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ABSTRACT 
The purpose of this diploma work has been to see whether it is possible to develop a rule-based 
controller that mimics the behavior of an optimal control strategy for a hybrid city bus. This control 
strategy improves fuel efficiency by use of preview information about the road ahead. The rule based 
controller has been designed for easy implementation into the ISAM engine management system. 
 
Dynamic programming is used to find an optimal solution which in turn is used as a blueprint for a 
rule-based controller. The transition from optimal control to rule-based control is carried out using 
fuzzy logic. 
 
Preview information will in reality be given from a topographic map combined with a GPS. This 
information together with a speed curve will give information about the future power demand. To 
simulate a system like this we use parts of the drive cycle in front of the vehicle, which gives both the 
road incline and the desired speed. 
 
Our simulations show that the fuel reduction on a city bus route is about 3.5% when using optimal 
control, compared with the ISAM control system which is used as a reference system. When the rule-
based control is used, the fuel reduction is about 2%. These results have been obtained by controlling 
the torque split between the internal combustion engine and the electrical machine, without optimizing 
gear selection. 
 
We also carried out simulations including optimization of gear shifting. This resulted in a fuel 
reduction of about 12%. However, these results are based on somewhat unrealistic presumptions, i.e. 
gear shifting occurs instantaneously. They are therefore not considered in the rule-based controller.  
 
 
Keywords: Powertrain control, Dynamic programming, Optimal control, Fuzzy logic, Preview 
information, Hybrid electrical vehicle, HEV, Electrical horizon. 
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Abbreviations 
 
BAT  Battery 
BSFC  Break Specific Fuel Consumption 
CBR85  City Bus Route 85 
CL  Clutch 
CVT   Continuously Variable Transmission 
DC  Drive Cycle 
DP  Dynamic Programming 
EAUX  Electrical Auxiliaries 
EM  Electric Machine 
FC  Fuel Consumption 
FM  Fuzzy Matrix 
GB  Gear Box 
GPS   Global Positioning System 
HEV  Hybrid Electrical Vehicle 
ICE  Internal Combustion Engine 
ISAM  Integrated Starter Alternator Motor 
MAUX  Mechanical Auxiliaries 
MB  Mechanical Break 
MF  Membership function 
MSD  Mean Standard Deviation 
NEM  Speed of the Electric Machine 
NICE  Speed of the Internal Combustion Engine 
NOC  Near Optimality Controller 
PE  Power Electronics 
PEAUX  Power of the Electrical Auxiliaries 
PEM  Power of the Electric Machine 
PEMLOSS  Power loss in the Electrical Machine 
PHEV  Parallel Hybrid Electrical Vehicle 
PI  Preview Information 
PICE  Power of the Internal Combustion Engine 
PID  Proportional, Integral, Derivative Regulator 
SD  Standard Deviation 
SDTL  Standard Deviation Threshold Limit 
SM  Simplified Model 
SoC  State of Charge 
SoCMIN  State of Charge minimum limit 
SoCMAX  State of Charge maximum limit 
TBREAK  Break Torque  
TDEM  Torque demand 
TDEM,ref  Reference Torque demand 
TEM  Torque of the Electric Machine 
TEM, NOC  NOC TEM for a specific drive cycle 
TEM, BACKGROUND NOC Background control TEM for a specific drive cycle 
TEM, OPTIMAL  Optimal TEM for a specific drive cycle 
TEM,ref  Reference TEM 
TEXTRA  Extra Torque 
TICE  Torque of the Internal Combustion Engine 
TICE,ref  Reference TEM 
TRM  Transmission 
VEH  Vehicle 
VTEC  Volvo Technology 
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1 Introduction 

1.1 Background 
In society of today, concern is growing regarding the environmental impact of transportation 
that depends on fossil fuels. Both people in general and governments are becoming more aware 
about the recent environmental changes e.g. global warming. This has led to harsher limits on 
how much emissions a both light and heavy duty vehicles are allowed to produce, Euro 4 and 
Euro 5 legislations [1]. These restrictions and the fact that our easy accessible oil deposits are 
almost depleted have led to increasing fuel prices. The cost of gasoline in Sweden has for 
example been doubled in the last 20 years [2]. All this have forced the transport industry to take 
different measures to both lower emissions as well as the fuel consumption. 
 
One such approach is the Hybrid Electric Vehicle (HEV), which combines an internal 
combustion engine (ICE) with an electric machine (EM) and an energy storage. The EM, 
combined with the battery, then becomes a torque-producing unit that can propel the vehicle, as 
well as an energy buffer that can absorb energy by using the EM as a generator. This can be 
done when the kinetic energy of the vehicle is to be lowered, for example when stopping, or 
when the velocity should be kept constant during downhill driving. 
 
The control problems consists in making the best use of the battery while preserving its life 
expectancy, and at the same time lower the fuel consumption as much as possible. The problem 
with the strategies of today is that they do not know how much energy the system can be 
expected to gain from regenerative breaking, or how much energy the vehicle will use in the 
near future. These limitations lead to restrictive control algorithms that do not take full 
advantage of the battery. Therefore the present control algorithms do not lower the fuel 
consumption as much as would be possible if information about the future was available to the 
control system. 
 
Advances in communication and on-board computing have made it possible to create 
increasingly advanced navigation systems. Map data and a GPS system enable construction of 
an electronic horizon on-board a vehicle. This preview information can be used for driver 
assistance systems but could also be used for optimization of drive-line components e.g. to save 
fuel and/or improve vehicle performance. Such a system will be available for the European 
market around year 2008-2010. 
 
Earlier work [3] has shown that by using optimal control, through dynamic programming, the 
fuel consumption could be lowered by approximately 10% for a city bus, when including gear 
shifting in the control algorithm. Unfortunately, dynamic programming is a computationally 
demanding task which is not suited for implementation in a vehicle. Therefore this master thesis 
investigates the possibility to implement a nearly optimal control strategy that efforts to mimic 
the behavior of the optimal one. 

1.2 Thesis description 
The purpose of this master thesis work is to derive a control algorithm that mimics the behavior 
of an optimal controller, using preview information about future driving conditions. We call this 
type of control algorithm a near optimality controller (NOC). The goal is to reduce the fuel 
consumption by utilizing the battery and the electrical machine in the same way that the optimal 
controller does. The algorithm should work in such a way that it easily can be tuned for a 
specific route, while at the same time giving a good result for an unknown route. 
 
The optimal solutions are calculated using dynamic programming (DP). These solutions will 
serve as a lower boundary for fuel consumption for a specific route. However the solutions will 
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also give vital information about how the control strategy should be designed to achieve a 
minimal fuel consumption strategy. 
 
The preview information that will be available to the controller is the topography, the speed 
curve for a specific route and the vehicle’s attributes. Combined, they provide information about 
the expected power demand of the vehicle.  
 
The implementation will be done in Matlab Simulink, using Volvo Technology’s (VTEC’s) 
current model of a city bus, in such a way that it easily can be implemented in a vehicle in the 
future. 

1.3 Disposition 
In chapter 2 a review of the models, the drive cycles, preview information estimation, and a 
figurative way of looking at stored energy are presented. This is to give the reader a background 
of the theory so that all the different mathematical approaches in the following chapters will be 
understood. Chapter 3Error! Reference source not found. explains the optimization methods 
as well as the approaches that have been evaluated to achieve a NOC. In chapter 4, results from 
both the optimal solutions and the NOC are presented. The optimal control results are divided in 
to two sections with different constraints on the optimization problem this is followed by the 
results from the NOC. Conclusions and ideas for future work are presented in chapter 5 and 6. 
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2 Models 
During this thesis work, two models of a HEV have been used for the calculations and 
evaluations needed. Both the models are implemented in the Matlab Simulink environment. One 
model is VTEC’s currently used model, named ISAM, and the other one is a simplified model 
of a HEV. 

