t T 2 L

If K is a number field we let hx denote the class number of K.

Lemma 2.10. If p is a prime and n an positive rational integer, then p|hQ(<n)
is equivalent to plhqyc,)-

The proof of this can be found in [W] p. 187.

Lemma 2.11. Let p be a regular prime. If € € Z[(,;]* and e =1 mod )\ﬂnHH

then € =P for some unit v € Z[(,]*.

Proof. Suppose w is a prime in Q({,) that ramifies in Q({,)(¥/€). Since all
archimedian primes are complex, they do not ramify so w is not archimedian.
Then w divides the discriminant A(Z[(,]/S) where S is the ring of integers in

14



Q(¢r)(Ve). Let N = Ny, )(v/e)/(c,) denote the relative norm and let f be
the minimal polynomial 2P — e. By a known theorem A(Z[(,]/S)|N(f'(¥/e).
But N(f/(¥/€) = N(pe® V/P) = upP = uX?" " -1 for some unit u, s0 w = Ay,
Assume that € is not a p-th power. Then, since Q((,)(¥e) is the splitting
field of f(z) = zP — €, Q(¢)(¥e) 2 Q(¢,) is an abelian extension of de-

gree p . By lemma 2.9, (Q(¢r))a, = (Q(Cr))a, (¥€) so A, does not ramify in
(Q(¢n))a, (¥e). Since the ramification indices does not change when we com-

plete, A\, does not ramify in Q(¢,)(¥e) either. Hence Q({,) C Q(¢n)(e) is
an unramified abelian extension of degree p. Q((,)(¥/€) is thus a subfield of

the Hilbert class field H of Q((,) and since [H : Q((n)] = hgyc,) We get that
plhq(c,)- But this is a contradiction since p is regular and since p|hgyc,) implies
plhq(¢) by lemma 2.10.

We will now define the norm residue symbol. Let K = Q({,). If w is a valuation
on K and a € K*, we have a local Artin map

U, : Ki — Gal(Ky(¥a)/Ky).
We will use the following results:
Lemma 2.12. Let N = Nk (va)/k, be the norm and let b € K. Then
i) Wy (b) is the identity if and only if b € N(Ky(¢/a)*)
i1) Wy (b) is the identity if Ky (¥/a)/ Ky is unramified and b is a unit in K.

wi) If be K*, then [],, Uyu(b) = 1, where the product is taken over all valua-
tions of K.

The proofs can be found in for example [J], p. 224-226.

If a € K, we will denote the action of ¥,,(b) on a by a¥»(®). We define the
norm residue symbol

(s )w: Ky x Ky — fip,

where p, is the group of p-th roots of unity, by (a,b), = (¥a)¥*® (ga)~. Tt
is easy to see that (a,b), actually is a p-th root of unity.

Lemma 2.13. Let a,b € K;,. Then,
i) (a,b)y =1 if and only if b € N(K,(¥/a)*)
ii) (a,b)p =1 ifa+be (Ky)P

i) [, (a,b)w =1, where the product is taken over all valuations of K.

Proof. 4): If b is a local norm, then by lemma 2.12, U,,(b) is the identity map
and (a,b)y, is clearly 1. If (a,b),, = 1, then we must have (¢/a)¥*®) = ¥a so
U, (b) must be the identity map. Again by lemma 2.12, b is a local norm.

15



i1): If F' is any field that contains the p-th roots of unity, y € F* and z € F,
then the element zP — y is a norm from F(g/y) since if ¢ is a fixed primitive
p-th root of unity, then

p—1

o —y = [[(@ - ") = Necyayrle — /).

k=0

This fact applied to F = (Q(¢n))a,, ¥ = @ and 2P = a + b shows that b is a
local norm and hence, by i) that (a,b),, = 1.

i11): It is well known that b is a local unit for almost all valuations. Let 90t
consist of the primes that ramify and the primes where b is not a local unit.
Then 9 is a finite set and by lemma 2.12 1),

II %) =1.

wéM

By lemma 2.12 i),

IT 2w =1

weM
SO
H(a'a b)w = H (aab)w = (%)Hwemww(b)(‘n/a)il = (%)(%)71 =1
w weEM
which completes the proof of the lemma. ]

Now fix n and let A= \,. Let fori =1,2,...,m, =1 — \..
Lemma 2.14. For any valuation w of K we have

D) (1507w = (s Mitg)w it s M) w (Vs Mt )

i) Ifi+3 > p" then (n;,nj)w =1

i) Ifi+j=p"" and 1 <i<p-—1, then (ni,nj)w # 1.

Proof. 4): Since p is odd, (a,—1), = 1 and by lemma 2.13 %), (a,—a), =1 =
(a,1—a), for alla € K*. It is easy to see that ( , ), is (multiplicatively) bilinear
so (a,—b)y = (a,—1)y(a,b)y = (a,b)y for all a,b € K*. Hence (a,a),, =
(a,—a)y = 1. This implies

1 = (ab,—ab)y =

= (a,—a)y(b,—a)y(a,b)y(b,b)y =
(a,0)w(b,a)w.

16



Now note that n;+\n; = 7;1, so anjJr i = 1. By lemma 2.13 4), bilinearity
and the identities above we get

1 = (_"j _)‘jm) _
Nitj Mitj/ w

(77]7 ) (ﬂjﬂh) (77]77’1+]) (771+j’A ) 1(ni+jani);1(ni+ja77i+j)w =
(N, 1= X))y (ni,m5)" (ni+j,nj)w(ni+j,/\);J(m,mﬂ')w =
(i) w0 Mitis )0 (Mitis N (M it )

which proves i).

ii): Suppose i + j > p"*t!. Then Ni+; = 1 mod )\ﬁnﬂﬂ. By lemma 2.9 any
such element is a p-th power and hence a norm in any extension K (¢/n)/Kx.
By 1),

s 1w = (it M) w it M) w (Mi s M) = 1.

