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Parameter estimation in heterogeneous catalysis 
Jonas Sjöblom 

Chemical Reaction Engineering, Department of Chemical and Biological Engineering 

Chalmers University of Technology 

 

Abstract 
The detailed modelling of heterogeneous catalytic systems is challenging due to the unknown 

nature of new catalytic materials as well as the often required transient nature of the resulting 

models. Thus, this thesis deals with the methodologies involved in the kinetic modelling of 

heterogeneous catalysis and in particular NOX reduction systems. The methods presented 

increase the understanding of the interplay between model parameters and also decrease the 

number of necessary laboratory experiments. The effect of more efficient parameter estimation 

methods should result in faster model development which is required in any process 

development but especially for catalytic emission control. 

 

In the first paper, injection parameters for an engine rig with a NOX Storage and Reduction 

(NSR) system were optimised using different experimental designs at different load points. 

The optimised settings were used as a map for a control strategy complying with a European 

Transient Cycle (ETC). 

 

In the second paper, we developed a method that copes with the large number of unknown 

model parameters by applying a Latent Variable (LV) model to the Jacobian matrix in the 

fitting procedure. The LV model results in a low-dimensional approximation of the Jacobian 

with reduced parameter correlation and enables improved efficiency in parameter estimation. 

In the third paper, Experimental design for precise parameter estimation was performed in a 

batch-sequential way using D-optimality as the objective function. A screening methodology 

similar to that used for drug discovery in the pharmaceutical industry was applied for a large 

number of simulated candidate experiments. By applying an LV model to the Jacobian of all 

these experiments, a reduced parameter correlation was obtained and the number of necessary 

experiments was reduced. The results from the second and third paper pinpoint a number of 

benefits of using LV models including:  

1) the determination of the effective rank, i.e. the number of independent phenomena 

present in the data at hand, 

2) the analysis of the correlation structure which is useful in the parameter assessment and  

3) the linear approximation in few dimensions enables more efficient computations.  

 

In the fourth paper, a detailed model for the Selective Catalytic Reduction of NOX using 

Hydrocarbon as a reducing agent (HC-SCR) over silver alumina (Ag-Al2O3) was developed. 

By applying an experimental design to the steady state levels and also selecting the run order, 

improved fitting properties were obtained due to the increased parameter sensitivity enabled by 

the transient experiments. 

 

This thesis also contains a description of the modelling techniques and challenges encountered 

during this thesis project. An assessment of the importance as well as the parameter correlation 

is given. This demonstrates the intimate interplay between model assumptions and the 

stipulated model parameters and exemplifies a thorough assessment of the whole modelling 

chain from initial experiments to model validation.  

 

Keywords: Parameter estimation, Jacobian, Latent Variable models, Experimental design, 

Design of experiments, microkinetic modelling, heterogeneous catalysis, sensitivity analysis 
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PREFACE 
 

Having wandered around in both professions as well as in nature it is amazing how important 

pictures are to mankind. Pictures are used to efficiently send messages and “One picture says 

more than a thousand words” (Chinese proverb) goes without saying. But pictures are still just 

projections of the complex reality down to a more manageable format. Nevertheless I also feel 

the need for an illustration of this thesis. 

 

The search for a perfect fit is like reaching 1500 meter above sea level
1
 somewhere in Sarek, 

Laponia, Sweden. The way to get there is to draw a map
2
 and find your way through. How to 

reach the peak of the mountain is of secondary interest as long as you get there. There are 

helicopters
3
 even though they are not allowed at all places in Sarek. If you run in the terrain 

you can cover a large area in your search but if you do not watch out you may slip and fall 

badly. If you walk slowly you will not slip but the food may run out for you.  

Parameter fitting (using gradient methods) is like searching for that peak of the mountain 

provided with a map that you made yourself or bought really cheap at the gas station and an 

altitude indicator
4
. You are also instructed to only walk uphill; downhill will only take you 

farther away from the goal. But this time the weather is completely foggy! You cannot see 

more than a few meters away. You start to walk and climb and soon you find yourself on a pile 

of moraine. You realize that you are far from the goal and move down from the rock pile, jump 

around a bit and restart again, just to find yourself on another pile a few moments later. 

Sometimes the climbing goes through cold mountain streams and sometimes through boulder 

terrain, drawing on your reserves. All of a sudden the sun breaks through and you realize 

where you have been and you can also perceive the peak far away. You even find a small path! 

You feel much better even if the path goes downhill, because soon you will be able to climb 

higher than ever before. Hoping that the peak you see is the good one… 

 

 
Sarek national park, a wonderful place to be if you are well prepared and have nice weather. 

(photo: Hans Molin) 

                                                

 
1 This altitude is the ultimate fit of a simulated run and experimental data 
2 The map is the model that we decide upon 
3 Helicopters take you from one point to another, this is referred to as “manual tuning” 
4
 A look at the altitude indicator is the function call, i.e. residual calculation 
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1. INTRODUCTION 
 

This thesis is about parameter estimation in heterogeneous catalysis and specifically applied 

to NOX reduction for vehicle emissions. The internationally strong interest in NOX reduction 

makes this research area very intense, but on the other hand, the fundamental understanding 

enabled by mathematical modelling is unfortunately often not as frequent. This introduction 

presents some issues in mathematical modelling in heterogeneous catalysis and hopefully 

justifies modelling efforts in general and this PhD project in particular. 

1.1. Global warming and NOX reduction 

 

Reduction of carbon dioxide (CO2) emissions from vehicles is an important factor in the 

abatement of global warming [Hansen 2004]. Since CO2 formation is a natural consequence 

of fuel combustion, the natural way to reduce CO2 emissions is to decrease fuel consumption. 

The most efficient way to reduce CO2 emissions is of course to decrease transportation or to 

use renewable fuels. Yet, for transportation that nevertheless will exist, fuel consumption can 

be reduced by running the engine “lean” (oxygen excess) and the most common type of lean 

burn engine is the diesel engine.  

 

In a traditional gasoline engine, which utilises stoichiometric combustion (neither oxygen 

excess nor deficiency), the harmful exhausts are reduced using a three-way catalyst which 

simultaneously oxidises carbon monoxide (CO), hydrocarbons (HC) and reduces nitrogen 

oxides (NOX). The diesel engine, on the other hand, produces lean emissions and cannot use 

this technology because the NOX reduction process is inhibited by the oxygen rich 

atmosphere. NOX emissions are also a pollutant since they contribute to e.g. acid rain and 

ground level ozone (which causes urban smog). For a long time this was not an issue since 

diesel engines produce relatively low NOX emissions. However, as the legislation for diesel 

vehicles has become more stringent for NOX emissions, new catalysts, especially for heavy 

duty diesel engines need to be developed.  

 

Even though there is technology available to meet the current emission legislation, 

compliance to future legislation will be even harder to attain. Furthermore, there are issues 

regarding the ageing of the catalyst, cold-start problems as well as the reduction of particulate 

matter (soot) to deal with. Additionally, future alternative fuels will bring significant 

challenges to the research community within heterogeneous catalysis. Nevertheless, whatever 

advanced technique that will be used to solve future emission problems, heterogeneous 

catalysis will be indispensable and thus, a profound understanding of the catalytic processes 

will be crucial. 

1.2. Mathematical modelling and heterogeneous catalysis 

 

To achieve a profound understanding of heterogeneous catalytic systems, mathematical 

modelling is a key technique [Berger 2008, Franceschini 2008a, Guthenke 2007, Koci 2007]. 

Models can be used for many different objectives, e.g. prediction to improve on-board control 

and aftertreatment design but most importantly (and exclusively in this thesis) models can be 

used to increase the understanding of heterogeneous catalysis. For example, by analysing a 

complex model (that contains different phenomena), the different phenomena can be 

evaluated for a specific situation. Also, in the case of aftertreatment development, appropriate 

actions can be taken. A typical example would be to assess whether the limiting factor for 
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NOX reduction is governed by mass transfer resistance or the amount of active material. 

Furthermore, the models need to be detailed enough to enable the assessment of different 

phenomena (different dominating reactions depending on the exhaust gas composition). 

Additionally, due to the highly dynamic nature of an aftertreatment system (changing flow 

conditions and temperatures depending on the vehicle operation as well as the reducing agent 

that is injected dynamically), the models also need to capture transient phenomena. Thus, this 

thesis contributes to the long term objective of increased understanding of heterogeneous 

catalysis by improvement in modelling methodology. 

 

When assessing a model applied to practical (non-theoretical) situations, the use of 

experiments is very important. In order to draw high quality conclusions, the model and 

model analysis as well as the experiments need to be of high quality
5
. These parts are 

performed iteratively in order to improve understanding of the catalytic process [Box 1965a], 

see Figure 1.   

 

 
Figure 1. A schematic picture of the machinery involved in the modelling cycle. The numbers indicate the 

chapters in the thesis where these parts are further described. The applications of these different parts 

(including papers I-IV) are given in chapter 5. 

 

There are two major obstacles in achieving the goals of improved understanding. The first is 

associated with the vast amount of information available (catalyst characterisation, similarities 

to other systems, extrapolation of information from other experimental conditions etc) which 

results in complex reaction mechanisms and thus many model parameters. Secondly, an even 

greater obstacle is the fact that all these numerous parameters, as well as the model structure 

itself, may turn out to be inappropriate. This can result from incorrect assumptions or 

erroneous simplifications and more details will be given in the rest of this thesis. In short, one 

could say that the modelling of processes that take place at a molecular level is inherently 

difficult using only macroscopic observations. Consequently, the modelling effort can be 

difficult and time consuming. However, even if the models are erroneous, they are often 

proven useful and the need to improve at any stage in the modelling cycle constitutes the 

motivation for this PhD project. 

                                                

 
5 High quality does not necessarily mean low noise levels. With the notion high quality means that the 

experiments can be well characterised, i.e. the noise levels as well as any other uncertainties are investigated and 

quantified. 

2. Experiments 

and 

Experimental 

design 

 

4. Model 

analysis  

(Fit and 

assessment) 

3.Models and 

Model  

simulations 
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1.2.1. Challenges with parameter fitting 

One basic assumption during parameter fitting is that the model is correct. Furthermore, the 

most common fitting procedures are based on gradient search methods, which work best with 

parameter values in the vicinity of the true values. However, when the model is potentially 

unsuitable, the parameters are far from the true values and/or the experimental design is not 

well adapted for the objective, correlation between parameters occurs. Normal gradient 

calculations are not well suited to deal with this correlation and consequently, the objective of 

paper II is to show how latent variable models can be used for more efficient parameter 

fitting. The analysis of the correlation structure gives valuable information about how many 

parameters that can be adequately fitted. Moreover, a better choice of parameters subject to 

fitting can thus be obtained. 

1.2.2. Challenges with experimental design for precise parameter 
estimation 

Experimental design is a methodology that aims at maximising the information content given 

by a limited number of observations (experiments). For linear models, the methodology is 

quite straight forward, see e.g. [Montgomery 2001]. For nonlinear models, the situation 

becomes more complicated, but manageable since the pioneering work by Box [Box 1959] 

and when there are multiple responses the complexity increases by one dimension [Box 

1973]. There are many other aspects that come into play, such as  

 whether the modelling objective is precise parameter estimation or model 

discrimination [Buzzi-Ferraris 2009, Hunter 1967] 

 the choice of the objective function [Bardow 2008, Box 1970, Franceschini 2008b, 

Pritchard 1978, Walter 1990] where D-optimality is the one used in this thesis 

 The number of experiments in each modelling iteration, i.e. the sequential design e.g. 

[Box 1965b, Hosten 1975] where batch-sequential experimental design [Walter 1990] 

has been applied in this thesis. 

However no literature could be identified that simultaneously deals with nonlinear, multi-

response models, time-dependent experiments (using many observations) regarding the aim to 

plan a series of experiments (batch sequential approach). A feasible way to deal with these 

many aspects is to approximate the Fisher information matrix using a Latent variable model. 

In paper III it is shown that by using this approach the information content can be more easily 

quantified and the experiments become less labour intensive. 

 

1.3. Objective 

 

The objective of this thesis is to demonstrate novel methodologies during the modelling cycle. 

Furthermore, the main focus is on model fit and model assessment, even if the model 

structure is less than optimal (as is evident from most of the papers in this thesis). For 

instance, different methods to handle many parameters that are highly correlated are applied. 

The main tools are Design of Experiments (DoE) and Multivariate Data Analysis (MVDA) 

and the results show that these methodologies contribute to a deeper understanding and 

additionally, they are also more computationally efficient. Finally, this thesis is also intended 

to describe the different parts and aspects of the modelling cycle, to assess the impact of these 

different parts and also to give recommendations of how to overcome common issues 

encountered in practical modelling tasks e.g. for PhD students in Chemical Engineering. 
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2. EXPERIMENTS AND THE DESIGN OF EXPERIMENTS 
 

“Without experiment I am nothing. But still try, for who knows what is possible”  

Michael Faraday 1791-1867 

 

Even though this thesis is dealing with modelling, it is important to realize that we base all 

our understanding either explicitly on observations (measurements) of the system in study or 

from previous knowledge which in turn was based on observations. Furthermore, the type of 

modelling that was performed in this thesis is based on the assumption that the model is 

correct and that the data (from observations) are not. The data are probably a good measure of 

what we want to observe, but is impaired by errors. 

 

In the following sub-section, various experimental techniques are described just to give an 

understanding of the important consequences they have on the modelling.  

 

“The chain is never stronger than the weakest link” and the chain starts with the experiment
6
. 

 

2.1. Design of Experiments (DoE) 

 

Models are almost always tightly connected with experiments. Experiments are used in 

different stages for different purposes: 

 

 Initial experiments 

o To verify that the reaction occurs  

o To get reasonable ranges for reaction conditions 

o To propose an initial reaction mechanism 

 Structured experiments, preferably a statistical design of experiments 

o To estimate effects of reaction conditions 

o To estimate model parameters
7
  

 Verification experiments 

o Validation experiments 

o Robustness testing 

 

As long as one has the objective in mind, it is easy to realize that a systematic approach is 

beneficial. Apart from the initial experiments (where intuition and imagination are more 

important), the use of experimental design cannot be over-recommended. The use of 

experimental designs enables e.g. 

 

o Independent analysis of different experimental factors 

o Maximum information from minimum number of experiments 

 

                                                

 
6 This does not mean that I consider the experiments to be the weakest link. On the contrary, experiments are 

often the most well defined and characterized part of the modelling chain. 
7 This is the theme of paper III and will be further described in section 4.5 (Design of Experiments for precise 

parameter estimation). 
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For the basic concepts underlying DoE, see any textbook on the subject e.g. [Montgomery 

2001], [Umetri 1988], or a tutorial [Lundstedt 1998]. 

 

2.1.1. Single observation experiments 

In “classical” experimentation, one performs one experiment (one observation) and evaluates 

the results. The characteristic feature is that one experiment produces one “row” of data. This 

row consists of factors (x-variables) and responses (y-variables). The different experiments 

can be performed independently, which means that there is no correlation between different 

experiments (rows). Examples of un-wanted experimental correlations are: 

o Experiments performed in the same order as the variation of one of the factors, i.e. 

first all “low-level” experiments followed by all “high-level” experiments. 

o Replicates performed in sequence 

o Experiments performed so that correlations between different factors occur, i.e. a non-

orthogonal experimental design. 

For catalytic reactors the classical experiments correspond to some integrated value or 

perhaps some final state of the reaction. It may also be one selected feature of the reaction 

event such as catalyst ignition. 

 

2.1.2. Time-dependent experiments 

One other type of experiment or more precisely one type of experimental data is time-

dependent observations. Time-dependent observations are encountered when we have 

sampling at several sequential time points during an experiment. The correlation between 

observations is a natural consequence and hence should be adjusted for accordingly.
8
 

 

The advantage of time-dependent observations is that they enable the study of the dynamics. 

Dynamics are of interest when we do not have steady state or when accumulation is of 

importance. The non-steady state experiments are here referred to as “transient” experiments. 

A transient experiment may simply involve a “step change” in inlet concentration, but 

transient experiments can be extended to include all observations that aim to study the 

dynamics of the system. 

For complex non-linear systems (with many coupled reactions), transient experiments are of 

utmost importance [Berger 2008]and if the system contains unobservable variables (such as 

coverage of the catalytic material in a catalytic converter) it becomes even more important. 

Due to the model non-linearity, one difficulty is the model parameter evaluation in terms of 

“design factors”. However, by using transient experiments one drastically increases the 

parameter space and enables estimation of kinetic parameters not achievable using steady-

state techniques. 

 

                                                

 
8 Note: All too often one can encounter the determination of degrees of freedom (e.g. for calculation of 

confidence intervals) based on time-dependent observations but still (implicitly or unconsciously) assuming 

independence of observations. This is all very unfortunate, but on the other hand it is difficult to get any 

better alternatives accepted by the statistical community. 
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2.1.3. Orthogonality and correlation 

Design of Experiments aims to maximize orthogonality and minimize correlations. There are 

different types of orthogonality and correlations: 

1. Among observations: a classical experimental design is performed with every 

observation independent of each other. This means that there should be no other 

correlation between the observations other than specified by the adherent factors. 

2. Among factors: adjustable factors should always be made orthogonal while for un-

controlled factors the correlation may be difficult to avoid. (Different sampling 

methods could be considered here.) 
9
 

3. Among responses: The responses are typically non-adjustable (at least in a direct 

sense). However during optimization of different responses one may seek 

orthogonality. 

The discussion about orthogonality and mitigation of correlation will be further discussed e.g. 

in section 3.2. 

 

2.1.4. Application of DoE to heterogeneous catalysis 

As in every experimental activity, DoE is of utmost importance in order to retrieve maximum 

information and avoid costly misinterpretations. It is therefore distressing to observe the 

relative lack of DoE in the field of catalysis compared to, for example, the field of analytical 

chemistry. However there are publications using DoE and the demonstration of the benefits is 

as usual very clear. Examples include: 

 Optimization of catalyst preparation [Dawson 1992] 

 Combinatorial chemistry approach for screening of different catalytic materials 

[Bricker 2004, Kirsten 2004] 

 Spanning the experimental space for improved parameter fitting [Barsan 2003] 

(however Steady State) [Zamostny 2002] , (papers III & IV) 

 Optimization of catalytic processes such as within fuel cells [Dante 2002] 

 Use of DoE in kinetic modelling has been studied by the group of Vlachos 

[Aghalayam 2000, Davis 2004] (papers III & IV) 

 Optimization of injection parameters for an NSR system on an engine rig (paper I) 

 

                                                

 
9 DoE deals with linear models. Note that for non-linear models, the correlation among the factors is 

actually built-in by definition. One solution often used is then to approximate the nonlinear function with a 

linearized one. This will be discussed more in section 4.2. 
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2.2. Experimental Reactor design 

 

The reactor design includes all physical parts of the system. Figures 2 and 3 show two reactor 

set-ups used in this thesis. 

 

 
 
Figure 2 Monolith reactor setup. The monolith (1) is inserted into a quartz glass tube. The tube is heated 

from outside using a heating coil (2). Two thermocouples (3) measure the temperature inside the monolith 

(use for simulations) and in front of the monolith (for temperature control). The heating coil is powered 

by a power supply (4) and controlled by a Eurotherm controller (5). The monolith is fixed in the quartz 

glass tube (and partially isolated from the heating coil) by quartz wool (6). The quartz glass tube and 

heating coil is further isolated by quartz wool (7). A gas mixture is fed to the reactor using a set of mass 

flow controllers (MFC) (8) and the reactor outlet stream goes to various detectors (9) before being vented. 

 

 
Figure 3 DRIFTS reactor setup. A gas mixture (using a MFC set similar to the monolith reactor) is fed to 

the “dome” (hemispheric chamber) and passes through a packed bed of catalyst (sample). The bed 

temperature is controlled by a Eurotherm and the outlet stream goes to a mass spectrometer detector. 

Infrared radiation strikes the surface where it diffuses into the bed, becomes reflected and collected via an 

integrating sphere and finally passed to the IR detector. 

 

The reactor design is a very important step that is often neglected due to practical reasons 

(e.g. the reactor already exists, ready to be used). However, the design will define/restrict the 

experimental limits both in terms of ranges (such as flow, concentration, and temperature 
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limits) as well as phenomena (such as temperature gradients, velocity profiles). Below is a list 

of typical examples encountered
10

: 

 Velocity profile for the flow entering the monolith: assumed to be plug flow but is 

probably fully developed laminar flow. 

 Concentration profile entering the reactor: When a step change in concentration is 

performed, the real concentration profile will be “smoothed out” due to dispersion 

effects, see section 3.4. 

 Temperature gradients in gas flow, due to heating coil heating from outside in 

combination with the absence of mixing in front of the reactor. 

 Channelling and stagnant zones in the packed bed. 

 Absence of heating of pipes creates longer time lags for some gases due to re-

adsorption effects (such as NO2, H2O and NH3). 

 

 

2.3. Catalyst characterisation 

 

In order to understand the morphology and structure of the catalyst sample a relevant  

characterisation is needed. This information can then be used to apply a relevant transport 

model. It also indicates the relevance of a mean field kinetic model, see also section 3.6.1 and 

6.2. 

2.3.1. N2 physisorption  

By performing N2 adsorption and desorption at low pressures, the specific surface area and 

the pore size distribution can be determined. For further reading, see [Barrett 1951, Brunauer 

1938, Kannisto 2009a]. For example, in paper IV, the specific surface area (BET area) was 

197m
2
/g and the pore size distribution was 20-77 Å (80% of the pores) with an average pore 

diameter of 30 Å (3 nm).  

2.3.2. Electron microscopy 

By using electron microscopy, e.g. Scanning electron microscopy (SEM) or transmission 

electron microscopy (TEM) one obtains images of the catalyst. In Figure 4, a monolith 

channel is displayed with a 20 wt% washcoat loading of Ag-Al2O3 catalyst. The washcoat is 

of varying thickness, at approximately 40 µm on the channel walls and thicker in the corners. 

Figure 5 shows a close up of the monolith wall (cordierite) and a thin layer of Ag-Al2O3. 

From this picture it is clear that the washcoat is not a uniform porous layer, but consist of 

primary particles of about 1µm which in turn contain even smaller pores, as indicated by BET 

analysis.  

In the TEM image (Figure 6) of an Ag-alumina sample, large silver particles of about 10 nm 

in diameter can be observed. There are also smaller particles not visible in the TEM image 

(because they are too small) but evidenced by other methods indicating small nanoclusters of 

a few atoms which are suggested to be the main reactive sites for the SCR mechanism 

[Kannisto 2009b].  
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 Most of these effect as well as many other effects will be numerically evaluated in section 5.5 
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Figure 4. A SEM picture of a 

monolith channel coated with Ag-

Al2O3 

 
Figure 5. A SEM picture of the 

cordierite wall and the Ag-Al2O3 

washcoat. 

 
Figure 6. A TEM image from a 

silver-alumina (SG5) sample, 

as was used in paper IV. From  

[Kannisto 2009b] 

 

2.4. Detectors 

 

As indicated in the introduction, experiments, model simulations and analysis are tightly 

connected. The research heavily relies on experiments and the experimental data is collected 

by detectors. In a way, one could say that detectors are the foundation on which parameter 

estimation is based upon, since it is the comparison between the simulated data and the 

detector signals (i.e. the residual) that defines the goodness of fit
11

. During the optimisation of 

the detector signal there is always a trade-off between sensitivity (i.e. how much signal) and 

selectivity (i.e. how sensible the signal is to interfering signals, interfering species etc). 

 

2.4.1. Mass spectroscopy 

Mass spectroscopy (MS) is a technique to separate (and thus quantify) different molecules 

depending on their mass. The main advantages are that the technique is fast (time resolution 

about 1/10s) and requires only small amounts of the sample gas (2-10 ml/min). The greatest 

challenge for quantification is that the calibration procedure is sometimes highly responsive 

as will be shown below. There are many different types of MS systems, but here only the 

quadropole type of MS using a SEM detector is described, see Figure 7. 

