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Summary
Elastic SH wave propagation in a layered anisotropic plate with interface damage is
modeled in several steps. A single interface crack between two half-spaces is first
studied and an explicit solution for the crack-opening displacement is obtained at
low frequencies. This is then generalized to a random distribution of cracks at
the interface and the result is reformulated as a spring boundary condition. This
boundary condition is then used in the derivation of a plate equation by expanding
the displacements in power series in the thickness coordinate.

1 Introduction

In laminated composites a common failure mode is the occurence of microcracks at the
interface between the plies. Such damage should be possible to detect by ultrasonic
nondestructive testing, and the present contribution aims at making a model of this
situation. There are many benefits with a good model of the testing situation, in particular it
is easy to perform parametric studies and investigate the influence of the various parameters
of the situation. A good source of knowledge in the area of wave propagation and scattering
in the presence of cracks is the monograph by Zhang and Gross (1), which also contains
numerous references to earlier work.

The modeling is only performed in the simple setting of 2D SH waves with the polarization
perpendicular to the plane of wave propagation. However, the anisotropy that occurs in
most composites is taken into account. The model is built in several steps. First a single
interface crack between two anisotropic half-spaces is solved for perpendicular incidence
of a plane wave. The solution procedure is only sketched as this problem has essentially
been solved before, by Ohyoshi (2) (for an interior crack) by dual integral equations and
by Boström (3) (for isotropic media) and Zhang and Gross (1) (for an interior crack) by a
hypersingular integral equation for the crack-opening displacement. In the low frequency
limit (small cracks) the same explicit solution is obtained by both methods.

The next step is to look at a random distribution of cracks at the interface between two
anisotropic half-spaces. SH wave propagation in isotropic space with an interface containing
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2 A. Boström M. Golub

a periodic array of cracks has been considered by Achenbach and Li (4, 5), where the
reflection coefficient is defined in terms of the coefficient of the zeroth-order scattered wave.
The exact reflection coefficient is successfully compared in (4) to approximate theories
including replacement of the interface by a spring interface. The scattering of an SH wave
by equally sized but randomly oriented cracks is considered by Achenbach and Mikata (7),
where it is shown that the reflection coefficient for the periodic array of coplanar cracks
at normal incidence is approximately twice that for an array of arbitrarily oriented cracks.
The reflection coefficient for a disordered periodic array of equally sized cracks is calculated
by Mikata (8), the reflection coefficient differs slightly from the periodic array case at low
frequencies.

Following the work by Boström and Wickham (9), which is similar to earlier work by
Sotiropoulos and Achenbach (10), the total reflection and transmission is obtained using
a reciprocal theorem and ensemble averaging. Assuming that the extra scattering due to
the distribution of microcracks is small, the interface with microcracks is then modeled as
a (distributed) spring boundary condition, again following Boström and Wickham (9), see
also Baik and Thompson (11).

The last step is to insert the spring boundary condition into some plate equation. This is
performed with the method of Boström et al. (12), where the displacement in each layer is
expanded into a power series in the thickness coordinate. From the wave equation in each
layer recursion relations for the expansion coefficients follow and the interface and boundary
conditions finally give the plate equations. In this simple case it is easy to eliminate among
the equations to obtain a single plate equation for the displacement in the middle of the
plate. It is noted that the method can in principle be used to any order (in the plate
thickness) and that it is believed to be asymptotically exact (12). Numerical results for the
dispersion relation show the influence of the spring boundary condition.

2 Single interface crack

In this section an interface crack between two anisotropic half-spaces is considered. A
coordinate system with origin at the interface and the z axis perpendicular to the interface
is introduced. The (strip-like) crack is situated at the interface for |x| < l. Only SH wave
propagation in the xz plane is considered, and the displacement field thus only have a y
component that is denoted u. Time harmonic waves are assumed and the factor exp (−iωt)
is suppressed throughout, where ω is the angular frequency and t is time.

The material constants and the fields are denoted by an upper index j = 1 for the
lower half-space and j = 2 for the upper one. The densities are ρj and the only relevant
stiffness constants are cj

44 and cj
66. Note that the anisotropy is assumed to have the principal

axes parallel to the coordinate axes and that thus cj
46 = 0. The wave motion in the two

half-spaces is governed by the equation

cj
66

∂2uj

∂x2
+ cj

44

∂2uj

∂z2
= ρjω2uj , j = 1, 2. (2.1)

The two relevant stress components are

σj
yx = cj

66

∂uj

∂x
,
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Fig. 1 Geometry for single interface crack.