If on the other hand ¢+ j = p"™ and 1 <i <p—1, theni+j+i > p"*! and
i+7 47> p"t! so,

(s M)w = itis M) e Mis M) w Mitgs M)t = (1, At # 1

by lemma, 2.13 since A’ cannot be a norm in the extension K ( YMpn1) [ K. O

We will now use the norm residue symbol to extract a very useful fact about
units in the cyclotomic fields, Q(¢,). A more general version of this lemma was
proved by Stolin and our proof follows the one in [ST1].

Lemma 2.15. Let ¢ € Z[(,]* and suppose that ¢ = 1 mod )\%Hl*l. Then
n+1
e=1 mod N} "

Before the proof we need to recall some simple facts. Let K = Q((,), R = Z[(),
A=, and let for k =1,2,..., Uy = {u € R} : u =1 mod A\*}. Then (the
image of) 7, generates the group Uyg/Ugs1 of order p. This means that if
u € Uy, \ Ug41 there exists ¢ such that (4,p) =1 and u'n, ' =t € Ugy1.

Proof. Let ¢ satisfy the conditions of the lemma. Let w be a valuation of
K = Q((n)- Let v = vy, be the valuation of K with respect to the prime \,
and suppose w # v. From for example the proof of lemma 2.11, we know that
the extension K, (¢/u)/K, is unramified for every unit u € Z[(,], so € is a
norm in every such extension. By 2.13 1), (u,€),, = 1 and then, by 2.13 ),
(u,€)y = 1.

Now let u = 7. By the assumptions € € Upnt1_1. Suppose € & Upnt1. Choose
i such that (¢,p) = 1 and ein;nlﬂfl =t € Upnt1 and in a similar way j such

17



that 757];,}Jrl = 8 € Upn+141. Then by lemma 2.9 and 2.14 we have (u,s), =
(u, Mpn+1)y = 1. All this implies

(u,€)!, = (s 1 1)y = (Uy Mprt1_1)v (U, 1)y =
(u’ np“"‘lfl)v(ua Npn+1 )v(ua S)U =

(ua 7’p”+1—1)v 7é 1.

Hence (u,€), # 1 which is a contradiction by the first part of the proof, so
= € € Upn+1 and this finishes the proof. O

We are now ready to prove the Kummer’s Lemma in the prime power case.

Proof of Theorem 2.7. By lemma 2.15 we get, ¢ = 1 mod )\ﬂnH and by

lemma 2.8 we then get, e =1 mod /\’ﬁnﬂﬂ. By lemma 2.11 € is a p-th power
of some unit +. O

3 Construction of Norm Maps

In this section, following Stolin, [ST3], we will construct certain multiplicative
maps from the rings Z[(,] to rings close to them. We will make extensive use
of these maps in section 4.

3.1 Rings Close to Z[(,]

We will in the sequel make extensive use of rings of the type Z[z]|/(f(z)) for
some special polynomials f and will for simplicity have a special notation for
these rings.

Define for k >0 and ¢ > 1

Z|x
( )

wf‘kfl

Denote the class of z in Ay ; by xy ;. We will sometimes, by abuse of notation
and when we only deal with one of the rings, drop the index and write z for ;.
Note that Ay 1 = Z[(;] by the isomorphism zj 1 — (j, where ¢, is a primitive
p"*T1-th root of unity. We will consider this as an identification.

We also define

~

Dy ; = Ak = Fple] —.
s? (p) (CL‘ o 1)pk+z_pk

18



Lemma 3.1. The commutative diagram

A Apyio11
Jki fryi-1

' 9k,i—1 \
Agi1 ————Dp i

)

where i ;(Tri) = Thi—1,1 = Chpi-1s Jk,i(Thyi) = Thi—1, fri1(Thyio11) = T
and gii—1(Tk,i—1) = T, is a pullback diagram for all k > 0 and i > 1.

Proof. In Lemma 1.1, put A = Z[z], o = (2" — 1)/(@®""" = 1)) and
g = ((wpkﬂ‘—l -1)/ (acp]c —1)). Since A is a unique factorization domain and «
and (3 principal ideals, a N = af = ((xpkH - 1)/(:1:1”k —1)).

We now need to find a + 8. A straightforward calculation gives

mpk+i . 1 xpk+i71 i 1
e it R O
. pk:+i—1 _1
for some polynomial r. Hence a + 8 = (p, wsz) and
A Apji-1 Fp[z]
A/(a + ﬂ) = ( mpk+i—1_1) = (p) = (x — 1)pk+i—1_pk - Dkﬂ—l
’ sz—l
which is exactly what we need. U

The map i : Ak = Apt1,, i(xhy) = xﬁﬂ,i defines a Ay, ;-module structure on
Agy1,:. We will need the following simple result.

Lemma 3.2. For all k>0 and i > 1 Apt1,; is a free Ay z-module.

Its clear that {1,$k+1,i,...,x£ﬂ’i} generate Aji1; over Ay ; and the proof,
which can be found in for example [ST2], involves showing that there are no
relations among these generators.

3.2 Construction of Norm Maps

In this section we will construct norm maps Ny ; : Z[C44) = Ak+i1 — Ag,i such
that the diagrams

Z[Cr+i] (3.1)
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commute. The maps fj1; and gy ; are defined in Lemma 3.1. The construction
will be inductive with respect to 4.

