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PACS. 73.23.Hk – Coulomb blockade; single-electron tunneling.
PACS. 72.70.+m – Noise processes and phenomena.
PACS. 85.85.+j – Micro- and nano-electromechanical systems (MEMS/NEMS) and devices.

Abstract. – Coupling between electronic and mechanical degrees of freedom in a single-
electron shuttle system can cause a mechanical instability leading to shuttle transport of elec-
trons between external leads. We predict that the resulting low-frequency current noise can be
enhanced due to slow fluctuations of the shuttle oscillation energy. Moreover, at the onset of
mechanical instability a pronounced peak in the low-frequency noise is expected.

Introduction. – Charge transport in nanostructures is a major research area, both theo-
retically and experimentally. Apart from the average current flowing through a structure in
response to an applied external field, fluctuations and correlations in time of this current are
of interest. By studying the current noise power spectral density (PSD), information about
the charge transport process can be extracted that may not be accessible through studies of
the average current alone [1]. An example of this is shot noise, arising due to the discreteness
of the charge carriers (electrons) [2].

In nanoelectromechanical systems (NEMS), mechanical degrees of freedom affect and/or
are affected by charge transport through the device. One such system is the single-electron
shuttle system [3], also known as the nanoelectromechanical single-electron transistor (NEM-
SET). The system consists of a metallic grain embedded in an elastic material between two
bulk leads, forming a mechanically soft Coulomb-blockade double junction. Since current
through the system is accompanied by charging of the grain, interplay between the Coulomb
forces and the mechanical degrees of freedom can lead to self-oscillations of the grain, which, in
turn, supports charge transport through shuttling of electrons between the leads. Much work,
both experimental [4–8] and theoretical [3, 9–23], has been reported in this field. Recently
there has been a lot of interest in noise in such systems [24–28].

In this paper, the noise spectrum of the single-electron shuttle is studied in the limit of weak
electromechanical coupling. It is found that the onset of mechanical vibrations is accompanied
by a peak in the low-frequency PSD. Hence, by measuring the noise, it can be determined
whether or not the grain is oscillating. This is an important result, since direct detection of any
high-frequency mechanical motion is problematic with present-day experimental techniques.
c© EDP Sciences
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Fig. 1 – Single-electron shuttle. (a) A metallic grain of mass M and radius r placed between two
leads separated by a distance L. The displacement of the grain from the center of the system is
labelled X. The grain is connected to the leads via insulating elastic materials. The leads are biased
to the potentials VL and VR. (b) Equivalent circuit of the system. The tunneling resistances and
capacitances of the left and right junctions are RL, RR, CL, and CR.

Model system. – Here we give a brief introduction to the system depicted in fig. 1a. For
details see ref. [12]. A metallic grain of mass M and radius r is placed between two leads via
elastic, insulating materials. Applying a bias voltage V ≡ (VL − VR), electron transport can
occur by sequential, incoherent, tunneling between the leads and the grain. This can be de-
scribed using the notion of the equivalent circuit in fig. 1b which is characterized by resistances
and capacitances RL,R and CL,R which both depend on the grain position X: RL,R(X) =
RL,R
0 exp[±X/λ], CL,R(X) = CL,R

0 /(1 ±X/AL,R). Here λ and AL,R are characteristic length
scales. Not shown is the grain self-capacitance C0. If EC = e2/2C � h̄/R(X)C(X), the
tunneling rates are given by the “orthodox” theory of Coulomb blockade [29]:

Γ±
L,R(X,V,Q) =

∆G±
L,R(X,V,Q)
e2RL,R(X)

1

1 − e−β∆G±
L,R(X,V,Q)

. (1)

Here β is the inverse temperature and ∆G±
L,R(X,V,Q) is the decrease of free energy as the

event (Q,QL,R) → (Q ± e,QL,R ∓ e) occurs. The charges QL,R and Q denote the charges
accumulated on the left and right leads and the excess charge on the grain.

Considering classical, one-dimensional grain motion, we have Newton’s equation MẌ =
FExt.(X,V,Q), where FExt. includes an elastic force Fk(X), a dissipative force Fγ(Ẋ), an
electric force Fε(X,Q, V ) and a vdW force FvdW(X) yielding the equation of motion

MẌ = Fk(X) + Fγ

(
Ẋ

)
+ Fε(X,Q, V ) + FvdW(X). (2)

We consider the limit of low temperature and have thus neglected stochastic thermal forces.
For the elastic force we use a phenomenological non-linear potential [12] acting as a harmonic
well with spring force constant k for small displacements but that diverges at XL and XR:

Fk =
k

13(XL +XR)

[
(X0 +XL)(X0 −XR)14

(X −XR)13
− (X0 −XR)(X0 +XL)14

(X +XL)13

]
.