2.1 A Parallel Hybrid Electrical Vehicle overview in General 
Generally a parallel hybrid electrical vehicle (PHEV) is a hybrid vehicle with an internal 
combustion engine (ICE), an electric machine (EM) and a battery (BAT). The PHEV could be 
built up by other energy converters and other energy storages but in general they consist of one 
ICE, one EM, one fuel tank and a battery. As can be seen in Figure 2-1, the ICE and the EM are 
mounted on the same axle which means that they run at the same speed when they are not 
separated by the clutch. Both the ICE and the EM can produce torque to propel the vehicle, and 
the EM can also regenerate energy to the battery. The total torque delivered to the vehicle 
(VEH) is the sum of the two torque producers, excluding some minor frictions. For more 
detailed information about PHEVs, see for example ’Hybrid Drive Systems for Vehicles’ by 
Mats Alaküla [4]. 
 

ICE CL EM

PEBAT

TRM VEH

MB
 

 
Figure 2-1 

Parallel Hybrid Power Train. ICE: Internal Combustion Engine, CL: Clutch, EM: Electric Machine, TRM; Transmission, 
VEH: Vehicle, BAT: Battery, PE: Power Electronics, MB: Mechanical Brake. The vectors indicate possible energy flows in 
the Powertrain. 

2.2 ISAM 
VTEC’s current model of a hybrid city bus is named Integrated Starter Alternator Motor 
(ISAM) and it is both a HEV model as well as VTEC’s current control system for a HEV. The 
model is rather complex and it is difficult to give an overall picture of the control systems that 
are implemented in the model. The details of the model are confidential, and parts of the control 
algorithm will therefore only be described in general terms. 

2.2.1 Overview of the ISAM model 
An overview of the HEV part of ISAM can be explained in the following way. The model is 
module based and constructed of several sub-blocks, describing certain functional parts of the 
HEV. The parts that are modeled and how they interact can be seen in Figure 2-2. 
 

ICE MAUX CL EM EAUX GBBAT VEHRA
 

 
Figure 2-2 

The HEV part of the ISAM model. ICE: Internal Combustion Engine, MAUX: Mechanical Auxiliaries, CL: Clutch, EM: 
Electric Machine, EAUX: Electrical Auxiliaries, BAT: Battery, GB: Gearbox, RA: Rear axle, VEH: Vehicle. 

 
The way that this model works is that the drive cycle is fed to a standard PID-driver. For more 
information about PID regulators see for example ‘Reglerteknikens grunder’ by Bengt 
Lennartsson [5], which tries to follow the desired velocity by changing the angle of the speed 
pedal. This in turn gives an indication of the torque needed to fulfill the drive cycle. The control 
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system part of ISAM changes all the other variables i.e. gear choice and the amount of torque 
that the ICE and the EM individually should produce etc. The part of ISAM that is shown in 
Figure 2-2 is only the HEV which contains the physical models of each sub-system as well as 
actuators and sensors from and to ISAM’s control systems. 

2.2.2 Transition from time to distance 
Since the ISAM model is time-based, and preview information most likely will be distance-
based, the model has to be changed to incorporate these differences. To construct preview 
information we have chosen to use a small part of the drive-cycle. This means that the drive 
cycle also has to be distance based. To achieve this all, drive-cycle variables where converted to 
be functions of distance instead of functions of time. 
 
The drive-cycle model was changed so that the look-up maps used vehicle distance on the x-
axis instead of simulation time. This created a problem with the driver model, which basically is 
a standard PID- regulator that controls the acceleration of the vehicle to minimize the error 
between the vehicle speed and the desired speed. If the velocity at a certain distance is zero the 
driver gets stuck, since the distance does not change if the desired speed of the drive cycle is 
zero. 
 
This problem was solved by adding a new drive cycle parameter to the drive cycle. The new 
parameter was the time the vehicle should stand still at each stop. This parameter was then used 
in the ISAM model in the following way. 
 

1. If the vehicle reached a point where the vehicle’s speed was zero a timer started. 
2. When the timer reached the stop time parameter the vehicle’s position was shifted 

forward to the next position where the vehicles speed differed from zero. 
 
In this way the vehicle stands still at each stop and starts when the stop-time is reached. 
 
The PID-driver in the ISAM model in general gives a somewhat unsatisfactory result in 
following a certain velocity profile. When the velocity profile of the drive cycle saturates or 
reaches a peak, the PID-driver overshoots the target velocity almost every time. This problem 
was corrected by complementing the PID-driver with an anti windup structure. This regulator 
structure made the overshoots disappear instantly. For information about anti windup regulators 
see for example ‘Reglerteknikens grunder’ by Bengt Lennartsson [5]. Therefore this modified 
version of the PID driver has been used throughout the project. 

2.3 Simplified Model 
The simplified model (SM) that is used during the optimization is a simplified version of 
ISAM’s HEV model. The simplicity of the SM keeps the calculation time of the DP within 
acceptable limits. The SM is built up by a battery model, an ICE model and an EM model. 
ISAM contains a lot of different states that are of no or little use to the fuel consumption 
calculation. Therefore the SM contains only one state which is the state-of-charge (SoC), which 
is updated according to Equation 2-1. The rest of the model is based on static look-up tables.  
 

 ),,( SoCNTf
dt

dSoC
EMEM=  

Equation 2-1 
 
Inputs to the simplified model are: 

• TICE, torque from the ICE 
• NICE, speed of the ICE 
• TEM, torque from the EM 
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• NEM, speed of the EM 
 
The simplified model then calculates the fuel consumption and the new SoC for these specific 
torques and speeds. A schematic figure of the model can be seen in Figure 2-3. Equation 2-1 is 
used it the BAT-block to calculate the new SoC, while the fuel consumption is calculated in the 
ICE-block by using a look-up table. These signals are then passed as output from the model. 
 

EM

ICE

BAT

Input signals Output signals

 
 

Figure 2-3 
Schematic view of the simplified model. The signals that the vectors in the figure contain are described in the sections below. 
 

2.3.1 Battery Model 
The modeling of the battery in the SM is mostly done by look-up tables, which give the open 
circuit voltage and the internal resistance the battery is operating at. The battery open circuit 
voltage is fed to the EM and is used when the EM needs to produce torque. The dynamic state 
of the battery, SoC, is changed according to Equation 2-1. Inputs to the battery model are the 
temperature of the battery, the load from electrical auxiliaries and the power that EM consumes 
or generates. The outputs of the battery model are the open circuit voltage and the SoC. During 
simulation the temperature of the battery is held constant at 20 degrees Celsius and the load 
from electrical auxiliaries is set to 6 kW. 

2.3.2 Combustion Engine Model 
The internal combustion engine model in the SM is a 2 dimensional look-up table, where the 
input variables are TICE and NICE. The inputs are validated with respect to their min and max 
levels before the fuel consumption is interpolated. The output of the ICE model is the fuel 
consumption. 
 

 
Figure 2-4 

The Internal combustion engines fuel consumption lookup table. 
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2.3.2.1  Starting cost for the ICE 
The cost of starting the engine has been calculated from the sum of the energy cost converted to 
kg fuel for the EM and the amount of fuel the ICE uses during the cranking process. Figure 2-5 
show a cranking of the ICE, which occurs in the interval [458.9,460.3]. 
 

 
 

Figure 2-5 
Cranking process of the ICE. 

 

2.3.3 Electric Machine Model 
The EM model is a static model, which means that the torque that is requested is 
instantaneously produced. It has a maximum torque that is a function of speed which can be 
studied in Figure 2-6. The regenerative section of the EM capabilities is simply a mirrored 
function of the maximum torque, i.e. the EM can consume the same amount of power that it can 
produce. 
 

 
 

Figure 2-6 
The EM model working area. 
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Inputs to the EM model are TEM and NEM. The model then calculates the power needed to create 
this torque or the power generated at this certain angular speed according to Equation 2-2. The 
output of the EM model is the useful Power produced, which is calculated by taking the 
difference between the total power produced and the power losses in the EM. 
 

LOSSEMEMEMEM PNTP +⋅=  
Equation 2-2 

 
The PEMLOSS term in Equation 2-2 is the built in losses in the EM, which are a sum of frictional 
forces and field losses. The power losses are interpolated from a lookup table in the EM model 
which can be seen in Figure 2-7. 
 

 
 

Figure 2-7 
The Electric Machine loss map. 

