
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Methods and algorithms for image fusion and 
super resolution 
Master of Science Thesis  
 
 
ANDERS ÖHMAN 
 
 
Department of Signals and Systems 
CHALMERS UNIVERSITY OF TECHNOLOGY 
Göteborg, Sweden, 2009 
Report No. EX011 2009 



Methods and algorithms for
image fusion and
super resolution

Author:

Anders Öhman
Supervisor and examiner:

Irene Gu

March 23, 2009



Abstract

This project is focused on image fusion of images of di�erent focus depth and
fusing for super resolution. The aim is to study these concepts and provide
simulations and evaluations on various implementations. When performing
multi focal fusion the images are decomposed by wavelets to obtain high fre-
quency coe�cients which is used to determine which parts of the input images
that makes it into the fused image. The same technique is tested on images of
di�erent modality. Super resolution utilizes measurements of subpixel shifts
between several low resolution images of the same scene to create a fused
image of higher resolution by interpolation and image enhancement. The
thesis describes a modular approach for super resolution where registration,
interpolation and blind deconvolution is treated as separate modules. Tests
are performed for di�erent images, choices of modules and input parameters.
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HR High Resolution
LR Low Resolution
MBD Multiframe Blind Deconvolution
MR/MRI Magnetic Resonance (Imaging)
PSNR Peak Signal to Noise Ratio, evaluation
SNR Signal to Noise Ratio
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Chapter 1

Introduction

Here the purpose of this thesis will be presented, the terms image fusion and
super resolution will be explained, what usage they might have with a few ex-
amples. In this thesis, several methods for image fusing and super-resolution
has been studied, the �rst study is related to fuse two characteristically dif-
ferent (one is focused on foreground, another on the background) images
taken from the same scene that automatically takes the relevant informa-
tion from each image and puts them together to yield a fused image that
is both focused on foreground and background. The second study concerns
using several nearly identical images taken from the same scene, however,
contained small shift changes. These images are used for obtaining an image
of higher resolution. Methods have been investigated for each of those cases,
together with computer simulations. The aim in both cases is to aid in visual
assessment of the images.

1.1 Fusion from multi focused or multisensor

images

The purpose of image fusing is to obtain an enhanced image containing the
information present in multiple images, the algorithm could be as simple as
averaging both images together or more sophisticated as one that extracts the
relevant information from each image and construct one new from that. The
goal is to develop an algorithm that fuses two images with as good result as
possible. The images have to be of the same scene but there has to be some
di�erences such as di�erent focal depth, modality, light spectrum or time.
The key is to determine which information that is relatively more important
at one speci�c location in one of the images compared to the other. Without
specifying what is important information like adding templates to look for
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one can make an assumption. Lines and sharp contours contain important
information, thus favoring high frequency image content is a possible solution.

Examples A very simple example is when the user has got two pictures
taken on a person or an object, in one of the images the person is in focus and
the background isn't while the other image is the opposite. It is desirable
that an image that is fully focused. This is possible because the images
together have sharp areas in all places. Using some kind of image processing
one could cut and paste the sharp foreground object onto the background of
the other picture, or he could use an algorithm like this.

Another example is when a doctor is examining two images, one obtained
by Magnetic Resonance Imaging (MRI) and one by Computer Tomography
(CT). Both images contain relevant information, the MRI works by aligning
hydrogen atoms present in water in the body tissues and by altering the
magnetic �eld causing the nuclei of the hydrogen to emit a rotating magnetic
�eld of its own which is detectable, creating an image showing various tissue
types. The CT works like an x-ray producing images depending on the
density of the tissue. Instead of showing the images side by side and make
comparisons there might be desirable to have only one image.

1.2 Super resolution from a sequence of low

resolution images

Resolution de�nes how densely sampled an image is, the higher amount of
pixels per unit length allows more details to be visible in the image. Several
technical di�culties follow the aim of obtaining good high resolution images.
A typical way of making the sensor detect �ner detail is to decrease the pixel
sizes thus increasing their number on a speci�ed area. However, the amount
of light allowed on each pixel is decreased in the same manner. By doing the
sensor more sensitive makes it more prone to noise. The method called super
resolution is to create a high resolution image from several low resolution
counterparts. Using the fact that there might be shifts smaller than one
pixel between the low resolution images depicting the same scene, they can
be put together resulting in a picture of high resolution. A common way of
obtaining the images is by using adjoining video frames. If the user already
has several low resolution images of a motif and wants a high resolution image
super resolution is a possible choice if it was hard obtaining the images. It's
also more expensive manufacturing devices capable of taking high-resolution
pictures directly than having a low cost device taking several pictures and by
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mathematical means create the high resolution image. In medical imaging,
where the amount of radiation a�ects what resolution is possible it is possible
to lessen the dose the patient is exposed to.
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Chapter 2

Overview of theories and related

work

In this chapter the problems are formulated based on what's found in the
literature. The aim is that when the reader reaches the end of this chapter
he will have a su�cient understanding of the purpose of the methods and
experiments in this thesis.

2.1 Fusing di�erent focus

The main source of information for this part of the thesis is found in the
image fusion articles written by Petrovic [2] and Piella [3]. Image fusion is
a process of analyzing the input images to determine what content to keep
for a composite image. Its goal is to reduce the load for a human observer
by decreasing the number of images that he must browse through, in some
cases simultaneously. Common for many image fusion tools is to start with
some kind of multi resolution decomposition to split up the image based on
its frequency content. The higher frequencies are known as the detail coe�-
cients and are used as the main source of information when determining if a
location in the image contains information to keep. The low frequency parts
or approximation is then used for creating more levels of detail coe�cients
and approximations, generally speaking the frequency spectrum is split in an
upper and lower part and the lower part is once again split until the level
wished for is reached. The concept of splitting up the frequency spectrum is
shown in �gure 2.1 In this thesis wavelets are chosen as the method for do-
ing the decomposition, here three detail coe�cients are received; horizontal,
vertical and diagonal.
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Figure 2.1: Example of a frequency band decomposed by wavelets

2.1.1 Addressed problems

With regard for the aim of image fusion there are a certain number of rules
that have to apply to the fused images. Firstly, all information that is nec-
essary for decision making should be present in the composite image and
thus the algorithm must carefully choose the content depending on what the
observer needs. This might favor a specialized program instead of a gen-
eral purpose image fusion program. Next is that the algorithm itself is not
allowed to create content of its own or change the present content.

2.1.2 Methods of fusion

Fusion of images can be performed on many di�erent levels. As de�ned by
[2] the most straight forward fusion is pixel level or sensor level fusion. It's
when the algorithm uses the pixel value only to make decisions about how the
fusion is to be carried out. Next level is feature level, where features in the
images are extracted by simple means such as segmentation, morphological
operations or similar automatic processes. The increased understanding of
this level is that certain pixels are part of the same group. On the top there's
symbol level fusion there classi�cation of said features are made. The report
by Petrovic [2] focuses on the �rst level namely pixel level fusion. Without
leaving the �eld of pixels there are still many possibilities to choose from
when obtaining the data. Picking all the data from a 3× 3 neighborhood is
one such option; it allows a higher robustness in the case that it represses salt
and pepper like patterns in the fused image. He also examines the concepts
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of horizontal and vertical integration. In horizontal integration all the detail
components of the same level in the wavelet decomposition are used together
to form weights at one location of the image. In vertical integration, the
detail components from di�erent decomposition levels acts as parent and
child and are used together at a speci�c location when calculating weights.
Piella writes about region based fusion and introduces a concept of matching;
the match measure compares the similarity between the images to further
decide if the algorithm chooses either one of the images or an average. This
thesis will cover pixel and feature fusion as well as it incorporates horizontal
integration.

2.2 Super resolution

A scene could be described as a continuous two dimensional function viewed
by an aperture of any kind. When digitalizing the scene into an image
the signal is sampled, the more densely sampled the signal is, the better
resolution and image quality is obtained, that is if the sensor is sensitive
and selective enough to capture the scene as it is without distorting e�ects.
A common drawback from decreasing the pixel size for better resolution is
that the amount of light also decreases for each pixel generating shot noise
that damages the image quality. In addition light bends when passing the
lens and is truncated creating ripples around edges in images. The thesis
is based on several sources, the most signi�cant being [5] as a demo of the
program the report is based upon is used as it is in a step of the process.
Other signi�cant sources are [6] and [7] de�ning the general structure of the
algorithm.