The dissipative force is modelled as a viscous damping term Fγ = −γẊ, and the electrostatic
force is given by Fε = 1

2
d
dX [QLVL +QRVR −QVg], where QL,R and the grain potential Vg can

be calculated from the equivalent circuit of fig. 1b. The van der Waals force is

FvdW =
∑

ζ=±1

ζ

[
Har

6

(
L

2
− r − ζX

)−2

+
Hrr

180

(
L

2
− r + ζX

)−8
]
,

where Ha,r are the Hamaker constants for the attractive and repulsive parts of the force.
Equation (2) together with eq. (1) describe the dynamics of the system.
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Fig. 2 – Power spectrum SII(ω) in the shuttle regime. For frequencies above the vibrational frequency,
the Fano factor is close to 1/2 as for a static Coulomb-blockade junction. The peaks are located at
the frequency of vibration and at the first harmonic. For frequencies below the vibrational frequency,
the in-time correlation due to the periodic grain motion leads to a slight suppression of the noise
level. At still lower frequencies, the noise is increased due to slow fluctuations in mechanical energy.

Fig. 3 – Current-voltage characteristics plotted together with SII(ω → 0). The current is the solid
line with the scale on the left ordinate while the Fano factor is shown for a discrete set of points with
the scale on the right ordinate (lines connecting the points are a guide to the eye). Below the critical
voltage where there is no sustained grain motion, the Fano factor is that of a Coulomb-blockade
double junction. Above the critical voltage, the grain is oscillating and the Fano factor is increased
and shows a divergent behavior at the critical voltage in accordance with eq. (7).

Features of the noise spectrum. – In this section we will briefly describe the current
noise spectrum of the model system presented in the previous section. Defining the current I
through the system as the charge transferred per unit time from the grain to the right lead,
the PSD is given by

SII(ω) ≡ 2
∫ +∞

−∞
dteiωt〈∆I(t)∆I(0)〉,

where the brackets denote ensemble averaging [30]. By doing direct numerical integration,
i.e. solving the stochastic differential equation, eq. (2), the current as a function of time is
obtained and the noise spectrum calculated. A representative result of such a calculation is
shown in fig. 2. This spectrum was calculated for a system in the shuttle regime. The PSD
has been normalized to obtain the Fano factor F = SII/(2e〈I〉).

We have divided the spectrum in fig. 2 into four regions marked I-IV. At high frequencies,
region IV, the Fano factor is close to a value of 1/2 which is the value for a static double
junction [30]. In region III two strong peaks are located at the vibration frequency and the
first harmonic. This is a result of the periodic charging and decharging of the oscillating grain.
The large magnitude of the first harmonic stems from the fact that charge exchange between
the grain and the left lead gives rise to a displacement current in the right lead, where we
measure I. Directly below the peaks, region II, the noise is suppressed below the shot noise
level of a static double junction, due to the additional in time correlations between successive
tunnel events induced by the oscillating grain (see also the preprints by Pistolesi [24] and by
Novotny et al. [28]).
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The most interesting part of the spectrum, however, is the low-frequency part in region I,
where the Fano factor increases. This is due to low-frequency fluctuations in mechanical
energy. These, in turn, lead to low-frequency fluctuations in the current resulting in enhanced
low-frequency noise. One way to model the energy fluctuations is to use a stochastic differential
equation with one deterministic term describing the average pumped energy and one noise
term describing the fluctuations. In the next section, we present an analytical treatment of a
simplified model system leading to an equation of this form (eq. (6)). Linearizing around the
stable oscillation energy and using linear response for the current, one finds a contribution to
the low-frequency noise given by eq. (7), explaining the low-frequency part of the spectrum.

We note that many of the features in our noise spectrum are shared by the spectrum
obtained for a similar NEMS system studied by Armour [25].

Low-frequency noise for weak electromechanical coupling. – The system is completely de-
scribed by the conditional probability densities p(X, Ẋ,Q, t|X0, Ẋ0, Q0, t0) to find the system
with charge Q at time t in the interval [X,X +dX), [Ẋ, Ẋ +dẊ) given it was located around
(X0, Ẋ0, Q0) at time t0. The time evolution of the conditional probability density, as well as
of the unconditional probability density p(X, Ẋ,Q, t), is given by the phase space equation

∂

∂t
p
(
X, Ẋ,Q, t

)
= − ∂

∂X

(
Ẋp

(
X, Ẋ,Q, t

))
+

∂

∂Ẋ

(
γẊ − kX + F (Q)

M
p
(
X, Ẋ,Q, t

))
+

+
∑

Q′ �=Q

ΓQ′→Q(X)p
(
X, Ẋ,Q′, t

) − ∑
Q′ �=Q

ΓQ→Q′(X)p
(
X, Ẋ,Q, t

)
. (3)