 

2.4 Drive Cycles 
A number of drive cycles has been used to study the behavior of the optimal solutions versus 
ISAM’s control signals. The majority of all simulations and evaluations have been done on a 
drive cycle called CBR85. A random drive-cycle generator has been constructed to be able to 
design tailor-made drive cycles. One cycle produced by this generator has also been evaluated 
in this report. 

2.4.1 CBR85 
The CBR85 drive cycle is a cycle taken from City Bus Route 85 in Göteborg, the route no 
longer exists, but it has been used for many years for simulations by Volvo. The route stems 
from Körkarlens gata and goes by Masthugget before it returns to Körkarlens gata in Göteborg. 
Velocity and altitude trajectories can be seen in Figure 2-8 and Figure 2-9 below. Note that the 
velocity and altitude trajectories in the figures in chapter 2 are functions of distance and not 
functions of time. 
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Figure 2-8 
Velocity trajectory for the CBR85 drive cycle. 

 

 
 

Figure 2-9 
Altitude profile for the CBR85 drive cycle. 

2.4.2 Random Drive Cycle Generator 
The random drive-cycle generator is a tool that constructs drive cycles that can be used for 
simulations on both the simplified model and the ISAM model. The generator can be used to 
design drive cycles that are tailor made for specific routes or scenarios. Input data to the 
generator consists of route distance, maximum angle of the road, maximum angle change of the 
road, stop distribution, speed limits along the route, deceleration, acceleration, resolution, time 
sample frequency and the length of a low pass filter. With these variables, the generator 
constructs a drive cycle that fulfills the desired constraints and returns four vectors containing, 
distance, velocity, acceleration, and stop time. The script also returns an approximation of the 
total simulation time. An example of a randomly generated drive cycle that is used in our 
simulations can be seen in Figure 2-10.  
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Figure 2-10 
Randomly generated drive cycle. 

2.5 Preview Information 
Preview Information (PI) describes what is expected to happened in the near future. In our case 
PI consists of map-data describing the path ahead. By using a Global Positioning System (GPS), 
we can determine our position on a topographic map. When the desired route is specified, a road 
profile can be calculated, and by using a database of current speed limits, we can also estimate 
the speed of the vehicle in the near future. This data is then connected to a distance vector 
describing at what distance in front of the vehicle this information applies. Figure 2-11 shows 
an illustration of a preview window. 
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Figure 2-11 
Preview window example 

2.5.1 Power Estimation 
To estimate the power needed to fulfill these preview demands, the required torque on the 
wheels must first be calculated. This is done according to Equation 2-3. 
 

wheelloss
wheel

veh
acc rF

r
Ja

T ⋅+
⋅

=  

Equation 2-3 
 
The acceleration veha can be approximated from the preview information. By assuming constant 
acceleration between two sample points, the time between two sample-points can be calculated 
using Figure 2-12, Equation 2-4 and Equation 2-5. 
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Figure 2-12 
Speed change approximation between two sample-points 

 

Traveled distance, Δd 
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The distance is also given from the PI, and therefore the time difference t1-t0 can be calculated 
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The acceleration can now be estimated according to Equation 2-6. 
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Equation 2-6 
 
The losses come from drag, roll resistance, grade forces and mechanical friction. The losses are 
calculated according to Equation 2-7 - Equation 2-11. Lord Rayleigh’s formula [6] is used to 
calculate the drag in Equation 2-8. 
 

mechgraderollairloss FFFFF +++=  
Equation 2-7 
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Equation 2-8 

angleroadtheiswheregmF rollvehroll ααμ )cos(⋅⋅⋅=  

Equation 2-9 

)sin(α⋅⋅= gmF vehgrade  

Equation 2-10 

Constant=mechF  

Equation 2-11 
 
By multiplying the torque given from Equation 2-3 with the angular speed of the wheels, and 
summing these values inside a preview window, the total power requirement is given according 
to Equation 2-12. 
 

∑ ⋅=
window

vehaccwindow NTP  

Equation 2-12 
 
Driving along the part of a CBR85 shown in Figure 2-11, using a 10 second preview window 
gives a power estimation according to Figure 2-13. Each point along the curve represents the 
sum of the power need in a 10 second window ahead of the vehicle. The top part of the figure 
shows the total power in each window. The middle part shows the positive power, or power 
needed to propel the vehicle, in each window. The bottom part shows the negative power, or 
power that could be regenerated, in each window. 
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Figure 2-13 
Power estimation using a 10 second preview window. Total power is the sum of positive and negative power. Each point in 
the plot represents the energy in a 10 second window. Positive power must be produced by the vehicle and negative power 

can be regenerated by the electric machine. 

2.6 Battery Evaluation 
To understand how much energy the battery contains, and to compare this energy buffer to the 
energy that is needed to propel the vehicle a test was made. This was to evaluate how far the 
vehicle could travel by means of only using the EM. The amount of energy that the vehicle 
could use during this test was the energy in the desired SoC interval, given by SoCMIN and 
SoCMAX. The battery in total contains 11kWh and the energy between the limits is 10% of the 
total energy which equals 1.1kWh. The reason to only use this amount of the total energy in the 
battery is to reduce the ware and increase the lifetime of the battery. 
The test was made in such a way that the vehicle was started from stand still and accelerated up 
to a certain velocity, while the inclination of the road was held constant. During this drive, the 
power produced is calculated by using Equation 2-3 multiplied with the angular speed of the 
wheels. When the integral of the power reached 1.1kWh the distance was recorded. The test was 
made for several inclinations and top speeds and the result can be seen in Figure 2-14. This is a 
slightly overestimated distance, since no losses have been included in the calculations but it 
gives an approximation of the distance at different velocities and inclinations. 
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Figure 2-14  
Utilization of the energy in the battery buffer. 

 
As can be seen in the right side of Figure 2-14 when the desired top speed is relatively high the 
vehicle is accelerating during the whole test and the traveled distance becomes constant. 
 
The energy in the SoC buffer can also be transformed directly to an amount of diesel by using 
the conversion that 1 liter of diesel fuel (0.850 g) contains 40.9 M Joule † and that 1 Joule 
corresponds to 27.778 μ kWh. The efficiency of the diesel engine can roughly be estimated as 
0.4 for all its working points. This estimation results in that the amount of fuel that 1.1kWh 
holds is approximately 0.24 liter or 0.206 kg of diesel fuel. 

                                                      
† Diesel fuel energy content varies depending on what type of diesel one looks at. 
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3 Problem description and solution methods 
This chapter will describe the optimization problem in general, the technique that is used to find 
the optimal control and the technique that is used to mimic and utilize the optimal control 
behavior. 

3.1 Describing the optimization problem 
The optimization problem should contain a cost function that should either be minimized or 
maximized, and also describe the dynamics of the problem. If there are active constraints that 
limit the space in which the optimal solution should be contained, they should also be specified. 
A general optimization problem is given by Equation 3-1, which is a minimization problem. 
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Equation 3-1 
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Where x(t) and u(t) are vectors with n and m elements, ψ(t) is a vector with r elements. The 
control signal u(t) is limited by the constraint u(t) ∈ U where U is a set in Rm. If u is a scalar, 
then U often is an interval and the constraint is in the form umin ≤ u ≤ umax. The criteria that is to 
be minimized is given by the cost functions L and φ. There are also constraints on the final time 
instance that are set by ψ. A more thorough description of the optimization problem and its 
solution can be studied in ‘Reglerteori Flervariabla och olinjära metoder’ by Torkel Glad and 
Lennart Ljung [7]. 
 
Optimization problems like these can be solved in numerous ways, a few examples are:  
 

• Pontryagin’s min max method 
• Calculus of variations 
• Sequential quadratic programming 
• Dynamic programming 

 
We choose to use dynamic programming as working method since it is relatively easy to 
implement and to understand. 