2.2.1 Mathematical formulation of low resolution im-

ages

A crucial part of image restoration and enhancement is to understand what
a�ects the image and causes the resolution to decrease. These processes are
fairly well understood and its de�nitions are widely available in the literature.
The terminology chosen is partly taken from [5] and [6]. Let x be the original
high resolution image of size L1N1 ∗ L2N2. The image is a continuous two
dimensional signal sampled at a high frequency. D is the down sampling of
factor L in x and y dimension independently thus yielding several LR image
yk of size N1 ∗N2 by using only every Lth sample from the HR image. If all
pixels are used there will be L2 low resolution images. Mk is warping of the
image, it can contain translation, rotation, scaling and skewing. Both D and
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M are regarded as operators a�ecting the image. Bk is the blur and warping
expressed as a function convolved with the image. Nk is noise for each LR
image respectively and as it does not rely on the pixel intensities of the
image it's is regarded as an additive term. The idea behind this formulation
is that yk is the only known variable and by using several images, hence the
index k where x is the same between them it is possible to remove all the
degradations.

yk = D(Bk ∗ x(Mk)) + nk (2.1)

Downsampling The HR image is as stated ideally sampled at Nyquist
frequency. The sampling at high resolution could be described as a �ne grid
covering the image here each cell in the grid represents one pixel at a certain
gray level. When downsampling, a coarser grid is placed upon this �ne grid,
the cells in this new grid would each cover more than one cell in the �ne
grid thus losing the �delity within the cell as it can only contain one gray
level. The gray level is simulated as being the level of one of the pixels
x = 1, · · · , L1, y = 1, · · · , L2 denoted as phase. If the motion is regarded to
be global i.e. no local changes in the picture the phase is set to the same
when creating every LR pixel. The principle is shown in Figure 1 where a
HR image is down sampled by a factor of 2. In a simulated scenario it is
possible to create an ordered set of LR images containing all the information
at phases suited for easy reconstruction.

Blur In this category all kinds of blur is included. First the sensor point
spread function (PSF) which is caused by the aperture cutting o� the light
waves. There might be local blur caused by moving objects within the image
or objects that are out of focus, there may also be global blur caused by
movement from the sensor itself during the time the picture was taken. In
this project only global blur will be taken into account, a local blur can be
regarded as global if the image is cropped down to only show an area a�ected
by the same type of blur. When not dealing with simulated LR images taken
from a single HR image there might be di�erent blurs depending on what
frame one are looking.

Warping This e�ect describes all kinds of geometric distortions happening
between the LR frames and the original HR image. Possible warping oper-
ations are translation, rotation, scaling and skewing. As in the case of blur,
warping e�ects can be classi�ed as either global or local, where global warp-
ing acts uniformly over the whole image and local only a�ects a part of the
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Figure 2.2: An example of downsampling, the pixels of one image are evenly
divided between two images each in two dimensions

image. There are no limits of how small or large changes due to warping the
image is exposed to as long its still possible to recognize features belonging
to the scene described in the desired HR image.

Noise The noise is a function of random values that is added to the image,
it can be visualized as a grainy layer covering the image. For the case of
Gaussian noise used in these simulations the random values are following a
Gaussian distribution, previously mentioned shot noise follows Poisson distri-
bution. Its relative signal power regarding to the image's de�ned in decibels.
Although noise handling is combined with the deconvolution still it's impor-
tant to know it's characteristics since it's used as an input parameter for the
blind deconvolution algorithm.

2.2.2 Super resolution strategies

How the super resolution is preformed di�er greatly between the di�erent
articles studied. Methods have been developed both for one starting image
as well as several [12], focusing on the approach using several images it is
possible to divide the process into three steps; registration to align the images,
interpolation to increase the resolution and blind deconvolution to correct
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the blur. As stated in [6] the approaches either carry out all three processes
simultaneously or one by one. �roubek and Flusser aims to carry out all
processes simultaneously in [5] while [7] have a clear distinction between
the processes. One interesting question is how much information is needed
to make an acceptable super resolution image according to [5] the minimum
amount is L2 that is the sum of pixels in all the low resolution images is equal
to or greater than the super resolution image. The other example encountered
on Wikipedia [12] used 9 images for a super resolution enhancement of 2.
From these observations the maximum number of images used is set to L2.
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Chapter 3

Methods studied in this thesis

This chapter is about what methods that were studied during this thesis, how
they work and how they were implemented in the simulations. The chapter
consists of two sections, one about multi focal fusion and one about super
resolution fusion. The methods are of varying extent ranging from a simple
summation to long algorithms, they share the common characteristic that
they drives the fusion process forward by either providing inputs or using
those inputs in the images.

3.1 Fusion of multi focal images

Assuming there is no relative warping present between the images and that
the images are of equal sizes. Available are two images (A and B) captured
from the same scene in such a way that a speci�c pixel in any image shows
the same small part of the motif but in a di�erent way. The fusing algorithm
follows the general scheme outlined in the previous chapter, an outline can
be seen in �gure 3.1 naming the intermediates. The steps corresponding to
the numbers in said �gure are found in the list below:

1. Wavelet decomposition

2. Watershed segmentation (Only used in region-based fusion)

3. Merging of segments (Only used in region-based fusion)

4. Weighting

5. Discrimination

6. Fusion
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Figure 3.1: Diagram over the image fusion process

3.1.1 Image decomposition by wavelets

Since well focused image part contains sharp edges (with large magnitudes)
in the high frequency band, sub band �lters using discrete wavelet trans-
forms are employed, followed by examining the edges or magnitudes in the
high frequency band. Feature detection using gradient magnitudes and sim-
ilar techniques might discover the sharp edges but fail when it comes to
smoother and coarser details. Likewise the Fourier transform may present
the frequency content in an image in a good way but there is nothing in
it that describes the actual location of the features in the image. The idea
behind the multi resolution processing is to make a decomposition the sig-
nal is split in two according to frequency content resulting in one high pass
component and one low pass component. The high frequency component is
regarded as the details of the image and the low frequency component the
approximation. The result could be interpreted as a pyramid because the
size of each new level is half of the previous. The low pass signal could then
be decomposed another time and so on. One such type of multi resolution
decomposition is the wavelet transform.

The information on wavelet is found in the textbook �Digital image pro-
cessing� [1] and on Wikipedia [10]. The wavelet transform works like Fourier
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transform in the case that the signal is convolved with a function, but instead
of using a constant function like the sine waves used in Fourier transforms
the convolution is carried out with a bi orthogonal function called a wavelet.
The wavelet acts as a �lter as well as a window function. For the case of a
time dependent signal, starting at its smallest size the highest frequencies are
extracted with high time precision. As the window grows the time resolution
is worse but the frequency resolution is improved due to the smaller interval
that is split. The Wavelet function consists of a �nite asymmetric waveform,
in its basic form it is referred to a mother wavelet. The time and frequency
dependence is implemented by scaling and translating the mother wavelet,
the scaling j is binary and the translation m,n is by integers. This is de�ned
as the scaling function. In its original form j is 1 and m,n is 0. The signal
is convolved with the low- and the high- pass wavelet function creating the
high- and low frequency components which then are down sampled to half
their size. The wavelet is scaled and the process can start again for next
level.

The method used in this project is the 2D discrete wavelet transform.
Assuming the transform kernel is separable, it is performed by �rst wavelet
transform the image in the y direction by treating each column as a signal.
The second dimension is implemented by applying the transform another
time, this time x dimension by transforming the rows of the previously cre-
ated high and low frequency components. This ends up in having four com-
ponents for further processing. The approximation (Iai ) consists of the low
frequency component in both directions, the horizontal (W h

j ) and vertical
(W v

j ) details consist of either high pass or low pass in one dimension and
its counterpart in the other. The diagonal (W d

j ) component consists of high
frequency components of both dimensions.