If i = 1 and is k arbitrary, let Nj ; be the usual norm map Z[(x11] = Z[Cx] =
Ap1. It is well known that Ny 1((k+1) = (k. so the following lemma will make
it clear that the diagram above, with ¢ = 1, commutes.

Lemma 3.3. Nji(a+b) = Ni1(a) + Ni1(b) mod (p) for all a,b € Z[Ck+1].

Proof. First note that Z[(xy1] is free as a Z[(x]-module and that Z[(x1](p)
is free as a Z[(;]/(p)-module. Nj; hence induces a map N : Z[(r41]/(p) —
7Z[(]/(p) and it is enough to show that N (@) = a” since this implies Nii(a) =
a? mod (p) and Ny 1(a+b) = (a+b)P = aP + b = Ny 1(a) + Ni,1(b). The last
congruence follows from the fact that p| (ﬁ) for 1 <k <p-—1. Since

F F F
zP" —1

we can view the extension Z[(11]/(p) D Z[(x]/(p) as an extension Fp[y] D Fp[z]
with y? = z. In this case it is well known that the norm is given by r — rP for
all r € Fply] and this finishes the proof. O

Now suppose N, ; is constructed for all k£ and all j < :—1. We want to construct
Ni; for a given but arbitrary k. First note, that by Lemma 3.1 we can view

Aky1, as the ring {(a,b) € Z[Cryi] ® Agy1i1 ¢ fri(@) = gkt1,:(b)}. By the
assumption there is a norm map Niy1,-1 ¢ Z[(k+i] = Ak+t1,i—1 such that the
diagram

Z[ (4]

Sy

~ Gk+1,i-1
Apy1,i-1 = Dpy1,i—1

commutes. Define ¢ : Z[(x1i] = Agt1,: by @(a) = (a, Ngt1,i—1(a)). Its clear
that ¢ is multiplicative. Since Ay ; is a free Ay ;-module, by Lemma 3.2, we
can in the usual way define a norm map

N : Ak-l-l,i — Ak,i7 N(a) = det Ta,

where 7, the multiplication map 7,(b) = ab. N is clearly multiplicative and by
the same reasoning as in the proof of Lemma 3.3 we have the following.

Lemma 3.4. N(a+b) = N(a)+ N(b) mod (p) for all a,b € Apt1;.

Now define Ny ; := N o ¢ : Z[(y4i] = Ak,i- Ni,; is multiplicative as a composi-
tion of multiplicative maps. We need to prove that the diagram 3.1 commutes.
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By assumption, Ngy1i-1(Ceri) = Trt1i-1 50 @(Ceri) = (Corir Thr1im1) =
Tkt1,i € Agg14- If we use the basis {xiﬁ,ialaxkﬂ,i"“’xiﬁ,i} for Agi1,
over Ag;, the matrix for the multiplication map ry, ., ; is diagonal with the
first diagonal element being xj ; and the others being ones. Hence N (zj41,) =
det 74, ; = Tr;. As in the case i = 1 we now only need to show the following
Lemma.

Lemma 3.5. Nj (a+ b) = Ni(a) + Nii(b) mod (p) for all a,b € Z[(].

k4+i+1
Proof. For some a+ (w;kT:l) =& € Agy1, we have p(a+b) —p(a) —p(b) =
(O,Nk+1,i_1(a +0b) — Nk+1,i_1(a) — Nk+1,i—1(b)) = @. This means ik,i(@) =0
ki1 k+i

k41
and hence that a € (%) By the fact that N(wi_:l,i) = xz’i =1, and

by Lemma 3.4 we now, for some r € A1, get

Nii(a +b) — Nii(a) — Nii(b) =

pk+1+1

= N{p(a +b) — pla) — p(b) = N(“t —— 1) =
Tri1s— 1

k4+i+1__  k+i k+i+1_2 k41
=N, 7 4@, 7 4+ DN =
=, P e T L N() =

=pN(r) =0 mod (p)

O

We have now proved the existence of the norm maps and put this down as a
proposition.

Proposition 3.6. For each k > 0 and i > 1 there exists a multiplicative map
Ni; such that the diagram

Z[Cr+i]

18 commutative.

Note that it is clear from the definition that Nj;(1) = 1 for all maps Ny ;.
Whenever Bs is a free B1-module we let N denote the usual norm map defined
by the determinant. An element in Aj; can be represented as a pair (a,b) €
Z[(k+i—1] % Agi—1 and an element in Ay ; 1 can be represented as a pair (c,d) €

21



Z[(kti—2] X Api—o. If (a,b) represents an element in Aj; we get have that
N(a,b) = (N(a), N(b)) € Ag,i-1-

Proposition 3.7. The diagram

k+1,i

N,
Apy1,i = Z[C-v4]

18 commutative

Proof. Induction with respect to 7. If 4 = 1 the statement is trivial. Suppose
the diagram corresponding to the one above, but with ¢ replaced by 7 — 1, is
commutative for all k. If a € Z[(x4;] we have

N(Ng+1,i(a)) = (N(N(a)), N(N(Ng+2,-1(a))))
and
Ni,i(N(a)) = (N(N(a)), N(Ng+1,i-1(N(a)))).

By the induction hypothesis N o Ny 9; 1 = Npi1;-1 0 N and this proves the
proposition. O

Corollary 3.8. Let N : Z[Ckyi] — Z[Ck+i—1] be the usual norm map. Then,
Nii(a) = (N(a), Ny,i-1(N(a))).