3.2 Dynamic Programming 
Dynamic programming (DP) is a technique to find a solution to an optimization problem like 
the one in Equation 3-1. In our case, DP is used to find a sequence of control signals that 
minimize the fuel consumption of a HEV, while fulfilling a set of constraints. Dynamic 
Programming was invented by Bellman and Dreyfus 1962 [8] and is based on what is referred 
to as Bellman’s principal of optimality which states “The optimum path between two given 
points is also optimum between any points lying on the path”. An example of an optimal path 
can be seen in Figure 3-1, if path AB is optimal then path AC is also optimal no matter how the 
curve continues from point C. 
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Figure 3-1 
Dynamic Programming Example 

3.2.1 Finding the Optimal Solution 
DP is implemented in the following way. The SoC space between SoCMIN and SoCMAX is 
divided into a discrete space with 100 points between. This value of a 100 has been evaluated in 
a previous thesis work [3]. 
 

 
 

Figure 3-2 
The SoC space descritization, in reality there are 100 points between SoCMAX and SoCMIN. 

 
At every time instance, every SoC level is evaluated by looking at the fuel cost for every torque 
split between the EM and the ICE. The torque produced by the EM is varied between TEM,min 
and TEM, max , which is divided into an interval of 100 points. TEM min and max can be seen in 
Figure 2-6. TEM + TICE has to fulfill the TDEM from the forward simulation done by ISAM. The 
fuel cost for every control signal is evaluated and the minimum cost with its corresponding 
control signals is saved. The globally optimal solution is then calculated by minimizing the path 
cost over the total time interval. An example of the minimization algorithm can be seen in 
Figure 3-3, where the fuel costs have been replaced by integers for easier understanding. 
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Figure 3-3 
Example of Dynamic Programming algorithm procedure. 

 
The minimum cost to go from State i+1 to State i+4 at the highest SoC level (left-hand side of 
Figure 3-3) is 5. 1 in cost for the path between State i+1 to State i+2, and 4 in cost for the 
optimal path between State i+2 to State i+4. This evaluation is done for all the SoC levels at 
State i+1. Then one moves to State i (right-hand side of Figure 3-3) and evaluates all the path 
costs to go to State i+1 for all the SoC levels. The minimum cost to go from State i to State i+4 
is then the optimal path between State i to State i+4. 

3.3 Fuzzy Logic 
A major part of this thesis work has been to find a way to categorize preview information, and 
current vehicle state, in such a way that it can be used to control the vehicle in a nearly optimal 
way. In the approach we have chosen, the optimal control signals from the dynamic 
programming solution, are connected to the corresponding vehicle states and preview 
information at each time instance. By organizing the optimal torque split in an N-dimensional 
matrix where each dimension represents a vehicle state or a preview window, the optimal 
control signals can be represented by positions in this N-dimensional space. To accomplice this, 
the dimension has to be discretised, and the number of dimensions kept low in order to keep the 
complexity within acceptable limits.  In Figure 3-4 this is illustrated for a 2-dimensional case. 
 

 
 

Figure 3-4 
Illustration of a 2-dimensional matrix. The surface is given from our method to generalize the optimal solution for each 
combination of the two dimensions. 
 



 20

This method brings a couple of other questions to light. For example, what happens in the 
transition between two quantized steps, and what makes one control signal better than another, 
when we have combined a set of states to represent a single control signal? Is there a way to 
weigh these control signal in such a way that we can pick the best representative for a specific 
combination of states? One way to solve this problem, which is the approach we have chosen, is 
to use Fuzzy logic. Fuzzy logic makes the transition between quantized steps smooth, and also 
weighs the control signals in such a way that the best representative, according to certain rules, 
is picked. In Figure 3-5, the smooth quantification of a dimension is illustrated. 
 

 
 

Figure 3-5 
Membership functions in one dimension. 

 
Each quantification step in Fuzzy Logic is called a Member Function (MF). The sum of all MFs 
is always one, and as the figure shows, it is possible to be a part of two MFs at the same time. 
There are different shapes for MFs, and in our case, they are triangular, because of the rapid 
calculation time on linear curves. This means that two MFs are active at all times. This also 
means that for every set of states, there will be two active MFs for each dimension, and hence 
2M combinations of MFs for an M-dimensional space. By doing this, we create a finite number 
of possible combinations which we arrange in an M-dimensional matrix. We call this matrix a 
Fuzzy matrix (FM) since it contains the fuzzy control signals connected to each set of states. 
This leads us to the question of how to combine multiple control signals into a single value. 

3.3.1 Training a Fuzzy Matrix 
We assume that the optimal TEM can be described as a function of the vehicle states and PI. By 
doing this, the optimal solution is presumed to act alike for every identical set of states and PI. 
Since the size of the FM grows with every dimension, a few key states that are presumed to be 
most significant to the optimal TEM are chosen. The states we use in this thesis work can be seen 
in chapter 4.5. The TEM can then be described by a multi-dimensional function, which can be 
seen in Equation 3-2. 
 

))(),...,(),(()( 21 iniiiEM tStatetStatetStateftT =  
Equation 3-2 

 
To train a FM, an optimal control solution is stepped through and the optimal TEM along with 
the significant states values are collected at each time instance see Equation 3-3 and Figure 3-6. 
The optimal TEM(ti) is placed in its corresponding position in the FM, which has the significant 
states as its dimensions. An example can be seen in Equation 3-3 and Figure 3-6 where the 
significant states are SoC, TDEM and two preview windows. 
 

))(),(),(),(()( 21 iiiDEMiiEM tPItPItTtSoCftT =  
Equation 3-3 
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Figure 3-6 
Data collection from an optimal control path. 

 
Since the degree of membership for the active MFs in each dimension vary, this can be used to 
weigh a mean of all hits at a single point in the FM. By using the minimum value of all MFs as 
a weight for the corresponding control signal a weighted mean can be calculated according to 
Equation 3-4. 
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Equation 3-4 
 
Where n is the specific hit from the optimal control, (1-xM,n) is the amount of membership in the 
membership function at dimension M associated with the n’th hit. 
 
This is done for all 2N combinations of MF. If we do this for a whole optimized drive cycle 
(DC), or preferably many different DCs, we hopefully get a good coverage of our FM, as well 
as many hits at each point in the matrix. To evaluate if a certain value is good in the FM we also 
calculate the Standard Deviation (SD) for every point in the matrix. This value tells us how 
much the optimized control signals has varied around our weighted mean, and hence gives us a 
hint if the value is a generally good control signal. This part can be called the training part of the 
FM, since we try to learn it good behavior from an optimal solution. 
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3.3.2 Evaluation of a FM 
 
The work that has been done on the creation process of the FM is summed up in the steps 
bellow and the chapters they are explained. 
 

• Choosing the dimensions of the FM (chapter 3.3.2.1). 
 

• Setting the number of MF of each dimension in the FM, (chapter 3.3.2.2). 
 

• Number of preview dimensions in the FM, (chapter 3.3.2.3). 
 

• Choosing how long time the preview windows should look ahead, (chapter 3.3.2.4). 
 
All of the above parameters might not be altered individually without affecting the optimal 
choice of the other parameters. This means that if one alters the number of membership 
functions for a certain dimension in the FM, it is not given that the window length of a preview 
vector still is the optimal choice. This chapter will therefore discuss some approaches to 
evaluate the performance of a FM. 

3.3.2.1  Choosing the dimensions of the FM 
The number of dimensions and the number of MFs determines the size of the FM i.e. if one uses 
five dimensions and each of the dimensions should contain ten membership functions then the 
total number of positions that are available is ten to the power of five. This equals a hundred 
thousand different positions. It is then very likely that the FM obtains a very poor hit rate if it is 
trained on only one optimal solution for a certain drive cycle. Our definition of hit rate is the 
number of trained operating points divided by the total size of the matrix. A lot of positions in 
the matrix will probably not be trained with a value from the optimal solution. To investigate 
the quality of a FM after training, we look at the hit rate and the mean standard deviation (MSD) 
of the FM, see chapter 3.3.2.4 for MSD. An example of a significant state space can be seen in 
Figure 3-7. 
 

SoC
Preview window

Preview window

TdemNem

Possible other dimensions

 
 

Figure 3-7 
The vector room containing all the operation points of the FM, the length of the vectors indicates how many membership 
functions each vector contains. 