Here a simplified version of the external force FExt. = γẊ − kX + F (Q), where F (Q) ≡
Fε(X = 0, Q, V ), has been used. Introducing action-angle variables (E, φ) defined through
(X, Ẋ) =

√
2E/Mω2(sin(φ), ω cos(φ)), where ω2 ≡ k/M , eq. (3) takes the form

∂

∂t
p(E, φ,Q, t) = − ∂

∂φ

([
ω +

γ

M
sinφ cosφ− F (Q) sinφ√

2ME

]
p(E, φ,Q, t)

)
−

− ∂

∂E

([
− 2

γ

M
E cos2 φ+

√
2E
M

F (Q) cos(φ)

]
p(E, φ,Q, t)

)
+

+
∑

Q′ �=Q

ΓQ′→Q(E, φ)p(E, φ,Q′, t) −
∑

Q′ �=Q

ΓQ→Q′(E, φ)p(E, φ,Q, t). (4)

To facilitate an analytical treatment, it is convenient to rewrite eq. (4). We thus introduce
the dimensionless quantities τ = tω, n = Q/e, fn = F (ne)/F (e), E = E/(12Mω2λ2), Γ̃n→n′ =
ω−1Γn→n′ , δ = F (e)/kλ, and η = γ/(Mω). Both δ and η are small parameters and we can
define ε =

√
δη and ι =

√
δ/η which are suitable for perturbation theory. The probability

density can be written in vectorial form as P (E , φ, τ), where the i-th component is given by
p(E , φ, n(i), τ) with n(i) ≡ (−1)i−1Int[ i

2 ]. We also introduce the matrices

Îi,j = δi,j , f̂i,j ≡ δi,jfn(i), Γ̂+
i,j = Γ̃n(j)→n(i), Γ̂−

i,j = δi,j

∑
n′

Γ̃n(i)→n′ ,

and define three operators L̂1=− ∂
∂φ +Γ̂+(E , φ)−Γ̂−(E , φ), L̂2= ∂

∂φ [ι f̂√E sinφ−ι−1Î sinφ cosφ],

and L̂3 = 2 ∂
∂E [Îι−1E cos2 φ− ιf̂

√E cosφ]. Equation (4) can then be compactly written as

∂

∂τ
P (E , φ, τ) =

[L̂1 + ε
(L̂2 + L̂3

)]
P (E , φ, τ).
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Since the low-frequency noise is governed by a time scale much longer than the period of
vibration, adiabatic elimination of fast variables can be used to treat slow fluctuations in
energy. This amounts to doing perturbation theory in ε.

Following ref. [31], we let Pλ and Qλ be normalized eigensolutions to L̂1Pλ = λ(E)Pλ and
L̂†
1Qλ = λ∗(E)Qλ, corresponding to eigenvalue λ. P0(E , φ) is the stationary solution to the

unperturbed problem, i.e., L̂1P0 = 0, while Q0 solves the adjoint equation L̂†
1Q0 = 0. The

projector P̂0 onto this state acting on an arbitrary vector x(E , φ, τ) is given by

(P̂0x
)
(E , φ, τ) = P0(E , φ)

∫ 2π

0

dφ′Q∗
0(E , φ′) · x(E , φ′, τ).

By direct insertion, using that L̂†
1 = ∂

∂φ + Ĝ�(E , φ), one finds that (Q0)n = [1, 1, . . . , 1]�.

Next, splitting up P (E , φ, τ) in mutually orthogonal parts v ≡ P̂0P and w ≡ (1 − P̂0)P , an
equation, correct to second order in ε, can be found for v:

∂

∂τ
v = εP̂0L̂4v − ε2P̂0L̂3L̂−1

1

[L̂2 + L̂3 − P̂0L̂4

]
v. (5)

Here εL̂4 = Î ∂
∂E [γ(E) −W(E)], which contains the average dissipation per cycle γ(E) and the

average pumped energy per cycle W(E) defined through

γ(E) ≡ 2ηE
∫ 2π

0

dφQ∗
0 · P0(E , φ) cos2 φ, W(E) = 2δ

√
E

∫ 2π

0

dφQ∗
0 · f̂P0(E , φ) cosφ.

Letting ρ(E , τ) be the probability density for finding the system with mechanical energy E ,
i.e. v = P0ρ, and using eq. (5), a Fokker-Planck equation for ρ is obtained:

∂

∂τ
ρ(E , τ) = − ∂

∂E
[(W(E) − γ(E) + O(

ε2
))
ρ(E , τ)

] − ε2
∂2

∂E2
( ∑

λ�=0

fλ(E)gλ(E)
λ(E)

ρ(E , τ)

)
,

where fλ(E)≡∫ 2π

0
dφQ∗

0 ·ÔPλ(E , φ) and gλ(E)≡∫ 2π

0
dφQ∗

λ ·ÔP0(E , φ), with Ô≡ [2ι−1E cos2 φ−
2ιf̂

√E cosφ]. Since (W(E) − γ(E)) is of order ε, the small energy shift of order ε2 can be
ignored to a first approximation and an equivalent Ito stochastic differential equation for the
vibrational energy E is arrived at:

dE =
[W(E) − γ(E)

]
dτ + α(E)dW (τ), (6)

where W (τ) is the Wiener process and α(E) ≡ ε
√
−2

∑
λ�=0 fλ(E)gλ(E).