σj
yz = cj

44

∂uj

∂z
.

For notational ease one of the stress components is hereafter renamed: τ j = σj
yz.

Consider now the scattering problem for a plane wave propagating from below in the
half-space z < 0 and being transmitted and reflected by the interface and scattered by the
crack. It is useful to divide the total field into the field uj,in in the absence of the crack and
an extra, scattered, part uj,sc due to the presence of the crack. The field in the absence of
the crack is easily calculated

uin =

{
u1,in = eik1

4z + R−e−ik1
4z, z < 0,

u2,in = T−eik2
4z, z > 0,

(2.2)

where the reflection and transmission coefficients are

R− =
c1
44k

1
4 − c2

44k
2
4

c1
44k

1
4 + c2

44k
2
4

,

T− =
2c1

44k
1
4

c1
44k

1
4 + c2

44k
2
4

.

Here kj
m = ω

√
ρj/cj

mm = ω/sj
m, m = 4, 6, are the wave numbers and sj

m are SH wave
velocities along the z and x axes, respectively, in the two half-spaces (j = 1, 2).

The scattered waves satisfy the same wave equation as the incoming waves, of course,
and the following boundary conditions along the interface between the two half-spaces





u1,sc = u2,sc, |x| > l
τ1,sc = τ2,sc, |x| > l
τ1,sc = τ2,sc = −τ1,in, |x| < l.

(2.3)
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As the incoming stress field is continuous at the interface the stress field −τ2,in could equally
well be used in the last equation.

The scattered waves can be written in terms of Fourier integrals as follows

usc =





∞∫
−∞

U1(α)ei(αx−σ1z)dα, z < 0
∞∫
−∞

U2(α)ei(αx+σ2z)dα, z > 0

where
σj =

√
(kj

4)2 − α2cj
66/cj

44, Im σj > 0.

As the traction is continuous for all x it follows that c2
44σ

2U2 = −c1
44σ

1U1, so U2 can easily
be eliminated. The two remaining boundary conditions then give

∞∫

−∞
U1(α)

(
1 +

c1
44σ

1

c2
44σ

2

)
eiαx dα =

{
v(x), |x| < l
0, |x| > l,

(2.4)

∞∫

−∞
ic1

44σ
1U1(α)eiαx dα = −ic1

44k
1
4(1−R−), |x| < l. (2.5)

Here the crack opening displacement v(x) = u1,sc(x, 0−)− u2,sc(x, 0+) is introduced, which
is used as the primary unknown in one of the two methods to be used for solving the integral
equations.

One way to solve the integral equations (2.4) and (2.5) is to employ traditional dual
integral equations methods in the same way as Ohyoshi (2), who solves the 2D SH wave
scattering by a crack in an anisotropic space. To this end the Fourier transform of the crack
opening displacement V (α) is introduced as the primary unknown and the equations are
rewritten as

2
π

∞∫

0

V (α) cos (αx)dα = 0, |x| > l (2.6)

2
π

∞∫

0

αV (α) cos (αx)dα = h(x), |x| < l (2.7)

The right-hand side here also contains the unknown

h(x) = −k1
4(1−R−)

iβπ
−

∞∫

0

2G(α)
iβπ

V (α) cos (αx)dα.

The kernel that appears in the traction boundary condition

L(α) =
c2
44σ

1σ2

c1
44σ

1 + c2
44σ

2
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has here been split according to

L(α) = iβα + G(α), β =

√
c1
66c

2
66c

2
44/c1

44√
c2
66c

2
44 +

√
c1
66c

1
44

,

where the term containing β is the dominant one for large α, and where G(α) = O(1/α).
The dual equations (2.6) and (2.7) have exactly the same form as in Ohyoshi (2). By

introducing the new unknown Λ(η) according to

V (α) =
ik1

4l
2

2β

(
1−R−

) ∫ 1

0

ηΛ(η)J0(αlη) dη, (2.8)

the dual equations thus reduce to a single integral equation of the second kind

Λ(η) = 1 +
∫ 1

0

η′Λ(η′)F (η, η′)dη′, (2.9)

where the kernel is

F (η, η′) =
il2

β

∫ ∞

0

G(α)J0(αlη)J0(αlη′)dα. (2.10)