φj,m,n(x, y) = 2j/2φ1,0,0(2
jx−m, 2jy − n)

ψij,m,n(x, y) = 2j/2ψ1,0,0(2
jx−m, 2jy − n) i = {h, v, d} (3.1)

Wφ(j,m, n) =
1√
MN

∞∑
n=−∞

∞∑
n=−∞

f(x, y)φj,m,n(x, y) (3.2)

W i
ψ(j,m, n) =

1√
MN

∞∑
n=−∞

∞∑
n=−∞

f(x, y)ψij,m,n(x, y) i = {h, v, d} (3.3)

A common way of display the transform components is to do a mosaic
containing the approximation in the upper left corner horizontal details to it's
right, vertical details at the bottom left and diagonal details in the bottom
right. It will also be clear for the viewer that their combined size is equal
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(a) (b)

Figure 3.2: (a)The cameraman sample image from MATLAB. (b) Decompo-
sition by wavelets in one level.

to the size of the image before decomposition. An example of how wavelet
decomposition of images may look like can be seen in �gure 3.2. Even though
the developed application can support several levels of decomposition it never
performs more than one level in the scope of this thesis. The reason for that
is that artifacts are generated when the reconstruction is made and those
artifacts increase for each level. Furthermore, in the case of multi focal
fusion it is possible to classify parts of the image as in or out of focus just by
using the �rst level.

The inverse transform seen in (3.4) is a summation of the four components
of the level above. It reconstructs the original image from the components.

f(x, y) =
1√
MN

∑
m

∑
n

Wφ(j,m, n)φj,m,n(x, y)

+
1√
MN

∑
i={h,v,d}

∑
m

∑
n

W i
ψ(j,m, n)ψij,m,n(x, y) (3.4)

3.1.2 Image segmentation using a marker controlled wa-

tershed algorithm

To be able to utilize region based fusion it is necessary to segment the image
into regions. The method of choice was Marker controlled watershed seg-
mentation found in the MATLAB documentation. Even though it's made
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primarily to segment images containing several bright objects separated by
darker valleys, it was considered su�cient for this task.

It is carried out by using a series of morphological operations to set the
markers for foreground and background and then doing watershed segmenta-
tion on the marked image. First �nd the edges using a sobel gradient �lter.
The foreground markers are created using an opening by reconstruct/closing
by reconstruct operations to remove much of the textures that may interfere
with the regions. Next de�ne the foreground markers by picking out the
local maximums of every region. Apply a closing and a dilation operation
to even up the markers. The background markers are computed by �rstly
applying a threshold to the foreground image to force a space between fore
and background. As a binary image now is available the euclidean distance is
computed to the non-zero foreground markers. A watershed transform makes
the background markers appear as ridge lines. Imposing regional minimums
to the gradient image and then using it for watersheding.

As the segmentation is made on each of the input images they have to be
merged into one segmentation. It is performed by a simple algorithm that
for each pixel in the image, checks what region each of the segmentations
assigns it to and for each unique combination assigns it to a region in the
composite segmentation accordingly.

3.1.3 Decision map

The decision map is a matrix of the same dimensions as the images that is to
be fused, it could be described as a guide that tells the fusion algorithm from
which one of the input images each pixel will be taken from. It is computed
from the detail components of the decomposed images which are recalculated
as weights. Depending on what rules that are set the values of the decision
map are calculated from the weights. Two distinct versions of the decision
map could be made, the one that for each pixel, only takes information from
one of the images and the one that makes combinations of the pixel values in
all combinations. Between this could be intermediates, for example: If there
is a signi�cant di�erence between the images in that certain position, act
like the �rst and only choose the most signi�cant, else way choose to make a
average or weighted average.

Weights The weight of a speci�c object in an image is derived from the
detail components. In its simplest form only one pixel is taken into account.
It could be expanded to a neighborhood without much e�ort so it is still seen
as pixel-wise fusion. Going further into region based fusion [3], whole areas
of the same general gray level separated by edges are treated together. When
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doing region-wise fusion all pixels are assigned to regions obtained by some
means, for instance watershed used in this. In this project a simple square
grid and watershed segmentation were tested. The weight consists of the
energy of chosen detail coe�cients at the location x, y. In equation (3.5), the
horizontal and vertical components (Ihi and Ivi ) are chosen from image i (i is
either A or B) to calculate its weights. For region based fusion the weight is
the same for the whole region, seen in eq. (3.6), there is a summation over
all pixels in the region R divided by the area size represented by the number
of pixels here denoted |R| obtaining an average, this average is assigned to
all pixels in the same region.

wi(x, y) = (Ihi )2 + (Ivi )2 (3.5)

wi(R) =
1

|R|
∑
n∈R

wi(n) (3.6)

Discrimination When the weight for a speci�c pixel or region de�ned
in both images is obtained they are to be compared against each other.
Depending on the application either one or both objects are of interest, thus
two discrimination criterias one where wA(x) and wB(x) are proportionally
represented in the map at x and one where the one has the largest weight is
solely represented.

As the algorithm shouldn't change any properties of the image such as
brightness it is important that wA(x) + wB(x) = 1. The decision map dm is
created either by (3.7) or (3.8) depending on which criterion used.

dm(x, y) =
wA(x, y)

wA(x, y) + wB(x, y)
(3.7)

dm(x, y) =

{
1 if wA(x, y) > wB(x, y)
0 otherwise (3.8)

3.1.4 Fusion

The fusion of the images uses the map made in the previous step. It is
performed using the images in their decomposed state. For each wavelet de-
composition component (j = A,H,V,D) the fusion is made according to (3.9).
As the decision map is made to correspond to image A at x it also applies
that 1−dm(x) corresponds to the contribution from B. After implementation
of 3.9 on the decomposed images, the result is a decomposed fusion image
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fi(x, y), the inverse wavelet transform are performed on them to yielding the
fused image.

f j(x, y) = dm(x, y)IjA(x, y) + (1− dm(x, y))IjB(x, y) (3.9)

3.2 Super resolution methods

As the aim of the project is to obtain a super resolution image from several
low resolution images taken from a same scene, the problem formulation could
be made simpler by assuming that the only warping present is translation
in the sub pixel domain because instead of making the computations more
demanding it is an absolute necessity for super resolution. The problem is
simpli�ed further by assuming that the only blur present is a point spread
function that is equal for all images.

As can be realized from looking at the mathematical formulation of the
degraded image there are a number of degradations to be handled and they
all could be regarded as unknown. When enhancing the image by removing
degradation it �rst has to be identi�ed and then removed. When handling
downsampling, blur and noise together it does not necessarily need to be
more complex but less intuitive.

When splitting the process up, registration is always carried out �rst, this
is for two main reasons. Firstly the interpolation is totally dependent of the
data from the registration to work. Then there could also be matter of se-
lecting images suited for any of the following steps. In the deconvolution step
the result may be really poor if the HR image x di�ers between the frames.
There should also be possible to put either interpolation or Multiframe Blind
Convolution next, in the case of putting MBD �rst of those two, the inter-
mediate images has to be re, registered due to previously stated dependence
of registration data in the interpolation. In �gure 3.3 the process structure is
shown as it is carried out in this project, the order of methods is registration,
interpolation and multiframe blind deconvolution. The number of input im-
ages to use depends on what the user regards as su�cient. A fact is that
both interpolation and multiframe blind deconvolution requires several im-
ages and results in one. In �gure 3.4 the decline in images is shown until the
user has got one image when the process is �nished. As the order of applying
interpolation and multi�ame deconvolution is assumed interchangeable they
are here referred to as step 1 and 2 depending on which one is executed �rst.
From the �gure it's apparent that depending on how many images is used
in the second step, the �rst step is to be run as many times as there should
be images. The number could be expressed as Nimages =

∑L
l=1Ml where N
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Figure 3.3: Illustrates the work �ow of the super resolution process, in this
project registration, interpolation and blind deconvolution are treated sepa-
rately.

Figure 3.4: Illustrates how the number of images available is changing as the
process goes on.

is the total number of images, L is the number used by the second step and
Mi is the number for each repetition of the �rst step.