Performing a small noise expansion [31], i.e. linearizing eq. (6) around E0, where E0 solves
(W(E0) − γ(E0)) = 0, one finds

d(δE) =
[
W ′(E0) − γ′(E0)

]
δE dτ + α(E0)dW (τ).

The correlation function for δE is then

〈δE(τ)δE(0)〉 =
α(E0)2

2
e−[γ′(E0)−W ′(E0)]|τ |

γ′(E0) −W ′(E0) .

Using linear response to evaluate the current, i.e. I(E) = I(E0) + I ′(E0)δE , an analytical
expression for the contribution to the PSD from low-frequency fluctuations in the mechanical
energy can be obtained:

SII(ω) = 2
[α(E0)I ′(E0)]2

(γ′(E0) −W ′(E0))2 + ω2
. (7)
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Table I – Numerical values of parameters used to obtain data of fig. 3.

Quantity Value Units Quantity Value Units Quantity Value Units

L 5 nm k 1 N/m λ 0.1 nm

r 1 nm XL, XR 1 nm RL
0 , R

R
0 10 MΩ

M 10−23 kg Ha 4 · 10−19 Nm CL
0 , C

R
0 , C0 1 aF

γ 10−13 kg/s Hr 10−72 Nm7 AL, AR 2.5 nm

Here the current I is given by I(E) = eω
2π

∫ 2π

0
dφQ∗

0 · Ĵ (E , φ)P0(E , φ), where (Ĵ (E , φ))i,j ≡
δi,jΓ̃R

n(i)→n(i)−1(E , φ) − Γ̃R
n(i)→n(i)+1(E , φ) is the current operator.

Equation (7) is our central result. Two important conclusions can be drawn from this
equation. First, for I ′(E0) �= 0, below a break frequency given by ωc = (γ′(E0) − W ′(E0))
the noise will rise due to fluctuations in oscillation energy. This agrees with the PSD in
fig. 2. Second, a stable non-zero oscillation energy E0 necessarily requires γ′(E0)−W ′(E0) > 0
(see ref. [9]). The transition from shuttle to stationary regime occurs when γ′(E0) = W ′(E0)
which implies that the low-frequency noise may display a divergent behavior at the point of
transition. This is in agreement with a recent semiclassical treatment by Novotny et al. [28].

To investigate this, eqs. (1)-(2) were simulated for a sequence of voltages for one typical
system and the resulting I-V curve as well as the Fano factor are shown in fig. 3. The pa-
rameter values used are shown in table I. They correspond to a nanometer-sized Au grain
commonly used in experiments with self-assembled Coulomb-blockade double junctions. Al-
though, as explained in [12], the non-parabolic confining potential smears any step-structure
in the current-voltage characteristics, the transition between static- and shuttle-operation is
clearly visible in the noise spectrum. In accordance with eq. (7), on approaching the threshold
from above (higher to lower voltages) the PSD shows divergent behavior. Below the threshold
voltage the Fano factor is of the order 1/2.

In the shuttle regime, well above the threshold voltage, the Fano factor is increased. Should
the potential be such that I ′(E0) → 0 for large E0 (as, for instance, for a harmonic potential),
the LF noise would not be enhanced. In terms of fig. 2, this would mean that the lowered
noise level in region II is continued into region I. Note that, even though eqs. (6)-(7) were
derived for a harmonic potential, this derivation can be generalized to the non-linear case
since any oscillatory motion can be described in an energy-phase space (E , φ) although with
other periodic functions than sinφ and cosφ.

Conclusions. – Using adiabatic elimination of fast variables and numerical integration
of eqs. (1)-(2), the PSD of the classical single-electron shuttle has been studied in the case of
weak electromechanical coupling. We have focussed on the low-frequency part of the spectrum,
which is the part most susceptible to direct measurements, and found that the shuttle regime
can be distinguished from the stationary regime by the noise level at low frequencies.

In particular, the shuttle regime is associated with a rise in the low-frequency PSD, as
compared to a stationary Coulomb-blockade double junction, resulting in an increased Fano
factor. This increase is due to slow variations in the current arising from variations in oscil-
lation energy. Approaching the point of the transition from above (lowering the bias voltage
when in the shuttle regime), the noise level shows a (quasi) divergent behavior. Hence, even
though a measurement of the average current alone may not reveal whether the system is in the
shuttle regime or not, the accompanying noise signature can provide this piece of information.
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