At low frequencies the solution is simply

Λ = 1,

which gives

V (α) =
ik1

4lJ1(αl)
2αβ

(
1−R−

)

and subsequently the crack-opening displacement at low frequencies becomes (after some
simplifications)

v0(x) = 2K
√

l2 − x2, (2.11)

where

K = i
c1
44k

1
4k

2
6 + c2

44k
1
6k

2
4

c1
44k

1
4 + c2

44k
2
4

. (2.12)

In the second method to solve Eqs. (2.4) and (2.5) the Fourier transform is first inverted
in Eq. (2.4) to yield

U1(α) =
c2
44σ

2

2π(c1
44σ

1 + c2
44σ

2)

∞∫

−∞
v(x)e−iαxdx.

Here the crack-opening displacement is expanded as

v(x) =
∞∑

n=1

αnψn(x/l) (2.13)
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Fig. 2 The relative difference 1− |v/v0| as a function of frequency.

where the Chebyshev functions are

ψn(s) =
{

1
π cos (n arcsin s), n = 1, 3, . . .
i
π sin (n arcsin s), n = 2, 4, . . .

These functions form a complete set on the interval and also have the correct square root
behaviour at the crack edges. Inserting everything into Eq. (2.5) and projecting on the
Chebyshev functions gives the following discretized form of the integral equation

∞∑

n′=1

Qnn′αn′ = − lc2
44k

1
4k

2
4

c1
44k

1
4 + c2

44k
2
4

δn1, (2.14)

where δn1 is the Kronecker delta. In the equation

Qnn′ =
1
2π

∞∫

−∞

c2
44σ

1σ2

c1
44σ

1 + c2
44σ

2
Jn(αl)Jn′(αl)

dα

α
,

which can be computed exactly in the low frequency limit

Qnn′ =
i
√

c2
44c

2
66c

2
66/c1

44

2π
(√

c1
44c

1
66 +

√
c2
44c

2
66

)
∞∫

−∞
Jn(αl)Jn′(αl)

dα

α
=

i
√

c2
44c

2
66c

2
66/c1

44

2πn
(√

c1
44c

1
66 +

√
c2
44c

2
66

)δnn′ .

Using this to compute the crack-opening displacement gives exactly the result Eqs. (2.11)
and (2.12) once again.

To investigate the accuracy of the low frequency approximation Eq. (2.11), the average
of the crack-opening displacement is computed from Eq. (2.11) as v0 = πKl/2 which is
compared to the average computed from Eq. (2.13) (because of the orthogonality of the
Chebyshev polynomials with square root weight)

v = πα1l/2.
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Here α1 is computed by solving the system Eq. (2.14). As an example consider two
fiber-reinforced graphite-epoxy half-spaces, the lower half-space has density 1578 kg/m3 and
stiffness constants c1

44 = 3.50GPa and c1
66 = 7.07GPa. The uppper half-space is of the same

material but the fibers are rotated by 90◦ relatively to the first one. The relative difference
1 − |v/v0| is shown in Fig. 2 and demonstrates the error introduced by the low frequency
approximation. It is seen that the low frequency approximation is valid for ωl/s1

4 << 1 with
an error that is only about 10% at ωl/s1

4 = 0.5. As the interest is here focussed on small
interface cracks due to damage, the low frequency approximation is henceforth applied.

3 Distribution of interface cracks

Consider next the same situation as in the previous section except that the single interface
crack is replaced by a random distribution of cracks at the interface. The distribution is
assumed to be translationally invariant, and it is also assumed that all cracks have the
same size, although a generalization to cracks of different sizes is readily performed. The
interaction between the cracks is neglected, but as shown by Sotiropoulos and Achenbach
(10) this is not a very restrictive assumption at low frequencies.

The incoming field is still the field in the absence of the cracks and is thus given by Eq.
(2.2). The total field is still written as the sum u = uin + usc, and the scattered field usc is
of course stochastic in nature due to the randomness of the crack distribution. The exact
scattered field is impossible to determine and is in fact of no interest. Instead the ensemble
average of the scattered field is calculated and some distance away from the interface this
should correspond closely to the field found in practice.