In the same way as an element in A ; can be represented by a pair (a;,b) €
Z[Ck+i—1)®Ag i—1, the element b € Ay ;1 can be represented by some (a;—1,c¢) €
Z[(k+i—2]|® Ak i—2. By applying this 4 times we see that we can actually represent
any element in Ay ; as an i-tuple (a;,...,am,...,a1) where a,, € Z[(kym—1)-
Letfors>0and 0<¢t<s Ns,t : Z[(s] — 7Z[(s—t) denote the usual norm maps.
We let N, 5,0 be the identity map.

Corollary 3.9. If a € Z[C;] then

Npi(a) = (Ni+i(a), Npsi2(a), - .-, Nipii(a))

It is important to note that even though not all elements of Z[(;+i—1]®. . .®Z[ ]
represent an element of Ay ; we have that if (a;,...,am,...,a1) represents an
element of Ay ;, then (aj_1,...,am,...,a1) represents an element of Ay ; ;.
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4 The Picard Group of ZC)»

In this section we want to study the group Pic ZCy» where Cpn is the cyclic
group of order p” and p is a regular prime. The main result is that there is an
exact sequence

0 —= Vi, = Pic ZCpn — C1Z[(y 1] @ Pic ZCpn 1 — 0.

This was proved in [K-M] and the structure of the group V;, was given explicitly.
We will reprove this result using a different method. The proof in [K-M] relies
on Iwasawa theory and action of Galois groups on the rings involved. This is
enough to show the result not only for regular primes, but also for so called
semi regular primes. In our proof, which works for regular primes, we use the
norm maps constructed in section 3 and our generalization of Kummer’s lemma
from section 2.

D.S. Rim proved in [Rim]| that KoZC), = K(Z[(o]. We start of by stating a well
known generalisation of this.

Proposition 4.1. PicZCy» = Pic Ay, for all n > 1.

The proof can be found in [ST1] and is inductive starting with a version of
Rim’s theorem for n = 1. For the induction step one uses the pullback diagram

t n
ZCpn —2"  Agp
t>1 z0,n—1(modp™)
1»—;1(modp’%/1;nZ

One then show that that the map () in the corresponding Mayer-Vietoris se-
quence is a surjection (see Proposition 1.5). After that the results follows.

The proposition above shows that we only need to consider Pic Ag .

Consider the pullback diagram

Ao —"— ¢ 1]

jO,n fO,nfl
v 90,n—1 ¥
Aop—1 ———= Do p—1
from Lemma 3.1. This gives us a Mayer-Vietoris sequence
Z[Cn]" ® Ay 1 — D§ 1 — Pic Ay —

— Pic Z[Cn—l] @ Pic AO,n—l — Pic DO,n—l-
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By using that Dg,_1 is local and hence has trivial Picard group and that
PicZ[(n—1] = C1Z[(,—1] we get the following exact sequence:

%
DO,n—l

0—
Im{Z[Cnfl]* @ Aé,nq - Da,nfl}

— PicAgpn —
— ClZ[gn_l] @ Pic AO,n—l — 0.

The only thing we have to do is to find the cokernel

Dé,nfl
Im{Z[Cn—l]* D As,n—l - Dg,n—l}

In short, what we will do is to decompose Dj,,_; as a sum

Dé,nfl = ]F; ® (DE)k,nfl)+ D (Dg,nfl)i

and then find the structure of these groups. This is merely a simple calculation.
Then we concentrate on the image and show that it is isomorphic to F; &

(Dg§1)" ® Cpn-1 and this gives us our main theorem

Theorem 4.2. Let p be a regular prime and let n > 2. Then the sequence

n—1
0— [[ € — Pic Ao — CLZ[Gy 1] @ Pic Ao 1 — 0,
j=1

_ n—j—2 — .
where kj = % for1<j<n—-2andk, 1= ”T?’, 18 exact.

Remark. When n = 1, proposition 4.1 and the fact that Pic Z[{y] = Cl1Z][(o]
tells us that Pic ZC)y = C17Z[(o]-

4.1 Structure of D, ,

By setting y = z—1 we see that Dy,_; = Fp[z]/(z—1)""" "1 = F,[y]/ (""" 1) =
{ag + a1y + ... + apn—l,Qprl*Q :oa; € Fp, yp" L = 0}. This shows that
|Do, 1] = p*" '~'. Every element with ag = 0 is nilpotent and hence not a
unit. Since ag+ (y*"~ 1 —1) is a unit in Fp[y]/(y?"" 1) if ag # 0, this als?lim—
plies that every element with ag # 0 is a unit and that |Df ,,_;| = (p— DpP" 2
Clearly, F;, C Dy, and by the structure theorem for abelian groups, Dj,, ; =

F, & Dg,n_l where Dan_l is a p-group so DS,n—l =Cp' & C’;% &) C;‘g @ ... for
some 1; € Z>o.

Observe that if u = 1 4+ a1y + ... + a/pn—l_Qypn_172 then w» = 1 + aquP +
asy? + ...+ apn_z,ly(pn_kl)p. Hence if 4P = 1 we must have a1 = ao =
. = @pn-2_; = 0 and this shows that the set {u € D§, , : u? = 1}
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has p?"~ —2=(0" 7 =1) = pp" 7' =P"7*~1 olements. A similar argument gives that
{u € Dg,_; : a?* =1} = pP TP Tl for k= 1,2,...,n — 1 and that
no element has order greater than p"~!. Hence r; = 0 for all i > n — 1 and by

counting elements of different orders in the groups Cp and in Dj,_,, we get
the following system of equations for the exponents r;.