 

                                                

 
11

 At least under the assumption that the model is correct.  
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Figure 7 Schematic picture of a Mass Spectrometer instrument setup.  Adopted with permission from Dr 

Norbert Müller, INFICON Limited. 

 

The gases are sampled downstream the reactor by a glass capillary that samples about 2-10 

ml/min driven by the very low pressure in the MS system (about 1×10
-6

 mbar). The gas 

reaches the ionization chamber where electrons with high energy hit the molecules and create 

positive ions/fragments. The incoming electrons repel the molecular electrons so that they 

leave the molecule. However, the incoming electrons may also break the bonds between the 

atoms in the molecule and thus create fragments
12

. Then, the ions are accelerated into the 

quadropole, where the gases are separated according to their mass (mass over charge). The 

ions that passed through the quadropole then enter the Secondary Electron Multiplier (SEM) 

detector where the number of molecules is transformed into a signal. This detector enables a 

linear response within a very wide range (9 orders of magnitude or more).  

 

The MS signal represents a ratio of mass over charge (m/e) and is not exclusively linked to 

the concentration in the gas phase. There are different sources of a certain m/e ratio
13

: 

1. the molecule of interest itself, charged by +1 

2. fragments/molecules of double the mass but with double charge (+2) 

3. bigger molecules fragmentized into smaller fragments 

4. smaller molecules/fragments that re-combine with other fragments/molecules (present 

at high concentrations) 

5. other molecules with different isotopic composition. 

 

These effects become a “selectivity” problem and it is important to properly handle these 

issues when quantifying MS data. It is important to note that just because there might be 

selectivity issues, the MS technique can be made very accurate with high selectivity and 

furthermore it has the benefits of small and fast sampling.
14

 

 

More details and guidelines on measurement methodology as well as handling of the 

selectivity issue are given in Appendix A. 

 

                                                

 
12 The terms fragments and ions are used interchangingly in this chapter.  
13 There are other sources as well, but only the sources relevant to heterogeneous catalysis are listed here. 
14 Another way to solve the selectivity issue is to use a separation technique, such as gas chromatography (GC), 

however the time resolution is lost unless it is used in combination with on-line measurements and data can be 

interpolated with sufficient accuracy 
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2.4.2. Infrared Spectroscopy 

Infrared (IR) spectroscopy is a technique where electromagnetic radiation in the range
15

 of 

approx. 4000-1000 cm
-1

 excites vibrational energy levels of molecules. There are different 

types of spectrometers, but the Fourier Transform spectrometer is the most common type.  

2.2.3.1. Gas phase Infrared Spectroscopy 

The reactor outlet gas stream enters the IR flow cell and is quantified using a calibration 

procedure. Since the concentrations are low (ppm levels) the sensitivity issue is partly solved 

by designing the flow chamber to be long and to let the beam cross the gas flow many times. 

Also the number of scans can be increased to increase the signal to noise level, i.e. sensitivity. 

The sensitivity issue then becomes a time resolution issue.  

Furthermore, the different gas molecules may have overlapping peaks generating a selectivity 

issue. This can be solved by using multivariate calibration procedures [Martens 1989] or by 

multiple selection of the spectral domain as implemented in the instrument at the Competence 

Centre of Catalysis, Chalmers (KCK) (MKS MG2000) [MKS Instruments 2006]  

2.2.3.2. Diffuse reflectance Infrared Spectroscopy 

In the gas phase there are only 3N-6 normal modes of vibrations for a non-linear molecule, 

where N is the number of atoms. When a molecule is adsorbed on a surface the number of 

vibrational modes increases with different adsorption configurations. This makes spectra 

much more information rich. However it also requires that one can assign different peaks to 

different vibrations to make the spectra interpretable. This assignment uses both theory and 

previous knowledge (from similar systems). Using the information from the peak assignment 

a more plausible reaction mechanism can be derived. 

 

 

Aspects of peak assignment 

The peak assignment task is sometimes difficult due to a number of reasons: 

 Peak positions move depending on co-adsorbed species 

 Peak position appears at different frequencies due to different support effects 

(compared to other published information) 

 The peak in study is from an unknown specie 

 The peak in study can be hidden by other overlapping peaks 

A number of counter-measures and methods are available to partly circumvent these 

problems, including:  

 Targeted experiments (one gas at a time) 

 Temperature programmed experiments (e.g. Temperature Programmed Desorption, 

TPD) [Gorte 1996] 

 Isotopic experiments, such as Steady-State Isotopic Transient Kinetic Analysis 

SSITKA [Shannon 1995] 

 

Aspects on the quantification of diffuse reflectance data 

The quantification will be further described in Appendix A, which deals with the 

modelling/numerical part. Concerning the experimental part, there are a number of aspects to 

take into account [Müller 2008]: 

 Penetration depth is small, typically less than 0.4 mm for Pt on -alumina. This is due 

to the large portion of pores for high surface area materials. 

                                                

 
15

  This range may differ with different applications. 4000-1000 cm
-1

 corresponds to 2500-10000 nm. 



   13 

 Particle size dependence: Peak heights (as well as peak areas) may depend on particle 

size distribution, mostly higher peaks for smaller particles, however not always. A 

simple calculation (see section 7.7 in [Müller 2008]) shows that the majority of 

surface is internal pore area and only 0.01% is external area. Thus it is really the pore 

surface that is manifested in the DRIFT spectra. 

 Sample preparation: In the study, there was found to be no dependence on how much 

sample that was pressed into the reactor. This means that the -alumina is rigid 

compared to the mechanical force due to tapping/pressing more sample into the 

reactor. 

 Baseline variation due to temperature. Either separate backgrounds need to be taken or 

baseline correction using a low order polynomial or a linear interpolation of 

background spectra can be used to account for baseline variation. 

 Negative peaks due to e.g. hydroxyl groups: The support may contain adsorbed 

species during background acquisition. This may need to be accounted for if the pre-

adsorbed species overlap with species of interest during reaction conditions. 

 

2.4.3. General remarks on gas phase analysers  

There are of course many other gas analysers that are used for reactor experiments, e.g. 

chemiluminisence detectors for NOX quantification. However, they are often only reliable 

when operated and calibrated correctly, so they will not be described further. In almost any 

analyser there will be a few important issues that really need to be dealt with in order not to 

ruin any subsequent modelling effort. These issues are 

 The sensitivity 

 The selectivity 

 Gas consumption /Time resolution 

 

2.4.4. Temperature sensors 

The temperature inside the reactor where the reactions take place is of outmost importance. 

The measurement should be accurate and non-invasive. The most common temperature 

sensors at KCK is a thermocouple of type K, which is a standard sensor giving accurate 

temperature estimates. However, the precision of the temperature is not as much of an issue as 

is the issue of representativity.  

 By insertion of a thermocouple in a monolith channel, the residence time can be 

affected, thus the conversion and local temperature. 

 The heating coil for the monolith reactor setup will induce a temperature gradient in 

the inlet flow to the monolith. 

 The black-body radiation of the monolith can cause a substantial temperature drop at 

the end of the monolith. 

 

The accuracy of temperature measurements in relation to kinetic modelling was studied by 

Hansen [Hansen 2007] who found that in order to be able to discriminate between two simple 

mechanisms, the precision needed to be better than 2K. The temperature gradients (and thus 

variation in representativity) in a typical monolith reactor is easily more than 5°C. 
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3. MODELLING  
 

”All models are wrong but some models are useful!” - George E.P. Box 

 

In order to get some perspective, we need to define what we mean by a “model”, since it is a 

very frequently used term for many different kinds of models. 

Below is a “definition” or a specification of models used for heterogeneous catalytic reactors 

applicable in this thesis: 

 

 

 A model is something used to explain observable and unobservable phenomena. The 

model can aim to describe physical phenomena or be more empirical in nature.  

 A model consists of a structure/mechanism which describes how different phenomena 

are related. 

 A model also has a set of model parameters and for complex (nonlinear) models there 

is normally no unique set of parameters
16

 but an infinite number of sets that will fulfil 

the objective function
17

. 

 These parameters should have any (preferably all) of the following properties: 

o Parameter values give the model good fit to experimental data. 

o For physical models, parameter values should be physically reasonable  

 Values within acceptable limits 

 Reasonable relationship between parameters 

 
Frame 1. Definition of a model as viewed upon in this thesis. 

 

The statements above imply that the model parameters are NOT the model. The activity 

“modelling” is by this definition the extraction of the mechanism (including identifying the 

model parameters). In this thesis the focus is therefore NOT on modelling but rather on 

parameter fitting and model (or model parameter) assessment. This may seem strange to some 

people, who often assume that parameter fitting is always readily achievable and model 

assessment gives satisfactory conclusions (i.e. the model is trustworthy). However, I would 

like to argue that this is seldom the case and in particular for detailed kinetic models applied 

to heterogeneous catalysis. 

 

3.1. Linear models 

 

In order to predict reactor outlet concentrations, one could also use a very simple model: 

 

 ii xkr     (1) 

 

Where xi can be any variable (e.g. concentration, but also temperature, flow rate etc.), 

eventually transformed (squared, inversed, logarithmic, etc) and ki is a linear constant. The 

                                                

 
16 Unless a suitable experimental design can be performed. 
17 The objective function will be described in section 4 and is often defined as a minimization of the square of 

the residual (difference between simulated and experimental data). 
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response r can be any response (e.g. reaction rate, conversion, selectivity etc). The expression 

can also be written in matrix notation: 

 

 bxr     (2) 

 

These models have the advantage that the model parameters can be analysed using classical 

statistical analysis if handled properly. One prerequisite is that the experimental data enables 

independent estimation of b, i.e. that DoE has been applied (see 2.1).  

 

3.1.1. Linear regression 

In linear regression analysis one is concerned about finding a relationship between a response 

variable, y which is assumed to depend on another independent variable. The observations of 

y will be approximated by “y-hat”, y : 

 

eyy      (3) 

 

Where the residual, e, is preferably as small as possible. 

The “standard” linear regression model: 

 

bxŷ      (4) 

 

Where x is a vector of variables (x0, x1, x2, …) where the first variable x0 is unity ”1” and 

corresponds to the intercept. b is a vector of regression coefficients where the first element b0, 

is the intercept and the remaining coefficients are the “slope” for each corresponding variable 

in x. In order to estimate the parameters in b we need a so called “objective function”. In 

linear regression we almost always apply the “least squares” approach and the objective 

function is to minimize the square of the residual: 
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b
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b
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By derivation of the objective function with respect to the parameters and setting the 

derivative to zero i.e. minimization, the solution becomes: 

 

1

0
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b

XXYXb
1

    (6) 

 

Where we now have extended the least squares to a multivariate case, where we have many x-

variables in an X matrix and many y-variables in a Y matrix. 

 

3.1.2. Assumptions for linear regression 

In order to prove that the estimation of the model parameters are the best un-biased ones, we 

need a few assumptions: 

1. The observations are independent 
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2. The x-variables are exactly known (they have no error) 

3. The residual (in the y-direction) is normally distributed with an expected value of zero 

4. The variance of the residual is constant over the entire calibration range 

 

These assumptions are very seldom fulfilled even though they can be sufficiently fulfilled if:  

1. The experiments were performed according to an experimental design and performed 

in randomized order. 

2. The errors in x are small, compared to the residuals in y. 

3. The data can be transformed so that the residual becomes normally distributed. 

4. The calibration range is sufficiently small or the residuals are weighted so that the 

variance becomes constant.  

 

Very often the above mentioned techniques are not enough and better methods are needed. 

One method is the method of latent variables. 

 

3.2. Multivariate analysis, Latent variable models 

 

The multivariate methods described below (PCA, PCR, PLS) and similar methods are called 

“Latent variable” methods, because the nature of the low-dimensional hyper plane can be 

regarded as “latent variables”. These methods are very useful in complex systems with many 

correlated variables and observations. 

 

3.2.1. Principal Component Analysis, PCA 

One of the assumptions for linear regression analysis is that the x-variables are exactly 

known. This may mostly be true enough (at least compared to the uncertainty in measuring 

the y-variable). Quite often though there is an interest in handling uncertainties in X as well. 

This was first analysed by Pearson in 1901 [Pearson 1901]. The concept has been developed a 

lot since then and a model type that corresponds to Pearson‟s study is called Principal 

Component Analysis (PCA). The difference between a linear regression situation and a PCA 

model is that the residual to be minimized is not the “vertical” distance but the distance 

orthogonal to the line (the model). This is depicted in the figure below: 
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a) “normal” linear regression.: the residual is 

the vertical distance between the data and the 

model. 

b) PCA: the residual is the distance between 

the data and the model perpendicular 

(orthogonal) to the model. 
Figure 8. Differences in how the residual is defined between standard linear regression and a PCA model. 

 

In the linear regression case, the model is y=kx and the only parameter is k.  

In the PCA case, the model assumes errors in both x and y and the model therefore is  

 

TP'Xyx     (7) 

 

T is called the score matrix and consists of the values along the model plane (in the example 

above, the scores correspond to the values along the line shown in Figure 8b.) The score 

matrix is the new approximation of the original matrix X, but using fewer dimensions. 

P is the “model” and consists of the linear combinations of the original variables that are used 

to project on to the model plane. Here we have two “parameters” p(1) and p(2)  in the vector 

P. The loading matrix P is orthogonal and normalized to the size of one (orthonormal), i.e.; 

 

IPP'      (8) 

 

The PCA example above can be extended to many more variables and many more 

observations but works out the same way: 

We get a loading matrix P that will be used to project the original matrix X onto a low-

dimensional plane, T. 

The main advantages of PCA (and other LV methods) are 

 It handles errors in x and y. 

 It handles co-linear variables. 

 It produces models that have components that are orthogonal. 

For more details about PCA, see e.g. [Eriksson 2001, Martens 1989] 

 

3.2.2. Principal Components Regression, PCR 

After making a PCA on a set of x-data, we have the situation where we no longer have 

correlation between the variables. One way to proceed then is to make a multivariate linear 

regression but using the scores T instead of the matrix X. the model then becomes: 
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Tby      (9) 

 

Where T is the score matrix from a PCA model of X, T=XP. This method will not be further 

discussed but serves as a “bridge” to the PLS method in the next section. 

 

3.2.3. Partial Least Squares, PLS 

The Partial Least Squares method (PLS) or “Projections to Latent Structures” as it sometimes 

is called is a regression method very similar to the standard multivariate linear regression and 

the PCR case described above. It uses two separate models for X and Y and then tries to find 

the correlation between these two models. The model now becomes: 

 

bxxyy
_

i

_

i
)'(     (10) 

 

Where b is the regression vector given by: 

 

cWPWb
1)'(     (11) 

 

W, P, and c are loading vectors, i.e. linear combinations of the original x and y variables. A 

geometrical picture is given below: 

 
Figure 9. Geometrical description of the PLS model. 

 

Since the X and Y matrices are “stripped” for every component, the corresponding PLS 

loadings (W) are associated with the corresponding, “stripped” matrix X. In order to make the 

interpretations more clear, W
* 

is used (W*=W(P’W)
-1

). W* can now be compared to the 

variables in X. Furthermore, this is used in paper II. For further details about calculations and 

algorithms see [Martens 1989]. 
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3.2.4. Multivariate curve resolution: Alternating least squares (ALS) 

Multivariate curve resolution is the process, where a data matrix D
18

 is decomposed into 

different components. One example is the PCA model which decomposes the matrix into 

scores and loadings using the objective function to maximize the variation in D̂ . One 

“negative” side effect is that the components are calculated in order of explained variance and 

not as a function of chemical phenomena. The resulting loadings are thus sometimes hard to 

interpret in terms of “chemical” information, such as an IR spectrum. Similarly the scores 

possess both positive and negative values, where it would be desirable to have only positive 

values that could correspond to concentrations. One solution to these objectives is to use 

Alternating Least Squares (ALS). The ALS is in principle very similar to PCA but by adding 

non-negativity as constraints, the resulting scores and loadings can be interpreted as 

concentrations and pure component spectra. The procedure during ALS consists of several 

steps. First the X matrix, D, is approximated using ordinary PCA. Then by using a rotation 

matrix R, the final model becomes: 

 

''''ˆ CSPTRRTPDD    (12) 

 

where C is a matrix of “contributions” and S a matrix of pure “spectra”. More details are 

given in the appendix B. The prerequisite for a successful decomposition is that all species are 

visible in the spectra and that they vary between different observations. Another prerequisite 

is that good initial estimates of either concentration or pure spectra (or a combination of both) 

are available 

 

3.2.5. Comments about latent variable models and projection methods 

The phenomenon of projections is not new itself. Plato describes in his book “The republic” 

how projections of an unobservable reality is taken for the truth and anyone questioning it 

will be discredited [Lewi 2004]. The same story goes in the novel “Flatland” by E. A. Abbott 

[Abbott 1884]. In this chapter only the numerical methods of PCA, PCR PLS and ALS are 

mentioned. There are a large number of similar models and similar algorithms that all produce 

latent variable types of models. The concept of Latent Variables as a frame work for 

multivariable modelling have been well described by Burnham [Burnham 1999, Burnham 

1996]. Another similar method is Factor Analysis which also is used during ALS. 

 

Multivariate Analysis, MVA (or Latent Variable modelling) has been presented in the 

literature for many years and is an entire research area in itself. These applications are (by its 

very nature) often connected to experimental design (see also section 2.1). Applications 

applied to catalysis include: 

 Catalyst synthesis optimization [Tagliabue 2003] 

 Sensitivity analysis (see section 4.4.3, paper II and III) 

 Catalytic system optimization (paper I) 

 

                                                

 
18 The reason to use the notation D instead of X is that ALS is typically applied to a spectral matrix, which is a 

measured matrix D, where as the notation of a matrix X is more general and can be either a measured data matrix 

but also a sensitivity matrix, e.g. the Jacobian matrix. 
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3.3. Nonlinear models 

 

In kinetic modeling of heterogeneous catalytic systems, nonlinear models are frequent. By 

nonlinear models we mean models that are nonlinear in the parameters, i.e. 

 

)(f
y

     (13)

  

This means that the derivative (or sensitivity) of a response with respect to a parameter is 

dependent of the parameter value itself. In contrast, the model in eq. (4) is linear in the 

parameters since the derivative with respect to the parameters (b0 and b1) is just a function of 

x and not of b. One example of a nonlinear model is the Arrhenius expression, eq. (28). The 

aspect of non-linearity becomes important for parameter estimation, since eq. (13) is heavily 

used in this process. Parameter estimation will be described in more detail in section 4.  

The practical treatment of nonlinear models and nonlinear equation systems (e.g. for 

parameter estimation and for solving ODEs) is approximation by finite differences. Thus, no 

further description will be given in this thesis.  

 

3.4. Modelling of the reactor system 

 

The main objective is to understand what is occurring in the reactor. However, it is very 

important to have accurate control of the effects from the rest of the system. A typical reactor 

system consists of 5 parts with individual properties that influence observations: 

 

1. Mass flow controllers (MFC): Response time and accuracy 

2. Pipes upstream: lag time, axial dispersion 

3. The reactor (see section 3.5) 

4. Pipes downstream: lag time, axial dispersion 

5. Detectors: response time and accuracy (selectivity and sensitivity) 

 

The modelling of these parts can be achieved by empty reactor models where simple models 

can be applied. For dispersion effects, for example, ideal stirred tank reactors can be applied 

 

cccc
V

q

dt

dc
ff

d

1
    (14) 

Where q is the volumetric flow, Vd is the (probably fictive) dispersion volume and  is the 

time constant corresponding to the time it would take for a step in feed concentration to reach 

63% of the final level. To model time delay a simple delay model can be applied: 

 

)()( tctc f      (15) 

 

where  is the time constant corresponding to the time lag of the particular component. 

 

By modelling each part individually, a more accurate estimation of the reactor inlet conditions 

(which is used as input to the model) as well as detector conditions (which is used for residual 

calculation) can be obtained. This will be superior to the use of empty reactor data as model 

input, where all dispersion effects are lumped into upstream effects and downstream effects 
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(from pipes and detectors) are “moved” upstream. An evaluation of these phenomena is given 

in section 5.5. 

 

3.5. Modelling of transport phenomena in heterogeneous 
catalytic reactors 

 

In this section the different models for transport phenomena are presented. The included 

techniques are not intended to be complete, but rather to describe some common techniques 

and their properties. In section 5.5, quantifications and deeper analysis of the impact of the 

different models will be given using the model from paper IV as an example. A good 

summary of this topic can be found in [Kapteijn 1997]. 

 

In this thesis project, the modelling of transport phenomena is of secondary importance since 

the chemical kinetics is of primary interest. However the transport phenomena must always be 

considered and therefore a number of options are available. Below is a list of actions in order 

to enable various approximations for modelling of monolith reactors: 

Tuning experimental conditions  

 

By adjusting the experimental conditions appropriately, the transport phenomena can be 

neglected: 

 Use low concentrations: 

o Prerequisites for Fick‟s law for diffusion (assuming constant diffusion coefficient) 

is not violated. Also low concentrations leads to low reaction rates, which will 

decrease the mass transfer resistance.  

o Heat of reaction is low so that the reactor may be assumed to operate isothermally 

and thus heat transport may be neglected. 

 Use low temperatures to make kinetics more limiting than mass transport. 

 Use high flow rates to decrease external mass transport resistance. 

o High flow rates will also make the reactor more “differential”, making the axial 

concentration variation over the reactor small and allowing more direct 

measurement of reaction rates.   

 Use a thin washcoat containing the catalytic material so that pore transport resistance 

becomes negligible. 

Dealing with transport phenomena 

 

If the experimental conditions are such that the transport phenomena cannot be neglected, 

they will need to be treated otherwise the kinetics will be masked by transport limitations and 

the validity of the kinetic parameters will be reduced. In many cases, the objective may even 

be to understand the interplay between kinetics and transport phenomena, e.g. for automotive 

catalytic design and process optimisation. There are different options for different phenomena 

 Model axial dispersion
19

 by “tanks-in-series”  (see 3.5.1) 

 Approximate radial diffusion by a “film model” (see 3.5.2) 

                                                

 
19

 Dispersion is a phenomenon arising from both diffusion and convection. 
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 Neglect pore transport resistance, or model the pore transport using an effectiveness factor 

(see 3.5.3) 

 Neglect heat transfer, or model the heat flux similar to mass transport (see 3.5.4) 

The following sections briefly describe the different methods relevant to this thesis. 

 

3.5.1. Lumping in axial direction: Tanks-in-series 

In order to avoid partial differential equations (PDE) for a transient reactor model, the axial 

dimension may be approximated with a tanks-in-series model.
20

 Considering the monolith 

channel as a tube reactor, this approach approximates the tube reactor with a number of ideal 

continuously stirred tank reactors (CSTR‟s) connected in series. This approximation captures 

the axial dispersion but neglects radial diffusion. When the number of tanks becomes large, 

the model approaches a plug flow reactor. 

 

 
Figure 10. The monolith channel is approximated by a series of continuously stirred tank reactors 

(CSTR). 

 

It is possible to calculate the number of tanks needed to capture the same phenomena as a tube 

reactor with dispersion effects, see appendix C, and this number is typically 20-50 for a small 

lab scale reactor depending on flow rate, temperature and composition. However, due to 

computational cost of the ode solver, this relatively large number can be reduced if the 

conversion is low enough, see Figure 11. 
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Figure 11 Effect of low number of tanks in the tanks-in-series model. If the conversion (consumption of 

feed reactants) is low in an overall point of view, the modelling error will be low and computational speed 

is gained. 