 
Our choices of dimensions are the SoC-level, the TDEM and two preview windows. This is due to 
that the SoC-level tells something about how much energy that can be withdrawn or stored in 
the battery. The torque demand gives how much energy that needs to be produced to propel the 
vehicle according to the drive cycle in the specific time instance. The other two dimensions 
which are the preview windows show how much energy that needs to be produced or how much 
energy can be regenerated during their time length. Another dimension that could be a strong 
candidate is NEM. 
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3.3.2.2 Setting the number of MF of each dimension in the FM 
Setting the number of MF that each dimension should contain is not a straightforward 
procedure. It is not obvious how much one can quantize a dimension before loosing too much 
information. We used a trial-and-error method to find good values for the MF count on the 
different dimensions. The goal was to get a high hit rate while keeping the SD as low as 
possible. 

3.3.2.3 Number of preview dimensions in the FM 
The choice of having two preview dimensions in the FM is due to that two windows should be 
able to give a good understanding of how the future looks. Let’s say that a specific road chapter 
looks like the road inclination in Figure 3-8 and that the SoC level is relatively low and the 
vehicle is positioned at the arrow head.  
 

 
 

Figure 3-8 
Road example. 

 
If only one preview dimension had been present and its window length would end somewhere 
inside the energy demand region, then the best thing for the vehicle to do is to produce extra 
torque with the ICE, so the EM can regenerate energy. This is to increase the SoC level so that 
the EM can be used to create torque while in the upward slope. If two preview windows had 
been present with one ending somewhere in the energy demand region and the other ending at 
the end of the downward slope, then the best thing to do would be to utilize all the energy in the 
buffer to create torque for the upward slope since there is a lot of regenerative energy behind the 
peak of the slope, that can be used later to charge the battery. One could also think of other 
similar situations when the slope of the road is inverted to the one in Figure 3-8 and the SoC 
level is high and other examples as well. This is one reason for using two preview windows. 
Another reason is that the size of the FM, which has been reasoned about in chapter 3.3.2.1, 
grows very fast with its dimensions. 

3.3.2.4 Choosing the length the preview windows 
The length of two preview vectors were evaluated from a test where a lot of different lengths 
where tested. All combinations of having preview vector 1 ranging in the interval [1,100] and 
preview vector 2 ranging in the interval [101,400] where tested. The FMs created in this test 
were then evaluated by calculating their hit rate and their mean standard deviation. The mean 
standard deviation was calculated in the following way. First the standard deviation of all the 
operating points was calculated according to Equation 3-5. Standard deviation can be read about 
in any standard calculus book i.e. ‘Statistical Digital Signal Processing and Modeling’ by M. H. 
Hayes [9]. 
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Equation 3-5 
 
x is the mean of all the training points in that specific operating point. The mean standard 
deviation of the matrix is the sum of all the standard deviations in the matrix divided by the 



 24

number of trained data points. This value gives some sort of indication on how different the 
training data is in every point: If the mean standard deviation of a matrix is high, it is very likely 
that the operating points have been given a lot of different control signals and they may not give 
a good result. An example of such a test can be seen in Figure 3-9. 
 

 
 

Figure 3-9 
Mean standard deviation for a series of controllers with different window lengths. Pre win length 1 and 2 is the preview 
window lengths in seconds. 
 
Two different settings involving the preview windows configuration have been tested. 
Configuration one, is when the windows have the same starting point. The starting point in the 
test is the vehicle’s position. The second configuration that has been tested has the windows 
following each other, i.e. the second window starts where the first is ending. These 
configurations can be seen in Figure 3-10. 

 
 

Figure 3-10 
Different window configurations in the preview information gathering. 

 
When comparing the test results, configuration one gave a slightly lower mean standard 
deviation and a slightly higher hit rate, so configuration one has been used in our simulations. 
 
The matrix that is used in our control strategy, is the matrix with the lowest mean standard 
deviation. The problem with using this certain matrix is that the hit rate is closely coupled to the 
mean standard deviation. High hit rate turned out to give a high mean standard deviation, this is 
expected because if one shrinks the size of the FM more hits will end up in a certain position of 
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the FM. This means that a lot of different torque splits will end up in the same position which 
will cause a higher standard deviation in that position. 
 

3.3.3 Utilizing the Fuzzy Matrix 
Now that we have created the FM to mimic an optimal solution, we want to utilize it in a 
controller. This is done by looking at the same states that were used to create the FM. By taking 
these values and using their degree of member ship in each MF, we produce 2M values from the 
M-dimensional FM. These values are then weighted together according to Equation 3-6, where 
the weights come from the degree of membership, for each value.  
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Equation 3-6 
 

This final value can then be used as a control signal. To determine if the value is any good we 
look at the mean of the SD, for every active FM point. If the MSD of all active points is lower 
than a certain threshold-value, it can be used as a control signal. 

3.3.4 Torque Split Control 
When a FM has been trained on an optimal solution for a given drive cycle, it is filled with 
different control signals in different positions and some positions are not altered at all. Two 
questions that arise immediately are: When should the control system use a value proposed by 
the FM and what control signals should be used when the FM does have a suggestion? Some of 
the values proposed by the FM has a SD that is about 30% or higher of the maximum torque, 
which is not good since the optimal solution has used a lot of different control signals for this 
specific position. Some sort of upper limit on the SD has to be incorporated in the control 
algorithm. If a position in the FM, on the other hand, is trained by only one value it has a SD 
that equals zero. This is also a value that can not be used as a control signal, since if a position 
in the FM is only trained by one value, how can one know that it is a good control value for that 
specific situation. 
 
As a lower bond on the SD value, the control algorithm looks at the number of hits in that 
specific position in the FM. If a position has been trained with two values or more it is a 
potential control signal. As a higher bond on the SD, some tests have been done to evaluate 
what happens if the values under a specific limit are used. If the limit is relatively high, the 
percentage of usage of the FM increases but the final result can become unstable. The SoC 
trajectory also becomes more or less unstable i.e. the minimum value of the SoC trajectory can 
go below SoCMIN, which is not acceptable. When choosing a limit, one has to look both at the 
FC reduction and at the SoC trajectory. 
 
In Figure 3-11, the FC reduction on different SD threshold limits (SDTL) can be seen. 
Everything looks good and well and one could think that a value on the SDTL around 160 can 
be a possible choice. However when looking at the SoC trajectory at this SDTL, one realizes 
that this limit is unthinkable. The minimum value of the SoC trajectory is 0.46, which is way 
below the SoCMIN and hence the limit is too high. 
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Figure 3-11 
FC reduction with different SD threshold limits. 

 
When the NOC is used in the SM, the ISAM control system can not be used to act as a 
background controller. To compensate for this, a charge sustaining control strategy according to 
Equation 3-7 - Equation 3-12 is used. When using the NOC implementation in ISAM, the 
existing control strategy can be used as a background controller. 
 

EXTRArefDEMDEM TTT −= ,  
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Equation 3-8 
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Where 
 

refICErefEMrefDEM TTT ,,, +=  
Equation 3-12 

 
TEM,ref and TICE,ref are the torques that the forward ISAM simulation produced. Θ is Heaviside’s 
step function. TICE, MIN, TICE, MIN, TEM, MIN and TEM, MAX are the minimum and maximum torques 
that the ICE and the EM can produce at that specific speed, see Figure 2-6 and Figure 3-13. 
 
TEXTRA is extra torque that is to be produced as a function of the current SoC level. If the SoC 
level is below the SoC buffer midpoint, the TEXTRA term decreases linearly with the distance 
from the midpoint. This is to produce more torque with the ICE to recharge the battery. If the 
SoC level is above the SoC midpoint, the TEXTRA term grows according to a fourth degree 
function. This is to utilize the energy in the battery so the battery doesn’t get overloaded. The 
TEXTRA function can be seen in Figure 3-12. 
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Figure 3-12 
The TEXTRA function in the background control of NOC. 