424 ...+ =3y 3+ n—2)rn o+ (n—1)r, =p" -2
r+2ra 4 (0= 3)rs (R = 2)rn 2+ (0= 2 =P —p— 1
rm+2ro+...+(n—3)rp—3+(n—3)rp—2+ (n—3)rp_1 = "l —p?—1

MAro4 ...+ Tps3+rnot+rm1=p* t—p¥ 21

Solving this system gives us the proposition stated below.

Proposition 4.3. D5,  =F, & C)' & C’;% ®...0C 21, wherer; =p" 1 —

pn—IJ
2pn—2 _|_pn—3 — 1, 1 =p—1and rp = pn—lc _ 2pn—(lc+1) +pn—(k+2) for
k=23,...,n—2.

Let ¢ be the map ¢ +— ¢! in Dy; = Fp[t]/(t — l)pkH*pk. Let (l/)‘(";/,i)+ ={u €
D}; : ¢(u) = u} and (55/1)_ ={u € lf)\(’ii : c(u) = u~'}. Since DT;’Z- is an finite
abelian group of odd order and since ¢ has order 2 we get D’Ok’i & (E\;’ii)*‘ 23]
(1,7\(";)_. ﬁ/(’ii can be presented as {1+ ai(z —z7!) + ...+ ayi_o(z — z~yP'=2)
and ¢((x —z71)7) = (=1)7(z — z~1)7 so it is not hard to see that (ET:,Z-)*' can
be represented as {1+ az2(z —z7')? +as(z — 37 1) +... +a,_3(z — w—l)Pi—?’}_
By a similar calculation as in section 4.1 we get the following proposition.

Proposition 4.4. Let (1/)‘&)+ and (ﬁv(’ii)* be defined as above. Then

* O\t~ S4
(Dg)"=CreCia...0C)H

and
x \— ~ k1 k2 ki
(Dg)" =CreCie...aCH,
pi—2pi~t4pi=2-2 pi—2pi~t4pi=? p—1
where S1 = 5 kl = 5 §; = kl = 5 and S]' = kj =

i—j+1_9pi—j 1 ni—j—1 . .
L 2p2 tp for2<j<i-—1.

25



4.2 Structure of Im{Z[(, 1]* ® A;,,_; — D, 1}

By Lemma 3.1 and 3.6 we have the pullback diagram

AO,’!L o i Z[é"n—l]

where the lower right triangle commutes.

Lemma 4.5. Im{Z[(,1]*® Ag,,_; = Dg,, 1} =Im{A5, | = Dg, 1}

Proof. In the diagram above, observe that Ny, 1 maps units to units since
it is a multiplicative map that maps 1 to 1. By the commutativity of the
lower right triangle above, we have fo n,—1(Z[(n-1]) € gon—1(Nopn—1(Z[¢n-1])) C
9on—1(AG p_1)- O

This means that we can concentrate our efforts on analysing
* go,n—1 *
Im{AO,nfl EE— DO,nfl}

Recall that, by lemma 2.2, any unit in Z[(;] can be represented as a product
of a real unit and a power of ;. We need a similar representation for the rings
Ap;. Let ¢: Ap; — Ap; be the homomorphism defined by c(zy ;) = a:,;j The
function ¢ plays the role of complex conjugation and a unit » in Ay ; such that
c(u) = u will sometimes be refered to as real. We will, by abuse of notation,
denote this map by just c regardless of which of the rings A ; we are dealing
with. Moreover, we will sometimes also denote both complex conjugation in
the rings Z[(;] and the map t — ¢! in Dy ;1 2 Fy[t]/(t — 1P " by ¢

Lemma 4.6. For every unit € € Agﬂ- there exists a natural number k and a

unit €, with c(e;) = €, such that e = xlg’ier.

Proof. Induction with respect to : If 4 = 1, this is Lemma 2.2. Fix 7 > 2
and suppose that the statement holds with i replaced by ¢ — 1. Consider the
commutative diagram

Aoi =~ Z[Gi1]

f

g
A1 ~ Do i—1

Let ¢ be a generator of Dy;—1 Take € € Aj; and let € be represented by (€' u) €
Aj ;©Z[Gi—1]*. By the assumption there exists real ¢, € Aj; ; and u, € Z[(;—1]*
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such that ¢ = 33]5,11-_16;" and u = Cf_zlur. It is easy to see that the maps c
commute with the diagram. We now have c(e.,u,) = (el,u,) and (¢/,u) =
(xg,lifl, £ )(el,u,). Since f(u) = g(¢') is equivalent to f(c(u)) = g(c(€')), we
get

thrg(eh) = 1% f(u,)
and

tFig(el) = ¢ fuy)

so we get t2k1—k2) — 1 jp Dy ;_1. Since we deal with an odd prime we get
ki1 —ke =0 mod p*~!. This means that :c'oe’li_l = 37]5,21'—1 and finally that (¢/,u) =
(eh, ur)(0,i—1, Gim1)¥2. O

Take € € Aai. By Lemma 4.6 there exists k£ and ¢, with c¢(e¢,) = €, such that
€= wlg,ieT. Hence g i(e) = tkg(e,), where t = to,; is a generator of Dy ;. Since

g(er) € (l/)v(’;,i)+ ® I, we get the following proposition.

Lemma 4.7. Let t =ty,—1 be a generator of Do;. Then

—_~—

Im{Ag,nfl — Dg,nfl} C F;® <t> GB(I)E')(,'rz—l)Jr'

We also have

Lemma 4.8. Im{Aj, | = Dg, 1} DF;® <t>.