 

                                                

 
20 As an alternative to tanks in series, the finite elements method (FEM) can be applied. However, tanks-in-series 

is numerically a more stable/robust model. 
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3.5.2. Lumping in radial direction: film model for external mass 
transport 

In a fully developed laminar flow (which is the case in a monolith reactor except for a small 

entrance region) there is no radial velocity component. The transport of molecules to and from 

the washcoat occurs by diffusion. The diffusion in the bulk gas phase is governed by Ficks 

law of diffusion: j
*

A=DA yA, where j
*

A is the radial flux
21

, DA is the diffusivity and yA is the 

concentration gradient (driving force). Because we do not want to solve dc/dr (i.e. yA or 

resolve the true concentration gradient in the gas phase) we can approximate the overall 

gradient by a film of thickness delta  with a transport resistance related to the diffusivity. The 

film model is often defined as: 

 

 )c-(ckN sA,bA,cAA     (16) 

 

where cA,b is the bulk concentration, cA,s is the gas phase concentration just at the surface and 

kc,A is a mass transport coefficient. kc,A can be derived from 
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d

DSh
cAk     (17) 

 

where Sh is the  Sherwood number (dimensionless number that characterizes film transport 

resistance), DA is the molecular diffusivity and dh is the characteristic length, in this case the 

diameter of the monolith channel.  

The Sherwood number for monolith channels at steady state conditions was derived by 

Tronconi [Tronconi 1992], and in spite of the importance of transient experiments, this 

correlation is used in this thesis and the potential negative consequences are discussed in 

[Wickman 2007]. See also the appendix C for further details. 

 

3.5.3. Modelling of pore transport resistance 

The diffusion in the washcoat is often neglected by assuming that the diffusion transport 

resistance is sufficiently low, i.e. the rate of surface reaction is slower than the transport in the 

washcoat. This assumption is reasonable as long as the concentration gradient is low (by low 

conversion) but may be incorrect during transient conditions. Modelling of pore transport 

resistance was ignored in all papers in this thesis. The reasons for this are: 

 Thin washcoat (50-100µm) 

 The alumina washcoat is normally full of cracks, which facilitates the transport 

into the pores even further 

One way to evaluate the influence of pore transport resistance is by calculating the Weiss-

Prater parameter which is the ratio of observed reaction rate and pore diffusion. 

 

seff
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Pr     (18) 

 

                                                

 
21 The flux is normally composed by molecular flux (j*) and bulk flux. The sum of these fluxes are referred to as 

the combined flux (N). Due to the low concentration levels the bulk flux becomes negligible.  
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where r is the reaction rate [mole/(s*m
3
cat], L is the characteristic length (washcoat thickness, 

[m]), cs is the concentration at the surface (which is the same as the bulk concentration if we 

can neglect the external mass transport resistance) and Deff is the effective diffusivity [m
2
/s]. 

The  is the effectiveness factor and  is the Thiele modulus. More details are given in 

appendix C. 

 

3.5.4. Heat transfer models 

Heat transfer is very similar to mass transfer [Bird 2002] and the tanks-in-series and film 

models apply equally well to heat transfer. The film model for heat transfer can be written: 

 

 

h
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h
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    (19) 

 

Where Q is the heat transfer, A is the interfacial area, Tb and Ts are temperatures in the bulk 

and at the surface respecitively and h is the heat transfer coefficient. Here, the Nusselt number 

(Nu) is equal to the Sherwood number (Sh) and  is the thermal conductivity. However, in 

contrast to molecules, heat can be transferred through the monolith channels and out to the 

periphery of the reactor. It then becomes a delicate matter whether to model only one channel 

of the monolith or to take radial heat transfer fully into account. In paper IV the radial heat 

transfer was lumped into heat transfer to the quartz tube via a lumped heat transport 

coefficient UA similar to a film model: 

 

  ps TTUAQ     (20) 

 

Where Q is the heat transferred from the monolith to the quartz tube, Ts is the catalyst surface 

temperature and Tp is the temperature of the quartz tube. 

 

3.5.5. Mass and heat balances for a monolith reactor 

In addition to the mole balances, the heat balances are included in paper IV as shown in 

Figure 12. 

 
 
Figure 12. A schematic view of concentrations and temperatures at different radial positions. The straight 

lines connecting the bulk and the surface is governed by the film model. 

 

The mole and heat balances for the bulk are modelled as tanks-in-series and for each tank the 

balances are: 
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where ctot is the total gas concentration (calculated from the ideal gas law), the accumulation 

of mass and heat in the bulk (dyb/dt and dTb/dt) are set to zero.  

The mass balances for the gas at the surface (ys) and on the surface ( ) are: 
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where i and  i are the stoichiometric coefficients for the gas phase and surface respectively. 

The summations are done over all reactions in the mechanism. The accumulation in the gas 

(i.e. in the film closest to the surface) is set to zero, hence the volume of the film closest to the 

surface never needs to be calculated. 

 

The heat balances for the surface and the quartz tube are: 
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Where ∆HRi is the heat of reaction, h is the heat transfer coefficient, a is the channel area, UA 

is a lumped expression of the heat transfer coefficient to the outer quartz tube times the 

external area of the monolith. 

 

3.6. Modelling of kinetics in heterogeneous catalysis 

 

When assuming that a certain set of chemical reactions is occurring in a reactor, the resulting 

model will be a “kinetic model”. The complexity of this set can vary from small sets (see 

section about lumped expressions 3.6.6) to large sets (see section about microkinetic 

modelling 3.6.3). These sets will then be used to calculate the reaction rates at every time 

point and for every reaction in order to solve the mass balance for all reacting species. The set 

of reactions will implicitly contain a number of kinetic parameters which need to be 

evaluated. If these parameters are not known, different ways of estimating them exists (see 

section 3.6.2 below). A number of thermodynamic constraints are also imposed on the kinetic 

parameters as will be described in section 3.6.4 and an alternative to the Arrhenius expression 
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is presented in section 3.6.5. The technique of parameter fitting by various methods is 

described in a later section (4). 

3.6.1. Lumping of catalytic surface: The Mean Field approximation 

Modern catalytic reactors for NOX reduction described in e.g. paper II and IV have the special 

property that different sites have different tasks. As seen in section 2.3, the different sites 

cannot be (and are not) positioned all over the surface, but are dispersed forming small 

nanoclusters that are hopefully well spread over the surface. It is easy to realize that reactions 

including both Pt and Ba sites depend on the proximity of the sites. To rigorously model these 

(nano-) phenomena on a macro scale is (at least with today‟s computer capacity) practically 

impossible and hence the need for yet another approximation: the mean field (MF) 

approximation. A MF model approximates all sites to be equal and equally distributed, i.e. 

 Uniform particle size and shape 

 Uniform coverage of active sites. 

 Any “distance effect” (e.g. between Pt and Ba) must be compensated for by the kinetic 

parameters 

This approximation is of course never true, but by letting the fitted kinetic parameters 

compensate for these defects, the MF approximation becomes very useful. Other methods 

exist like Monte Carlo simulations [Olsson 2003], but again detailed assumptions of the 

surface structure must be postulated and the uncertainty is just “moved” to yet another 

“scale”. To conclude, for modelling of monoliths at atmospheric conditions, it seems difficult 

to find any better alternatives than the MF approximation. (See also section 6.2.) 

 

3.6.2. Atomistic models 

The lower limit of modelling relevant to heterogeneous catalysis is on the atomistic level. If 

one can describe e.g. how atoms move on a surface or how atoms react on a surface, this 

knowledge may be transferred to the macro-scale level. Presently, the dominating modelling 

technique is Density Functional Theory (DFT). These models take into account electron 

densities assuming that an atom‟s nucleus moves much more slowly than its electrons. DFT 

finds electron and nuclei positions that minimize the total energy. The theory and application 

of DFT is beyond the scope of this thesis, however it can serve as a beneficial technique to 

estimate various properties to be used in modelling on the macro-scale. These properties 

include: 

 Binding energies, i.e. activation energies for desorption. 

(physisorption/chemisorption) 

 Adsorption conformation, i.e. plausible geometrical position for an adsorbed species. 

 Vibrational frequencies in order to identify adsorbed species (typically reaction 

intermediates) 

 

Although these results may be very accurate; the reliability for a real system is uncertain. This 

is due to the many approximations done during the calculations and in particular assumptions 

about the support:  

 crystal planes or perfectly defined clusters 

 any distribution of crystal planes, surface size or cluster size distribution is neglected 

 

However, the technique can be used to estimate boundary values for Microkinetic models 

which can be extremely useful. Furthermore it can serve as the basis for the kind of models 

presented in section 3.6.5. 
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Calculations on NSR catalysis have been performed by Broquist et al. predicting reaction 

paths [Broqvist 2004] as well as heats of  adsorption [Broqvist 2002]. 

 

3.6.3. Microkinetic modelling 

Microkinetic modelling has been much appreciated in recent years thanks to James A. 

Dumesic et al. who contributed with a textbook in the early 1990s [Dumesic 1991].  

 

“A fundamental principle in microkinetic analysis is the use of kinetic 

parameters in the rate expressions that have physical meaning and, as 

much as possible, that can be estimated theoretically or experimentally. 

With reasonably good estimates of parameters such as …, this analysis can 

suggest which steps of the mechanism are likely to be kinetically significant 

and which surface species may be most abundant. This information is vital 

for predicting the manner in which the various steps in the mechanism may 

affect catalyst performance. 

 Should the microkinetic analysis be successful in reproducing all available 

experimental data using values of kinetic parameters that are consistent 

with known theoretical and experimental estimates, then microkinetic 

analysis may become an important tool in catalytic reaction synthesis. … 

microkinetic analysis provides a framework for the quantitative 

interpretation, generalization, and extrapolation of experimental data and 

theoretical concepts for catalytic processes.” 
Frame 2. Citation from introduction section in the textbook “The Microkinetics of Heterogeneous 

Catalysis [Dumesic 1991] 

 

A microkinetic model consists of elementary steps, i.e. most stoichiometric coefficients are 

equal to one and all equilibrium reactions are modelled as two separate steps. Each reaction 

rate is expressed as: 

 

reactants

ckr      (27) 

 

Where c is a dimensionless concentration (i.e. mole fraction y for gas phase species or 

coverage θ for surface species),  is the stoichiometric coefficient and k is the rate constant 

described by an “Arrhenius expression”: 

 

RT

Ea

Aek      (28) 

 

Where A is the pre-exponential factor and Ea is the activation energy. This expression was 

actually one of several possible formulations described by Van‟t Hoff [Van't Hoff 1884, 

1896] but was refined and established by Arrhenius [Arrhenius 1889a, b, Partington 1964]. 

For temperatures far from absolute zero (which is the case for experiments relevant to this 

thesis), the exponent (-Ea/RT) will have a large influence on k. This means that a change in 

theoretical reaction rate can be induced either by a change in Ea or in A, i.e. we have 

correlation between these parameters. This is avoided by scaling, also referred to as centred 

pre-exponentials see section 4.3. 

There exist also a number of techniques to theoretically estimate kinetic parameters. These 

calculations always assume some kind of ideality but serve as useful starting guesses. These 

methods are for example DFT (as described above), Bond-Order Conservation (BOC), 
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Transition State Theory and kinetic gas theory. For more details about theoretical parameter 

estimation methods, see [Dumesic 1991] and the appendix C. 

 

The most attractive features of microkinetic modelling are (as cited above): 

 It enables deeper analysis (identification of rate limiting steps, etc) 

 It should be better for extrapolation (compared to other more kinetically lumped 

models) 

Among the drawbacks are: 

 A More complex mechanism 

o Larger system of differential equations to solve (increased computational cost), 

especially for transient (time dependent) simulations. 

o More correlation between parameters (difficult parameter fitting and model 

evaluations) 

o Risk of making inappropriate assumptions about mass transfer limitations (i.e. 

neglecting these effects due to computational limits) 

These parameter fitting aspects will be further discussed in section 6.6. 

Microkinetic modelling has been successfully described in the literature, see e.g. [Stegelmann 

2004, Stoltze 2000] 

 

3.6.4. Thermodynamic constraints 

For equilibrium reactions the thermodynamic laws should be fulfilled at all times and the 

change in Gibbs free energy is given by: 

 

)ln(KRTSTHG     (29) 

 

If the net enthalpy change ( Hnet, given by calculation from gas phase species) is constant (for 

all times and all states), the activation energies in the microkinetic mechanism must fulfil: 
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This must also be fulfilled for all coverages and if one uses coverage dependent activation 

energies (Ea), then this must also be taken into account. (see e.g. [Park 1999] 

Similarly for S, the change in entropy must be constant for all temperatures:  
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These thermodynamic constraints can be implemented as restrictions on the parameters, 

adjustment of some chosen parameters (e.g. [Olsson 1999]) or reformulation of the problem 

(modelling of equilibrium instead of separate reaction steps, e.g.[Mhadeshwar 2003]). 

Alternatively, the “Thermodynamic state variable modelling approach” can be applied as 

described in the next section. 
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3.6.5. Thermodynamic state variable modelling 

In order to maintain thermodynamic consistency c.f. eqs. (30) & (31), one pair of parameters 

(A,Ea) needs to be adjusted during parameter fitting (by treating them as “slack” parameters) 

for each global reaction path. If the slack parameters are chosen carefully, this approach may 

work satisfactory. However, the introduction of a slack step also introduces stiffness in the 

parameter fitting, especially for experimental data with fast transients. Thus, the concept of 

Thermodynamic state variable modelling is an interesting alternative approach that avoids the 

necessity of slack parameters and has additional benefits.  

 

Instead of having model parameters of Arrhenius type, thermodynamic state variables (H, S) 

are used as model parameters. The Ea and A in the Arrhenius expression can then be easily 

calculated for arriving at the conventional rate expressions, when solving the mass balances, 
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    (32) 

 

where superscript # denotes the transition state and the summation j is over the reactants in 

reaction i.  

One drawback with the direct use of A and Ea as model parameters is that they are often 

considered to be independent of temperature even though they mostly have at least a slight 

temperature dependence. By using the present approach, the thermodynamic consistent 

temperature dependence of both H and S can be easily implemented by introducing 

temperature dependence for H and S. Another benefit with this modelling approach is that 

parameter bounds can be made physically sound, e.g. for entropy: S > 0 and Sads < Sgas, 

moreover, these restrictions can be easily implemented. In order to obtain initial estimates for 

S and H, independent methods such as density functional theory (DFT) and calorimetry can 

be used (see also the Appendix). Similar to traditional parameter fitting, a set of parameters 

will be subject to fitting, including adsorbed states and/or transition states. 

 

It should be realized that one important difficulty is to determine the initial values for H and S 

at transition states. However, BOC and Transition state theory (together with other techniques 

and published values) can be applied to retrieve the necessary transition state values. Note, the 

transition state values are easily retrievable from the Arrhenius parameters, H and S for the 

adsorbed species together with eq.(32). 

 

The number of degrees of freedom (d.f.) compared with a traditional Arrhenius type of 

formulation imposing thermodynamic consistency will be the same, i.e. no gain in fewer 

parameters will be achieved. However, the reduced parameter stiffness, the proper description 

of parameter temperature dependence, the easier implementation of DFT estimates and better 

parameter bounds makes this method interesting. 

 

This method was applied to a proposed mechanism for H2-assisted NH3-SCR over a Ag-

Al2O3 catalyst. In Figure 13, an example of an energy diagram displays H and S for single 

adsorbates as well as transition states for the different reactions. 
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Figure 13. Example of an energy diagram using the present method. * indicates adsorbed specie, # 

indicates a transition state for a reaction. 

 

3.6.6. Lumped kinetic models 

Even though detailed (microkinetic) models prevail in this thesis, there are other kinetic 

models worth mentioning in this context. These lumped kinetic models are usually intended to 

express the rate of an overall reaction and not a set of elementary reactions. 

 

Power law model 

A power law model is typically set up as: 

 

  

reactants

ckr     (33) 

 

Which in essence is the same form as the microkinetic form, but with the difference that the 

exponents  can have any value (not only integers), k is still in an Arrhenius expression. 

 

Langmuir-Hinshelwood model 

Here one assumes that adsorption and desorption processes are much faster than the surface 

reaction and the adsorbed species will be in equilibrium with the gas phase. The reaction rate 

will be proportional to the surface concentrations and by analytically expressing these surface 

concentrations in terms of gas phase concentration one can arrive at: 
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This equation is just one example for the reaction A + B => C where A and B is assumed to 

adsorb on separate sites. k is a reaction rate constant, KA and KB are adsorption equilibrium 

constants and PA and PB are the gas phase concentrations (expressed in partial pressure). 

Other models such as Rideal or Eley-Rideal generate similar expressions and assume that the 

reaction occurs between one adsorbed species and one gas phase species. 

These types of kinetic expressions are usually applied to express the rate of overall reactions 

and not to detailed kinetic models. For further reading about common kinetic models, see e.g. 

[Satterfield 1980] 
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4. PARAMETER FITTING AND ASSESSMENT 
 

“When we gather information from the world,  

we contribute to its entropy and hence its unknowability.” - Otto Rossle 

 

In order to get good estimates of the model parameters that are unknown, some kind of 

adjustment is necessary. In mathematical terms one defines an “objective function” and then 

one wants to manipulate the model parameters so that the objective function reaches some 

criteria. The most common objective function is the residual function: 

 

),(),( mod βxβx elobserved yyf    (35) 

 

The criterion to be met is the minimization of the objective function and therefore the square 

of the residual is often used. In the following we will use  for model parameters, so that the 

objective function can be stated as: 
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In the following sections different approaches to parameter fitting will be briefly described. 

 

4.1. Linear least squares method 

 

The least squares method was already reviewed in section 3.1.1. This method is the most 

fundamental method and will be referred to many times. The solution to the problem above, 

eq (36), is given by: 

 

YXXXb
1 ')'(     (37) 

 

The term “linear” arises from the fact that y is a linear function of b,  i.e. 
2
y/ bi bj=0 for all i 

and j. Note that the roman letter b is used for parameters in linear models, where as the Greek 

letter  is used for nonlinear models. 

 

4.2. Nonlinear least squares methods 

 

Below is a very short version of nonlinear regression analysis from [Bates 1988]. 

 

For a nonlinear function y, the partial derivative of the function is still dependent on at least 

some parameter, i.e. 
2
y/ i j 0. This means that the parameter vector that minimizes the 

residual cannot be directly calculated as in eq (37) above. When optimizing in the least 

squares sense, the objective function is: 
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where ( ) = ymodel(x, ) with the dependence on x being dropped because we consider a 

specific set of observations. z( ) is the residual corresponding to f in the linear case. 

 

The solution is obtained in several steps: 

1. Approximate the objective function S(θ) by a Taylor expansion: 
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2. The quadratic approximation will have a minima when the gradient is zero, i.e.: 

 

0)( 0
ββΩω               (40) 

 

and if  is positive definite =-
-1

. When the linearization is exact, the optima will 

be reached with the step  (called the Newton-Raphson step).  

3. For the function S( )=(y- )‟(y- ), the gradient  and Hessian Ω are given by: 
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When setting the second term of the Hessian to zero, we obtain the “Gauss-Newton” method. 

For further details, see [Bates 1988].  

 

The above citations were given to illustrate what needs to be calculated during parameter 

fitting of nonlinear systems. If one has for example 10
4
 experimental data points, the 

calculation of these data points constitutes one function call. If one then has p adjustable 

parameters, then the Jacobian takes about p function calls. The Hessian takes about p
2
 

function calls which becomes considerable if p is moderately large, since this must be 

performed for every iteration during the fitting procedure. See also section 6.8. 

 

4.2.1. Quadratic Programming, Lsqnonlin 

Quadratic programming is a procedure for carrying out nonlinear least squares optimization 

but with constraints on the parameters. For more information, see e.g. [Edgar 2001]. 

An example of one such is Lsqnonlin found in the Matlab optimization toolbox,. Lsqnonlin is 

a least squares optimizer for nonlinear problems. There are several options of algorithms and 

when bounds on the parameters are specified (e.g. activation energies greater than zero) the 

lsqnonlin function uses a “large scale” algorithm. 
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The large scale algorithm uses a trust region method and preconditioned gradients. The 

description of these algorithms can be found in the Matlab documentation,  [Coleman 2001, 

Mary Ann Branch 1999, Thomas Coleman 1996] 

 

4.2.2. Gradient Free fitting algorithms 

One alternative way of minimizing the objective function is to use gradient free methods. 

These methods do not assume any gradient, but must evaluate more parameter settings during 

the fit. This introduces a trade-off between deviation from a trustworthy gradient and 

computational cost. For a parameter space that is limited to two levels, a factorial design will 

cover the parameter spaces and 2
p
 function evaluations would be enough to find the most 

optimal point (for 20 parameters, 2
20

  10
6
 function evaluations). If each parameter can have 

many values (e.g. discretized in 10 intervals), the number of function evaluations increases 

dramatically to 10
p 
(for 20 parameters, 10

20
 function evaluations).  

Gradient free methods are not within the scope of this thesis but are still very interesting since 

the reliability of gradients is low for highly non-linear systems, especially with poor 

parameter estimates (parameter values far from optimum). Examples of a gradient free 

algorithms are simulated annealing [Aghalayam 2000, Eftaxias 2002, Kalivas 1992, 

Raimondeau 2003, S. Kirkpatrick 1983] and Genetic Algorithms [Routray 2005]. 
 

4.3. Parameter pre-treatment 

 

As in every regression situation we assume independence and specifically independent 

variables. In Quadratic Programming for NSR systems, the variables are the model 

parameters and the objective of the parameter pre-treatment is to transform them to be as 

uncorrelated as possible. The concept is “taken” from DoE (section 2.1) where a classical 

scaling is the “UV-scaling” which means centring of the variables and scaling them to unit 

variance. In the case of parameter fitting this means: 
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where raw is the unscaled current parameter value, mean does not necessarily mean the 

average, but rather the “setpoint” or “best guess” of the parameter value. Std( ) does not 

necessarily mean the spread of the parameter but rather a measure of the allowed range for the 

parameter value. 

By applying this transformation to all parameters regardless of their physical meaning (i.e. 

treating pre-exponential and activation energies separately) we obtain all the parameters on 

the same “level” as well as on the same “scale”. 

The “allowed range” can be implemented in (at least) two ways: 

1. to correspond to the actual allowed range, which implies that an extreme parameter 

value (on the border of allowed range) will have a scaled value of +/- 1. 

2. to correspond to a defined response in the system. For example that the “allowed 

range” will correspond to a doubling of halving of the reaction rate. This will make the 

settings of the bounds much easier. 

 

In order to get the pre-exponential and the activation energies to be as uncorrelated as 

possible, one performs “centring” of the pre-exponentials: 
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This “transformation” will obtain the centered pre-exponentials to capture the “amplification” 

and the Ea will capture the temperature dependence, since Tref is chosen as the average 

temperature for the experimental data. This technique was, to my knowledge, first introduced 

by [Hawthorn 1974]. 

 

4.4. Model and model parameter evaluations  

 

Once an acceptable fit has been obtained, it is important to evaluate the fit and the model 

performance. A number of analyses are available and the choice will depend on the objective 

and on ones level of ambition. 

 

4.4.1. Residual analysis 

Since the objective function of any “Least squares” is comprised of the residuals, it is of 

course vital that they are analysed. For linear models there are a number of standard analyses 

which need to be done: 

1. How large is the residual? This can be done by an ANOVA (ANalysis Of VAriance) 

table.  

a. If the residual (quantified as the sums of squares, SS) is significantly larger 

than the SS of the model (compensated for degrees of freedom), than one 

cannot reject the hypothesis that the model parameters could have any values 

including zeroes. 

b. Lack of Fit (LoF) analysis: The residual is compared to an estimate of pure 

error (PE), e.g. from replicates. If the SSresidual is significantly larger than the 

SSPE, then there is a systematic contribution to the residual which was not 

captured by the model and the model was not “correct”. This was assumed in 

the first place so if the model has LoF, then counter-measures must be taken. 

2. Has the residual any structure? This can be assessed by various techniques: 

a. Normal probability plot: This plot can reveal if the residual has a normal 

distribution. This is always assumed to be the case, so if the residuals do not 

show this behaviour, counter-measures bust be taken. 

b. Plot of residual versus run order: If this plot shows systematic behaviour, then 

the residuals are not independent.  The reasons for this behaviour should be 

found and counteractions taken. 

c. Plot of residuals versus variables: If this plot shows a systematic behaviour 

different causes may be contributing e.g. Lack of Fit, deviation from 

assumptions of constant variance, deviations from assumptions that x was 

exactly known. 