 

3.4 Engine Operating Point 
The operation point of the ICE is crucial for its fuel consumption. The operation point can be 
moved by changing the angular speed of the ICE through a gear change, or changing the 
requested torque by letting the EM add or remove torque from the ICE. To measure how 
efficiently the ICE converts the chemically bound energy in the fuel to useful power, Break 
Specific Fuel Consumption (BSFC) is used. BSFC is the fuel consumption at a specific 
operation point, divides with the produced power. Equation 3-13 shows how BSFC is 
calculated, and Figure 3-13 shows the BSFC map for the ICE used in the HEV. 
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Equation 3-13 
 

 
 

Figure 3-13 
Break specific fuel consumption map with no operation points plotted. The solid thick line is the ICE’s maximum torque at 
different engine speeds. 
 
 
By using this information, it is possible to evaluate an area around the requested torque from the 
ICE to find a better operation point. When a better point is found, the EM is used to move along 
the torque axis of the map, and the gearbox is used to move in the angular speed dimension. To 
make this strategy charge sustaining, the area can be changed depending on current SoC and/or 
preview information. For example, if the SoC level is low, the limits on the torque axis are 
moved so the ICE has to produce more torque then TDEM. 
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3.5 Implementation of Near-Optimal-Controller 
One of the goals for this thesis work has been to implement our control strategy in the existing 
HEV Simulink model. This should be done in an efficient way without slowing down the 
simulation time of the model too much. At the same time, the implementation has to work in the 
simplified model, which is based on Matlab scripts. To accomplish this, algorithms making up 
our controller where implemented in C-code. To make the code useful in Matlab and Simulink, 
two mex wrapper functions were created. In Simulink, the controller is implemented as an S-
function, while in Matlab, the controller is called like any other function. 
 
The controller is divided into three parts. 
 

• Pre-processing calculates the energy in preview windows according to chapter 2.5.1. 
• Control utilizes fuzzy-logic together with a base controller or alternatively the ISAM 

control system to find a near optimal control signal. 
• Post-processing takes the proposed control signal and evaluates it according to physical 

limitations. This part also has the possibility to improve the ICE operation point using 
the BSFC map.  

 
By doing this the controller becomes very flexible, and can be configured in many ways. Since 
each part is independent of the other parts they can be used separately or combined depending 
of the desired behavior. 

3.5.1 Implementation in ISAM 
The implementation in the ISAM Simulink model is mainly done using S-functions. The S-
function block calls the mex complied C-code, described in chapter 3.5. The S-function also has 
a mask to simplify things for the end user. The Simulink blocks are divided into four different 
types, Actuators, Sensors, Processors and Gates. These blocks can then be combined to a 
controller structure. Figure 3-14 shows the collection of available blocks. 
 

 
 

Figure 3-14 
Available blocks (Actuators, Sensors, Processors and Gates) in the Simulink NOC implementation. 
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The sensors are divided into three sub groups: 
 

• State Sensors (Cyan), capture the current state of the vehicle. 
• Preview Sensor (Orange), capture information about the road ahead. 
• Demand Sensor (Green), captures the driver demand. 

 
The four processors can be described as: 
 

• PIP (Preview Information Processing), is used to calculate the energy in preview 
windows according to chapter 2.5.1. 

• FUZZY (Fuzzy logic evaluator), is used to calculate a value from the FM, according to 
chapter 3.3.3. 

• PIG (Preview Information Generation), is used to construct preview information from a 
given drive-cycle. This is done to simulate the data which in the future will be available 
from the onboard navigation system. 

• FBS/SE (Find Best Split / Split Evaluation) is used to evaluate a given split and torque 
demand. It can also be used to find a better operation point for the ICE. 

3.5.2 Implementation in Simplified Model      
The implementation for the simplified model is done much in the same way as in Simulink. 
Since all signals are available in the simplified model there is no use for sensors, actuators and 
gates, the only thing that are used is the processors. To use the processors an ordinary function 
call is used, for example if the Preview-Information-Processing processor should be used one 
uses the call: 
 
[Etot Epos Eneg] = pip(DIST, VEL, ANG, winlen, vehParam, mode); 
 
Where DIST, VEL and ANG are vectors with preview information, winlen is a vector with the 
length of the preview windows, vehParam is a vector with vehicle parameters and mode tells the 
function if the preview windows should follow after each other or start at the same place. Etot, 
Epos and Eneg then become vectors which return the total, positive and negative energy in each 
window. 
 
The only processor that is not implemented in the simplified model is the Preview Information 
Generator. This is because the simplified model can use part of the forward simulation data for 
preview information. 
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4 Results and discussion 
In this chapter a comparison between the two models used in this thesis will be made. The 
results from two optimal solutions, with and with out gear shifting, will be presented and 
compared to ISAM’s control. The results from the near optimal control, with different sets of 
significant states, will be presented and compared to the optimal and ISAM’s solution. 

4.1 Comparison between ISAM and the Simplified Model 
Since we use the simplified model to calculate the optimal control signals using DP, it would be 
desirable if these solutions also were representable for ISAM. To compare the results from these 
two models, we first ran a forward simulation using the drive cycle CBR85 in ISAM. The 
torque demand, split, ICE speed and EM speed from this simulation where then ran through the 
simplified model. To evaluate the result, we compared the SoC trajectory for the two models, as 
well as the cumulative fuel consumption. The results can be seen in Figure 4-3 and Figure 4-4. 
 

 
 

Figure 4-1 
Comparison between battery models in ISAM and SM. 

 

 
 

Figure 4-2 
Comparison of fuel consumption between ISAM and SM. 

 
From the SoC trajectory, we see that the battery model in SM clearly is missing some dynamics, 
since it diverges with time. This implies that the optimal control signals will not give an optimal 
result for ISAM. If we look at the fuel consumption the result is better. The SM tends to use a 
little more fuel, but if we look at the shape of the curves they are very similar. This indicates 
that fuel consumption results from the SM can be compared with the result from ISAM. 
However including the SoC in this comparison will not give an accurate result, because of the 
differences in the battery models. 
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Since the goal of this thesis work has been to find a control algorithm that mimics the result of 
an optimal solution the differences between the SM and ISAM isn’t too much of a problem. The 
results can still be evaluated in the SM using the torque demand from ISAM. The FC from 
ISAM’s control signals ran through the SM can also be used for comparison with the FC for the 
NOC and optimal solution. The problem occurs when the controller is to be implemented in 
ISAM. Since it has been trained on an optimal solution from another model, it is not certain that 
the controller will lower the fuel consumption, or in other way improve the results in ISAM. To 
be able to evaluate the performance of the controller in this way, an improved version of the SM 
has to be used. 

4.2 Optimal Solution 
The results from the optimal solution, calculated on the SM, will be compared to the result from 
ISAM’s control signals put through the SM. The results will be presented in a break specific 
fuel (BSFC) map, a SoC trajectory and a cumulative-fuel-consumption trajectory. The BSFC 
map is to emphasis that the operation points that ISAM uses diverge from the optimal solution. 
A clean BSFC map can be seen in Figure 3-13 in chapter 3.4, to show what the cost is for 
different operation points. The SoC trajectory gives an idea of where the optimal solution 
diverges from ISAM’s solution. The cumulative fuel-consumption-trajectory is presented due to 
that one of the main goals of the thesis is to minimize the FC. 
 

4.2.1 Torque split and ICE on/off optimization 

 
 

Figure 4-3 
BSFC for both the optimal solution and ISAM’s control when the torque split between the ICE and the EM is optimized. 

 
In Figure 4-3, one can see that the optimal solution clusters the operation points at certain torque 
levels. This is a consequence of that the optimal solution utilizes more efficient operation 
points, in terms of BSFC. The reason way the operation points gather in horizontal lines is that 
the gear choice in the optimization is the same as ISAM’s control. To fulfill the torque demand, 
(TDEM) the optimization chooses a less expensive point for the ICE, which means that the TICE is 
either increased or decreased, and the EM compensates for this by changing its torque. To move 
the operation points vertically, a gear change has to be made, which is not implemented in this 
optimization. 
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The optimal solution has been calculated with SoCMIN
 = 0.52 and SoCMAX = 0.65. Figure 4-4 

shows that the optimal solution doesn’t utilize the whole SoC buffer, which is a result of the 
constraint that SoC must be above 0.6 at the end of the DC. 
 

 
 

Figure 4-4 
SoC trajectory for both the optimal and ISAM’s solution. 