Proof. Take an arbitrary k € F;. By Fermat’s little theorem, k = kpm 1

. k_ .
mod p. Consider % 711 € Agpn—1- There exists natural numbers s and r such

that kr — sp”~! =1 and

zk — 1 gltsP™™ gltsP™™ 1
B R S g

z—1 zF-1 z—1

B w1+s”n71—x_ xsi”nfl—l_

N z—1 -7 rz—1

n—1
n— xp _]-
= z(z°? 1_1)—i-...—|-acs—|-1) T =0

. 1+sp™ 1 _ kr_ _
in Ag,p—1. Moreover, =¥—7— l - ”;kill —gE-D 4 4 41e Agpn—1 so
k
zi—1 *
— € Aj—1- Now,
zF —1

-k = '+ 4z +1—k=
= (z-1)f(z)

z—1
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zk—1

for some f € Z|z], so k=0 mod (z — 1). Finally, in Dy, we have

z—1
k k
¥ —1_  n-1 ¥ —1_ na1 n—1
D fl_k, — p 71_kp —1
o) o)
k
_]. n— n—
= g kT T =T =

m_

= 0,

which shows that k € g(Af,,_;). Since it is obvious that < ¢ > is contained in
the image we are finished. O

Lemma 4.9. There ezists an injection ¢ = ¢y, @ Z[(kri1]" — Aj; where
o(€) = (&, Ni,i—1(€)). Moreover, A;‘;,i = Z[Ck+i—1]" ® By,i—1 for some By ;_1.

Proof. Consider the pullback

Api ———Z[Gyi1]

Ng,i—1

, |
Agi ~ Dy i1

where the bottom triangle commutes. Recall that we identify Aj; and the
subset of Z[(xyi—1] ® Ag,i—1 consisting of pairs (a,b) such that f(a) = g(b) so
@ is well defined. It is clear that ¢ is an injective group homomorphism. Let
N = Ngg1 If (a,b) € A} ; we can write (a,b) = (a,N(a))(1,bN(a~1)) and
define B as the subgroup of all elements ((1,bN(a~!)). All such elements lie in
Ap, since g(N(a™)) = g(b)g(N(a™")) = g(b)f(a™") =1 = f(1) O

Under the above injection we consider Z[(;;—1]* as a subset of A} ,.

k+i_pk
Lemma 4.10. ker(gyilz(c, . ,+) = {€ € Z[Crri1]* : =1 mod X,

This is Theorem I1.2.7 in [ST3] and the proof can be found there. For complete-
ness we will give it here too.

Proof. Induction with respect to ¢. If ¢ = 1 the statement is trivially true. If
1 = 2 we have the following pullback diagram

Ay —— Tk 1]

~ Dy 1
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Recall that Ay = Z[(x] and that N = N is the usual norm. Suppose
gk2(p(a)) =1, that is (a,N(a)) =1 mod p in Ago. This means that a = 1
mod p in Z[(x+1], N(a) = 1 mod p in Z[{] and that f(“p%l) = g(%).
Since the bottom triangle in the diagram commute, we get

N( ) = ! mod p.

Now observe that a = 1+ pt for some t € Z[(;+1]- By viewing N as a product of

the automorphisms of Q[(x.11] it is easy to see that N(a) = N(1+pt) = 1+pTr(¢)

and since it is well known that p divides Tr(t) for all ¢, we get that N(a) =1

mod p?. This and the congruence above shows that N (%) =0 mod p. By

expressing (a — 1)/p as a sum » 22, ajAj_, in the A\zyi-adic completion of

Z[Ck+1], applying the norm and then evaluating in the Agz-adic completion of
k+1_ k k+2_ k

Z[Cx] we see that (a —1)/p=0 mod A}, ™" soa=1 mod X, 7.

Now suppose the statement holds for i — 1 > 2 and that g (a, Nii—1(a)) = 1.

As in the case ¢ = 2 this means that ¢ =1 mod p, Nj; 1(a) =1 mod p and

that Ny;-1(%5") = N’“%W The diagram

Z[Ckri]

Api = Apt1,i—1

pk+i_pk+1

is commutative, so by the induction hypothesis we get thata =1 mod A} ;|

Observe that if c =0 mod p in Ay ; and c is represented by (a;, ..., am,...,a1)
where a,;, € Z[(x+m—1] (we consider this an equality) then, as in the case i = 2,
we have

ai)_ (@i—1,--.,0a1) —0 modp

Nii—1(—=
p b

in Ay ;1. If we repeat this argument and use lemma 3.9, we get

p
(Nk+i—1,2(%) — a’f,...,Nkal,ifl (%) _

p

NG

)

=0 modp

in Aj;_o. This process can be repeated a number of times until we get a
congruence in Ay, = Z[(x]. To get an expression for this last congruence we
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need to introduce some new notation. If z € Z[(,] is divisible by p, let

Ty(z) = ~q,1(§)v
Q@ = Yl
Sqlz) = f_)

Let T; and S; be the obvious compositions of s maps 7' and S respectively,
starting with T, and S;. Let ¢ = ¢ ;(a) — 1 Then, remembering that all norm
maps are additive modulo p, we get that the congruence in Z[(y] that follows
from the congruence ¢ =1 mod p in Ay ;, is

T1:+z1 a—1)+ Slzcﬁ 1(Nk+i—1,i—1(a))+

+ Z(_l)le’::T-Ll—i—l(SI::rfl—i—l(Nk-i-'i—l;m)) =0 mod p.
Here the maps X;"; | are compositions of appropriate maps T' and () using a
total of 4 — 1 — m maps.
Lemma 4.11. Suppose a =1 mod p. Then

[(pF+e—p*+T)/m]

Sttic1—m(Nkgicim(@) =1) =0 mod A%, "

Proof. If we prove the statement for m = 1 the rest follows easily. In this case,
k+i_ k+1
for some ¢, we have a = 1 + t/\i +: P and

~ ~ k+i__ k41
Nitic11(a) = Nggic1 1 L+ X0, 7P ) =

k+i—1
k+i 1 k
= N/H—Z 11(1 +t}‘k+z 9 P ) = (41)
k+i—1 k k+i 1_ .k
=1+ Te()\,, , 7 mod X%, P

. .« . ) ~ pk+7, 1_ k
Since p divides Tr(t') we get that (Ngii-1,1(a) —1)/p = 0 mod A\, ,
which is what we needed to prove.