 

One first analysis subsequent from a residual analysis may be a partitioning of the residual 

into smaller (and hopefully) independent sources. E.g. σ2
tot = σ2

model + σ2
signal disturbance + 

σ2
instrumental errors  + σ

2
sample deterioration + σ2

parameter fitting + … . Then one may assess the causes 

of the residual and countermeasures may be taken. For more details about residual analysis, 

see any textbook about DoE, e.g. [Montgomery 2001]. 
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All these analyses and potential countermeasures are possible for linear systems. When we 

have nonlinear systems and in particular time dependent observations, the whole situation 

becomes more complicated. However, it is very important to keep the linear situation in mind, 

in order to be able to sort among all different causes for non-ideal fit. 

 

4.4.2. Parameter confidence intervals 

The confidence interval of a model parameter in a linear model is given by: 

 

iipnii Qt
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This formula tells us many things about what influences the uncertainty of the parameters: 

 t-value: the probability level ( ) always needs to be specified 

 t-value: the degrees of freedom (n-p) are important 

 σ2
: The level of noise is (of course) an important part. 

 Qii: The correlation (from eq. 49) indicates the independence of observations.  

 

For a nonlinear model, the analysis is the same, but the nonlinear model needs to be 

approximated by a linear one. This is done by some kind of Taylor expansion around a certain 

parameter point.  

 This then indicates that the confidence intervals are valid ONLY at one specific set of 

parameter values. 

 

As for the analysis of residuals, the assumptions are the same as in section 3.1.2. For example 

it is assumed that the model is correct and that the other variables (as well as all other fixed 

parameters) are known without errors. For more discussion on this subject, see section 6 

 

4.4.3. Parameter sensitivity analysis 

As described in [A. Varma] sensitivity analysis is (as indicated by the name) is a method of 

evaluating how sensitive a certain dependent variable (y) is for small perturbations in model 

input parameters ( ). This is done by analyzing the derivative, either analytically or 

numerically, by using finite differences. There are different types of sensitivities but only two 

that are used in this thesis: 

 

1. local sensitivity:  

 

β

y
βys ),(local     (45) 

 

This is the local sensitivity matrix. There can be many parameters in the parameter vector  

which will give the columns of S. The input parameters  are usually the kinetic parameters 

(pre-exponentials and activation energies) but can be ANY “constant” in the model structure 

such as: 

 Number of active sites 

 Effective diffusivity, mass transport coefficients 

 ODE solver parameters 
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Also, there can be many observations of y (e.g. time dependent observations) which will give 

the rows of S. Moreover, there can be different responses in y which can give a third 

dimension of the Sensitivity array. Examples of y are: 

 outlet concentrations 

 average surface coverage  

 reaction rates 

The practical way to treat a three-way matrix (at least in this thesis) is by “slicing” the three-

way array to a more easily handled two-way matrix.  

 

2. Objective sensitivity: 

 

β

f
βfs ),(objective     (46) 

 

This sensitivity is based on some objective function, f and can be one of the dependent 

variables but also any output from the model such as: 

 Objective function during parameter fitting  

 Conversion of a reactant at a specific time point 

 Selectivity for a desired product at the reactor outlet 

 

Since the different dependent variables and the input parameters have varying numerical 

range and since one wants to compare sensitivities, one sometimes uses a normalized 

sensitivity: 
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)ln(

)ln(
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y

β

β

y

β

y

y

β
βyS localnormalized   (47) 

 

The sensitivity of the parameter fitting objective function (e.g. residual sums of squares) with 

respect to the fitted parameters is referred to as the Jacobian, J. 

 

If one is using “manual” analysis of the Jacobian, it is convenient to time-average the 

sensitivity matrix and to use the correlation matrix instead: 

 

)()'( QQ

Q
C

diagdiag
    (48) 

Where 

 
1)'( JJQ      (49) 

 

In this thesis sensitivity analysis is often used: 

 In Paper II, the Jacobian is used for parameter estimation 

 In paper III the gas phase sensitivities are used for experimental design 

 In section 5.5 various sensitivities are used for the assessment of model parameters 

and model assumptions 

Other examples of applications of Sensitivity Analysis (SA) include: 
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 Sensitivity analysis (SA) of Q has been performed for model reduction using PCA by 

Vajda [Vajda 1985]. SA of reaction rates (using eigenvalues from PCA) has been done 

by Turányi [Turányi 1989] 

 Sensitivity analysis for model reduction has also been done by Jansson analysing the 

correlation matrix [Jansson 2002, Jansson 2004] 

 Sensitivity analysis for model evaluation and model reduction has been used with 

success by the group of Vlachos [Aghalayam 2000, Mhadeshwar 2004, Mhadeshwar 

2005a, b, Raimondeau 2003] but only for steady state experiments. 

 Valid parameter ranges can be calculated using sensitivity analysis as demonstrated by 

[Song 2002] however not emphasizing parameter correlations. 

 The incorporation of noise estimates is a rare topic in the literature. The reasons may 

be that other concerns are judged more important. Sound basics in statistics and DoE 

should mostly be sufficient see e.g. Meinrath [Meinrath 2000].  

 

4.5. Design of Experiments for precise parameter 
estimation 

 

General aspects of DoE were described in section 2.1(Design of Experiments (DoE)) and this 

section gives some comments on DoE for non-linear modelling. The DoE for nonlinear 

models was first developed by [Box 1959] and has further been developed since then, see 

[Walter 1990] for a review. Below is a list with some aspects considered in this thesis and 

especially in paper III. See also the Introduction section of paper III. 

4.5.1. Batch sequential approach 

Transient experiments are very valuable for kinetic modelling [Berger 2008] and parameter 

estimation, as illustrated in paper IV, thus motivating the use of many observations in the 

parameter fitting. Furthermore, due to practical reasons, a set of experiments (a “batch”) is 

preferred.  

 

4.5.2. Screening v.s. searching 

Due to the many parameters and the high parameter correlation, a classical search for optimal 

design is computationally impractical. However, the parameter correlation enables a reduction 

in dimensionality by the use of an LV model, e.g. PCA. The use of a PCA model enables 

more efficient use of the experiments, since the number of components (i.e. the number of 

independent phenomena manifested in the data) gives the minimal number of experiments 

that span the effective parameter space. This number of experiments is fewer than the number 

of parameters which would be the number of required experiments if no correlation was 

assumed. Since the number of components is not known a priori (it depends on the 

experiments and also on the specific parameter values) a screening approach is preferred. The 

screening can be made as large as the computational capacity allows.  

 

4.5.3. Design objective function 

In the non-linear case, the model is linearised by the use of a sensitivity analysis, e.g. the 

Jacobian. Since the model is non-linear in the parameters, an orthogonal design (such as a 

factorial design) is often practically impossible to obtain. Instead, one needs to determine the 
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“goodness” of a plausible design and the different criteria uses the Jacobian, in this context 

denoted as X. See e.g. [Walter 1990]for a survey: 

 D-criterion: maximize the parameter volume, i.e. the determinant of X‟X 

 E-criterion: maximize the smallest eigenvalue of X‟X 

 C-criterion: minimize the pairwise correlation [Pritchard 1978] 

 AC-criteria: different variations which minimize parameter correlations [Franceschini 

2008b] 

 METER-criterion: minimise the expected total error [Bardow 2008] 

In paper III the D-criterion was used since it is the most widely used criterion and since it was 

one of the options in the design software used (Modde 8.0 from Umetrics). 

 

4.6. Comments on numerical aspects 

 

When performing simulation of time-dependent, large reaction mechanism systems, there are 

some important aspects to consider: 

 The system of ODEs is probably stiff due to the variability in dx/dt (some reactions 

are much faster than others). Even if a stiff solver was used (ode15s in MATLAB)  

throughout this thesis project, care needs to be taken in order to obtain reliable results. 

 Furthermore, for parameter fitting using gradient methods, where the gradient is 

calculated by finite differences (as in lsqnonlin in MATLAB), the size of the step used 

to calculate the derivative is important. If it is too small, numerical noise in the ode-

solver will deteriorate the gradient estimation and if it is too large it will include non-

linearities. 

A range of numerical parameters were evaluated for a kinetic model of NO oxidation over Pt-

Al2O3 using the one set of transient experiments from paper III [Brühwiler 2007] and the main 

conclusions were: 

1. The use of transient experiments resulted in 100 times smaller confidence intervals 

compared to steady state experiments, but with a increased computational cost of 30 

times longer computations. 

2. The gradient search method requires that the initial parameter values are close to the 

“true” values. If the initial values deviated more than 38% from the “true” values, the 

gradient search method failed. Unfortunately, this case study used only steady state 

experiments. 

3. Tolerances in the ode solver should be checked, e.g. using the condition number of J‟J 

as a measure. When the condition number is “stable”, the ode solver is insensitive to 

the ode-parameters, which is desirable. In this study it was found that the absolute 

tolerance should be less than 1 10
-6

 and the relative tolerance should be less than 

1 10
-5

. However, the calculation time is also a practical parameter, see Figure 14. 

4. In lsqnonlin, the calculation of the Jacobian using finite differences, is sensitive to the 

step size (dp). Even though scaled parameters were used (see eq.42), the default size 

of 1 10
-8

 gave a condition number of J‟J much higher than 1 10
+18

, which yields 

inaccurate results since the inverse of J‟J is needed. In order to reach cond(J‟J) values 

smaller than 1 10
+18

, a dp>1 10
-6

 was needed. Furthermore, the size of the confidence 

intervals should be independent of the dp and moreover, the results should be 

independent of whether +dp or –dp is used. The range for these requirements were 

obtained for 1 10
-4

<dp<1 10
-2

, see Figure 15. 
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Figure 14 Calculation times and cond(J’J) for varying the tolerances in ode15s. RelTol is the relative 

tolerance and AbsTol is the Abolute tolerance. Note that the mole fractions are expressed as ppm, thus the 

relatively low values of the absolute tolerances. 

 

 

 

 
 Figure 15. Confidence intervals for the 13 fitted parameters (using a set of transient experiments) as a 

function of the step size during calculation of the Jacobian using finite differences. For small dp the 

confidence intervals were small, but cond(J’J) was large and the confidence intervals were inconsistent 

with the ones obtained with a larger dp. For large dp values non-linearities were observed because the 

confidence intervals were sensitive to whether +dp or –dp was used for the finite differences. 



42 



   43 

5. MODEL APPLICATIONS 
 

“One of the most difficult problems concerns the chemical analysis of mixtures  

containing an unknown number of unknown amounts of unknown components” 

E.R. Malinowski (1992) 

 

5.1. Paper I: Use of experimental design in development of 
a catalyst system 

 

In a research programme funded by the Swedish National Energy Administration, a full scale 

NSR process was tested and developed using a Heavy Duty diesel engine (Scania 11 dm
3
) in 

an engine rig. The system is depicted in the figure below: 
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Oxidation catalyst

NOX trap catalyst
T

G

1000  
Figure 16. Catalyst setup. G = gas sampling point, T = thermocouple,  = broad band -sensor, I = 

injector. 

 

In this system NO is oxidized to NO2 in two oxidation catalyst monoliths with a total volume 

of 9.4 dm
3
. Downstream NO2 is stored on 3 NOX trap monoliths with total a volume of 18.9 

dm
3
. The catalysts were commercial and their exact composition unknown. However the 

oxidation catalyst contained Pt on Al2O3 and the NOX trap contained Pt/BaO on Al2O3. The 

system has a bypass line operated by butterfly and EGR valves.  

The project objective was to demonstrate NOX reduction corresponding to Euro IV
22

 on a 

European Transient Cycle (ETC).
23

 In order to set up a control strategy, it was decided to 

optimize a number of representative load points
24

 at stationary conditions. Typical Storage 

and reduction cycles for stationary runs (constant load and speed) are shown in Figure 17.  

                                                

 
22 Euro IV is the common name for legislation limits for vehicle emissions [Fontaine 2000]. For Heavy Duty 
Diesel engines this means a 60% reduction of NOx compared to previous limits (Euro III). 
23 ETC is an engine rig test protocol to demonstrate compliance with emission legislations. It has a duration of 

30 minutes which simulates 10 minutes each of urban, rural and highway driving. 
24 A load point is a combination of the speed of the engine (rpm) and load applied on the break (Nm). This 

combination of two variables almost completely (apart from transient effects) determines the engine performance 

and thus the amount and composition of the emissions. 
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Figure 17. Time trend plot showing different signals from the system during two cycles. The gas sampling 

point was after the catalyst. (This experiment was N4, it=20s ir=938mg/s, bt=40s, ct=120s).  The plot 

illustrates: a) the injection period (4-24 s, 124-144 s) where the injected reducing agent creates a 

breakthrough peak and the lambda value goes well below one, b) the bypass period where at the end the 

outlet NOX levels suddenly decrease when the bypass line is closed, c) the storage period beginning with a 

baseline in NOX levels at about 140 ppm indicating the maximum NOX storage rate followed by a decrease 

in NOX storage rate resulting in an increase in NOX levels. 

 

The objective of this study was to adjust the controllable injection parameters to optimize 

NOx reduction and at the same time minimize fuel penalty. The four controllable parameters 

included: 

1. Cycle time (ct) [s] 

2. Injection time (it) [s] 

3. Injection rate (ir) [mg/s] 

4. Bypass time (bt) [s] 

The system was to be optimized using a linear model which also contained a cross product 

it*ir = injected amount.  The optimization was to be repeated for different load points, so the 

use of Design of Experiments came naturally. Small screening designs capable of estimating 

main effects (plus the cross product) were used in order to investigate which combinations of 

parameters could achieve optimal NOx reduction with minimal fuel penalty. The models were 

fitted with PLS and coefficient plots were interpreted. Also surface response plots were used 

to illustrate which combination of parameters to use.  
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NOx reduction

 

Fuel penalty

 
  

Figure 18. Response surface plots showing NOX reduction and fuel penalty for various settings of injection 

time and injection rate. The cycle time is fixed at a low level (120s) and the bypass time is fixed at the 

centre level (20s) 

 

In could be seen in Figure 18 that the highest NOx reduction was obtained at high injection 

times and high injection rates, but this led to a high fuel penalty.  A low injection time and 

high injection rate were selected as optimal settings. 

 

Similar designs were performed for several other load points. When inspecting the different 

optimal settings for different load points, it became clear that besides thermodynamic 

limitations (NO oxidation is prevented at high temperatures) and kinetic limitations (slow 

NOx storage for low temperatures) system limitations possibly due to the system design were 

identified. 

 

One of the valuable conclusions from this study was the identification of the optimal injection 

parameter settings within the investigated space, for this rather complex process. Continued 

optimization was then applied expanding the parameter space even further. Studies and 

optimization of operating parameters for NSR systems have been published before [Kabin 

2004, Theis 2002] but their methods did not contain any DoE. This does not mean that these 

results were wrong, but rather that the experiments probably could have been carried out more 

efficiently. 

 

After this study the optimal injection settings were used as a map for all load points in an 

ETC. Additionally, the temperature was used to decide how the regeneration was to be 

performed. This resulted in a NOX reduction of 60% together with a fuel penalty of 6.6%. 

[Papadakis 2007]  
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5.2. Paper II: New Approach for Microkinetic Mean-Field 
Modelling using Latent Variables 

 

After inspiration from a PhD course in Microkinetic Modelling it became evident that an 

infinite number of parameter sets were possible to achieve a good fit for a simple system (in 

this case a temperature programmed reaction (TPR) curve for SO2 oxidation on Pt). The plan 

was to demonstrate this on a larger system, e.g. an NSR system (a larger mechanism, multiple 

sites, and more transient conditions) and the goal was to show how different parameter 

settings gave different conclusions and thereby indicating the need for confirmation 

experiments. However, the first task was difficult enough even though it may seem possible to 

adjust a large number of parameters to a relatively small dataset. 

 

The paper develops new methods for parameter fitting by introducing sensitivity analysis 

during the fitting procedure. Sensitivity analysis is commonly performed AFTER the fitting 

for the purpose of parameter evaluation, calculation of confidence intervals or model 

reduction. The sensitivity analysis is further refined compared to previous work by using LV 

regression methods e.g. PLS. Previous work (e.g. [Davis 2004, Vajda 1985]) uses PCA or 

similar analysis methods that do not include the objective function in the analysis. A 

somewhat similar method was also published by Luna-Ortiz [Luna-Ortiz 2005] which deals 

with a model reduction-based optimization scheme. They also used projection methods to 

capture the slow dynamics but they did not focus on the objective function itself. 

 

The use of sensitivity analysis gives three important messages: 

1. Awareness of the correlation among kinetic parameters for Microkinetic models. 

2. Analysis of the correlation structure gives valuable information about the experimental 

rank and thus the number of parameters suitable for fitting. 

3. A deeper analysis of the correlation structure also directs the choice of which 

parameters to choose when many parameters are subject to uncertainty. 

 

The fist step in the method is to calculate the Jacobian using finite differences.  

 

f
J      (50) 

 

Then the Jacobian is regressed against the residual itself, so we get a (linear) model describing 

the relationship between J and Y: 

 

C'WCW)(P'Wβ

βJY

1

PLS

PLS

'
   (51) 

 

Predictions are not performed, instead the regression matrix itself, W
*
C is used further. Two 

different alternatives are shown in the frames below: 
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Step 1. The number of significant PLS components were often around 10 (A=10). Thus about 

10 parameters were chosen to be fitted. 

Step 2. The parameters to fit were chosen so that all parameters spread reasonably well in all 

loading plots (w*c1/w*c2, w*c3/w*c4, and so on). The choice was always influenced 

by the reaction that they represented. 
Frame 3.  Method I how to select parameters by using an LV model. 

 

Step 1. Calculate a PLS model by regressing the Jacobian against the residuals (commonly 

explaining 70-90% of the variance in Y using A=10 components) 

Step 2. Initialize the parameter vector to fit t (of length Ax1). The values being zeros for 

reasons of scaling. 

Step 3. Within the function call “extract” the original parameters using the loading matrix W
*
  

[kxA]:  θ [kx1] = W
*
t and calculate the objective function as usual. 

Frame 4.  Method II how to select parameter combinations (loadings) to use for fitting. 

 

The use of LV models in this process yields: 

1. Fewer components than the case for e.g. PCA (e.g. as in [Vajda 1985]) 

2. A straightforward method to choose parameters (method I) or to fit in LV space 

(method II) which also could be implemented in the fitting code directly 

 

After a number of iterations of fitting and using manual tuning to escape from local minima, 

the result was still not perfect. The reasons for this can be at least one of the following: 

 The model was not correct, and there exists no set of parameters that can describe the 

experimental data 

 The applied method using different kinds of gradients was not able to find the desired 

fit. 

 

On the methodological side, one conclusion was that the traditional way of regarding 

parameter fitting for microkinetic models stated as:  

 

 “Calculate what you can and fit the rest” 

 

Should be replaced with an alternative maxim stated as: 

 

 “Fit only the parameters necessary to span the effective parameter space”
25

. 

 

This may not seem revolutionary to some people, but from studying the literature, this insight 

is not visibly declared. 

 

 

                                                

 
25 In paper II this was stated as: “Fit only parameters that span the experimental space”, but this can 

accidentally be interpreted as the experimental conditions determining the parameter sensitivity, which is not the 

case. The parameter sensitivity is given by the model, the parameter values and the performed experiments in 

combination. The effective parameter space should therefore be a better notation for the orthogonal subspace of 

the parameter space, which evidently possessed high correlation in this study.   
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5.3. Paper III: Latent variable projections of sensitivity data 
for experimental screening and kinetic modeling 

 

After paper II, different investigations were performed to analyse the reasons for the lack-of-

fit Bengtsson, 2006 #924}[Lundström 2005]. One major factor was the lack of proper 

experimental design because the data in paper II was collected with objectives that did not 

include parameter estimation. In order to exploit the potential of LV models in kinetic 

modelling a method for experimental screening was developed. Since traditional methods are 

not well adapted to the combination of transient experiments, multiresponse data, many 

adjustable parameters and batch sequential approaches, a “brute force” method was chosen. 

The method consisted of the following steps:  

 

1. Define the experimental space (flows, temperatures, concentrations) 

2. Simulate these experiments and calculate the parameter sensitivity for every response. 

3. Reduce the number of correlated columns to a few orthogonal ones by means of PCA. 

The resulting score matrix will now define the reduced parameter space (i.e. the 

effective parameter space). 

4. Select a limited number of experiments necessary to span the effective parameter 

space, by means of a D-optimal design. 

5. Perform these experiments, perform the parameter estimation (in this case using a 

gradient search method, lsqnonlin in MATLAB) and iterate from step 1 if necessary. 

 

In this study, this iteration was performed twice using steady state experiments and 

subsequently transient experiments. The kinetic mechanism was NO oxidation on Pt 

consisting of 13 adjustable parameters. Published parameter values [Olsson 1999] with added 

noise were used to simulate experiments and the parameter estimation was initiated with 

different, independent parameter values. The results showed that very accurate fit could be 

obtained showing almost no lack of fit. On the other hand, the “true” parameter values were 

not obtained, thus indicating the consequences of parameter correlation. 

  

This approach has several benefits: 

 By using the “brute force” method, a search method for the optimal experiment was 

avoided. This should be beneficial since the many parameters, the many responses and 

the transient nature would probably be computationally expensive. On the other hand, 

the sensitivity analysis was also very computationally expensive. 

 In traditional approaches, the Fisher information matrix is used as a measure of how 

valuable an experiment is: 

 

sr
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m
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rs JJM '
1 1

    (52) 

 

Where m is the number of response variables and σrs is the element (r,s) of the inverse 

of the variance-covariance matrix of the experimental measurements and J is the 

Jacobian. This means that the information matrix is lumped both in responses as well 

as in time to produce a square matrix for further evaluation. By using the 

uncompressed sensitivity data, unfolding it, and compressing it this time by using a 

PCA model, no lumping is performed, but merely an approximation to fewer 

dimensions. 
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5.4. Study of NH3-SCR over silver alumina 

 

Since the pioneering work of Miyadera [Miyadera 1993], Silver alumina (Ag/Al2O3) has 

become increasingly interesting for HC-SCR due to its high activity in the presence of water 

and especially with addition of hydrogen, the low temperature activity is dramatically 

increased. There is a large number of published papers on NOX reduction over silver-alumina, 

see e.g. [Breen 2006, He 2008], but the literature dealing with kinetic modelling of Ag-Al2O3 

systems is sparse and limited to steady state experiments [Backman 2006, Mhadeshwar, 

Rönnholm 2007]. Beyond the difficulties of the complex reaction mechanism for SCR, silver 

alumina possesses even further challenges. One delicate problem with the modelling of this 

system is the strong interaction between the metal and its support [Hellman 2008] and another 

problem is the nature of the silver particles, being silver nano-particles, silver clusters, 

monodispersed silver atoms, or a combination of all [Breen 2007, Shimizu 2001] Through a 

scholarship from CenTACat (Queens University, Belfast, UK), a series of isotopic labeled 

experiments were performed. These results were presented at a conference (5th International 

Conference on Environmental Catalysis) 2008, but has not yet been documented as a journal 

article. 

 

5.4.1. SSITKA of NH3-SCR over Ag/Al2O3   

Various reaction mechanisms for the SCR over silver –alumina have been published, e.g. 

[Breen 2006, Yeom 2006] and one possible reaction intermediate is ammonia, NH3. Since 

ammonia is used as the reductant formed from the commercial ad-blue concepts, silver-

alumina has been suggested as an alternative to the potentially toxic vanadia-based catalysts 

[Richter 2004]. NH3-SCR has very low activity compared to every other reducing agent (e.g. 

octane, propene, ethanol), but by adding hydrogen, the activity is boosted to the same level as 

any other reducing agent, see Figure 19. 

octane

1-butanol

2-butanone

+ H2

octane

1-butanol

2-butanone

+ H2

 
 Figure 19. The NOX conversion as a function of temperature for various reducing agents (filled symbols) 

and the boosting effect of hydrogen when used as a co-feed (open symbols). Figure from [Shimizu 2006]  

Objective 

In order to understand the HC-SCR over Ag/Al2O3, the increased understanding of the NH3-

SCR should be a valuable contribution to the HC-SCR. Furthermore, as NH3 itself can be 

used as a reducing agent (and possibly with H2 addition), the kinetic analysis during SCR 

conditions are important. The objective was to perform Steady State Isotopic Transient 
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Kinetic Analysis (SSITKA) experiments to elucidate the amounts of reaction intermediates on 

the catalyst during SCR conditions. 