3.2.1 Registration

To perform super resolution it is crucial for further processing, to perform
super resolution one must know the warping parameters to either correct
them or exploit them. In this implementation and with warping restricted
to subpixel shift the output from registration is used in further steps. The
registration algorithm is divided into two parts, the �rst part performing cross
correlation on images of increased size to obtain a rough estimate and the
other part uses the result from the �rst to �t a polynomial which minimizer
re�nes the output of the cross correlation.
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Pixel-level registration Cross-correlation is normally used to compare
two signals [a..b]. The sources for this section is [7] and [13]. The cross
correlation works by comparing two sets of data while shifting one of them
by u in the x-dimension and v in the y-dimension as in equation (3.10), the
resulting squared di�erence is stored in matrix d2

f1,fi
(u, v) and it is possible

to �nd a minimizer at the coordinates u, v where the images are as similar as
possible. It could be expanded as shown in equation (3.11) where f1 is one
of the low resolution frames used as reference and fi is the LR frame which
shift is measured.

d2
f1,fi

(u, v) =
∑
x,y

[f1(x, y)− f2(x− u, y − v)]2 (3.10)

d2
f1,fi

(u, v) =
∑
x,y

[f 2
1 (x, y)−2f1(x, y)fi(x−u, y−v)+f 2

i (x−u, y−v)] (3.11)

As
∑

x,y f
2
1 (x, y) does not depend on u, v and

∑
x,y f

2
i (x + u, y + v) can

be regarded as constant if the shift is circular, what remains is (3.12) which
is the same convolution of an image with one that is reversed, using the
relation F{f(−x,−y)}∗ = F (u, v), F (u, v) is the complex conjugate of the
fourier transform of f(−x,−y).

df1,fi
(u, v) =

∑
x,y

[f1(x, y)fi(x− u, y − v)] (3.12)

df1,fi
(u, v) = F−1(F(f1)F∗(fi)) (3.13)

In the spatial domain the computation would require M2 ∗ N2 calcula-
tions for two images of size M*N. By applying the fast Fourier transform
when correlating the images in the Fourier domain the number of calcula-
tions 30M2 log2(M) calculations. If m is 128 the FFT approach would cost
19000 calculations when the spatial approach costs over 200 millions.

Examining d2
f1,fi

(u, v) it is apparent that it will have a maximum at the u
and v where the images are the most similar. That is because when looking at
equation (3.11), if the quadratic terms are considered constant the remaining
term which is negative in the equation minimizes it when it's as large as
possible.

Registration within subpixel domain Using cross correlation each po-
sition in the resulting matrix represents a shift by a whole pixel in a direction
described by u and v. To move into the subpixel domain there are several
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approaches possible. The �rst one is to increase the number of values that
u and v can take by a factor of A thus obtaining a D2

f1,fi
(u, v) where the

position of the maximum corresponds to u/A and v/A pixels. This can
be achieved either by zero-padding the image or increasing the size using a
simple interpolation algorithm.

Another approach is to examining the neighboring values, if the true
maximum is situated between two points the neighbors with the shortest
distance to that maximum should have a value higher than the more distant
neighbors. It is then possible to �t a second order polynomial to the points
in the neighborhood and use the maximum as the subpixel shift.

The approach used in this project uses a combination of both approaches.
The aim is that any faulty approximations from the cross correlation is cor-
rected by the polynomial �tting. The images are increased to ten times the
size in both dimensions before the cross correlation is preformed upon them.
The result is a matrix containing a peak where the best �t is found. A neigh-
borhood around it's maximum is then taken out for the next step where a
column and a row passing the maximum is used as data points to �t two
curves, one for the x-dimension and one for the y dimension. The maximums
of those curves are calculated and the point is chosen to be the real point of
best �t. The output will be in the range of [-1 1], that is the largest possible
correction is 1/10 of a pixel.

3.2.2 Interpolation

Interpolation works like a reverse downsampling by piecing together several
low resolution images to one of a higher resolution. It is done by using the
warping between the frames to compute the exact location of all pixels, using
that information it is possible to increase the scale and transfer the pixel
values to a larger image. Once again, there were a variety of approaches to
choose for the interpolation, this step consists of coordinate conversion and
the actual interpolation. As the warping is assumed only to consist of sub
pixel shifts in our model, the coordinate conversion is fairly straight forward.
This is because there is no need do determine which regions on the frames
to use during the interpolation.

A high resolution grid of desired size (M,N) is created as a matrix con-
taining zeros hence after named HR- or target- grid IHR(x, y). This grid
is later to be �lled with the interpolated values. The high resolution grid
uses the coordinates x = 1 . . .M and y = 1 . . . N measured in pixels from
the upper left corner of the image. Using the number of elements in the
input frame i ILRi (x, y) of size (mi, ni) with the coordinates xi = 1 . . .mi and
yi = 1 . . . ni as well as the HR grid to compute a scaling factor in x and y
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directions respectively gives the following equation.

Si =

{
M/mi In x dimension
N/ni In y dimension (3.14)

As can be seen the scaling factor can vary between the frames. Coordi-
nates are computed as distance in x- and y-dimension from the upper left
corner at both scales. Taking the coordinates from the LR images as well as
their corresponding subpixel shift (xsi , y

s
i ) which is the same for each pixel

in one frame and inserting them into an equation together with the scaling
factors returns the coordinates of all the pixels in the HR scale resulting in a
new set of coordinates for the low resolution frames (x̂i, ŷi) at high resolution
scale, (3.15) is applied on all xi = 1 . . .mi and yi = 1 . . . ni.

x̂i = Si(xi + xsi )
ŷi = Si(yi + ysi )

(3.15)

Now it's a matter of �lling the HR grid with the pixels taken from the
LR images. In the ideal case with perfectly aligned shifts and su�cient LR
images to �ll all zeros in the target grid with unique data the process is
trivial. In most cases some of the frames containing information at certain
shifts is missing and the LR pixels may be situated at any coordinate not
restricted to be directly over an HR pixel but rather in between them. The
process of choosing gives a number of options all leading to di�erent results.

(A) Use the nearest neighbor pixels A simple method that chooses
the LR pixel by computing the distance between HR and LR pixels, it then
chooses the nearest and uses it for each site on the HR grid. The purpose of
this method is to test the previous step so that the coordinate conversions are
correct and it can't be used for more sophisticated extensions when densely
placed values are severely penalized in comparison to sparsely.

(B) Inverse distance weighting Instead of choosing just one sample
there may be bene�cial to use a number of samples, especially as it prevents
large areas with the same value if there is only one data point available at
one location. This approach is based on the formulations in [7] and [8]. It
also lets LR pixels situated at a distance slightly larger than the nearest to
get some in�uence. The samples are chosen either by an area or as the N
closest LR pixels. Both approaches have their advantages and problems. As
the values is scattered choosing an area might return nothing at all as well
as a tremendous amount of pixels for weighting. However it guarantees that
all LR pixels used in the averaging are near to the HR site.
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Neither choosing the N closest pixel values nor choosing pixel values de-
pending on an area did seem �exible enough so an alternative approach was
used. In this project the method of choice is area based with a condition
that there must be at least one sample in the area, else the search area is
increased and a new search for pixels is carried out until they are found. The
weighting is carried out using the equations (3.16) and (3.17) and the pixels
found in the previous steps. Pixels: n = 1 . . . N . The weight is computed
by inverting the Euclidean distance between the value at its coordinates and
the site on the target grid to a power of two. The exponent 2 is chosen
when recommended by Shepard in [8] with the motivation that the results
are empirically satisfying as well as computationally very simple. The dis-
tance in x and y dimensions are computed using the coordinates from 3.15,
∆Xn = ‖xn − x′n‖ and ∆Yn = ‖yn − y′n‖.

HR(x, y) =

∑N
i=1wn ∗ LRn∑N

i=1wn
(3.16)

wn =
1

(∆Xn + ∆Yn)2
(3.17)

(C) Spline interpolation An alternative method implemented was the
spline interpolation. A spline is a piecewise polynomial that given a set of
values and data points, is constructed to while being a continuous function
minimize the sum of distances to the chosen data points in a similar way like
linear regression is carried out. Examples of splines can be seen in �gure 3.5
where in (a) shows the spline generated from data points on a sinus curve
with added noise and (b) shows a spline surface based on a small portion of
the images used in this project.