 
ISAM’s control strategy tends to use a bigger part of the SoC buffer because of the differences 
in the battery models, described in chapter 4.1. The energy flow through the battery is still a 
valid comparison and is reduced in the optimal solution. While ISAM transfers 125.6 MJ, the 
optimal solution transfers 94.3 MJ through the battery, which is a reduction by 24.9 %. The fact 
that less energy is driven trough the battery is beneficial, because it indicates that the battery is 
used more efficiently and it also reduces the wear on the battery. 
 
The cumulative fuel plot in Figure 4-5 show that both the optimal and ISAM control strategy 
consume almost the same amount of diesel. The optimal solution consumes 10.06 kg and ISAM 
consumes 10.37 kg of diesel fuel. This is a reduction by 2.98 % in fuel consumption for the 
optimal solution. 
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Figure 4-5 
Cumulative fuel consumption plot for the CBR85 drive cycle. 

 
If one recalls the SoC buffer evaluation in chapter 2.6, a difference of 0.1 in SoC level 
corresponds to 1.1kWh and is approximately equal to 0.206 kg of diesel fuel. This means that 
the SoC difference of 0.06, in Figure 4-4, equals 0.124 kg of fuel, which results in a fuel 
consumption reduction by 3.47% for the optimal solution. However, since the battery models 
differ, including the end SoC in this comparison is not fair. The optimal solution also has a less 
amount of energy flowing through the battery which is a further advantage for the optimal 
solution. 
 
Figure 4-6 shows that the optimal solution chooses to turn on and off the ICE more frequently 
than ISAM, this is partly due to the fact that in the optimization algorithm, the ICE has no 
cranking process, i.e. if the ICE is turned on it can directly start to produce torque. 
 

 
 

Figure 4-6 
ICE state for both ISAM and the optimal solution. Value one on the y-axis means that the ICE is on and value zero means 
that the ICE is off. 
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4.2.2 Torque split with Gear Shifting and ICE on/off optimization 
As seen in a Figure 4-3 the optimal solutions operation points (OP) clustered in horizontal lines. 
To be able to move the OP vertically, gear change has to be incorporated in the DP. The results 
from this addition can be seen in Figure 4-7. 
 

 
 

Figure 4-7 
BSFC map for both the optimal and ISAM’s control strategy when gear choice, ICE on/off and the torque split is optimized. 
 
Figure 4-7 clearly shows that the optimal solution generally use the ICE in more economical 
OPs. Since the gear box isn’t continuously variable, the solution still contains horizontal lines. 
The problem with this optimization is that the gear shifting sequence is not physically possible. 
The optimization algorithm is searching for the operation point with the minimal FC and does 
not consider which gear was used the previous time instance, or how long time that gear has 
been used. This results in a gear sequence that can make a lot of shifts during a short time 
interval. In the right picture of Figure 4-8, the optimal solution changes gear nine times over a 
time span of five seconds, which is of course impossible. Another cost, that has been discarded, 
is that each gear shift cost a certain amount of fuel if the ICE is on and the clutch is disengaged. 
In this case, the ICE produces torque that is not forwarded through the powertrain. 
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Figure 4-8 
Gear shift sequence for ISAM and the optimal gear shift sequence. 

 
The FC reduction by the optimal solution is 11.66 % without considering the difference at the 
final SoC value. With the SoC difference included, the reduction is 12.25 %. The energy flow 
trough the battery is reduced by 26.6 %. 
 

 
 

Figure 4-9 
Soc and FC trajectories for both ISAM and the optimal solution. 

 
Even though the optimal solution is impossible to achieve, it gives a clear indication that 
today’s control system, can be improved to achieve a less expensive control strategy. By using a 
continuously variable transmission (CVT) and a better control system the scattered operating 
points of ISAM’s control strategy, in Figure 4-7 , could be brought together to behave similarly 
to the optimal solution. 

4.2.3 Comparison between the optimization algorithms 
With the results from chapter 4.2.1 and 4.2.2, this can also be seen in Table 4-1, one can draw 
some conclusions. The ability to move the operation points in the BSFC map is crucial to be 
able to construct a controller that minimizes the FC. By studying Figure 3-13 one realizes that 
both horizontal and vertical movement is of great importance since the contour lines in center of 
the BSFC map are circular. 
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CBR85 FC reduction FC with SoC end difference 

Torque split 2.98 % 3.47 % 
Torque split with gear shift 11.66 % 12.25 % 

 
Table 4-1. FC reduction compared to ISAM on the CBR85 drive cycle for both the optimization algorithms. 

 

4.3 Near Optimal Controller 
The NOC that has been developed controls the torque split between the EM and the ICE and 
consists of a FM described in chapter 3.3 with a background controller that is described in 
chapter 3.3.4. The controller described in chapter 3.3.4 is only used in the SM, since ISAMs 
original controller can be used as a background controller in ISAM. 

4.4 Comparison between the optimal control and NOC 
The NOC result is compared with the optimal solution and the result from ISAM’s control 
signals run through the SM. A comparison of the fuel consumption, the SoC trajectory and TEM 
will be reviewed. Since the goal is to come as close to the optimal solution as possible, the 
optimal solution will be the reference. The NOC that has been used in this comparison is NOC 
uses a 5 dimensional FM, which has SoC, TDEM, NEM and two preview windows of length 8 and 
132 seconds as its dimensions. The MF quantization for the respective dimensions are 7, 7, 7, 
10 and 10. 

4.4.1 Fuel consumption comparison 
The FC is reduced compared to ISAM’s control system when utilizing the NOC. In Figure 4-10, 
the last 500 seconds of the cumulative fuel consumption trajectory for the CBR85 drive cycle 
can be seen. As the figure shows, the trajectory from the NOC is very similar to the one from 
the optimal solution. 
 

 
 

Figure 4-10 
Cumulative fuel consumption for ISAM’s control, the optimal solution and the NOC on CBR85. 

 
In Figure 4-11, the background control system’s FC can be seen. The background control 
system’s FC is slightly higher then when the FM in the NOC is used. This shows that the FM 
actually is helping to reduce the total FC, and that preview information can be used to obtain a 
more fuel-economic vehicle. 
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Figure 4-11 

Cumulative fuel consumption for ISAM’s control, the optimal solution and the background control system in the NOC 
without utilizing the FM in the NOC on CBR85. 
 
In chapter 4.5, one can see the differences between different controller configurations and how 
it influences the fuel-consumption. 

4.4.2 State of Charge comparison 
Comparing the SoC trajectories is not very easy since a small change is SoC early in the 
simulation influences the rest of the behavior of the SoC. One can look at how the curves 
changes at each time instance and try to compare the similarities between the curves. One can 
see that the trends for both the optimal solution and the NOC solution are quite similar. The 
curve from ISAM control signals can not be taken too seriously, because of the differences in 
the battery model discussed in chapter 4.1. 
 

 
 

Figure 4-12 
SoC trajectories for ISAM, the optimal solution and the NOC on CBR85. 
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4.4.3 Study of the electric machine torque differences 
The TEM that is produced by the NOC can be seen in Figure 4-13, the time interval from 
[537,550] seconds is particularly interesting. A close study of this TEM, NOC in comparison with 
the TEM, BACKGROUND NOC Figure 4-13 shows that the NOC follows the shape of the TEM, OPTIMAL  
more accurately than the TEM, BACKGROUND NOC. The offset between TEM, NOC and TEM, OPTIMAL in 
this interval could be due to wrong dimensions in the FM, wrong scaling on the dimensions or 
insufficient training data. 
 
 

 
 

Figure 4-13 
TEM trajectories for ISAM’s control, optimal control and NOC on CBR85. The dotted line is one when the SD of a specific 
work point in the FM is below the SD threshold in the NOC. 

4.4.4 Utilization of the FM in the NOC 
The utilization of the control values in the FM in the NOC depends heavily on the SDTL, the 
lower limit and the number of MF in each dimension. If a value in the interval of [100,130] is 
used as the SDTL, the typical use of the FM’s control values lies about 40-60 % of the total 
control values. A plot of the FM’s control values utilization for the first 500 seconds can be seen 
in Figure 4-14. 
 