Experimental 

SSITKA was performed under SCR conditions using both H2/D2 and 
14

NO/
15

NO switches. No 

water was used in the experiments, fixed levels of reactants were used: 1000 ppm NO, 1000 

ppm NH3, 1% H2, 5% (or 10%) O2. The catalyst was a 2% w/w Ag/Al2O3 (impregnated) 

sample. The reactor was a packed bed containing approximately 25 mg of catalyst sample 

with particle size 250-425µm. The bed diameter was 2.9 mm and the length was 5 mm. The 

temperature was controlled by a thermocouple and the reactor was heated by an oven. The 

reactor outlet stream was analysed with an MS from HIDEN Analytical (HPR20) via a 

capillary, positioned immediately downstream from the catalyst bed. To enable fast sampling, 

the switch was repeated several times detecting different fragments each time (together with 

the Kr as internal standard). This is the reason why some signals are missing in Figure 21 

below.  

Results and conclusions 

Two representative experiments are displayed in Figure 20 and Figure 21. H2/D2 switch @ 170deg
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Figure 20. SSITKA experiments in a packed bed reactor. Step in H2, switch to D2 and step out at 170°C.  
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Figure 21. SSITKA experiment. Switch from 

14
NO to 

15
NO and then back to 

14
NO at 199°C.  
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Various conclusions could be drawn from these experiments: 

 H2/D2-switch: 

o The time response for the H2/D2 switch was fast (changing value in one 

sample, approx. 150ms), indicating that the accumulated amount of hydrogen 

on the surface was low and/or the adsorbed hydrogen are very mobile. 

o The production of HD (corresponding to MS signal m3) during D2 feed 

(together with NO, NH3 and O2) indicates that dissociation of H2 and NH3 

occurs. 

 14
NO/

15
NO-switch: 

o The time response for m30/m31 (
14

NO/
15

NO) was fast indicating there are low 

amounts of adsorbed NO. 

o The time response for m28/m29 (
14

N2/
14

N
15

N) was slower indicating there are 

relatively larger amounts of stored NOX or intermediates that finally become 

converted to N2, i.e. 
14

N
15

N.  

o Small amounts of N2O were formed (not shown), but only as 
14

N
15

NO and 
15

N2O, indicating that production of N2O may stem from dimerization of NO, 

since NH3 can be converted to adsorbed NO (also indicated from the m30 

signal during 
15

NO feed). 

o Almost no production of NO2 for this catalyst (not shown). 

 

Unfortunately, various experimental problems occurred that made the quantification of the 

data impossible and further analysis very problematic. However, rough estimates from the 
14

NO/
15

NO switch gives some interesting findings: 

 Assuming 100% dispersion gives a upper limit of the number of Ag sites to be 

4.8µmoles
26

 

 Approximating the conversion to be 63% and integrating the area of the difference 

between the m28 and m29 signal and the corresponding steady state level, gives that 

the amount of stored 
14

NOX at the switch is approximately 27µmoles
27

, i.e. about 5 

times more than the number of silver sites, thus indicating the role of the support. This 

will be further discussed in the next section. 

 

5.4.2. Quantification of spectroscopic data 

In order to further investigate the nature of reaction intermediates and the role of “spectators” 

(adsorbed species, not active in the NOX reduction), Diffuse Reflectance InfraRed Fourier 

Transform Spectroscopy (DRIFTS) experiments (see section 2.2.3.2) in combination with 

SSITKA were also performed. Due to the potentially heavy overlap between spectators and 

reaction intermediates Multivariate Curve resolution (MCR) using Alternating Least Squares 

(ALS) was performed (see section 3.2.4). 

Objective 

The objective was to perform SSITKA experiments in combination with DRIFTS in order to 

obtain information about reaction intermediates prior to N2 formation and to characterize 

these intermediates by the analysis of the IR spectra.  

                                                

 
26 Loading=2%, Dispersion=100%, Mm=107.9g/mole, m=25.7mg 
27

 Total molar flow=1mmol/s, 1 adsorbed NOX gives 1 N2(g). 
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Experimental 

Step responses (including SSITKA) were performed using 
14

NO and 
15

NO. No water feed was 

used in the experiments. The following fixed levels of reactants were used: 1000 ppm NO, 

1000 ppm NH3, 1% H2, 5% O2. The catalyst was a 2% w/w Ag/Al2O3 (impregnated) sample. 

The reactor was a DRIFT cell containing approximately 12 mg of catalyst sample as fine 

particles (<100µm). The DRIFTS reactor was essentially identical to the one described in 

Figure 3, section 2.2. The IR instrument was a Bruker Vertex 70 with a DRIFTS cell from 

Spectra Tech. The MS was from HIDEN Analytical (HPR20) with a SEM detector and an ion 

counter module. Kr was used as internal standard and the MS calibration was performed as 

described in appendix A, using the sensitivity matrix in Table 3, expanded with the isotopes, 

but neglecting contributions from 
15

N2, 
15

N2O and fragment m30 from 
14

N
15

NO. In the figures 

below only N2 and NO are displayed for clarity. Generally no NO2 was observed and only 

small amounts of N2O. 

 

Prior to all experiments, the catalyst was pre-treated in oxygen at 450°C for 30 minutes, 

flushed with Argon and then taken to the relevant experimental temperature. The objective of 

the pre-treatment was to obtain the catalyst essentially free of adsorbed species. Four different 

experiments are presented here and used in the MCR evaluation: 

1. NO-oxidation: 1000 ppm 
14

NO+5% O2 in Ar at 250°C 

2. Pulsing of 1000 ppm 
15

NO in a feed of 1000 ppm 
14

NH3+1% H2+5% O2 in Ar at180°C 

3. simultaneous pulsing of 1000 ppm
15

NO + 1000 ppm
14

NH3 in a feed of 1% H2+5% O2 

in Ar at 245°C  

4. SSITKA of 1000 ppm 
14

NO/
15

NO switch in a feed of 1000 ppm NH3+1% H2+5% O2 

in Ar at 400°C 

ALS analysis and results 

The four spectral matrices had different sampling frequencies and contained 21, 56, 117 and 

119 spectra respectively and were merged forming a 393 x 233 matrix (233 wave numbers 

from 1650 cm
-1

 to 1200 cm
-1

).  

After analysis of the eigenvalues of a PCA model of the spectral matrix, the effective rank 

(number of components) was set to 5 and ALS was performed using non negativity for both 

contributions and pure spectra, see section 3.2.4. Furthermore, for experiment 1, the 

contributions for component 4 and 5 were set to zero since they represent 
15

NOX species and 

no 
15

NO was used in this experiment. The resulting pure spectra (S) for the data sets are 

shown in Figure 22 and the corresponding contributions (C) are shown in Figure 23 - Figure 

26. 
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Figure 22. Pure spectra (S) from the ALS using 5 components. Spectra from all 4 experiments were used 

simultaneously in the analysis.  Note the pure spectra have arbitrary units, since S is normalized to unity. 

 

The relevant surface species may be interpreted from the peak positions in the different pure 

spectra and previous experience. However, due to the high temperatures and to the diversity 

of different sites at the atomic scale, peak assignment is not trivial [Desikusumastuti 2008]. 

Still, using the literature we know that adsorbed NOX is visible in the spectral region 

displayed in Figure 22. Isotopic peak shifts can also be explained, e.g. for s1/s3. Also, since 

each pure spectrum is associated with a contribution profile, the peaks can be assigned to: 

 species associated with 
14

NO (s1-red, s2-black) and  

 species associated with 
15

NO (s3-purple at 400°C, s4-brown at 180°C and s5-

turquoise at 245°C) 

The assignments above and further analysis is also enabled by contribution plots. The 

contribution plots from experiment 1 to 4 are shown in Figure 23 to Figure 26 respectively. 
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Figure 23. Experiment 1 (NO oxidation at 250°C). Outlet gas phase concentrations together with ALS 

contributions.  

 



54 

The step in NO feed (as 
14

NO) shows a clear accumulation of surface species from the gas 

phase during the first 8 minutes. (The N2 signal is unfortunately dominated by a leak of air 

into the 
14

NO feed pipe.) The step is followed by spectral accumulation of component c1 and 

c2. Assuming that NO is first oxidized to nitrite and then to nitrate species, it is possible to 

interpret that c2 would be nitrite and c1 nitrate species. This could also be inferred from 

Figure 22 where larger the peaks in s1 and s2 correspond to literature values of nitrates and 

nitrites respectively [Meunier 2000] However, the peak at 1470cm
-1

 is quite broad, indicating 

a varying surrounding environment for this adsorbate. This broadening may indicate adsorbed 

NOX on the alumina support which is contradicting the first interpretation. Together with the 

analysis of the other experiments, it is thus suggested that c1 should be 
14

NOX on Ag sites and 

c2 should be 
14

NOX on the support. 
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Figure 24. Experiment 2 (Pulsing in 1000 ppm 

15
NO at 180°C). Outlet gas phase concentrations together 

with ALS contributions.  

In experiment 2, the catalyst was first cleaned by the pretreatment, then NH3, H2 and O2 was 

added to the stream. As soon as the first peak from ammonia became visible in the DRIFTS, 

the pulsing of 
15

NO started (approx at 7 minutes). The plan was to observe reaction 

intermediates before the accumulation of spectators on the support had grown. This was not 

possible by visual inspection of the spectra. However, by ALS (which uses linear 

combinations of all wave numbers simultaneously) the different phenomena can be better 

separated. The NO(g) is rapidly adsorbed (indicated by the low outlet concentration of NO(g)) 

and the production of N2 (as 
14

N
15

N) is increasing during the first three steps, reaching a 

reproducible level after 3 pulses. No signal of m30 (
14

NO or 
15

N2) is observed and only small 

amounts of 
14

N2 (m28) indicating that small amounts of NH3 oxidation occurs.  

The formation of N2 is preceded by accumulation of components c3, c4, c5. Here the 

interpretation of the peaks is clearer: 

 c4 is a large signal, indicating there is a relatively large accumulation of its associated 

species through out the pulsing experiment. It has broad features at1470cm
-1

 and 

1400cm
-1

, which can be assigned to adsorbed 
15

NOX on the support (alumina). Note 

that NH3 can form ad-NOX (
14

NOX) visible as a small peak of c2, which also was 

visible in the 
14

NO oxidation experiment 1. This small amount is probably the 

intermediate for the 
14

N2 production. 

 c3 is associated with a species present in much smaller quantities because it reaches a 

nearly constant level already after the first pulse.  It is possibly related to a species on 
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the silver sites. It has one large peak at 1520 cm
-1

. Its quite stable time profile suggests 

it may be associated with a stable species, such as nitrate (
15

NO3
-
).  It has been 

frequently suggested in the literature (e.g. paper IV) that these are responsible for 

poisoning the active sites. 

 c5 is also associated with a species present in small quantities with two peaks (at 

1525cm
-1

 and 1280cm
-1

). This feature oscillates with the formation of N2 around a 

nearly constant level after already the first pulse.  It is thus the species that can be 

most related to the reaction intermediate, possibly a nitrite (NO2
-
) species. 
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Figure 25.  Experiment 3. Simultaneous pulsing of 1000 ppm each of 

15
NO and 

14
NH3 at 245°C. Outlet gas 

phase concentrations together with ALS contributions. 

 

In experiment 3, 
15

NO and 
14

NH3 was co-fed as pulses in a stream of H2 and O2. The NO 

conversion is instantaneously quite high (approx 80%), the 
14

N2 production (from NH3 

oxidation) is small and 
15

N2 production (from 
15

NO) is negligible. The formation of N2 (as 
14

N
15

N ) is accompanied by all 5 components at different amplitudes, also those 

corresponding to 
14

NOX. The following constitutes an interpretation of the spectral features 

and their relation to the reaction mechanism: 

 c5 is associated with the dominating species and should therefore be associated with 

the dominating process, i.e. N2 production (as 
14

N
15

N) c5 is thus associated with the 

NOX reduction reaction intermediate.  

 c3 (
15

NOX) and c2 (
14

NOX) are the features that accumulate and then level out at 

nearly constant values.  They potentially correspond to nitrates that act as “poisons”.  

 The c4 and c1 are associated with 
15

NO3 and 
14

NO3 on alumina and Ag sites 

respectively. They are slightly lagged compared to c5 (potential nitrite intermediate), 

which could indicate that they are nitrates produced as secondary products from the 

nitrites. 

 There is also some negative correlation between c5 and c4 indicated by observations 

that when c4 increases, c5 correspondingly decreases.  This indicates a deviation from 

a perfect design in the “spectral space”. These variations are also correlated with 

imperfect switching (the 
15

NO(g) doesn‟t have a “square” shape) due to uneven 

pressures in the two feed lines. 
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Figure 26. Experiment 4: 1000 ppm 

14
NO/

15
NO SSITKA at 400°C. Gas phase concentrations together with 

contributions from ALS.  

 

In experiment 4, a true SSITKA experiment was performed. Due to practical circumstances, 

this was the only temperature that allowed MCR analysis. The NO conversion is high and the 

mismatch in N2 levels (
14

N2 from 
14

NO feed vs. 
14

N
15

N from 
15

NO feed) are due to NH3 

oxidation as well as contaminants in the 
14

NO feed. The fact that NH3 oxidation occurs is 

indicated by the fact that the 
14

N2 concentration does not reach zero during 
15

NO feed. The 

NO levels (
14

NO vs 
15

NO) remain rather stable. Due to the high temperature and consequently 

low coverages and low spectral signals, in the MCR analysis the spectra was multiplied by a 

factor of 2 to make this experiment have more weight. The interpretations of the contributions 

are: 

 Only c1 and c3 were visible, indicating they correspond to 
14

NO3 and 
15

NO3 on silver 

sites respectively. Their rate of change is almost as fast as the gas phase production, 

but still slightly lagging. 

 The practical absence of support related species (c2-
14

NOX and c4-
15

NOX) is expected 

at the elevated temperature of the experiment. 

 The absence of c5, the potential intermediate is either due to: 

o The fast reaction making this adsorbate practically having zero coverage, or 

o The MCR deconvolution and imperfect experimental design in spectral space: 

The reaction intermediate may be confounded with other species (peak 

positions might be different at higher temperature).  Alternatively, potential 

reaction intermediates may become visible in a later component (e.g. 

component 6 or higher.) However, the eigenvalue-analysis as well as the 

general conformity of this MCR analysis motivates the choice of 5 components 

for this data set.  

Discussion and Conclusions from the combined MS and ALS analysis 

The analysis of the spectral contributions together with the gas phase concentrations reveals a 

suggested spectral assignment. The corresponding “pure spectra” in Figure 22 are interpreted 

as follows: 

 c1: 
14

NO3-Ag (1560cm
-1

, 1300 cm
-1

,1260 cm
-1

) 
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 c2: 
14

NO3-alumina (1555 cm
-1

,1470 cm
-1

(broad), 1275 cm
-1

,1230 cm
-1

) 

 c3: 
15

NO3-Ag (1530 cm
-1

) 

 c4: 
15

NO3-alumina (1470 cm
-1

(broad), 1400 cm
-1

(broad), 1285 cm
-1

) 

 c5: 
15

NOX (nitrite)-Ag (1570 cm
-1

, 1525 cm
-1

, 1280 cm
-1

) 

 

Again it should be stressed that the peak positions and the combinations of peaks, depend on 

the data set at hand. If the experiments would have been such that the spectral features were 

purely orthogonal, the analysis would have been unambiguous. However, due to the strong 

nonlinear system, the experimental errors and the set of experiments for this analysis, the 

confidence that can be applied to peaks belonging to specific adsorbents is reduced. However, 

this type of analysis is very useful, since it enables the subsequent discussion, analysis and 

continuing experiments that could confirm of reject the analysis presented here. 

 

Unfortunately, due to experimental circumstances, spectra were not collected at a high 

frequency for the SSITKA corresponding to Figure 21. Furthermore, due to contamination of 

the NO feed (contaminated with air) the quantification of the MS signal became difficult. The 

list of potential and useful experiments could be made long, but the most important aspects 

are: 

 Repeat similar experiments at different temperatures to investigate peak position 

dependence on temperature and coverage. 

 Repeat all experiments shown here but at the same temperature in order to make the 

analysis more stringent. 

 

However, the most important conclusion is that the methodology applied here is a viable route 

for enhanced mechanistic understanding and a practical way to integrate spectral 

quantification to the modelling toolkit, see also section 5.5 regarding the increase of 

parameter rank when adsorbates are included.  

 

5.4.3. Paper IV: "Kinetic modeling of selective catalytic reduction of 
NOX with octane over Ag-Al2O3" 

In parallel to the studies described above, monolith experiments were performed using octane 

as reducing agent. A detailed kinetic model was developed that included the effect of 

hydrogen. This addition of hydrogen required the addition of heat balances, since a strong 

temperature rise was observed. An experimental design was developed and additionally, the 

transients were included. By selecting switches that included the transition of two variables 

simultaneously, a more information rich sensitivity should be acquired (compared to the 

alternative using only transitions of one variable at a time). The steady-state levels were 

analysed using an MLR model, see Figure 27. 
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Figure 27.  Left: Coefficient plot for the MLR model. Columns are coefficient values with bars indicating 

95% confidence intervals. Right: Interaction plots for NOX conversion, Octane conversion and NOX 

conversion selectivity as a function hydrogen concentration at the two temperatures. The explained 

variance (R2) for the three responses was 0.89, 0.96 and 0.70, respectively. 

 

The conclusions from the steady state data confirm the findings from the literature; see results 

section in paper IV. Some of these findings included: 

 Consumption of NO2 indicating that if NO is oxidized to NO2(ads), it is further reduced (ev. 

to form N2) and does not desorb as NO2. (not visible from Figure 27.) 

 The addition of H2 increases the NOX conversion as well as the octane conversion. The 

“plateau” of the hydrogen effect where NOX conversion levels out above 0.5% H2 feed 

concentration as observed by others. This can be inferred from the coefficient plot (see left 

part of Figure 27) where H2 has a positive main effect and a negative quadratic effect. A 

more clear illustration is made by the interaction plot (see right part of Figure 27). 

 Temperature rise due to hydrogen oxidation could only partly explain the hydrogen effect. 

 

The transient experiments were used for parameter fitting, and an acceptable fit was obtained. 

For further details, see paper IV. 



   59 

5.5. Thorough assessment of the Model in paper IV 

 

In order to evaluate the effect of different modelling assumptions and also to investigate the 

sensitivity of these assumptions, different model parameters are evaluated in this section.  

As a case study, the model and experimental data of paper IV was chosen. The main reason is 

because it represents a common model type at KCK: time dependent, several experiments, 

detailed kinetics and “standard” model assumptions.  

Objective 

The objective is to illustrate the importance of model parameters as well as model 

assumptions on the simulation results, both in absolute and relative numbers. The intended 

outcomes are: 

 To highlight the complexity of the task of parameter estimation. 

 To give potential reasons for problems commonly encountered during parameter 

estimation efforts. 

 To stress the erroneous assumption about the “model is correct” and the consequences 

for confidence intervals and other statistical analysis. 

 

5.5.1. Scope of sensitivity analysis 

The kinetic mechanism in paper IV is shown in table 1. Note that the reaction mechanism is 

detailed but not microkinetic, since it has quite a few global, irreversible reaction steps. 

Furthermore, the reactor inlet dispersion effect was “modelled” by empty reactor experiments, 

the number of tanks in series was 15, a film model with a correlation for the Sherwood 

number from [Tronconi 1992] was used. The pore transport resistance was neglected.  

 

The following parameters and assumptions were investigated: 

 Kinetic parameters (22 preexponential factors, 22 activation energies)
28

 

 Number of sites (* and #) 

 Dispersion effects 

o Inlet conditions (tube dispersion effects) 

o Number of tanks in series (using realistically 25 or computationally fast 3) 

 External mass transport resistance (Asymptotic Sherwood number  (=3 or 4.4), 

component diffusivities (DAB) calculated either by Fuller or Chapman-Enskog 

correlations) 

 Temperature effects 

o Heat transfer model  

 bulk-surface: asymptotic Nusselt number (=3 or 4.4) 

 surface-quartz tube (sensitivity for lumped heat transport coefficient 

value (UA) as well as heat capacity of the quartz tube) 

 Numerical effects: Ode-solver (relative and absolute tolerances) 

 

In all, 62 different parameters were assessed. Of course, this list could have been made much 

longer including other effects such as internal mass transfer resistance, violation of constant 

                                                

 
28 In the mechanism there are 23 reactions, but since r9 is adjusted to the thermodynamics, these parameters are 

omitted in this study. 
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molar flow, sensor calibration failure or temperature sensor misplacement etc. But the 

assessment will be sufficient for the objectives. 

 

 Reaction Rate Expression 

Reactions and rate expressions for adsorption/desorption on site 1 (*).  

1 NO + * → NO* 
**11 NOPkr  

2 NO* → NO + * 
*22 NOkr  

3 O2 + 2* → 2O* 2

*233 OPkr  

4 2O* → O2 + 2* 2

*44 Okr  

5 NO2 + * → NO2* 
**255 NOPkr  

6
fEa

 NO2* → NO2 + * 
*266 NOkr  

7 CO + * → CO* 
*77 COPkr  

8
fEa

 CO* → CO + * 
*88 COkr  

Reactions and rate expressions for NOx adspecies on site 1 (*) 

9
th

 NO* + O* → NO2* + * 
**99 ONOkr  

10
fk, fEa

 NO2* + * → NO* + O* 
**21010 NOkr  

11
 fk, fEa

 NO2* + O* → NO3* + * 
**21111 ONOkr  

12
 fk, fEa

 H2 + NO3* → H2O + NO2* 
2*31212 HNO Pkr  

Reactions and rate expressions for surface reactions on site 1 (*) 

13
 fk, fEa

 C8H18 + O* + 7* → 8CH2* + H2O 
*

2

*1313 OoctPkr  

14
 fk, fEa

 CH2* + 2NO2* → N2 + CO* + 2O* + H2O  
*2*21414 NOCHkr  

15
 fk, fEa

 CH2* + 2O* → CO* + 2* + H2O 
**21515 OCHkr  

16
 fk, fEa

 CO* + O* → CO2 + 2* 
**1616 OCOkr  

Reactions and rate expressions for adsorption/desorption and oxidation reactions on site 2 (#) 

17 O2 + 2# ↔ 2O# 2

#21717 OPkr  

18 2O# → O2 + 2# 2

#1818 Okr  

19 NO2 + # → NO2# 
#21919 NOPkr  

20
 fEa

 NO2# → NO2 + # 
#22020 NOkr  

21
 fk, fEa

 C8H18 + 25 O# → 8CO2 + 25# + 9H2O 
#2121 OoctPkr  

22
 fk, fEa

 C8H18 + 25NO2# → 8CO2 + 25NO + 9H2O + 

25# 
#22222 NOoctPkr  

23
 fk, fEa

 H2 + O# → H2O + # 
2#2323 HO Pkr  

Table 1. Reaction mechanism in paper IV. Reaction number indicated by “f” was included in fitting and 

“th” was used for thermodynamic constraint (NO(g)+½O2(g) NO2(g)). 