Moving into two dimensions the spline interpolation creates a surface.
Even though the shift is regarded as global the control points is to be regarded
as shattered as it is impossible to �t a grid so that it exactly covers all the
sample pixels without having any empty cells. It is apparent when only
looking at an area of L× L anywhere in the image, the scattering is due to
even in the case of ordered subpixel shifts between the frames the registration
errors are always present, therefore it is safe to assume that the data points
always are scattered. In MATLAB the recommended method for scattered
points is the thin plate smoothing spline as referred to in [14]. Its name refers
to the analogy of bending a thin sheet of plate so that at every data site (x̂, ŷ)
it passes z(x̂, ŷ) as close as possible without having to make dents in the plate.
Mathematically the spline is a minimizer of the energy function combined
with the smoothing function that is the space integral of the squared second
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(a)
(b)

Figure 3.5: (a) An example of spline interpolation, here a sinusoidal curve
with a small randomizer is used for data points. (b) Into two dimension
it generates a surface, an image rendered from same data embedded in the
upper left corner.

derivatives. In the energy function, yi is the data value at location xi and
f(xi) is the polynomial that de�nes the surface.

Etps = arg min
f

K∑
i=1

‖yi − f(xi)‖+ λ

∫∫ [
d2f

dx2
+

2d2f

dxy
+
d2f

dy2

]2

dxdy. (3.18)

λ is the smoothing parameter, it varies between 0 and 1 and the inter-
polation behavior varies from linear interpolation at λ = 0 to thin plate
interpolation at λ = 1. The function �tpaps.m� in MATLAB carries out the
mathematics in (3.18). When supplied with a number of data sites in 2 di-
mensions and their corresponding values it returns a 2 dimensional function.
As it is computationally complex in the case that there is a linear equation
systems with as many equations and unknowns that there is data sites so the
method is limited to around 1000 samples. Even the small test images used
over 20000 samples and the problem had to be solved by dividing the area
into squares that would contain around 576 (242) data points, depending of
how densely the samples are placed the size of the areas di�er. An overlap
was forced upon the square pattern to avoid lines in the output image where
the squares meet as well as to avoid having an area at the edge of the image
not di�erentiable by the chosen areas.

The function is evaluated at all places of the HR grid and thus yielding
the interpolated image. A special matrix keeps track of where two or more
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squares are intersecting and tells the algorithm to average the values at those
locations.

3.2.3 Blind deconvolution

This chapter treats the process of estimating the blur and simultaneously
eliminating it from the image. As the process of eliminating blur in the
presence of noise contains more unknowns than it has equations. By treating
it as a minimization problem and solve it in an iterative process as well as
imposing constrains to the equation makes the solution desirable. This part
of the algorithm uses a program named Multiframe Blind Deconvolution GUI
by �roubek and Flusser and the theory presented here is to be regarded as a
summary of their articles [4] and [5].

The key is to minimize the error between the received low resolution
frames and the theoretical high resolution image with the mathematical
degradations a�ecting it. By alternating �xation of either the blur or the
HR image while minimizing the SR image should converge to the HR image
as the proposed blur converges to the real. To make equation (3.19) more
speci�c, a number of regularization terms are added.

E(x,B) =
∑
K

‖DBkx− yk‖2 + αQ(x) + β1R(b) + β2Q(b) (3.19)

Regularization terms Image regularization term penalizes high frequency
information as noise is generally of a high frequency. This will end up in a
trade o� between preserving edges and remove noise. The term itself con-
sists of Q(x) = xTLx where L is a positive semide�nite block trigonal matrix
where the values are taken from the gradient of image x. Blur regularization
term R(b) binds the PSF approximations and prevents them from moving
freely. The term consist of R(b) = ‖N b‖2 = bTN TNh. N is the nullity
of the blur constructed from the low resolution frames. It is based on the
assumption that any two correct blurs bi, bj satisfy ‖yi ∗ bj − yj ∗ bi‖ = 0 [5].

Alternating minimization Equation (3.19) has got the nice property of
having only quadratic terms showing convex characteristics (not necessarily
strictly convex) and thus being di�erentiable over both f and B in a way
that a minimizer could be found. Starting with an initial b0 in (3.20) to
�nd a minimizer for x. Working similar to the steepest descent method, the
newly computed xm is then used with (3.21) to �nd bm+1 and the alternation
continues for a user speci�ed amount of times.
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xm = arg min
x

F (x, bm)

= (
K∑
k=1

BT
kD

TDBk + αL)f =
K∑
k=1

BT
kD

Tyk (3.20)

bm+1 = arg min
b

F (xm, b)

= ([IK ⊗XTDTDX] + β1N TN + β2L)h = [Ik ⊗ F TDTyk] (3.21)

With the relations X = Cv
b (x), B = Cv

x(b) where v denotes valid con-
volution. Examining the equations it is apparent that they are of the type
Ax = B where the minimizer to x is obtained by the least squares approxi-
mation. As many possible x could minimize this problem the regularization
terms guides the minimization towards one that is desired. In MATLAB the
equations are solved by computing all parts individually, the right part(B),
each yk is convolved with BT and DT for and summation over k takes place
for equation (3.20) and for (3.21) g is convolved with F T and DT and the
results are put in a diagonal matrix. The left side (A) is calculated in a
similar fashion but the regularization terms are added after the summation.
With A and B de�ned the Multiframe blind Deconvolution uses a function
minimizer to �nd x and b. In the case of (3.20) the built in function min-
imizer �pcg.m� (Preconditioned Conjugate Gradients Method) is used, for
(3.21) which needs certain constrains namely the upper and lower bounds of
the PSF for preservation of image brightness, the bounds are set to b〈0, 1〉B2

.
Due to the smaller size of b compared to x it is possible to use the more
computationally demanding constrained function minimizer �fmincon.m�.

3.2.4 Adjustable parameters when using MBD software

The software does not work without the user submitting the correct values
for the parameters. The weights α and β1 depends on the signal to noise
ratios if the inputs. According to the instructions for the mbdgui α should
be 1 × 103 for a SNR of 30dB 1 × 102 for 20dB and so on. β1 varies with
α but 10 or 100 times less depending on if the SR application is active or
not. As the demo with SR disabled is used β2 may be �xed at 0.01α. If
the noise is underestimated the algorithm starts amplifying it instead and if
its overestimated the algorithm will start repressing �ner textural details. A
wrongly estimated PSF size causes alias-like patterns in the image. In �gure
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3.6, the interface of the MBD software is shown. The parameters are listed
below for easier overview.

1. α depends on signal to noise ratio of the image and is recommended to
increase by a factor of 10 for every 10 dB.

2. β1 also depends on signal to noise ratio and is in this implementation
α× 0.01.

3. β2 is not used in this thesis and remains at 0 according to the recom-
mendations.

4. PSF size is a matrix that the point spread function should �t into.
There is no upper border but the computional complexity makes the
software to run slower.

28



Figure 3.6: The MBD software interface, from the program described by
�roubek and Flusser in [5], the notations are a bit di�erent in the software,
α = u_lambda, β1 = h_mu and β2= h_lambda
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Chapter 4

Experiments, Results and

Evaluation

In this chapter, the various experiments are presented, that motivation there
are to perform them, how they were performed, with what parameter setup
and what methods tested. The resulting images are shown in the �gures
and where it's possible, tabular values over compared values. The results
are discussed for each experiment, how the result depends on the parameter
settings and some possible reasons for the outcome.