From this lemma and equation 4.1 we get T}, +11 (a—1)
Moreover,

0 mod p in Z[(k].

k+i_ k+1
- AP

T(a—1) = Nkﬂ_l,l(’““Tl) =

k+z 1
— -p —
= Nk—|—z 1 1(tu1)\k+z 1 ) =

k+i—1 k+1
— p -p
= Nk+i,1’1(tu1)/\k+i_2 s
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for some unit u;. If we repeat this ¢ — 1 times we, for some unit u;_ L get

Tléﬂl (a—1) = ]\~/',H_Z Li—1(tui—1) = Nkﬂ 1,i—1(t). This implies that AP

divides t so )\Z i

k—|—z 1
p divides a — 1. This proves that

k+i__ .k
ker (gr,il zjceys_1]*) € {€ € Z[Chria]" : €=1 mod X,

The opposite inclusion is trivial. O

Theorem 4.12. Let p be a reqular prime. Then

P

Im{Aj,  —— Honl, Dopa}=F@<t>a(Dg,_ Ot

Recall that ¢ is defined as a generator of Dg,_1 so <t > is a cyclic group of
order p" 1.

Proof. By Lemma 4.7 and Lemma 4.8 we need only prove that

—_

gO,n—l(Aa,n—l) 2 (Da,n—l)—i—'

With Z[(,—2] considered as a subset of Ag,_1 as before, we will show that we
have

90.n—1((Z[¢n—2]*)T) 2 (Dé,n—1)+
For m =1,2,..., define
Un = {€ €Z[(n_a]" : e=1 mod A" ,}.

It is clear that f]} DU D... and that U; = Z[Cn—2]*. Let (71'" be the subgroup
of real units in U;. Since go, 1 commutes with complex conjugation we have

gon—1(U]") C (D§n—1)t. To prove the theorem it is obviously enough to show
that we actually have equality. We will prove this statement with induction
with respect to n, but we only use this in the very last part of the proof. First,
by Lemma 4.10, we for any n > 2 have that ker(U;" %> (D§n-1)t) = ﬁ;ﬁl—r
Hence

. U,

gO,nfl( 1+) = —
Upn—1,1

~ o+
Since go,n—1(U7") C gon—1((Z[¢n—2]*)T) C Dg .- 1) the group == Yl s finite.

pn 1_4
This shows that |C”72| is finite since
Pl UL | Poa)
U1+ Un 1_1 Un 19
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If n = 2, this and Dirichlet’s theorem on units tells us that both U;" and
(7;;,1_1 = f];_l are isomorphic to 75 By the classical version of Kummer’s
lemma we get ﬁ;q = (U;")P. Hence

= p=3

UfL ~ Y/ ~ C;%f‘
—— = =z = .
Up-1 (PZ)p2

This shows that

-3

; p=8 o
901 (T =p 2 =[(Dg;)"]

so we have proved our statement for n = 2.

Now fix n > 2 and assume the statement holds with n replaced by n — 1. We
can write

T+

01—’— i ﬁl—’— Upn72_1 Ulj;"72+1 4
| = [ || 2L 2 (42
pnfl_l pn72_1 pn72+1 pnfl_l

n—1 pn—2

By Dirichlet’s theorem on units we have (Z[¢,—2]")" = Z" =2 ' Since
all involved quotient groups are finite we get that U;", U;rn_l_l, U;L_Q_l and

n—1_,n—2

[7;;_2 41 all are isomorphic to Z 2 . The rest of the proof is devoted

to the analysis of the three right hand factors of 4.2.

-1

By Theorem 2.7, Kummer’s Lemma, in the prime power case, we have U |, . =
y , prime p , 11
Fr+

(Upn_2+1)p &)

~ pn—l_pn—2 1 ne1 ne2
Upn—2+1 Z 2 ~ CI’ = -1
4 pn—l_pn—-2 _ p

Up“‘l 1 (pZ) 2 !

This shows that

We now turn to the second factor of the right hand side of 4.2. We will show

that this number is p by finding a unit € & ﬁ;;_z 41 such that

i+
Upn72_1
< €>= ?
pn—2_|_1

Since we know that the p-th power of any unit in 0;1—2,1 belongs to 0;_2“
"l

this is enough. Let ( = (,_o and n:=(¢ 2 . Then n? = ¢ and ¢(n) = n L.

n72+17 —( n72+1)
Let ¢ := T U . Then ¢(e) = € and

n—n~t
=2 p2" ALl 2 p2@" 1) _q
€ = ’]’I - = "” _— =
n—nt n*—1
n—2
_yn—2 CP +1 - ].
= 4 CT E Z[CTL—Z]*
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Now,

Cpn—2+1 . 1 Cpn—2 - 1
(-1 (-1
n—2

and for some ¢, € Z[(] we have ({ — 1)7”"72 = (P " —1+pt;. With this in mind,

=¢ +1

S S (e L T U
(-1 (-1 (-1
= et
= (¢C— 1)17"_2—1 (¢ — 1)20"_1—17"_2—1’
for some tp € Z[(], and
n—2_41 N \ - -
QT;TJ_: L+ =)= (-1 77" Ty =

e (O AR (S A}

for some t3 € Z[(]. Similarly, for some ¢4 € Z[(],

n—2

== P =1 (-

so for some t5 € Z[(],

AN T e LA (e L™
and for some tg € Z[(],
n—1 n—1
n_pn—2 _ (CP 2 +1)_pn—2 _ 1 + p + ]. (1 . C)pn—l + (1 . C)pn_2+1t6_

2
From this, for some ¢; € Z[(], we finally get that

n—2 Cpn_2+1 - ]. .