 

5.5.2. Assessment, experimental 

 

The assessment was a “straight forward” sensitivity analysis, this time using adjusted or 

normalized sensitivity similar to equation 47: 

 

),,(
)(*3

),,( t
conf

t local

levellevel

adj βys
y

β

β

y

y

β
βyS   (53) 
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The local sensitivity was adjusted by ylevel which simply involved the multiplication of all 

mole fractions with 10
6
 so temperatures (in Kelvin) and concentrations (in ppm) became 

comparable. The confidence intervals were calculated using eq. (44) and only considering 

parameters 1-56 since the last parameters are not adjustable in the same way as the other. The 

local sensitivity was also adjusted by three times the confidence intervals. This enables the 

sensitivities of different parameters to be compared, e.g. activation energy vs tanks-in-series. 

 

The sensitivities were calculated compared to the reference case (paper IV) by the finite 

difference method. The parameters were changed as follows:  

 The kinetic parameters as shown in Table 1: kref was changed 4.6% and Ea was 

changed 0.7kJ/mole.  

 The number of sites (* and #) were changed by 1%.  

 The asymptotic Sherwood number was changed by 1.4 from 3.0 (square channel) to 

4.4 (corresponding to a circular channel).  

 The lumped heat transfer coefficient to the quartz tube, UA was changed by 10% and 

the heat capacity of the monolith was also changed by 10%.  

 The binary diffusivities originally using the Fuller correlation was changed to simulate 

the use of the Chapman-Enskog equation corresponding to a change of approx 5%.  

 Also two different number of tanks-in-series were evaluated, ntank=25 (theoretically 

more correct) and ntank=3 (sometimes used in practice for numerical speed).  

 The tolerances in the ode solver (ode15s in MATLAB) was also investigated as a 

comparison: Relative tolerance was changed from 10
-5

 to 10
-3

 and absolute tolerance 

was changed from 10
-7

 to 10
-5

.  

 The reactor inlet conditions in paper IV was based on empty reactor measurement 

data. This approach assumes that all dispersion effects occur upstream the reactor and 

no dispersion downstream (e.g. in the detectors). Three different scenarios were 

investigated: SA1: Sensitivity when no dispersion effect was assumed, SA2: 

Sensitivity when all dispersion effects occur downstream the reactor and no dispersion 

upstream, SA3: When half the dispersion was placed upstream and half the dispersion 

downstream. 

 

This sensitivity is time dependent and the experimental data consisted of 5 transient 

experiments, resulting in 26.025 time points. For each time point there were 5 measured 

signals (Temp, NO, NO2, CO, CO2) and with the 62 parameters this gives a 3-way matrix 

with 8×106 numbers. In order to summarize this matrix, different figures of merit were 

calculated for every parameter and different responses. The following figures of merit were 

calculated (column headings in Table 2 in parenthesis) 

 Confidence intervals 

o The confidence interval if All adjustable parameters were considered (conf_all) 

o The confidence intervals calculated in paper IV (conf_pIV) 

 Standard deviation (deviation from zero, a root mean square value) of the adjusted 

sensitivity for all 5 responses.(Sstd_x, x=T, NO, NO2, CO, CO2) 

 For NO, further numbers were calculated:  

o The standard deviation of adjusted sensitivity at transients (Sstd_Tr_NO) 

o The most extreme adjusted sensitivity (Sextreme_NO) 

o The average of the adjusted sensitivity, keeping the sign (Savg_NO) 

o The most “similar” (correlated to Sstd_NO) parameters (most correlated NO). 

o The 2
nd

 most “similar” parameters (2
nd

 most correlated_NO) 

The results are presented in Table 2. 
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Table 2. Various figures of merit from the Sensitivity analysis of the parameters in paper IV.
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The sensitivity can also be assessed by means of LV models (as in paper II and III). As an 

example the two first components of a PCA model of the local sensitivity is displayed in 

Figure 28 (scores plot) and Figure 29 (loadings plot) 
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Figure 28. A scores scatter plot of the first 2 components of a PCA model with 25 components. 
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Figure 29 A loadings scatter plot of the first 2 components of a PCA model with 25 components. 

 

5.5.3. Results and discussion 

There are numerous analyses possible, all depending on the objective. Here are a few 

comments on some of the numbers in Table 2: 

 The confidence intervals increased by one order of magnitude when assessing 56 

parameters instead of 24 parameters. This is expected since the many parameters are 

highly correlated. At this point, a simple analysis of the Lack-of-Fit gives that the 
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average residual was 65 ppm, where as the visible noise in the detectors is of the order 

of one ppm (!), thus the lack of fit is huge and any further assessment of the 

confidence intervals should be avoided. However, the analysis of the relative sizes of 

the confidence intervals gives information about how sensitive a parameter is, i.e. if a 

parameter has a small confidence interval, it is accurately determined and this implies 

that the parameter is probably involved in a rate limiting step at some point during the 

experiments. 

 The sensitivities for different responses have different standard deviations. SCO2 has on 

average 337 ppm where as SNO2 has only 19 ppm. This is due to the low levels of NO2 

and the dominating process of CO2 formation from several reactions in the 

mechanism. 

 The different parameters have different sensitivities. The highest standard deviation on 

average was kref16 (CO oxidation). This is because CO* is formed from several 

reactions. 

 The extreme sensitivities are quite high compared to averaged sensitivities. This 

indicates the importance of transients in parameter fitting. 

 The highest correlations are naturally with the responses to the same signal (NO in this 

case) and also fast reversible reactions are correlated, e.g. r1/r2 

 The sensitivity of the asymptotic Sherwood number as well as the sensitivities of 

binary diffusivities are quite high, especially for extreme sensitivities. This indicates 

that mass transfer limitation prevail, especially during the transients. 

 The sensitivity for the ode solver was low. This indicates that the solver is stable and 

gives similar results even if the tolerances are changed to gain computational speed. 

 The reactor dispersion effects are only comparable in size with the kinetic parameters 

for the most extreme cases. Thus the effect of adjusting dispersion effects during 

parameter fitting will probably be small if one uses standard residual sums of squares 

as the objective function. (The extreme point will have a small leverage because the 

majority of data points are not during the transients). However, to correctly capture 

transient spikes, the reactor dispersion effects should be taken into account. 

 

The analysis of LV models can also be extensive, and only a few comments are given here: 

 The adjacent points in the scores plot are similar since they are adjacent in time. 

Different experiments have different “excursions” in the scores plot. Experiment no 5 

is clearly the most important experiment for the first component. 

 The loading plot shows which parameters (and sensitivities) are similar (correlated). 

As an example, in the left end of the loading plot (first component) are the sensitivities 

for CO2 and Temperature. This is also quite natural since CO2 production is tightly 

connected with exotherms. 

 The number of components in this PCA model was 25 (size of sensitivity matrix was 

26025 x 307) indicating 25 linearly independent phenomena that is manifested in the 

sensitivity data. However, when performing a PLS of Sensitivity as X and the residual 

(the objective function) as Y, only 14 components is obtained. This means that 11 

dimensions of sensitivity are not really connected to the residual, which is what we try 

to minimize. Thus, even if we could use 25 parameters to span the sensitivity space, 

only 14 parameters will be useful (assuming that the other parameter values can be 

considered as valid). This analysis can be very important when considering different 

fitting schemes, given that the computations often take many hours. The 

corresponding models using only the sensitivities for the 24 fitted parameters in paper 

IV, gave 18 components for a PCA model and 13 for a PLS model using the residuals 

as Y. 
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 Of course the methodology applied in paper II (parameter fitting) and paper III 

(experimental design) could be applied to this sensitivity matrix. However, this is 

beyond the scope of this assessment. 

 

5.5.4. Analysis of additional surface coverage sensitivities 

During the computations of all sensitivities, also the surface coverage sensitivities were 

stored. The sensitivities for temperature, measured gas phase species (NO, NO2, CO, CO2) 

and adsorbed NOX (NO2* and NO3*) were analysed together
29

. Only the 23 kinetic 

parameters fitted in paper IV was included. This resulted in 23*7=161 sensitivities and 26025 

observations as usual. A PCA model was made and the number of components was 24. A 

corresponding model excluding the sensitivities for the adsorbed species was only 18. 

This means that if surface specie concentration data would be accessible, the parameter 

estimation would be enhanced by the additional 6 independent components. A suggested 

methodology for the quantification is given in section 5.4.2. 

 

5.5.5. Conclusions 

Many different parameters were assessed and analysed by means of summary numbers as well 

as LV models. Some sensitivities were quite small: reactor dispersion, ode solver tolerances 

and some binary diffusivities. This means that these parameters are not critical for the fit to 

experimental data. However, some model parameters that usually are not considered for 

fitting showed big sensitivities. These parameters were associated with mass transfer during 

transient (ex diffusivity for H2, asymptotic Sh). This means that improvement for mass 

transfer should be considered in this case. 

 

By analysing the sensitivity matrix by mean of a PCA model, the number of significant 

components could be used as a measure of how many parameters that is adequate to fit using 

the experiment and parameter values at hand. It was shown that 14 parameters could 

adequately be fitted, considerably less than the 24 parameters fitted in paper IV. However, if 

surface species would have been available, the number of components increased and the 

number of kinetic parameters suitable for fitting would increase. 

                                                

 
29 There are 10 different coverages in the mechanism, but some are never possible to quantify (empty sites and 

mono-atomic adsorbates) and e.g. CH2* is a lumped expression that doesn‟t correspond to a defined quantity. 

The two included NOX species represent a realistic scenario if surface coverage quantification would be 

performed. 
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6. DISCUSSION 
 

“Only after completing the composition planned have we learned  

what the beginning should have been.” - Blaise Pascal 

 

During the modelling cycle, several issues can be encountered as shown in Figure 30. 

 

Define model and model assumptions

Define “experimental space”

(i.e. all possible and/or realistic experiments) 

D-optimal Choice of experiments to perform

using X or T from LV-model

fit, analyze

Satisfactory results?

Yes!

Evaluate the Design by LV-model 

(experimental rank)

No!No!

Optimal experimental 

design

Model formulation

Selection of parameters to fit

Modelling strategies

Many parameters

Objective function

Verify model 

assumptions

Gradient search 

method

Expanding the 

Experimental space

Define model and model assumptions

Define “experimental space”

(i.e. all possible and/or realistic experiments) 

D-optimal Choice of experiments to perform

using X or T from LV-model

fit, analyze

Satisfactory results?

Yes!

Evaluate the Design by LV-model 

(experimental rank)

No!No!

Optimal experimental 

design

Model formulation

Selection of parameters to fit

Modelling strategies

Many parameters

Objective function

Verify model 

assumptions

Gradient search 

method

Expanding the 

Experimental space

 
Figure 30. The modelling cycle and some of the tasks involved.  

 

The figure is extended in scope compared to fig.1 in Paper III. Also, note that this illustration 

is not intended to be complete, it reflects the issues encountered during this PhD project. The 

aspects indicated will be more discussed in the subsequent paragraphs. 

 

6.1. Different modelling strategies 

 

The base modelling strategy during this PhD project has been the microkinetic approach 

[Dumesic 1991]. The microkinetic approach stems from the assumption that each individual 

reaction parameter in a large reaction mechanism can be estimated by using independent 

methods such as independent experiments or theory. The ingredients for successful modelling 

using microkinetics include: 

 The pressure/material gap can be bridged by the use of ultra-high vacuum 

experimentation. However, this will not be possible if the metal particles/clusters 

interact with its support, which is the case for all systems studied in this thesis.[Bond 

2008] 

 The system is operated under steady state conditions, where most of the reactions 

never will be rate limiting. In this case, these kinetic parameters only need to be such 
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that they do not interfere with the rate limiting step, see e.g. [Mhadeshwar 2003]. In all 

systems targeted for emission control for vehicle applications, the system will very 

seldom be operated exclusively under steady state conditions, thus requiring the 

assessment of almost every step in the reaction mechanism. 

 

Instead of using the bottom-up approach (microkinetic approach), one could envisage a top-

down approach. One interesting framework for this approach is the MEXA (Model-based 

EXperimental Analysis) developed by the group of Marquardt [Marquardt 2008]. In this 

approach, the mechanism is developed from what is observable (i.e. measurements) and by 

iterative refinements, a plausible mechanism can be derived. However, the applications are 

often systems, in which the reaction intermediates are quantifiable in some way, e.g. batch 

reactor with in-line detectors. Applications to gas-solid heterogeneous catalytic reactors are 

still lacking. The challenge for the MEXA approach applied to NOX reduction systems is 

probably the quantification of adsorbed reaction intermediates. The microkinetic approach 

however, offers some potential benefits including the possibility of extrapolation of kinetic 

parameter values to other systems. This aspect (as well as many other arguments) makes the 

microkinetic approach an attractive route to deeper understanding. 

 

6.2. Model formulation: Mean field approximation 

 

One potential problem is the mean field approximation itself. The benefit is that it enables the 

concept of “surface concentration” or “coverage”, which is very convenient from a numerical 

perspective. One alternative would be more atomistic approaches e.g. Monte Carlo 

simulations [Olsson 2003] but at the price of computational time. When we have different 

types of sites, one can use different mechanisms on the different types of sites as in paper IV. 

One can also model the interplay between different sites as a “spill-over” reaction [Olsson 

2002b, paper II] or as a diffusion process [Holmgren 1999]. Another way to mitigate the 

limitations of the mean field approximation is to introduce different neighbouring sites that 

can only react with each other [Sjövall 2009]. To conclude, the mean field approximation 

offers numerical benefits but has limitations when the catalytic surface is not a “field” (as for 

a crystal plane of Pt(111)). This limitation can be mitigated in several ways but has no “easy” 

universal solution. This phenomenon is another example of the famous “materials gap” in 

heterogeneous catalysis [Stoltze 1985] which hopefully can be bridged in the future. 

 

6.3. Verifying model assumptions 

 

During research aimed at increased understanding of heterogeneous catalysis, the 

experimental focus is often directed towards the “final application”, e.g. NSR experiments 

similar to what will occur on a vehicle. The problem lies in the objective of this experiment 

which is not the same as the modelling objective to understand the phenomena using a 

mathematical model. Indeed, one can argue that if the application is NSR, then these are the 

experiments to be conducted. However, when drawing mechanistic conclusions (and thus 

increased understanding) using a model (being mathematical or conceptual), the basic 

assumptions will always need to be confirmed, or if necessary, the model needs to be adjusted 

accordingly. In section 5.5 the impact of model assumptions such as the Sherwood number 

and binary diffusivities were investigated. The indication that the actual numbers need to be 

accurately estimated may render some further investigations.  
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Other assessments of model assumption can be made by independent experiments, i.e. 

targeted experiments for different objectives, e.g. 

 Varying the reactor design (different washcoat loadings, packed bed reactors, etc.) to 

induce different mass/heat transfer conditions  

 Varying the heating rates during temperature ramped experiments (TPD, TPR 

[Anderson 2005, Kasuya 1995]) not only for accurate estimation of activation energies 

but also to assess assumptions about mass/heat transfer resistance, coverage dependent 

activation energies for desorption or the reaction mechanism itself, see e.g. 

[Deshpande 2005]. 

It is of course important that any independent experiment does not introduce any further 

“gap” (pressure-, temperature- or materials gap) that cannot properly be handled. 

 

6.4. Expanding the experimental space 

 

To achieve the objective of a plausible mechanism with confident parameter values, any 

information extraction method available should be considered. As long as the method 

contributes significantly compared to the price (and alternatives), it is worth investigating. In 

this thesis the general method has been gas phase analysis from the reactor operated under 

atmospheric conditions. Below is a list of alternatives in connection to this thesis and some 

comments about each of them: 

Quantitative DRIFTS data 

The quantification of DRIFTS data was attempted and a number of practical and 

numerical issues need to be addressed, see sections 2.2.3.2, 3.2.4 and 5.4.1. However, 

the impact on the increase of the parameter dimensionality as shown in section 5.5 

clearly motivates further efforts in this direction.    

Quantitative isotope experiments 

The quantification of isotope experiments was performed in section 5.4.2 and the main 

issues were the lack of calibration gases (e.g. 
15

N2O, 
14

N
15

N) as well as selectivity 

issues. However, the strong qualitative conclusions that are possible indicate that 

significant contributions should be expected if isotope experiments in combination with 

quantification could be applied. 

 

Other interesting techniques in this area are Temporal Analysis of Products (TAP) 

[Yablonskii 1998, Perez-Ramirez 2007], Spaci-MS [Choi 2005]. Some of these techniques 

also require substantial numerical efforts to merge with traditional data. Time will tell which 

technique will contribute the most. 

 

6.5. On the choice of optimal experimental design 

 

In paper III, the approach for the design of experiments for precise parameter estimation is a 

selection of candidate experiments from a huge number of possible ones (1792 transient 

experiments consisting of approx. 73.000 time points). This approach is adapted from the 

pharmaceutical industry [Olsson 2004, Olsson 2005, Wold 2004], where the search for 

candidate drugs is a formidable task. In both cases many parameters are reduced to a few 

latent variables, thus enabling a more efficient selection.  

Within the research field of heterogeneous catalysis dealing with non-linear modelling and 

sequential experimental design, the prevalent approach is to search for the experiments to 

perform [Buzzi-Ferraris 2009, Franceschini 2008a, Walter 1990]. Even though this search is 
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performed in a well defined experimental space (concentrations, flows, temperatures, 

sampling position, sampling time etc), the evaluation of a candidate experiment will still be 

performed in the highly non-linear parameter space. This search will have the same 

“challenges/problems” as classical parameter fitting, since it needs to condense the sensitivity 

for many responses and many parameters into one number. Furthermore, as with any other 

gradient method, it may find local optima. To conclude, this search approach will thus be not 

only complicated but also time consuming.  

The proposed approach in paper III however, will also be very time consuming because it 

involves simulating “all possible” experiments in order to assess which ones are most 

valuable. Furthermore, this needs to be done after each sequential cycle, since the parameter 

sensitivity is dependent on the parameters themselves [Box 1965a].  

The optimal approach is thus a difficult choice. Generally, reviewing the literature and 

considering the general absence of experimental design methodology, the most important 

message is to at least do experimental design. 

 

6.6. Fitting large sets of parameters  

 

In paper II, III, IV a large number of parameters are subject to fitting. The large number itself 

can be handled by use of Latent variable (LV) methods as shown in paper II. But even if the 

number of parameters is large, the fit is still not excellent, i.e. there are systematic residuals 

(Lack of fit) unless excessive experimental design can be performed as in paper III.  

Many chemical reaction engineers often state that you should not fit more parameters than 

two [Fogler 2000a]. The reasons stem from different systems as well as different objectives. 

Traditional chemical engineering systems are often operated under steady state, thus making 

the rate limiting steps a function of inlet conditions only (varying reactant concentrations, 

temperature and pressure). Furthermore, the objective is often to get a good fit between 

experimental and simulated data. In these situations the different sub-parts such as reaction 

mechanisms are already known and reliable from previous laboratory experiments thus 

making the gap between small scale (lab) and full scale (plant) manageable. 

In modern modelling of heterogeneous catalysis for emission control, the situation is 

different: 

 The model subparts, such as the reaction mechanism, are not known beforehand. 

 The gap between small scale (atomistic studies, either by theory or high-vacuum 

experiments) and full scale (monolith reactor) is much wider (the so-called 

pressure/materials gap [Imbihl 2007, Perez-Ramirez 2007, Stoltze 1985]). 

 The objective is not only to get an acceptable fit, but to try to catch the true 

mechanism and the corresponding parameter values. 

 The systems are very transient in concentrations, flows, temperatures as well as the 

substantial effect of accumulation on the catalytic surface. This will make the 

parameter space (i.e. the number of parameters that adequately can be fitted) much 

greater than two as shown e.g. in paper III. 

 

The quite difficult task is therefore to master the combination of all these aspects and 

consequently, in this perspective, the approach to fit many parameters, instead of a few, is 

motivated. 

In this thesis, efforts have been made in the fitting procedure as well in the experimental 

design.  Another successful approach is to increase the complexity of the mechanism step by 

step e.g. [Olsson 2002a]. However, fixing parameters (assuming them to be correct) can make 

the other fitted parameters erroneous due to unfortunate assumptions. E.g., in [Wickman 
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2007] it was shown that the kinetic parameters for NOX storage were highly influenced by 

mass transfer resistance. Future work should be directed towards the combinations of the 

methods mentioned in this section. A relatively rapid search for the weakest parts of the 

model should be identified and subsequent efforts should be conducted thereafter.  

 

6.7. Parameter fitting using residual sums of squares as 
objective function 

 

The standard formulation of the objective function is the residual sums of squares. It has 

shown to be useful for many years in many different areas but it has some assumptions: 

 It assumes the model to be correct (as usual) 

 It assumes that the residual only originate from the experiments, i.e. the model 

structure and the experimental input are without errors. 

Since the model structure of a NOx reduction catalyst probably has “room for improvements” 

as well as experimental input may be inaccurate (and these factors have consequences on the 

parameter estimation as shown in section 5.5), other alternatives should be considered: 

Adding terms to the residual sums of squares 

One simple way is to expand the residual sums of squares with other deviations, e.g. deviation 

from thermodynamic consistency was shown to be effective in [Bengtsson 2006, Mhadeshwar 

2003]  

Residual in the time direction 

Another simple (though more numerically demanding) approach would be to define the 

residual with respect to time (errors in x) instead of exclusively concentration (errors in y) as 

traditionally done. This corresponds to a Latent Variable approach [Pearson 1901], where the 

residual should be defined in the direction of the mismatch (not necessarily in concentration 

but in time instead). This approach could be efficient for transient experiments, preferable 

used in combination with traditional (concentration based) residuals. 

Weight schemes 

There are different ways to enhance some residuals in favour of others by means of weight 

functions and schemes. Weight functions can be applied according to  

 Gas phase species (measurement weight) 

 Different experiments, different time points (e.g. transients) 

 Sensitivity, determined from sensitivity analysis either of the Jacobian or some other 

sensitivity. In the extreme case only the most informative experimental observations 

(e.g. selected as in paper III) are used in the objective function. At that point it 

becomes appropriate to discuss degrees of freedom and confidence intervals 

(assuming the residual to be small). 

Shape functions 

The depressing “fact” that manual tuning still is better performing than any traditional 

method, calls for new ideas. What is catching the human eye? What combination of displays 

(concentrations, ΔG, rates, coverage, etc) is directing the decision for a parameter adjustment? 

Different shape functions need to be systematically investigated and compared in order to 

make progress in this area. 
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6.8. Parameter fitting using gradient methods 

 

The parameter fitting method used in the papers of this thesis was a gradient search method 

(lsqnonlin in MATLAB). Gradient methods are known for not being a guarantee to find 

global optima. This becomes even more pronounced if the experimental data does not 

provoke the parameter sensitivities, e.g. consider finding an optimum in 3D by only searching 

in 2D. One major reason for not finding global optima is because gradient methods assume 

the parameter values to be in the “vincinity” of the optimal (true) values. In this case, the 

objective function will be smooth and the gradient will find the optima.  

When the parameter values are far from the optima (still assuming the model to be correct), 

second order effects will be more pronounced, e.g. parameter interactions will be important. 

Unfortunately, lsqnonlin assumes the optimal parameters are nearby since the calculations for 

extracting the Jacobian consist of a COST (Consider Only one Single variable at a Time) 

approach. A more appropriate computation scheme would be to perform a fractional factorial 

design (or a Placket Burman design) in the parameters. This would be beneficial in several 

aspects: 

 More precise estimation of the main effect, since all simulations are used to estimate 

the main effects. 

 The possibility to estimate parameter interactions (i.e. explicit calculation of the 

Hessian), if any, and to calculate a search step more relevant to this phenomenon. 

 The possibility to estimate non-linearities by the use of centerpoints [Brühwiler 2007] 

Alternatives to gradient based search methods should be investigated. In a side project to this 

thesis work, simulated annealing has been tried [Bengtsson 2006], but it deserves a more 

comparative assessment using a better experimental data set. Also related methods such as the 

Genetic algorithm seem to gain in popularity and deserve further investigation. 
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7. CONCLUSIONS 
 

Different aspects of parameter estimation have been studied and presented. In this process, the 

use of Experimental design and Latent Variable (LV) models has proven useful. The 

experimental design is a valuable “work horse” to maximize the information content from a 

minimum number of experiments. The concept of LV models results in a reduction of 

dimensions, which is a useful feature when dealing with many model parameters and many 

possible candidate experiments. This reduction of dimensions enables an assessment of the 

parameter correlation structure and may also enable more efficient computations due to the 

reduced dimensionality. 