4.1 Test images used for fusion

The �rst set of images primary used to test the algorithm is two clocks. In
each image one clock is out of focus and the other in focus, the same is
applied to the desk which they stand upon and the wall behind them. It is a
typical case where only one of the images is of interest at a speci�c location.
The images are of a horizontal slice from a head obtained with di�erent
medical imaging techniques, one CT image showing bone structure and one
MR image showing the di�erent tissues. In this case there may be an interest
to have both images present in a speci�c location. Furthermore, there are no
great similarities between the images like the case with the clocks; it has to
be assumed that they are aligned. The test images for the fusion algorithm
is shown in �gure 4.1, upper row consist of the images of di�erent focus and
lower row consist of images with di�erent modality.
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4.2 Test images used for super resolution

Images used in testing were with few exceptions arti�cially made as described
in section 2.2.1. The �rst test image, picturing the face of a canadian lynx
chosen for the very detailed texture of the fur is shown in Figure 4.2(a). The
16 low resolution synthetic images, down sampled by 4 both along the x and
the y directions, are created from the HR image in Figure 4.2(b) using the
following equation also seen in section 2.2.1. Their position corresponds to
the subpixel shift, starting from the upper left with no shift each frame shifts
by 0.25 pixels in either x or y direction. The image is �ltered by a gaussian
blur of size 5 and a standard deviation of 0.5, then the downsampling occur,
lastly, gaussian noise with a signal to noise ratio of 30dB is added.

yk = D(Bk ∗ x(Mk)) + nk (4.1)

To verify that the algorithm produces similar results even when restoring
other images than the �lynx�, another image was treated in the same way.
This image depicting a man contains areas of fairly constant brightness and
instead of a detailed texture it contains many straight and curved lines and
changes between bright and dark, the image is referred to as �Ueshiba�. It is
shown in �gure 4.3. The third test image is obtained as a dataset of 16 low
resolution frames and is thus not created in the same manner as the previous
images, it depicts a television test card and is displayed in �gure 4.4. Like
the other images even this one is arti�cially made with corresponding shifts.
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(a) (b)

(c) (d)

Figure 4.1: The original images used to test the fusion algorithm. (a) Left
clock is in focus (b) Right clock is in focus. (c) CT image of brain slice. (d)
The corresponding MR image.
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Figure 4.2: (a) The original image of size 267× 327 pixels, (b) 16 low resolution images
downsampled by a factor of 4 in each direction, convolved with a gaussian PSF of size
5× 5 and with additive noise with a SNR of 30dB.
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Figure 4.3: (a) The original image of size 284× 361 pixels, (b) 16 low resolu-
tion images downsampled by a factor of 4 in each direction, convolved with
a gaussian PSF of size 5× 5 and with additive noise with a SNR of 30dB.
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Figure 4.4: 16 low resolution images of size 90× 90 pixels.
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4.3 Objective criterion used for evaluation

When answering the question of how good the results are, there are many
factors to consider. First of all, what is a good result? It could be assessed
subjectively just by looking at the fused images and by that determine the
outcome, the images the spectator feels most appealing is the better ones.
For many cases this is the only possible evaluation method. In the case of
image super resolution with simulated images there is a possibility to make
an objective measurement by computing the peak signal-to-noise ratio to
determine how similar the SR image is to the original HR image. It is done
by computing the root mean squared error between the images and comparing
that to the signal strength which is chosen to be the highest value from the
compared images, for an 8 bit image it is 255.

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

‖HR(i, j)− SR(i, j)‖2 (4.2)

PSNR = 10 log10

(
max2

I

MSE

)
(4.3)

4.4 Experiments

In this section, the various experiments are shown, the order of experiments
are chosen to be as similar to the order where the concepts are encountered
in the report.

4.4.1 Fusion

Beginning with fusion of two images of di�erent focus, in this �rst experiment,
the region based approach with choose maximum criterion is used, in �gure
4.5, all the intermediates can be shown. The upper row consists of the
segmentations of each of the input images, the lower image to the left shows
the composite segments and the lower right image shows the decision map.
The result of the fusion is shown in �gure 4.6.

Same images are fused in a pixel wise manner, here; results for both cases
of maximum selection and weighted average are presented. In �gure 4.7 the
results are shown. (a) and (b) are the decision maps for maximum selection
and weighted averaging, (c) and (d) are their corresponding results. Figure
4.8 contains the brain image fused pixel wise. The order of images is the
same as the �gure before. It becomes apparent that a certain amount of ran-
domness is present in the images fused in pixel level. It is not certain that the
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pixels neighboring each other are chosen because the relative high frequency
between image A and B content may vary greatly over small distances. There
may actually be favorable in some cases. There are no results for applying
the region based fusion on the medical images because the algorithm couldn't
segment the images in a satisfying way.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Creation of region based decision map as described in section 2.1.2 (a-b)
original images, (a)left clock in focus, (b) right clock in focus. (c-d) segmentations of (a)
and (b). (e) merged segmentations. (f) decision map.
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(a) (b)

(c)

Figure 4.6: The �nal result for region based image fusion.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: For pixel based fusion of the multi focused images, as described in section
2.1.2, (a-b) the original images, the decision maps are shown as a binary image (c) for
choose maximum and a grayscale image (d) for weighted average. Image (e) shows the
fused image based on the binary decision map (c) and and image (f) shows the fused image
based on grayscale decision map (d).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: For pixel based fusion of the multi focused images, as described in section
2.1.2, (a-b) the original images, the decision maps are shown as a binary image (c) for
choose maximum and a grayscale image (d) for weighted average. Image (e) shows the
fused image based on the binary decision map (c) and and image (f) shows the fused image
based on grayscale decision map (d).
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4.4.2 Evaluation of the proposed SR algorithms

There are many di�erent tests to be performed when evaluating the SR al-
gorithm. All three images have to be tested, then there are many di�erent
setups for the algorithm to test. There are many aims when testing the
methods, what is the optimal setup if there is any and how does it vary
depending on the input, what are the limitations of this approach for super
resolution and how �exible and robust is it. The registration will be tested to
see how near the true shifts its estimates are. When testing the interpolation
it is of interest to see how it performs depending on which shifts the input
images has, spline interpolation is regarded as the default method and will
be used if nothing other is mentioned. When incorporating the Multiframe
Blind Deconvolution the test has got two purposes, �rst to see how the whole
algorithm work and second to see which parameter settings gives the best
results. By assuming that the registration already has been performed with
perfect result it is possible to see the e�ect of registration errors on the �nal
results. As both spline and inverse distance interpolation is available the
parameters were set to use the inverse distance interpolation. The test done
are listed below:

1. Evaluation of the whole algorithm with di�erent parameters to the
MBD

2. Evaluation of the subpixel registration

3. Evaluation of the interpolation for di�erent shift combinations

4. Evaluation of the algorithm using prior knowledge of the subpixel shifts
between frames

5. Evaluating the inverse distance weighting interpolation

6. Evaluation of super resolution algorithm with missing data

Evaluation of the whole algorithm with di�erent parameters to the
MBD In this experiment the whole chain of methods as shown in �gure
ref�g:process-diagram is involved for making the SR images, for interpolation,
method (C) in section 3.2.2 spline interpolation was chosen. Mainly two
variables were tested: PSF size, α, and β1 that is coupled with alpha. The
recommended input values for this particular PSF and noise were used as
base for the tests but it was of interest to see if deviating from those numbers
would give better output. The same values were used in most tests involving
the multiframe blind deconvolution step for comparisons. As the noise of
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the simulated images had a noise SNR of 30, alpha is set to 1103 and the
PSF size is set to 5. As seen in �gure 4.9 using the recommended value for
a certain noise intensity and the PSF size used when creating the degraded
images gave a much lower Peak Signal to Noise Ratio and it's also apparent
by looking at the images in �gure 4.9. One can assume that what's work
for the Multiframe Blind Deconvolution application as a standalone program
might not work when the circumstances are changed like using it as a part
of a stepwise SR algorithm like this. The results for the �Ueshiba� image
seen in �gure 4.10 follows the same pattern, likewise the EIA image seen in
�gure 4.11. It can be debated why the larger estimations of PSF and noise
gave better results. Examining how the images have been treated during the
process, there should be two possible explanations. The degradation might
be faulty and thus result in images degraded with di�erent parameters than
the chosen. The more plausible explanation is that while interpolating the
images to desired resolution using splines an additional smoothing is being
made. By increasing the estimated PSF size further could give a hint on
the magnitude of this e�ect. The increments were made in steps by 2 until
the estimated PSF was set to 15. For easier comparison the best SR results
for the three images are displayed together with the original images in �gure
4.13, 4.14 and 4.15. A closer examination of the images from �gure 4.15 is
available in �gure 4.16.

Evaluation of the registration It is of interest to see how close to the
true shifts the registration estimates are as well as to see how the other parts
of the program works. The results from the registration of all images tested in
this project are present as this is such an important test, it is also of interest
to see if the registration error is proportional with errors in the images after
the whole process.

As the registration algorithm compares the relative shift between the �rst
supplied image with itself (as a self test) and all the others, what's available is
a N*2 vector where N is the number of images. Additionally, the registration
algorithm return the coordinates from the cross correlation step and the
correction from the polynomial �tting step as separate variables so that it is
possible to evaluate if the second step is helpful.

The output tested in this section will be the output from the registration
with or without the correction by polynomial �tting and the purpose is to
see how severe the errors are and if the polynomial �tting produces any
improvement.