To determine the scattered field the Betti-Rayleigh reciprocal theorem is applied to the
elastodynamic states uin and usc

∫

S−

(
uinσsc

yj − uscσin
yj

)
njdS = 0,

with nj the outward-pointing normal and an implied summation over j = 1, 2. The contour
S− consists of lines along x = ±x0, z = −z0, and z = 0−, see Fig. 3. Add to this equation
a second application of the reciprocal theorem to the same states but with the symmetric
contour S+ in the upper half-plane, see Fig. 3. Along the uncracked part of the interface
the integrals then cancel and along the cracked parts the crack-opening displacement v
appears. Taking the ensemble average of the sum of the reciprocal theorems gives

∫

z=z0

(
uin〈σsc

yz〉 − 〈usc〉σin
yz

)
dx−

∫

z=−z0

(
uin〈σsc

yz〉 − 〈usc〉σin
yz

)
dx

+

〈∫

D

v σin
yzdx

〉
= 0. (3.1)

Here D is the cracked part of the interface and the brackets denote the ensemble average.
The integrals along the lines at x = ±x0 vanish due to the ensemble average.



8 A. Boström M. Golub

x

z

2l  

nx

nz

x0x0

-z0

z0

S
_

S
+

Fig. 3 Integral contours for a distribution of interface cracks.

The ensemble average of the scattered field can only consist of outgoing plane waves
propagating in the ±z direction

〈usc〉 =

{
P−e−ik1

4z, z < 0
P+eik2

4z, z > 0
(3.2)

The first term in Eq. (3.1) then vanishes because both waves are propagating upwards
∫

z=z0

(
uin〈σsc

yz〉 − 〈usc〉σin
yz

)
dx = 0.

The presence of both upgoing and downgoing waves gives a contribution in the second term
∫

z=−z0

(
uin〈σsc

yz〉 − 〈usc〉σin
yz

)
dx = −2ik1

4c
1
44P

−(2x0).

As the incoming field contains no stochastic part, the last term in Eq. (3.1) can be written
〈∫

D

v σin
yzdx

〉
= 2ik1

4c
1
44(1−R−)(2x0)Cv.

Here C is the relative part of the interface that is cracked, which can be written as C =
Ncl/x0, where Nc is the number of cracks along the part of the interface of length 2x0

(assuming that no crack is cut at the ends). The quantity C can be regarded as a damage
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parameter that measures the degree to which the interface is cracked. The ensemble average
of the crack opening displacement, conditional on the point of observation being a crack
point, is

v =
1
2l

l∫

−l

v(x)dx.

Thus Eq. (3.1) determines the reflection coefficient

P− = −1
2
(1−R−)Cv. (3.3)

Returning again to the reciprocal relation, but now with an incoming wave from above

uin =

{
T+e−ik2

4z, z < 0
e−ik1

4z + R+eik1
4z, z > 0

(3.4)

Here the reflection and transmission coefficients are related through

R+ = −R−,

T+ = 1 + R+.

However, the scattered wave is kept the same, i.e. it is not the scattered wave emanating
from the new incoming wave. (This is of course possible, because the reciprocal relation is
valid for any two states that satisfy the correct wave equations.) Similar operations now
give

P+ = −1
2
(1 + R−)Cv.

Subsequently the ensemble average of the total transmission coefficient for the cracked
interface can be given as

T̃ = T− + P+ = T−
(

1− 1
2
Cv

)
. (3.5)

The total transmission by the cracked interface is thus obtained in terms of the material
constants, the length of the small cracks, and the damage parameter C.