 

In the process of developing a detailed understanding of a catalytic reactor‟s mechanisms for 

emission control, the aspects presented in this thesis are very important and the contributions 

from the published papers are of significance. However, there are still many remaining 

challenges. The most important challenge would be to speed-up the modelling cycle and the 

ability to master all cycle steps in such a detail that the “weakest link in the chain” is as strong 

as possible. 

 

The findings and conclusions in this thesis are not only applicable to NOX reduction for 

emission control. In almost every reacting system operating at full scale, it is of utmost 

importance to master the aspects discussed in this thesis. Consequently, this knowledge may 

be used broadly and thus enhancing the process towards a sustainable future [Markides 2009]. 
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8. NOMENCLATURE 
Abbreviations 

Ag/Al2O3 Silver alumina using impregnation method 

Ag-Al2O3 Silver alumina using sol-gel method 

ALS Alternating Least Squares 

CFD Computational Fluid Dynamics 

ETC European Transient test Cycle 

DFT Density Functional Theory 

DoE Design of Experiments 

DRIFTS Diffuse Reflectance InfraRed Fourier Transform Spectroscopy 

GC Gas Chromatography 

HC HydroCarbon 

KCK Competence Centre for Catalysis (Kompetenscentrum Katalys) 

LV Latent Variable 

LNT Lean NOX Trap 

MCR Multivariate Curve Resolution 

MF Mean Field (-approximation) 

MFC Mass flow controller 

MLR Multivariable Linear Regression 

MS Mass Spectrometer 

MVDA MultiVariate Data Analysis 

NSR NOX Storage and Reduction 

PCA Principal Component Analysis 

PLS Partial Least Squares, alt. Projections onto Latent Structures 

SCR Selective Catalytic reduction (of NOX) 

SSITKA Steady-State Isotopic Transient Kinetic Analysis  

TPD Temperature Programmed Desorption 

TPR Temperature Programmed Reaction 

 

General 

x, x, X general variable (scalar, vector, matrix) 

 Gradient operator (d/dx, d/dy, d/dz) 

„(prim) transpose of a matrix 

 

Variables, constants and parameters 

A Pre-exponential factor in Arrhenius expression [various units] 

a, A Cross-sectional area [m
2
]  

b, b Linear regression coefficient (vector of coefficients) 

c Gas phase concentration [mol/m
3
] 

cp, Cp Specific heat capacity [J/kg/K, J/mole/K] 

C 

C 

Correlation matrix (uniquely determined from the experiments) 

Contribution matrix for an ALS model 

C, c Y-loading matrix (vector) for a PLS (LV) model 

dh Characteristic length, hydraulic diameter [m] 

D Bulk diffusivity [m
2
/s] 

Deff Effective diffusivity (e.g. in washcoat) [m
2
/s] 

D Spectral data matrix 

e  residual for a linear model 

EA Activation energy in Arrhenius expression [J/mol] 
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Ftot total molar flow [mole/s] 

g Gravity constant [m/s
2
] 

( G) G (change of) Gibbs free energy [J/mol] 

h Heat transfer coefficient [W/m
2
/K] 

( H) H, Hr (change of) Enthalpy, heat of reaction [J/mol] 

J Jacobian matrix 

J* molar flux from diffusion [mol/m2/s]  

j* Mass flux from diffusion [kg/m2/s] 

K Equilibrium constant 

kref rate constant at a reference temperature [various units] 

k Rate constant [various units depending on the rate equation] 

kc Mass transfer coefficient [m/s] 

L characteristic length [m] 

m mass [kg] 

n, N Number of observations [-], Number of active sites [1/kgcat]  

NA Total molar flux (diffusion and convection) [mol/m2/s] 

Nu Nusselt number [-] 

P Pressure [Pa] 

P, p Loading matrix (vector) in LV model 

q, Q Volumetric flow [m3/s], Heat flux [J/s] 

r Reaction rate [mol/s, mol/s/kgcat] 

R   Universal gas constant [8.314 J/mol/K] 

R  Rotation matrix during ALS analysis 

( S) S (change of) entropy [J/mol/K] 

s, (S)   Sensitivity (matrix) 

S Pure spectra matrix for an ALS model 

S Objective function (eq(38,39) 

Sh Sherwood number [-] 

T, t Score matrix (vector) in LV model 

T, Ts, Tg, Tp Temperature, temperature of surface, of gas, of pipe (quartz tube) [K] 

U, u Fluid velocity [m/s] 

V Volume [m3] 

W X-loading matrix for a PLS (LV) model 

y Gas phase mole fraction [-] 

z( ) Residual for a non linear model 

 

 

Greek letters 

 ( ) General model parameter (vector) 

θ Surface concentration (fraction of total number of available sites) [-] 

θ Parameter vector (non-linear case) 

( ) estimate of a response variable using a nonlinear model 

 effectiveness factor for internal mass transport 

 Thermal conductivity [W/m/K] 

ν Kinematic viscosity [m2/s] 

ν Stoichiometric coefficient  [-] 

ρ Fluid density [kg/m3] 

σ2 
estimated variance  

 Hessian matrix (2
nd

 derivative of the objective function 

 Mean residence time [s] 



76 

9. ACKNOWLEDGEMENTS 
 

 

I would like to thank my supervisors Derek Creaser and Bengt Andersson for interesting and 

fruitful discussions and for letting me run this project with great liberty. 

 

For the undergraduate projects which contributed to the depth of this thesis I would especially 

like to thank Andreas Lundström, Björn Wickman, Anders Bengtsson, Andrea Brühweiler 

and Anja Mûller. 

 

I would like to thank Prof. Robbie Burch, Dr John Breen and the staff at Centacat (Queens 

University of Belfast) for nice research collaboration and the EC Contract 025995 for 

funding. 

 

I would like to thank Magnus Skoglundh for encouraging discussions and KCK (Competence 

Centre for Catalysis) for being such a nice "melting pot" for catalysis research, e.g. the Ag-

alumina constellation. Thank you Hanna, Hannes, Anders, Henrik, Stephanie and Derek for 

very nice and interdisciplinary discussions. 

 

Klaus Papadakis, Ingemar Odenbrand and the steering committee of the project "NOX storage 

and reduction for heavy duty diesel vehicles" are acknowledged for interesting discussions 

and collaboration. 

 

I would also like to thank all colleagues at Chemical Reaction Engineering for a relaxed 

atmosphere and tolerant attitude. My room mates Carolin Olsson and Mattias Svensson 

Modén: thank you for pleasant discussions about everything from theory to practice, from soft 

matters to hard facts. Special thanks to the supporting personnel Linda, Agneta and Marianne: 

Without you the department would cease to live! 

 

Also I owe a debt of gratitude to a number of persons for practical assistance: Lars Lindström 

and Heine Riedel for laboratory gas mixtures, Björm Wickman for labview programming and 

Andreas Lundström for various technical assistance 

 

I would like to thank Dr Mats Josefson and the Pharmaceutical R&D at AstraZeneca Mölndal 

for introducing me to chemometrics and academic research as well as interesting meeting 

during my PhD project. 

 

The Swedish research council and the Swedish National Energy Administration are gratefully 

acknowledged for financial support. 

 

Finally but not least I would like to thank my family and especially my wife Marlén and our 

two lovely sons, Jacob and Viktor, who makes me realize that my work is not the most 

important thing in the world. 

 

 



   77 

10. REFERENCES 
 

A. Varma, et al., Introduction to sensitivity analysis, in Parametric Sensitivity in Chemical 

Systems: p. 9-25. 

Abbott, E.A., Flatland, A romance of many dimensions. 1884. 

Aghalayam, P., et al., Reactors, Kinetics, and Catalysis; Construction and optimization of 

complex surface-reaction mechanisms. AIChE Journal, 46 (2000) p. 2017 - 2029. 

Anderson, J.A., et al. Inter-relationship between carbonate, nitrate and sulphates in NOx 

storage and Reduction (NSR) catalysts. in NAM19. 2005. 

Arrhenius, S., Paper 2: On The Reaction velocity of inversion of cane sugar by acids, in 

Selected Readings in Chemical Kinetics, M.H. Back and K.J. Laidler, Editors. 1889a, 

Pergamon: p. 31-35. 

Arrhenius, S., Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch 

Säuren. Zeitschrift für Physikalische Chemie, 4 (1889b) p. 226-248. 

Backman, H., et al., Kinetic considerations of H2 assisted hydrocarbon selective catalytic 

reduction of NO over Ag/Al2O3:  II. Kinetic modelling. Applied Catalysis A: General, 304 

(2006) p. 86-92. 

Bardow, A., Optimal experimental design of ill-posed problems: The METER approach. 

Computers & Chemical Engineering, 32 (2008) p. 115-124. 

Barrett, E.P., et al., The Determination of Pore Volume and Area Distributions in Porous 

Substances. I. Computations from Nitrogen Isotherms, 73 1  (1951). p. 373-380. 

Barsan, M.M. and Thyrion, F.C., Kinetic study of oxidative dehydrogenation of propane over 

Ni-Co molybdate catalyst. Catalysis Today, 81 (2003) p. 159-170. 

Bates, D.M. and Watts, D.G., Nonlinear regression analysis and its applications, ed. Wiley. 

1988, Wiley. 

Bengtsson, A.E., Parameter fitting of a kinetic model using Simulated Annealing. Department 

of Chemical and Biological Engineering. Masters of Science thesis (2006), Chalmers 

University of technology. 

Berger, R.J., et al., Dynamic methods for catalytic kinetics. Applied Catalysis A: General, 342 

(2008) p. 3-28. 

Bird, R.B., et al., Transport phenomena. 2nd ed, ed. Wiley. 2002, Wiley International. 

Bond, G.C., The Use of Kinetics in Evaluating Mechanisms in Heterogeneous Catalysis. 

Catalysis Reviews, 50 (2008) p. 532 - 567. 

Box, G.E.P. and Hunter, W.G., The Experimental Study of Physical Mechanisms. 

Technometrics, 7 (1965a) p. 23-40. 

Box, G.E.P. and Hunter, W.G. Sequential Design of Experiments for Nonlinear Models. in 

Proceedings of the IBM Scientific Computing Symposium on Statistics October 21-23 

1963. 1965b: IBM Data processing division, White Plains, New York. 

Box, G.E.P., et al., Some Problems Associated with the Analysis of Multiresponse Data. 

Technometrics, 15 (1973) p. 33-51. 

Box, G.E.P. and Lucas, H.L., Design of Experiments in Non-Linear Situations. Biometrika, 

46 (1959) p. 77-90. 

Box, M.J., Some Experiences with a Nonlinear Experimental Design Criterion. 

Technometrics, 12 (1970) p. 569-589. 

Breen, J.P. and Burch, R., A review of the effect of the addition of hydrogen in the selective 

catalytic reduction of NOx with hydrocarbons on silver catalysts. Topics in Catalysis, V39 

(2006) p. 53-58. 



78 

Breen, J.P., et al., A fast transient kinetic study of the effect of H2 on the selective catalytic 

reduction of NOx with octane using isotopically labelled 15NO. Journal of Catalysis, 246 

(2007) p. 1-9. 

Bricker, M.L., et al., Strategies and applications of combinatorial methods and high 

throughput screening to the discovery of non-noble metal catalyst. Applied Surface 

Science, 223 (2004) p. 109-117. 

Broqvist, P., et al., NOx storage on BaO: theory and experiment. Catalysis Today, 96 (2004) 

p. 71-78. 

Broqvist, P., et al., NOx storage on BaO(100) surface from first principles: a two channel 

scenario. Journal of Physical Chemistry B, 106 (2002) p. 137-145. 

Brunauer, S., et al., Adsorption of Gases in Multimolecular Layers, 60 2  (1938). p. 309-319. 

Brühwiler, A., Nonlinear parameter fitting using Matlab. Chemical and Biological 

Engineering. Master thesis (2007), Chalmers University of technology. 

Burnham, A.J., et al., Latent variable multivariate regression modeling. Chemometrics and 

Intelligent Laboratory Systems, 48 (1999) p. 167-180. 

Burnham, A.J., et al., Frameworks for latent variable multivariate regression. Journal of 

Chemometrics, 10 (1996) p. 31-45. 

Buzzi-Ferraris, G. and Manenti, F., Kinetic models analysis. Chemical Engineering Science, 

64 (2009) p. 1061-1074. 

Choi, J.-S., et al., Spatially resolved in situ measurements of transient species breakthrough 

during cyclic, low-temperature regeneration of a monolithic Pt/K/Al2O3 NOx storage-

reduction catalyst. Applied Catalysis A: General, 293 (2005) p. 24-40. 

Coleman, T.F. and Verma, A., A Preconditioned Conjugate Gradient Approach to Linear 

Equality Constrained Minimization. Computational Optimization and Applications, 20 

(2001) p. 61-72. 

Dante, R.C., et al., Fractional factorial design of experiments for PEM fuel cell performances 

improvement. International Journal of Hydrogen Energy, 28 (2002) p. 343-348. 

Davis, S.G., et al., A new approach to response surface development for detailed gas-phase 

and surface reaction kinetic model optimization. International Journal of Chemical 

Kinetics, 36 (2004) p. 94-106. 

Dawson, E.A. and Barnes, P.A., A new approach to the statistical optimisation of catalyst 

preparation. Applied Catalysis A: General, 90 (1992) p. 217-231. 

Deshpande, K.B. and Zimmerman, W.B., Experimental study of mass transfer limited 

reaction--Part I: Use of fibre optic spectrometry to infer asymmetric mass transfer 

coefficients. Chemical Engineering Science, 60 (2005) p. 2879-2893. 

Desikusumastuti, A., et al., Identifying surface species by vibrational spectroscopy: Bridging 

vs monodentate nitrates. Journal of Catalysis, 255 (2008) p. 127-133. 

Dumesic, J.A., et al., The Microkinetics of Heterogeneous Catalysis, ed. A.C. Society. 1991, 

American Chemical Society. 

Edgar, T.F., et al., Optimization of Chemical processes. 2001. 

Eftaxias, A., et al., Nonlinear kinetic parameter estimation using simulated annealing. 

Computers & Chemical Engineering, 26 (2002) p. 1725-1733. 

Eriksson, L., et al., Multi- and Megavariate Data analysis, Priciples and Applications. 1st ed. 

2001, Umetrics AB. 

Fogler, H.S., Chapter 14, Models for nonideal reactors, in Elements of Chemical Reaction 

Engineering, N.R. Amundson, Editor. 2000a, Prentice Hall PTR: p. 946-1004. 

Fogler, H.S., Elements of Chemical Reaction Engineering. 3rd edition ed. Prentice Hall 

International Series in the Physical and Chemical Engineering Sciences, ed. N.R. 

Amundson. 2000b, Prentice Hall PTR. 



   79 

Fontaine, N. and Hassi, S., Directive 1999/96/EC of the European Parliament and of the 

Council, in Official Journal of the European Communities, 44  (2000), European 

Parliament. 

Franceschini, G. and Macchietto, S., Model-based design of experiments for parameter 

precision: State of the art. Chemical Engineering Science, 63 (2008a) p. 4846-4872. 

Franceschini, G. and Macchietto, S., Novel anticorrelation criteria for model-based 

experiment design: Theory and formulations. AIChE Journal, 54 (2008b) p. 1009-1024. 

Gorte, R.J., Temperature-programmed desorption for the characterization of oxide catalysts. 

Catalysis Today, 28 (1996) p. 405-414. 

Guthenke, A., et al., Development and application of a model for a NOx storage and reduction 

catalyst. Chemical Engineering Science, 62 (2007) p. 5357-5363. 

Hansen, A., et al., Microkinetic modeling as a tool in catalyst discovery. Topics in Catalysis, 

45 (2007) p. 219-222. 

Hansen, J., Defusing the Global Warming Time Bomb. Scientific American, March (2004) p. 

42-49. 

Hawthorn, R.D., Afterburner Catalysts-effects of Heat and Mass Transfer Between Gas and 

Catalytic Surface. AIChE Symposium Series, 70 (1974) p. 428-438. 

He, H., et al., Review of Ag/Al2O3-Reductant System in the Selective Catalytic Reduction of 

NO x. Catalysis Surveys from Asia, 12 (2008) p. 38-55. 

Hellman, A. and Grönbeck, H., Activation of Al2O3 by a Long-Ranged Chemical Bond 

Mechanism. Physical Review Letters, 100 (2008) p. 116801-4. 

HIDEN, Soft Ionisation for Analysis of Complex Gas/Vapour Mixtures, Gas Analysis 

Application Note 250 H.A. LTD, Editor (2007), HIDEN ANALYTICAL LTD: 

Warrington. p. 5. 

Holmgren, A., et al., A Model of Oxygen Transport in Pt/Ceria Catalysts from Isotope 

Exchange. Journal of Catalysis, 182 (1999) p. 441-448. 

Hosten, L.H. and Emig, G., Sequential experimental design procedures for precise parameter 

estimation in ordinary differential equations. Chemical Engineering Science, 30 (1975) p. 

1357-1364. 

Hunter, W.G. and Mezaki, R., An Experimental design strategy for distinguishing among 

rival mechanistic models.  An Application to the catalytic hydrogenation of propylene. 

Canadian Journal of Chemical Engineering, 45 (1967) p. 247-249. 

Imbihl, R., et al., Bridging the pressure and material gap in heterogeneous catalysis. Physical 

Chemistry Chemical Physics, 9 (2007) p. 3459-3459. 

Issanchou, S., et al., Sequential experimental design strategy for rapid kinetic modeling of 

chemical synthesis. Aiche Journal, 51 (2005) p. 1773-1781. 

Jansson, J., Studies of Catalytic Low-Temperature CO Oxidation over Cobalt Oxide and 

Related Transition Metal Oxides. Department of Chemical Reaction Engineering. Doctoral 

dissertation (2002), Chalmers University of Technology. 

Jansson, J. and Andresson, B., Statistical Considerations in the Non-linear regression of a 

Microkinetic Reaction Model to Experimental data from a Low-temperature active carbon 

monoxide oxidation catalyst, in manuscript,  (2004). 

Kabin, K.S., et al., NOX storage and reduction on a Pt/BaO/alumina monolithic storage 

catalyst. Catalysis Today, 96 (2004) p. 79-89. 

Kalivas, J.H., Optimization using variations of simulated annealing. Chemometrics and 

Intelligent Laboratory Systems, 15 (1992) p. 1-12. 

Kannisto, H., Silver Alumina Catalysts for Lean NOx reduction. Department of Chemical and 

Biological Engineering(2009a), Chalmers university of technology. 

Kannisto, H., et al., Ag-Al2O3 catalysts for lean NOx reduction--Influence of preparation 

method and reductant. Journal of Molecular Catalysis A: Chemical, 302 (2009b) p. 86-96. 



80 

Kapteijn, F. and Moulijn, J.A., Laboratory Leactors, in Handbook of heterogeneous catalysis, 

G. Ertl, J. Weitkamp, and H. Knözinger, Editors. 1997: p. 1359-1398. 

Kasuya, F., et al., The thermal DeNOx process: Influence of partial pressures and 

temperature. Chemical Engineering Science, 50 (1995) p. 1455-1466. 

Kirsten, G. and Maier, W.F., Strategies for the discovery of new catalysts with combinatorial 

chemistry. Applied Surface Science, 223 (2004) p. 87-101. 

Koci, P., et al., Modelling of micro/nano-scale concentration and temperature gradients in 

porous supported catalysts. Chemical Engineering Science, 62 (2007) p. 5380-5385. 

Lewi, P.J., From data to knowledge to more data. Where is the portal to progress? 

Chemometrics and Intelligent Laboratory Systems, 73 (2004) p. 167-168. 

Luna-Ortiz, E. and Theodoropoulos, C., An input/output model reduction-based optimization 

scheme for large-scale systems. Multiscale Modeling & Simulation, 4 (2005) p. 691-708. 

Lundstedt, T., et al., Experimental design and optimization. Chemometrics and Intelligent 

Laboratory Systems, 42 (1998) p. 3-40. 

Lundström, A. and Wickman, B., Simulation of Heterogeneous catalysis using the Finite 

Element Method: Analysis of transients using detailed kinetic- and transport models. 

Department of Chemical and Biological Engineering. undergraduate thesis report (2005), 

Chemical Reaction Engineering. 

Markides, K., Vision, goals and strategies 2008 - 2015 with outlook towards 2020, 2009 

2009-03-10  (2009), Chalmers university of technology: Gothenburg. p. 

http://www.chalmers.se/insidan/EN/about-chalmers/vision-goals-strategies. 

Marquardt, W., Special Issue: model-based experimental analysis: From Experimental Data to 

Mechanistic Models of Kinetic Phenomena in Reactive Systems. Chemical Engineering 

Science, 63 (2008) p. 4637-4639. 

Martens, H. and Naes, T., Multivariate Calibration, ed. Wiley. 1989, Wiley. 

Mary Ann Branch, T.F.C., Yuying Li, A Subspace, Interior, and Conjugate Gradient Method 

for Large-Scale Bound-Constrained Minimization Problems. SIAM Journal on Scientific 

Computing, 21 (1999) p. 1-23. 

McGraw-Hill, Chemical properties handbook, Table: Critical Properties and Acentric Factor; 

Inorganic Compounds,  (2009). 

Meinrath, G., et al., Assessment of uncertainty in parameter evaluation and prediction. 

Talanta, 51 (2000) p. 231-246. 

Meunier, F.C., et al., Mechanistic differences in the selective reduction of NO by propene 

over cobalt- and silver-promoted alumina catalysts: kinetic and in situ DRIFTS study. 

Catalysis Today, 59 (2000) p. 287-304. 

Mhadeshwar, A.B., et al., The role of adsorbate-adsorbate interactions in the rate controlling 

step and the most abundant reaction intermediate of NH3 decomposition on Ru. Catalysis 

Letters, 96 (2004) p. 13-22. 

Mhadeshwar, A.B., et al., Thermodynamic Consistency in Microkinetic Development of 

Surface Reaction Mechanisms. J. Phys. Chem. B., 107 (2003) p. 12721 -12733. 

Mhadeshwar, A.B., et al., Microkinetic modeling for hydrocarbon (HC)-based selective 

catalytic reduction (SCR) of NOx on a silver-based catalyst. Applied Catalysis B: 

Environmental, In Press, Accepted Manuscript (2009) p. 

Mhadeshwar, A.B. and Vlachos, D.G., Hierarchical, multiscale surface reaction mechanism 

development: CO and H2 oxidation, water-gas shift, and preferential oxidation of CO on 

Rh. Journal of Catalysis, 234 (2005a) p. 48-63. 

Mhadeshwar, A.B. and Vlachos, D.G., Is the water-gas shift reaction on Pt simple? 

Computer-aided microkinetic model reduction, lumped rate expression, and rate-

determining step. Catalysis Today, 105 (2005b) p. 162-172. 

http://www.chalmers.se/insidan/EN/about-chalmers/vision-goals-strategies


   81 

Miyadera, T., Alumina-supported silver catalysts for the selective reduction of nitric oxide 

with propene and oxygen-containing organic compounds. Applied Catalysis B: 

Environmental, 2 (1993) p. 199-205. 

MKS Instruments, I., MKS Type MG2000™ Software Manual, 134985-P1,  Rev B, 09/06,  

Software Version 06.30  (2006). 

Montgomery, D.C., Design and Analysis of Experiments. 5 ed. 2001, Wiley. 

Müller, A., Modelling and quantification of DRIFTS data for kinetic studies. Department of 

Chemical and Biological Engineering. Diploma thesis (2008), Chalmers University of 

technology. 

Olsson, I.-M., et al., D-optimal onion designs in statistical molecular design. Chemometrics 

and Intelligent Laboratory Systems, 73 (2004) p. 37-46. 