As the images are simulated it is possible to store the subpixel shifts
for each low resolution frame frame. It allows comparison of the computed
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Image and registration Error mean Error std
Lynx (�gure 4.2) cross correlation 0.0625 0.061
Lynx (�gure 4.2) polynomial �tting 0.0648 0.0464
Ueshiba (�gure 4.3)cross correlation 0.125 0.146
Ueshiba (�gure 4.3)polynomial �tting 0.104 0.1098
Eia (�gure 4.4)cross correlation 0.0750 0.0762
Eia (�gure 4.4)polynomial �tting 0.0706 0.0582

Table 4.1: Registration errors.

shifts with the true ones. The errors are computed for each image and a
mean error and an error standard deviation is calculated. The number o�
errors of di�erent sizes are tabulated in �gure 4.17 and the mean error and
error standard deviations could be found in table 4.4.2. For reference, an
error of 0.25 is equivalent of a false classi�cation of an image as if it would be
its neighbor. The polynomial �tting gives di�erent e�ects on all the images.
Judging from the mean error the �lynx� image gets a worse registration than
without the polynomial addition. The �Ueshiba� image which has the biggest
error of the images tested gets the biggest improvement and the EIA image
gets a little improvement. The remarkable e�ect is the one of the error
standard deviation. All errors are moved towards the mean error, where the
cross correlation is putting out a value close to the true value the polynomial
�tting makes a little bit worse, but most signi�cally where the registration
is as it's worst the polynomial �tting works best. For a better overview
the errors are sorted by size and plotted in �gure 4.17 where the blue bars
represents the errors from cross correlation only and the red bars are the
re�ned values by polynomial �tting. As can be seen, in all cases the number
of greatly miss registered values has decreased but the total number of errors
has increased.

Evaluation of the interpolation for di�erent shift combinations as
described in section 3.2 In a real situation it is not possible to have 16
images each with an increasing shift of 0.25 so that all phases are covered. A
way to simulate that there are di�erences between the data is to pick images
from the dataset in di�erent patterns and see how the algorithm works. This
test is both to see how sensitive the algorithm is to the shifts of the input
images and a test to see if it is possible to exploit those characteristics, the
best performing combination in this test is the one that will be used in the
following experiments. This test will only incorporate the �Lynx� image.
Under the assumption of a high number of images available, there is possible
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to choose images depending on their subpixel shift at ones own pleasure it
might be possible to optimize the selection. The resulting images and peak
signal to noise ratios for the �lynx� image shown in �gure 4.18 for various
combination of images using registration and interpolation but excluding
blind deconvolution. The small matrix seen in the top left corner of each
image tells which frames used for making that particular image using the
same relative order as in Figure 4.2. The reason for doing this experiment
is to examine how much which images are available a�ects the outcome of
the SR algorithm. From the images it is apparent that the visual result
di�er even though there are only small di�erences in PSNR between the
results. Image 4.18 (a) �Evenly spaced� shows a slightly better value and
is also perceived as somewhat better than the rest so that setup is used in
the following experiments. The e�ects of blurring are clearly visible in all
images as the blind deconvolution has not been applied. For a more close
examination the original image and the image from �gure 4.18 (a) is zoomed
in and displayed in �gure 4.19.

Evaluation of the algorithm using prior knowledge of the subpixel
shifts between frames It could also be of interest to see how the inter-
polation and MBD performs with perfectly registered images. In this case
perfectly means using the same shifts that the simulated images were created
with. The purpose of this experiment was to test how the algorithm would
work without registration errors. The results from the experiment are shown
in �gure 4.20 for the �lynx� image, �gure 4.21 for the �Ueshiba� image and
�gure 4.22 for the EIA image. Judging from the PSNR values there was no
big improvement which tells that the registration errors aren't any devas-
tationing �aw. However, by looking at the �Ueshiba� and EIA images it is
apparent that the visual appearance is somewhat damaged by the registra-
tion errors as a periodic artifact is induced. Even in the �lynx� image it is
possible to spot the artifact but it is generally more visible in images with
prominent edges.
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(a) PSNR: 8.9249 dB (b)PSNR: 8.2277 dB

(c)PSNR: 15.7399 dB (d)PSNR: 15.4036 dB

(e)

Figure 4.9: Results for experiments using the modules registration, spline
interpolation (section 3.2.2, method (C)) and multiframe blind deconvolution
on the �lynx� image from �gure 4.2, 16 low resolution images were used in
the experiment. The parameter for MBD, described in section 3.2.4 were
varied for the images (a-d). (a) α=1000, psf size = 5, (b) α=1000, psf size =
7, (c) α=100, psf size = 7, (d) α=100, psf size = 5. (e) illustrates the what
modules used in this experiment.
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(a)PSNR: 14.3792 dB (b)PSNR: 14.03 dB

(c)PSNR: 19.6963 dB (d)PSNR: 19.7394 dB

Figure 4.10: Results for experiments using the modules registration, spline
interpolation (section 3.2.2, method (C)) and multiframe blind deconvolution
on the �Ueshiba� image from �gure 4.3, 16 low resolution images were used
in the experiment. The parameter for MBD, described in section 3.2.4 were
varied for the images (a-d). (a) α=1000, psf size = 5, (b) α=1000, psf size
= 7, (c) α=100, psf size = 7, (d) α=100, psf size = 5
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(a) (b)

(c) (d)

Figure 4.11: Results for experiments using the modules registration, spline
interpolation (section 3.2.2, method (C)) and multiframe blind deconvolution
on the �lynx� image from �gure 4.4, 16 low resolution images were used in
the experiment. The parameter for MBD, described in section 3.2.4 were
varied for the images (a-d). (a) α=1000, psf size = 5, (b) α=1000, psf size
= 7, (c) α=100, psf size = 7, (d) α=100, psf size = 5

48



(a)PSNR: 15.8402 dB (b)PSNR: 15.5577 dB

(d)PSNR: 16.7629 dB (d)PSNR: 15.5244 dB

Figure 4.12: Further increment of the estimated PSF on the �lynx� image
from �gure 4.2, 16 low resolution is used in the experiment, α is 100 and PSF
size is varied over images (a-d), sizes are 9, 11, 13, and 15 pixels respectively
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Figure 4.13: Comparing the (a) original image and (b) the super resolution
image from �gure 4.9(d)
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Figure 4.14: Comparing the (a) original image and (b) the super resolution
image from �gure 4.10(d)
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Figure 4.15: Comparing the (a) original image and (b) the super resolution
image from �gure 4.11(d)

52



(a) (b)

(c)

Figure 4.16: A closer examination at the images from �gure 4.15 (a) origi-
nal image, (b) the super resolution image from �gure 4.11(d) and (c) super
resolution with pre-registered LR images from �gure 4.20(d)
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(a)

(b)

(c)

Figure 4.17: Graph over the error sizes for images (a) �Lynx� (�gure 4.2), (b) �Ueshiba�
(�gure 4.3), (c) EIA (�gure 4.4). Black bars indicate results for cross correlation only and
gray bars represents cross correlation coupled with polynomial �tting.
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(a) PSNR: 28.7773 dB (b) PSNR: 28.7148 dB

(c) PSNR: 28.6177 dB (d) PSNR: 28.7144 dB

(e)

Figure 4.18: Results for experiment involving registration and spline interpo-
lation for combinations of images with di�erent shifts. The diagrams in the
corners explains which frames are used from array of low resolution images
in �gure 4.2. (e) illustrates the what modules used in this experiment.
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(a) (b)

Figure 4.19: An area is zoomed in and enlarged for better comparison. (a)
The original image from �gure 4.2. (b) Zoomed image from �gure 4.18 (a)
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(a) PSNR: 8.9375 dB (b) PSNR: 8.6010 dB

(c) PSNR: 15.6541 dB (d) PSNR: 15.3101 dB

(e)

Figure 4.20: Experiment involving prior knowledge of image shifts for spline
interpolation (section 3.2.2, method (C)) and multiframe blind deconvolution
for the �lynx� image (�gure 4.2), 16 low resolution images and MBD param-
eters described in section 3.2.4 are varied between images. (a) α=1000, psf
size = 5, (b) α=1000, psf size = 7, (c) α=100, psf size = 7, (d) α=100, psf
size = 5. (e) illustrates the what modules used in this experiment.
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(a) PSNR: 7.3936 dB (b) PSNR: 15.2048 dB