4 The spring boundary condition

The next step is to transform the above transmission coefficient into a (distributed) spring
boundary condition. This cannot be done exactly but in the low frequency limit (or for
small cracks) this is readily performed. Consider again the reflection and transmission at an
interface between two half-spaces using the same ansatz Eq. (2.2) as in Sec. 2, but with the
reflection and transmission coefficients denoted by R̂− and T̂−. The boundary conditions
between the half-spaces are no longer continuity of displacement and stress, but rather
continuity of stress and proportionality between stress and the crack opening displacement

σ1
yz = σ2

yz = κ
(
u1 − u2

)
, (4.1)
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where κ is the (distributed) spring constant. The reflection and transmission coefficients
are obtained as

R̂− =
ic1

44k
1
4c

2
44k

2
4 + κ(c1

44k
1
4 − c2

44k
2
4)

ic1
44k

1
4c

2
44k

2
4 + κ(c1

44k
1
4 + c2

44k
2
4)

, (4.2)

T̂− =
2κc1

44k
1
4

ic1
44k

1
4c

2
44k

2
4 + κ(c1

44k
1
4 + c2

44k
2
4)

. (4.3)

In the limit κ →∞ the interface becomes infinitely stiff and the reflection and transmission
coefficients from Sect. 2 are obtained. When κ → 0 total reflection results, of course.

The expression for T̂− cannot be equated directly with Eq. (3.5), because the functional
forms do not agree. To this end Eq (4.3) is first expanded for large κ

T̂− =
2c1

44k
1
4

c1
44k

1
4 + c2

44k
2
4

(
1− ic1

44k
1
4c

2
44k

2
4

c1
44k

1
4 + c2

44k
2
4

· κ−1

)
+ O(κ−2).

Equating this with Eq. (3.5) and using the expression for K from Eq. (2.12) gives the
spring constant

κ =
4

Cπl
· c1

44c
2
44k

1
4k

2
4

c1
44k

1
4k

2
6 + c2

44k
1
6k

2
4

. (4.4)

It is worth remarking on the condition that κ must be large. As κ is not dimensionless it
is first necessary to introduce a dimensionless quantity and the natural choice is to put

κ = c1
44k

1
4γ,

where γ is the dimensionless parameter that determines the convergence of the expansion
of T̂− above. Assuming that the quotients between stiffnesses and wave speeds in the two
materials are not large or small, γ is large if the product between the damage parameter
C and the dimensionless crack length k1

4l is small. The expression (4.4) for the spring
stiffness is approximately equal to the more rough estimate for the spring stiffness obtained
by Achenbach and Li (5).

5 Plate theory with spring boundary conditions

As an application of the spring boundary condition, the plate equation for the symmetric
waves in a symmetric three-layered plate as shown in Fig. 4 is considered. For a plate
equation to be meaningful it is of course assumed that the total thickness of the plate is
(much) smaller than the wavelength. It may seem questionable to use the spring boundary
condition in this context as it was derived via the transmission coefficient for the distribution
of cracks, which implicitly seems to require a certain thickness. As long as the microcracks
that constitute the damage at the interface are smaller than the layer thicknesses, it might
still be a reasonable assumption. In this section it is no longer assumed that the waves are
time harmonic.

The material parameters in the middle layer are denoted by an upper index j = 1 and the
two surrounding layers by j = 2. Still only SH waves in the xz plane are considered. The
middle layer is situated at |z| < d1 and the outer layers at d1 < |z| < d2. Due to symmetry
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stress-free
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1
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Fig. 4 Three-layered symmetric plate with spring boundary conditions.

only the top half of the plate is considered. The boundary conditions are that the upper
surface is stress-free and that the interface is described by the spring boundary conditions

τ2 = 0, z = d2,
τ1 = τ2 = κ(u1 − u2), z = d1

(5.1)

Due to the symmetry assumption the fields in the two layers are expanded as

u(x, z, t) =
{

u1
0(x, t) + z2u1

2(x, t) + z4u1
4(x, t) + . . . , 0 < z < d1

u2
0(x, t) + d2zu2

1(x, t) + z2u2
2(x, t) + d2z

3u2
3(x, t) + . . . , d1 < z < d2

(5.2)
The extra d2 in the odd powers is introduced for convenience.

Inserting the expansion (5.2) into the equation of motion (2.1) and equating equal powers
of z gives

cj
66

∂2uj
n

∂x2
+ (n + 2)(n + 1)cj

44u
j
n+2 = ρj ∂2uj

n

∂t2
, j = 1, 2; n = 0, 1, ..

Introduce the wave operator

Dju
j
n =

(
ρj ∂2uj

n

∂t2
− cj

66

∂2uj
n

∂x2

)
, j = 1, 2,

and write this as a recursion relation

uj
n =

1
n!
· 1
(cj

44)n/2
·Dn/2

j uj
0, n = 2, 4, . . . ,

uj
n =

1
n!
· 1
(cj

44)(n−1)/2
·D(n−1)/2

j uj
1, n = 3, 5, . . . .