Olsson, I.-M., et al., Controlling coverage of D-optimal onion designs and selections. Journal 

of Chemometrics, 18 (2005) p. 548-557. 

Olsson, L., Fundamental studies of catalytic nitrogen oxide removal: micro kinetic modelling, 

Monte Carlo simulations and flow reactor experiments. department of Chemical Reaction 

Engineering(2002a), Chalmers University of Technology. 

Olsson, L., et al., Mean field modelling of NOx storage on Pt/BaO/Al2O3. Catalysis Today, 

73 (2002b) p. 263-270. 

Olsson, L., et al., A Kinetic Study of Oxygen Adsorption/Desorption and NO Oxidation over 

Pt/Al2O3 Catalysts. J. Phys. Chem. B., 103 (1999) p. 10433-10439. 

Olsson, L., et al., Role of steps in the NO-CO reaction on the (1 1 1) surface of noble metals. 

Surface Science, 529 (2003) p. 338-348. 

Papadakis, K., et al., Development of a dosing strategy for a heavy-duty diesel exhaust 

cleaning system based on NOX storage and reduction technology by Design of 

Experiments. Applied Catalysis B: Environmental, 70 (2007) p. 215-225. 

Park, Y.K., et al., A Generalized Approach for Predicting Coverage-Dependent Reaction 

Parameters of Complex Surface Reactions: Application to H2 Oxidation over Platinum. J. 

Phys. Chem. A, 103 (1999) p. 8101 -8107. 

Partington, J.R., Chapter XX Solutions, in A History of Chemistry. 1964, Macmillan & Co 

Ltd: p. 637-662. 

Pearson, K., On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical 

Magazine, 6 (1901) p. 559-572. 

Perez-Ramirez, J. and Kondratenko, E.V., Evolution, achievements, and perspectives of the 

TAP technique. Catalysis Today, 121 (2007) p. 160-169. 

Poling, B.E., et al., Diffusion coefficients, in The properties of gases and liquids 2001, 

McGraw-Hill. 

Pritchard, D.J. and Bacon, D.W., Prospects for reducing correlations among parameter 

estimates in kinetic models. Chemical Engineering Science, 33 (1978) p. 1539-1543. 

Raimondeau, S., et al., Parameter Optimization of Molecular Models: Application to Surface 

Kinetics. Ind. Eng. Chem. Res., 42 (2003) p. 1174-1183. 

Reactions in Heterogeneous systems. 1999, Chemical Reaction Engineering, Chalmers 

University of technology. 

Richter, M., et al., Unusual Activity Enhancement of NO Conversion over Ag/Al2O3 by 

Using a Mixed NH3/H2 Reductant Under Lean Conditions. Catalysis Letters, V94 (2004) 

p. 115-118. 

Routray, K. and Deo, G., Kinetic parameter estimation for a multiresponse nonlinear reaction 

model. AiIChE Journal, 51 (2005) p. 1733-1746. 

Rönnholm, M., et al., ANN modeling applied to NO x reduction with octane in a new 

microreactor. Topics in Catalysis, 42-43 (2007) p. 195-198. 



82 

S. Kirkpatrick, C.D.G., Jr., M.P. Vecchi, Optimization by Simulated Annealing. Science, 220 

(1983) p. 671-780. 

Satterfield, C.N., Heterogeneous Catalysis in Practice. 1 ed. McGraw-Hill Chemical 

engineering series. 1980, McGraw-Hill Book Company. 

Shannon, S.L. and Goodwin, J.G., Characterization of Catalytic Surfaces by Isotopic-

Transient Kinetics during Steady-State Reaction. Chem. Rev., 95 (1995) p. 677-695. 

Shimizu, K.-i. and Satsuma, A., Selective catalytic reduction of NO over supported silver 

catalysts-practical and mechanistic aspects. Physical Chemistry Chemical Physics, 8 (2006) 

p. 2677-2695. 

Shimizu, K.-i., et al., Silver-alumina catalysts for selective reduction of NO by higher 

hydrocarbons: structure of active sites and reaction mechanism. Applied Catalysis B: 

Environmental, 30 (2001) p. 151-162. 

Sjövall, H., et al., Detailed Kinetic Modeling of NH3 and H2O Adsorption, and NH3 

Oxidation over Cu-ZSM-5, 113 4  (2009). p. 1393-1405. 

Song, J., et al., Valid parameter range analyses for chemical reaction kinetic models. 

Chemical Engineering Science, 57 (2002) p. 4475-4491. 

Stegelmann, C., et al., Microkinetic modeling of ethylene oxidation over silver. Journal of 

Catalysis, 221 (2004) p. 630-649. 

Stoltze, P., Microkinetic simulation of catalytic reactions. Progress in Surface Science, 65 

(2000) p. 65-150. 

Stoltze, P. and Norskov, J.K., Bridging the Pressure Gap between Ultrahigh-Vacuum Surface 

Physics and High-Pressure Catalysis. Physical Review Letters, 55 (1985) p. 2502-2505. 

Tagliabue, M., et al., Multivariate approach to zeolite synthesis. Catalysis Today, 81 (2003) p. 

405-412. 

Theis, J.I., et al., Phenomenological studies on the storage and regeneration process of NOx 

storage catalysts for gasoline lean burn applications, in SAE Technical Paper Series, SP-

1676 2002-01-0057  (2002). 

Thomas Coleman, Y.L., An Interior Trust Region Approach for Nonlinear Minimization 

Subject to Bounds. SIAM J Optimization, 6 (1996) p. 418-445. 

Tronconi, E. and Forzatti, P., Adequacy of lumped parameter models for SCR reactors with 

monolith structure. AIChE Journal, 38 (1992) p. 201-210. 

Turányi, T., et al., Reaction Rate Analysis of Complex Kinetic Systems. International Journal 

of Chemical Kinetics, 21 (1989) p. 83-99. 

Umetri, Introduction to Design of Experiments. 1988, Umetri AB. 

Vajda, S., et al., Principal Component Analysis of Kinetic Models. International Journal of 

Chemical Kinetics, 17 (1985) p. 55-81. 

Walter, E. and Pronzato, L., Qualitative and quantitative experiment design for 

phenomenological models--A survey. Automatica, 26 (1990) p. 195-213. 

Van't Hoff, J.H., Études de Dynamique Chimique. 1884. 

Van't Hoff, J.H., zur Chemischen Dynamik, ed. D.E. Cohen. 1896, Fredrik Muller & co. 

Wickman, B., et al., Modeling mass transport with microkinetics in monolithic NO x storage 

and reduction catalyst. Topics in Catalysis, 42-43 (2007) p. 123-127. 

Wold, S., et al., The utility of multivariate design in PLS modeling. Journal of Chemometrics, 

18 (2004) p. 156-165. 

Yablonskii, G.S., et al., Moment-based analysis of transient response catalytic studies (TAP 

experiment). Industrial & Engineering Chemistry Research, 37 (1998) p. 2193-2202. 

Yeom, Y.H., et al., A study of the mechanism for NOx reduction with ethanol on gamma-

alumina supported silver. Journal of Catalysis, 238 (2006) p. 100-110. 

Zamostny, P. and Belohlav, Z., Identification of kinetic models of heterogeneously catalyzed 

reactions. Applied Catalysis A: General, 225 (2002) p. 291-299. 



 

 A1 

 

11. APPENDICIES  
 

A. Mass spectroscopy 

Aspects of MS quantification 

Below is a list of important aspects when it 

comes to quantification of MS data. 

1. Capillary inlet. The capillary (at KCK) 

is a small glass tube (~1mm diameter, 

4cm long) with a “melted” end, creating 

a very small opening and thus creating 

the pressure drop (from 1 bar to 1 10
-

6
bar).  

2. If the opening is too small (by design or 

by clogging of by-products) the pressure 

drop will increase and the flow into the 

ionization chamber will decrease. This 

will make the signal weaker (more 

noise) and also make the effect of the 

inevitable leaks on the vacuum side 

more important. Furthermore it will 

increase the response time for transient 

experiments. 

3. If the opening is too big, the pressure 

drop will decrease and the flow into the 

ionization chamber will increase. This 

will cause secondary effects, i.e. ions 

interacting with each other and thus 

changing the sensitivity but more 

importantly also changing the 

selectivity. 

4. The counter-measure is to check the 

pressure in the ionization chamber and 

to use an internal standard as reference, 

see below.  

5. To summarize: the ionization chamber 

pressure (governed mainly by the 

capillary) affects the response level 

(sensitivity) and the noise level as well 

as the sensitivity and finally also the 

response time. 

6. Ionization chamber setup: The number 

of produced ions/fragments depends on 

the amount and energy of the incoming 

electrons, see Figure 31, but also the 

amount and composition of the 

incoming gas mixture and also on the 

combination of both electrons and gas 

mixture. 

 
Figure 31 Ionization produced by electron 

impact, as a function of the electron energy. 

 

If the energy is too low (below the 

ionisation limit) there will be no 

formation of ions. If the energy is too 

high, the signal will drop and more 

importantly: secondary effects will 

occur (molecules will either fragmentize 

more or produce double charged ions) 

obviously complicating any calibration. 

A high sensitivity is generally wanted 

and the most commonly energy of 

approximately 70eV is selected. The 

selectivity can be modelled by a proper 

experimental design, taking the 

interaction effect into account, see for 

example section 5.4.2. An alternative 

technique is the “soft ionization 

method” [HIDEN 2007] where it is 

possible to quantify e.g. NH3 (m/e=17) 

in the presence of water which produces 

a significant fragment at m/e=17. The 

“trick” is to lower the electron energy, 

the secondary effects will be smaller 

(selectivity will increase) and a trade-off 

between selectivity and sensitivity is 

possible. Another way to increase the 

selectivity is to purchase an MS that 

works with other ionisation elements 

(i.e. not electrons) but larger charged 

elements such as Kr, Xe or Hg. 

7. Quadropole setup: The main task for the 

quadropole is the separation between 

masses (resolution, mass selectivity) 

which, of course, comes at the price of 

sensitivity. If the resolution is too high 

the signal drops and if the resolution is 



A2 

to low, the signal will be influenced by 

adjacent masses (see Figure 32). 

 

contribution to the

neighbouring mass

contribution to the

neighbouring mass

 
Figure 32 Two peaks (E.g. 

15
NO at m/e=31 and 

16
O2 at m/e=32) and the peak overlap if the 

resolution is not high enough or if the 

concentrations of 
16

O2 is high and the 

concentration of 
15

NO is low.)  

8. The counter-measure is to investigate if 

the resolution can be increased and if 

not, if the peak overlap can be modelled, 

i.e. by including the interference in the 

calibration. 

9. SEM setup: The SEM detector is (as 

indicated by the name: Secondary 

Electron Multiplier) a multiplier of the 

electrons that was released by the 

fragments that passed through the 

quadropole, see Figure 33 

 
Figure 33 The SEM detector. The first few 

electrons emitted from the incoming fragment is 

multiplied many times and the signal increases. 

 

The signal (in counts) should of course be 

as high as possible, but if the signal 

becomes too high, the electronics will not 

have the time to relax and thus the signal 

of the subsequent mass (in the scan) will 

be influenced. 

MS calibration 

 

The following steps should be a good 

starting point for quantitative analysis of 

MS data. 

Data acquisition: 

1. A reference mass should be collected at 

all times in order to capture drift in the 

SEM detector, preferably an ion with a 

signal level similar to the other 

analytes e.g. Kr @m82, (If Ar is used 

as a carrier gas, Ar@m40 should not be 

used since it has such a high signal that 

the SEM may have problems with 

signal decay times. Furthermore, the 

Ar concentration will vary with the 

other concentrations (since it is used as 

a “filler”) and potential errors in the 

other concentrations will have an 

impact on the predictions) 

2. Make a proper design in the 

concentration intervals that are of 

interest. Note if distinct levels are to be 

used (e.g. O2 at either 5% or 0%) it is 

probably better to make two separate 

calibrations. 

3. Since there are always leaks in the 

system, every mass will have a zero-

level, i.e. at 0 ppm inlet concentration 

the SEM will still obtain a low signal. 

Record all masses with only the diluent 

gas (e.g. Ar) in the system. 

Data pre-treatment: 

4. adjust all MS signals to the Kr level 

(either dynamically or as a constant) 

5. Subtract the zero baseline for each 

individual mass 

6. If m31 is used (e.g. 
15

NO) in 

combination with high levels of O2, 

make sure to correct for the peak 

overlap (see Figure 32) 

7. Make a calibration of the sensitivities 

and make the inverse calibration using 

least squares: 
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             (54) 

 

Where I is the MS signals, C is the 

concentrations and S the sensitivity 

matrix. Note that the inversion of S’S 

is sensitive to small errors since 

correlation can exist, e.g. NO2 has 

fragments m30 and m46. Below is an 

example of a NOX sensitivity matrix: 

 

 m28 m30 m44 m46 
14

N2 2.9 0 0 0 
14

NO 0 3.3 0 0 
14

N2O 1 0 2.5 0 
14

NO2 0 1 0 0.3195 
Table 3. example of an MS sensitivity matrix  

 

8. If isotopes are used, then expand the 

matrix with the corresponding species 

and masses. Due to the confounding 

between 
15

N2 and 
14

NO, 
15

N2O and 
14

NO2, special care should be taken if 

these species are to be quantified. Note 

that the experiment can indicate the 

species that are not likely to occur and 

hence some sensitivities can be 

neglected. 

9. Make sure to check the predictions by 

calculating the mass balances and if 

necessary, adjust the sensitivity 

coefficients. 

 

 

___________________________________________________________________________ 

 

B. Linear modelling 

More details on ALS 

ALS was introduced in 3.2.4, and here are 

some additional details. By performing 

spectral decomposition, information about 

adsorbate concentration may be obtained:

  

''''ˆ CSPTRRTPDD       (55) 

  

Where D is the spectral matrix of size NxK 

(N observations, K wavenumbers), T and P 

are the scores and loadings matrices from a 

PCA analysis. R is a rotation matrix, C is 

the contribution matrix, corresponding to 

concentrations and S is the matrix of pure 

spectra. The implementation of the MRC 

(Multivariate Curve Resolution) 

methodology is described here (using PLS 

toolbox v 4.1 in MATLAB): 

 

1) Make an estimate (approximation) of D 

by means of PCA (Principal 

Component Analysis). This will 

determine the dimensionality (A) of the 

reduced space, i.e. the number of 

components present in the data. 

2) “Sort” the corresponding scores so that 

they appear in a sequence by EFA 

(Evolving Factor Analysis) and use 

these corresponding scores as initial 

estimates for the subsequent ALS. 

3) Perform ALS (Alternating Least 

Squares) that rotates the latent 

variables using a rotation matrix R 

subject to non-negativity constraints on 

both C and S. 

The resulting decomposition is now an 

approximation of D that is composed of 

one matrix C, that corresponds to 

concentrations and one matrix S that 

corresponds to the pure spectra. 

This decomposition is often non-

ambiguous, but even a crude quantification 

of the adsorbate concentrations would be 

very beneficial. A simulation output is 

normally the gas phase concentrations 

from the rear of the reactor, whereas most 

of the reactions actually take place at the 

very entrance. This is the motivation why 

the introduction of surface concentration 

estimates is of great importance.  
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C. Relations and correlations for transport and  
kinetic aspects of modelling 

In this section some model expressions are given with reference from the preceding sections. 
 

 

3.5 Determination of Diffusivity, DA 

 

The binary diffusivity of species A in B 

(DAB) can be calculated in various ways (B 

is omitted since the same diluent gas is 

used for all analytes, Ar in this case) 

The most common way is the use of the 

Fuller correlation (from [Poling 2001]) 

 

23/13/1½

75.100143.0

BAAB

AB

PM

T
D (11-4.4) 

 

Where DAB=binary diffusivity [cm
2
/s], 

P=pressure [bar], MAB=2/(1/MA+1/MB), 

T=temperature [K] and  is the diffusion 

volume, either as a molecule or as a sum of 

atom contributions in the molecule, see 

p11.11 in [Poling 2001]. 

 

The diffusivity can also be calculated from 

Chapman and Enskog theory [Poling 2001] 

 

DABAB

AB
PM

T
D

2½

5.100266.0
       (11-3.2) 

 

Where P=pressure [bar], AB is the 

characteristic length and D is a diffusion 

collision integral (note that the integral is a 

function of temperature and the global 

temperature dependence of DAB was T
1.75

 

in this thesis). These can be found in [Bird 

2002] eq 17.3-12, E.2-2, 17.3-14,15, 1.4-

11b and the molecular properties can e.g. 

be found and downloaded from [McGraw-

Hill 2009]. Note that units may differ e.g. 

for pressure. 

 

3.5.1 Determination of number of tanks 

in series  
 

The following is adapted from [Fogler 

2000b]. The number of tanks-in-series, n, 

necessary to model a real tube reactor is 

            
2

2

n  (14-12) 

 

Where  is the mean residence time and 
2
 

is the variance of an impulse response. The 

mean residence and variance can be 

measured (if the surrounding pipes and 

detectors are properly modelled as well, 

see section 3.4) but can also be calculated 

using the reactor-Peclet number Per: 

 

             
a

r
D

UL
Pe  (14-19) 

 

Where U is the superficial velocity (m/s), 

L is the reactor (monolith) length [m] and 

Da is the axial dispersion coefficient 

[m
2
/s]. 

The axial dispersion coefficient is given 

from a correlation: 

AB

t

ABa
D

du
DD

192

22

 (p965) 

This correlation indicates that when the 

fluid velocity is low, the dispersion is 

equal to the binary diffusivity. For an 

open-open system using the reactor-Peclet 

number (also known as the Bodenstein 

number, Bo), the following relation 

applies: 

 

       
22

2 82

rr PePe
 (14-46) 

 

Eq (14-46) together with eq (14-12) gives 

n. n can also be calculated from another 

relation: 

 

         1
2

Bo
n  (14-50) 

which gives about the same results. 
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3.5.2 Determination of kc 

 

The mass transport coefficient kc is given 

from the definition of the Sherwood 

number (eq. from [Fogler 2000b]: 

 

AB

pc

D

dk
Sh   (11-38) 

 

Where dp is the characteristic length 

(channel diameter), DAB is the binary 

diffusivity and Sh is taken from correlations. 

In this thesis the Sherwood number is 

obtained from [Tronconi 1992] who reported 

using the following correlation: 

 

*488.0* 2.57exp1000874.6 zzShSh a

 

Where Sha is the asymptotic Sherwood 

number, being 3 for square channels and 

4.4 for circular channels. z* is the 

dimensionless axial position: 

 

Scd

z

ud

zD
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*  

 

3.5.3 Determination of an effectiveness 

factor for internal mass transport 

resistance 

 

The Knudsen diffusivity is given in [Bird 

2002] 

 

A

Kn
M

RTa
D

23

8
 (24.6-1) 

 

The effective diffusivity (Deff) is given in 

[Fogler 2000b] 

 

~
cpkn

eff

D
D  (12-1) 

 

Where p is the porosity, c is the 

constriction factor and  is the tortuosity, 

which can be approximated by: 

 

103

8.0*4.0 kn

kneff

D
DD  (p816) 

 

Furthermore, the Thiele modulus for a 

plate is given by [Reactions in 

Heterogeneous systems 1999]  

 

eff

n

Asv

D

ckn
L

1

2

1
   (2.184) 

 

And the effectiveness factor is given by: 

 

1
   (2.182) 

 

Note that the Knudsen diffusivity applies 

when the pore diameter is about 2-50 nm. 

In the case for Ag-Al2O3 used in paper IV, 

the average pore diameter was 3nm, i.e. on 

the limit for Knudsen diffusion. 

Furthermore, to complicate the situation 

further, the pores in the washcoat are not 

only from the powder, but the pores also 

stems from spaces between particles, as 

shown in Figure 5, section 2.3. There it can 

be seen that particles of about 1µm is 

sintered to form the washcoat. 

 

3.6.3 Expressions for kinetic parameters 

 

These equations can also be derived from 

[Dumesic 1991], however the units are 

often not macroscopic so the equations 

have been re-written (equations from 

[Olsson 2002a]). 

 

Preexponential factors for adsorption are 

obtained from Collision theory: 

 

)0(
2

SNA
MRT

RTN
A cats

A
ads      (5.1.5) 

 

Where NA is the Avogadros number, T is 

the temperature [K], M is the molecular 

weight, As is the surface area of one site 

[m
2
/site], Ncat is the moles of active sites 

per kg catalyst and S(0) is the sticking 

coefficient at zero coverage.  
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Pre-exponential factors for surface 

reactions can be calculated from transition 

state theory, see Figure 34. 

 

 
Figure 34. Schematic view of a surface reaction, 

AB# is the transition state, corresponding to a 

reaction intermediate in thermodynamic 

equilibrium with the reactants and the product. 

 

The pre-exponential is given in [Dumesic 

1991] 

 

##
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QQ
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Where kB is the Boltzmann constant 

(1.38x10
-23

J/K), h is Plancks constant 

(6.626x10
-34

J·s), T is the temperature [K] 

and Q
#
 are the partition functions. Each 

partition function has contributions from 

molecular translation, vibration and 

rotation: 

 

iviriti qqqQ#      (22) 

 

The translation contribution is given by: 
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depending on if the molecule moves in 

three dimensions or on a surface (in two 

dimensions) and mi is the molecular mass 

[a.u.]. If the molecule can be assumed to 

be “fixed” or localized, qit becomes unity. 

The rotational contribution is given by: 

 

)(,
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2/332
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where Ii are the moments of inertia, σr is 

the rotational symmetry number. The 

vibrational contributions are: 

 

j

B

ij

iv

Tk

h
q

exp1

1
 (26) 

 

Where νij are the frequencies of the normal 

vibrational modes. Note that these 

vibrational modes are one of the outputs 

from DFT calculations described in section 

3.6.5 concerning HS modelling. Note that 

kBT/h =10
13

 s
-1

 at 200°C. 

 

For the pre-exponential factor for 

desorption, the ratio of the partition 

functions are QA
#
/QA* = 1, thus giving the 

value of 10
13

 s
-1

. 

 

For estimation of activation energies, there 

exists several methods, eg. Bond order 

conservation. However, this method has 

only been sporadically used in this thesis 

and the reader is referred to the literature 

[Dumesic 1991, Mhadeshwar 2003] for 

details. For activation energies for 

desorption, DTF calculations or 

microcalorimetry experiments may be used 

since the activation energy correspond to 

the heat of adsorption (if the adsorption is 

non-activated) 

 

 

 

A* +B* 
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D. MATLAB implementation 
 

 

The simulation code written in Matlab was 

first developed by Björn Westerberg and 

then refined by Louise Olsson. The code 

had however become less general since 

many ad hoc solutions had been 

implemented as time went by. In order to 

improve the performance and increase the 

user-understanding of the code a number 

of changes were made: 

 File structure: The different m-files 

were revised and variable 

definitions were relocated in order 

to increase the transparency of the 

code. 

 Flexible thermodynamic constraints 

were added. 

 A new ODE function was applied 

that also could take into account 

gas phase accumulation. Also heat 

balances were added in paper IV. 

 Scaling of fitted parameters was 

added. 

 Code was included to shift data in 

order to compensate for 

instrumental delay and detector rise 

time. 

 Use of a mass matrix (M) was 

included in order to neglect 

accumulation if desired: 

 

),( txf
dt

dx
M      ( 56) 

 

 Alternative ways to fit parameters 

were included (see paper II). 

 

The structure of all m-files is displayed in 

Figure 35: 

 

The objective of this work was to make the 

code tractable for other PhD students at 

KCK and thus enable common discussions 

and improved research results.  
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Figure 35. Code structure as used in this thesis.  Each box corresponds to a Matlab m-file. The Setup file 

gathers physical data, monolith data, experimental data, and the kinetic mechanism. The rescalc file 

calculates the outlet concentrations and the residual. Three objectives are possible: 1) to run a simulation 

and plot the results (solid arrow), 2) to fit parameters to experimental data (dotted arrow) or 3) to 

evaluate a set of parameters for various purposes. 
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