(c) PSNR: 19.2362 dB (d) PSNR: 19.4753 dB

Figure 4.21: Experiment involving prior knowledge of image shifts for spline
interpolation (section 3.2.2, method (C)) and multiframe blind deconvolution
for the �Ueshiba� image (�gure 4.3), 16 low resolution images and MBD
parameters described in section 3.2.4 are varied between images. (a) α=1000,
psf size = 5, (b) α=1000, psf size = 7, (c) α=100, psf size = 7, (d) α=100,
psf size = 5
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(a) (b)

(c) (d)

Figure 4.22: Experiment involving prior knowledge of image shifts for spline
interpolation (section 3.2.2, method (C)) and multiframe blind deconvolution
for the EIA image (�gure 4.4), 16 low resolution images and MBD parameters
described in section 3.2.4 are varied between images. (a) α=1000, psf size =
5, (b) α=1000, psf size = 7, (c) α=100, psf size = 7, (d) α=100, psf size = 5
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Method Lynx Ueshiba EIA
InvDist 60.1058s 69.7120s 89.8685s
Spline 36.9493s 42.7582s 58.2883s

Table 4.2: Mean running time for the spline and the inverse distance inter-
polations.

Evaluating inverse distance weighting interpolation The inverse dis-
tance weighting (see: section 3.2.2 (B)) were originally written as the method
to be used in this project but as the spline interpolation became more inter-
esting this method became the alternative backup. This method represents
a mathematically easy-to-follow approach. The experiment setup was to use
the whole algorithm (registration, inverse distance interpolation and blind
deconvolution) with the same parameter setup as in the same experiment
with spline interpolation and compare the results from both tests. The im-
ages and the corresponding peak signal to noise ratios can be seen in �gure
4.23. When comparing the Signal to noise ratio the inverse distance weight-
ing setup didn't have the high maximum as the spline interpolation at image
c and d, but when looking at images a and b the di�erence was little and
image a was even better. It is notable that the visual appearance if these
images are grainier than using the spline interpolation, a reason should be
that spline interpolation contains the smoothing parameter which could be
both positive and negative. Another interesting comparison is the computa-
tion time for both methods, the test setup is by executing the interpolation
method for all three images on the same machine with same processes run-
ning in the background and comparing how fast the algorithm is executed
when increasing the size by 4 times the original size, mean is taken from
four runs, the times in seconds are tabulated in 4.2 and as can be seen, the
spline interpolation works a lot faster. For better comparison between spline
and inverse distance interpolation, a small area has been scaled up from the
original image (�gure 4.2), image (d) in �gure 4.23 and the corresponding
image in �gure 4.9, they are shown in �gure 4.24.
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(a) PSNR: 9.0314 dB (b) PSNR: 8.2479 dB

(c) PSNR: 13.2147 dB (d) PSNR: 12.7496 dB

Figure 4.23: Experiment involving registration, inverse distance interpolation
(section 3.2.2, method (B)) and multiframe blind deconvolution for the �lynx�
image (�gure 4.2), 16 low resolution images and MBD parameters described
in section 3.2.4 are varied between images. (a) α=1000, psf size = 5, (b)
α=1000, psf size = 7, (c) α=100, psf size = 7, (d) α=100, psf size = 5
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Discussion: Reslts for the two interpolation approaches As seen
in detail in �gure 4.24, the results di�er between spline interpolation and
inverse distance interpolation. Compared to splines which impose a certain
smoothness in the image the inverse distance interpolation has a more diverse
spread of pixel intensities. This can be a good or a bad thing depending on
what the user wants the program to do. The slight unevenness noticed when
looking at the image from the inverse distance interpolation in �gure 4.24(b)
is most likely caused by a registration error and not by the interpolation
itself. Inverse distance interpolation is probably the most accurate method
of the two but in the same time less robust and more unforgiving.
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(a)

(b)

(c)

Figure 4.24: Comparision between spline and inverse distance based interpo-
lation, the �gure contains zoomed in versions of (a) the original image (�gure
4.2(a)), (b) inverse distance interpolation (�gure 4.23(d)) and (c) spline in-
terpolation (�gure 4.9(c))
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Evaluation of super resolution algorithm with missing data There
might be cases where there aren't enough images to �ll all the possible shifts.
In this simulation 4/16 images are removed, either one from each group before
doing interpolation or one of the groups is removed altogether. The experi-
ment setup is as follows: registration, interpolation and blind deconvolution
is all used, alpha is set to 1102 and PSF size is set to 5. The images and their
PSNR are displayed in 4.25. The groups are ordered in the same manner as
in �gure 4.18 (a) where the shifts are even between the frames. When com-
pared with each other it is apparent that removing one group gave a better
result than removing one from each group. This might have two possible
explanations, either is it caused by the choice of images, the images removed
had shifts that were even leaving a fairly constant pattern comparing to re-
moving one from each group there the pattern became more random. The
other explanation might be that the interpolation is more sensitive to losing
data than the MBD. When comparing the better of them to 4.9 (c) there is
a really small di�erence.

(a) PSNR: 13.6139 dB (b) PSNR: 15.2498 dB

Figure 4.25: Experiment involving registration, spline interpolation, multi-
frame blind deconvolution with parameters α=100 and PSF size = 7. 12
images used instead of 16. As described in �gure 3.4 the input frames may
be removed either one for each intermediate image or one intermediate may
be removed. (a) One frame removed for each intermediate image, (b) one
intermediate is removed.
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Chapter 5

Conclusions and further work

In this paper, a general approach for image fusion has been presented, ap-
proaches to obtain super resolution have been discussed and some methods
have been investigated further. This work follows what more or less could
be called standard procedure within image fusion and super resolution. For
multi focal fusion studies were made on pixel-level and region level and the
formulation were extended to multi modal fusion. For Super Resolution, a
combination of readily available techniques resulted in a procedure capable
of increasing the resolution of images. Many tests were performed to evaluate
di�erent preferences and cases. Many parts show promising results, especially
that the algorithm wasn't sensitive to missing input frames. Even though
comparable results in the PSNR measurement were received, it was possible
to spot di�erences between the resulting images and clearly possible to pick
out images more visually appealing than others. This observation was most
apparent when comparing the preregistered images with the images regis-
tered by the algorithm. The spline interpolation is an interesting approach
that works fast with good results. The drawback is that it introduces ex-
tra smoothing to the image that has to be understood and eliminated, the
same applies to the segmentation e�ects. Compared to inverse distance in-
terpolation it wasn't really as accurate but should be more able to suppress
registration errors. What may prove be a limitation is the fact that both in-
terpolation and blind deconvolution requires multiple inputs to produce one
output image. Replacing one of those methods with one that only requires
one input would eliminate the need to carefully combine the images in the
�rst step.
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5.1 Further work

Due to the boundaries set for this project a lot of assumptions were made
simplifying the problem, in both multi focal fusion and super resolution fusion
preregistered images or images only containing certain warping aspects were
tested, it is a fact that the algorithms are designed only to handle these
types of images. In many cases such images are not readily available and
thus to make the algorithm practical an extended registration method has to
be developed and changes has to be made to the interpolation method. The
inclusion of a�ne transforms would be a possible solution.

When applying the procedure for multi focal fusion on multimodal images
only the most basic techniques did work, a more specialized approach for
multimodal fusion should be needed, one way is to re�ne the decision map
after it's created to remove randomness like lone pixels.

It would be of interest to see if there is possible to implement the spline
interpolation without the technical workarounds used within this project
as they might contain liabilities like unwanted segmentation of the image.
During development it was tested but even with a much smaller number of
samples than what is used in the application the interpolation still kept go-
ing after 20 minutes and compared to around one minute when interpolating
small parts of the images at the time it was decided that they were inevitable.

Another interesting topic is that if it is possible to develop an AI that from
the registration inputs can choose the most suited frames as a complement to
a smart mathematical formulation for super resolution. As providing images
to the algorithm require the most e�ort as long as the programming is done
doing super resolution with the fewest possible images is preferable, likewise,
more data to process without gain is something that should be avoided.
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