— P
€ n 1
n—1
+ ]. n— n—
= (=0T A= )
(R N (S A (S A
n—2__ n—2 ~
= 1-(1=¢F" T+ A= UL,
ut o, .
To show that € generates =2——1 it is enough to show that for any a € U;;_Ll
N p 241
there is b € U;;t—2+1 and k € Z such that a« = €*b. First recall that e = —1
mod (1—¢)?" "1 is equivalent to e = —1 mod (¢ —¢1)P" "~ 50 we can write

€= 1—(C—C_1)pn_2_1+.... For k =0,1,2,... ,p—1 we have ¢ =1 — k(¢ —
¢HP" 7’14 . Now take arbitrary a = 1 + apn-2_1(¢ — CHPTl 4 e
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ﬁp";_Q_l. Write ayn-2_; = a;n_Ll +pt, where —(p—1) > a/,_, ;| > 0. Choose

!
p
k= a;n,2_1 and b = ae®. Then
b o= (I+apmaq(C—CH" 7 T4
(=K =¢ Yy 7y ) =
= 14+pt(¢—CH" 4.

Since b is clearly a real unit this means b € U, which is what we wanted

o Pt
to show. Our conclusion is that

pr -1y
‘ sz;t‘*2+1 -
We now turn to
i
7
Consider the commutative diagram
ZlCn—2]"

fO,n—2

\

* B go,n—2 *
AO,an - DO,n72

Let W,, := {e € Z[(p-3] : € =1 mod A" 3}. It is clear that fo,n,Q(ﬁf') C
(D§ )" and that gon—2(WiH) C (17/3:2)+. Recall that Af,, 5 = Z[(, 3]* @
B and that the norm map Ny ,_2 acts like the usual norm map N = Nn—Z,l :
ZlCnol* — ZlCns]*. It is well known that N(Cu_2) = (a3, By finding the
constant term of the minimal polynomial (z — 1) — (,,_3 of \,_2 we see that
N(M—2) = Ay—3 and by a similar argument that N(¢¥ , —1) =¢¥ 5 —1 when
(k,p) = 1. Since N is additive modulo p we get that Ny ,_o(U;") C W;". Hence
we have a commutative diagram

~ —

9
W1+ ) (Dg,n—2)+

pitly
We want to show that IV is surjective. In Z[(;], let w; := —(; *  and consider
wh — wj_l
R4 e —
wj — w;
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If we fix (; = e@mV=1/P""") we see that

sin(l7/pit1)

P sin(/p )

and hence real. Moreover,

L—1
_H_lc_j

Yl =w S
J Cj_l

so when (I,p) = 1, ,; are units. Let J; be the group of positive real units
in Z[¢;] and let Jy; be the subgroup generated by v,;, | = 2,3,..., ('™ —
1)/2 (I,p) = 1. This is a well known construction and the details can be
found in [W] p 144. Since v;, is real, it is congruent to a rational integer a
mod (>\§) Off course, a Z 0 mod (p). Hence a? ! = 1 mod (p) and this

shows that 7;”1_1 =1 mod };. YVith j = n — 2 this shows that 72:2,1 € ﬁf' and
with 7 = n — 3 that 'yﬁiél € W;". Now, a straightforward calculation shows
that N('YZ:;J) = 'yz::l,),l S0 Jg;ll_Q C N(U;"). Let h* be the class number of
Q(¢n-3)". Tt is well known that h*|hg,_,)- Since p is regular we get that
(p,h™) = 1. By Theorem 8.2 on p. 145 of [W] we have

Jn—3

=2 | =h".
|J0,n—3|

Now take arbitrary € € V~V1+ . Then €2 is positive and hence an element of .J,_3.
By the fact above there exists s € Z such that (s,p) = 1 and €?* € Jy,, 3. This
means that e2*®—1) ¢ N(U;"). Since (2s(p — 1),p) = 1 we can find u,v € Z
such that 2s(p — 1)u + pv = 1 so € = 5P Nutrr — (251 (eP)v ¢ N(U).
This shows that N is surjective.

We will now use our inductive assumption. This means that g(W,") = (D§ 2™
that is, the map g is surjective. But since the diagram above is commutative
this implies that f is also surjective. It is easy to see that ker(f) = U;z_Ll S0
ﬁ'+ —_ N
— 1 a5 (D* )+
Upn—2_1

and

—_ N
*

Hence |gon—1(U;)| = |D§ ,—1)F| and this proves the theorem. O
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Proof of Theorem 4.2. Apply Proposition 4.4 and Theorem 4.12 to the exact
sequence

*
DO,n—l

0—
Im{Z[(p1]* ® AG 1 = Dg 51}

— Pic Ao,n —
— C1Z[(p—1] ® Pic Agn—1 — 0.

O
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