This can be used to eliminate all the expansion functions except u1
0, u2

0, and u2
1. The

boundary condition on z = d2 gives

c2
44u

2
1 = −D2u

2
0 + O(d2

2),
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keeping only the two terms of lowest order. Keeping terms to linear order, the spring
boundary condition on z = d1 gives

d1D1u
1
0 − c2

44d2u
2
1 − d1D2u

2
0 + O(d2

2) = 0,

d1D1u
1
0 = κc1

44(u
1
0 − u2

0) + O(d2
2).

If u2
0 and u2

2 are eliminated a single plate equation for the displacement u1
0 of the centre of

the plate is obtained
[
d1D1 + (d2 − d1)D2 +

d1(d2 − d1)
κ

D2D1

]
u1

0 = 0. (5.3)

This equation is written to second order in thickness, but it is straightforward to go to
higher orders. The first two terms are just the thickness weighted average of the the two
wave operators, as should be expected. The last term describes the influence of the spring
boundary condition, i.e. of the damage. In the limit κ → 0 the last term dominates and
gives two uncoupled wave equations for each layer, exactly as it should.

Assume now a propagating mode in the plate, which can be assumed to be given by

u1
0 = U0 exp(i(kx− ωt)).

As before ω is the angular frequency and k is the wave number in the propagation direction.
Insertion into the equation (5.3) gives a quadratic equation in k2 which gives one real
root for k. As an example with strong anisotropy, consider a fiber-reinforced graphite-
epoxy composite which has density 1578 kg/m3 and stiffness constants c1

44 = 3.50GPa
and c1

66 = 7.07GPa. The lay-up is assumed to be 0◦/90◦/0◦ so that the material in the
middle layer is rotated 90◦ relative the top and bottom layers. The quotient between the
layer thicknesses is d2/d1 = 2, so that there are as much fibers in the two perpendicular
directions.

The dimensionless phase velocity vph as a function of frequency for the first symmetric
mode for this plate is shown in Fig. 5 for different values of the parameter combination
Cl/d (which determines the spring constant). Here the dimensionless frequency ωd

√
ρ/c1

44

and dimensionless phase velocity vph = kd/ω are used, where d = 2(d1 + d2) is the total
plate thickness. In Fig. 5(a) the phase velocity from the plate theory is shown and in
Fig. 5(b) the phase velocity due to an exact calculation of the dispersion relation (solving
the wave equation in each layer and matching the boundary conditions). Note that small
values of Cl/d correspond to large values of the spring constant. It is to be expected that
the plate theory is valid only for low frequencies and small Cl/d and that is exactly what
Fig. 5 shows.

6 Concluding remarks

A model for a layered anisotropic plate with interface damage has been constructed and
a few numerical results given to show the influence of the damage. A key feature of the
method is the modeling of the damage as a (distributed) spring boundary condition. A way
to check the validity of using this boundary condition to model damage in a plate theory



layered plate with interface damage 13

(a)

(b)

Plate theory

Exact theory
ωd/s

4

1

vph

vph

0 1 2 3 4
0.8

0.81

0.82

0.83

4

1
0 1 2 3 4

0.81

0.82

0.83

0.8

ωd/s

8

Cl/d= 0.001

0.01

0.025

0.05

0.1

Cl/d=

Cl/d=

Cl/d=

Cl/d=

Cl/d= 0.001

0.01

0.025

0.05

0.1

Cl/d=

Cl/d=

Cl/d=

Cl/d=

Cl/d=

Fig. 5 Phase velocity as a function of frequency: (a) plate theory, (b) exact theory.

would be to compare with a periodic distribution of microcracks at the interface, as this is
a problem that is possible to solve exactly and at low frequencies should correspond closely
to a random distribution, cf. Sotiropoulos and Achenbach (10).

In this paper only the 2D case with SH waves is investigated, but it should be possible
to generalize to 2D in-plane waves and to 3D problems (with rectangular cracks). Other
problems of interest include plates with localized damage and plates that are excited by
reasonable models of ultrasonic probes.
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