 
 

Figure 4-14  
Utilization of the FM’s control values as a function of time for CBR85 at SDTL 110. 
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4.5 Evaluation with multiple drive-cycles and NOC 
configurations 

To get a good overview of how different controller types perform, simulations where made on 
two different drive-cycles, CBR85 and a 40 km long randomly generated cycle. The controllers 
used are described below 
 

• Optimal uses the control signals calculated by DP. This controller is used as a 
reference. 

• ISAM through SM uses the control signals generated by ISAM and runs them through 
the SM. 

• NOC Background is the charge sustaining controller used in the SM when there is no 
valid output from the FM. 

• NOC 2dim uses a 2 dimensional FM, which has SoC and TDEM as its dimensions. The 
MF quantization for each dimension is 7 for SoC and 7 for TDEM. 

• NOC 4dim uses a 4 dimensional FM , which has SoC, TDEM and two preview windows 
of length 8 and 132 seconds as its dimension. The MF quantization for the respective 
dimensions are 7, 7, 10 and 10. 

•  NOC 5dim uses a 5 dimensional FM, which has SoC, TDEM, NEM and two preview 
windows of length 8 and 132 seconds as its dimensions. The MF quantization for the 
respective dimensions are 7, 7, 7, 10 and 10. 

  
All the FMs have been trained on CBR85 for three different initial SoC levels. Using the same 
controllers for the randomly generated drive-cycle will give an indication of how well a FM that 
has been trained on one cycle performs on a different one. The SD threshold was set to 110 for 
every NOC, and not tuned to give the best result for each controller. This was done to reduce 
the complexity of the test. Table 4-2shows a comparison of the following results from the 
simulation. 
  

• Fuel consumption  (FC) 
• Fuel consumption, including difference in end SoC from start SoC (FC with ΔSoC) 
• Energy flow through the battery (Energy flow) 
• Usage of the fuzzy matrix in the NOC (FM usage) 

 
Controller FC (%) FC with ΔSoC 

(%) 
Energy flow 
(MJ) 

FM usage (%) 

CBR85 

Optimal (ref) 10.0923 kg 10.0758 kg 97.29 0 
ISAM through 
SM 

-2.68 -3.59 124.29 0 

NOC 
Background 

-0.97 -0.54 97.43 0 

NOC 2dim -1.10 -0.86 102.58 66.23 
NOC 4dim -0.54 -0.99 98.86 41.14 
NOC 5dim -0.42 -0.37 98.57 60.37 

Random 40km 

Optimal (ref) 8.6704 kg 8.67 82.61 0 
ISAM through 
SM 

-2.90 -2.65 85.62 0 

NOC 
Background 

-2.38 -2.47 78.40 0 



 40

NOC 2dim -2.70 -3.60 80.01 78.09 
NOC 4dim -3.83 -3.95 80.85 46.66 
NOC 5dim -4.42 -4.52 80.82 61.49 

Table 4-2. Comparison of different drive cycles and controllers where the optimal is used as a reference. 
 
The results from CBR85 show that the NOC improves the result compared with the ISAM 
control. It can also be seen that the choice of dimensions for the FM, and the number of MFs for 
each dimension is very important to the performance of the controller. The hit-rate is also 
affected by the choices made when designing the FM. 
 
 
 
The results from the randomly generated cycle show that the FM trained on CBR85 performs 
really badly. Since the two drive-cycles are very different, this can be an indication of missing 
dimensions or that the preview information is interpreted in the wrong way. Here more work 
must be performed to evaluate whether a general control structure can be created that performs 
well on any given drive-cycle. 
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5 Conclusion 
In this chapter, we presented the conclusions that we have drawn from this thesis work.  

5.1 Dynamic Programming 
DP is an easily understandable and implementable optimization algorithm. One disadvantage 
with DP is that its computational time is quit large. The time grows exponentially with the 
number of states that are included in the optimization problem. Since the optimization problem 
has to be discrete when using DP, the solution is not a continuously optimal solution. The more 
finely partitioned the states in the DP are, the closer the discrete optimal solution comes to the 
continuously optimal solution. 
 
DP could also be used to change the control systems behavior. If the cost function in the DP 
algorithm is changed, one could for example develop a control system that minimizes the sum 
of the fuel and the emissions, or just the emissions. Any behavior that is preferable is attainable 
since the FM mimics the behavior of the optimal control. 
 
The optimal results have also shown that if one could change gear more rapidly, and preferably 
with a continuously variable transmission the fuel consumption can be lowered considerably. 
The gear change speed becomes especially important during regenerative breaking, since during 
gear change, the energy has to be removed by the conventional brakes instead of being stored in 
the battery. 

5.2 Preview Information 
It can not be shown that the PI helps the controller in lowering the fuel consumption when only 
the torque split is controlled. When comparing the different control strategies on CBR85, see 
Table 4-2, one can se that most of the fuel saving is done by the background controller. This 
indicates that PI only can represent a small part of the total fuel savings. By including gear 
shifting and ICE state control, the PI probably would have a bigger impact on the FC. 
 
An important aspect that has not been simulated is what happens if the predicted velocity in the 
drive cycle changes over time. The length of the preview windows would probably become 
shorter, since the future information gets more and more uncertain the further away from the 
vehicle one looks. 

5.3 Fuzzy Logic and NOC 
Using fuzzy logic has been an easy way to extract data from an optimal solution to be used in 
the controller. This is because of the straight-forward way to go from an optimal solution to a 
rule-based controller. When you have your optimal solution and has selected the 
parameterization of the controller, just train, evaluate and utilize the controller. The main 
problem lies instead in choosing the right states and parameter settings, which in itself is a 
somewhat difficult task. 

5.4 Training Data 
Training data from more real-world drive cycles, and preferably repetitive data for each cycle 
would have been useful in the evaluation and training of different controllers. If a collection of 
different velocity profiles on the same driving route would have been present, better evaluations 
regarding PI window lengths, FM size and dimension quantization etc could have been done. 
With a data collection like this, one could also evaluate if the optimal control has the same 
solution for similar situations. 
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5.5 Implementation in ISAM 
The implementation in ISAM has been a bit of a challenge, since the NOC should influence the 
ISAM control system only when a better value can be presented, i.e. when the SD and hit rate in 
the FM fulfills the thresholds set. The solution should also be easy implementable and straight-
forward to use. Most of this has been done, and works well. Unfortunately, the optimal solution 
calculated from the SM is not valid for ISAM and therefore, neither is the FM created from this 
solution. 



 43

6 Future work 
There are many things in this thesis work that can be developed further. This chapter describes 
the main issues that have to be fulfilled. The work that has been done so far can be seen as a 
framework for a control system that utilizes preview information to improve fuel efficiency on a 
HEV. There are still many things that can be improved which could improve the results 
significantly. 

6.1 Model work 
The behavior of the battery model in ISAM and the simplified battery model differs too much to 
be neglected. The simplified model needs to be changed so that its behavior better resembles 
ISAM’s battery dynamics. 

6.2 Optimization work 
The optimal gear shifting algorithm needs to be updated. The version that has been used in this 
thesis is not physically possible, and this has to be remedied. Maybe another optimization 
algorithm than DP has to be implemented, since DP’s computational demands are high. To 
make a realistic gear shift algorithm, one has to evaluate each gear level position going to every 
possible new gear position at every time instance. With these added states, the DP 
computational time would probably be extended beyond convenience. 

6.3 Implementation work 
A gear shifting algorithm has to be incorporated in the NOC to be able to acquire results that are 
in the vicinity of the optimal control, with the gear shift included in the optimization. This could 
be done by first updating the current optimal algorithm with the gear shifting. After this, the 
most significant parameters for a gear level has to be extracted to be able to construct a FM that 
controls the gear selection. 
 
Another parameter that has to be implemented in the NOC is when the ICE should be turned on 
and off. This parameter could also be controlled by a FM but a different rule-based controller is 
probably a better choice. 

6.4 Preview Information 
The PI that has been used in the project is one approach out of an infinite set of different 
possible approaches. First of all, the energy parameter that was chosen might not be the optimal 
parameter to use. Secondly, the choice of two windows might not be enough to characterize the 
future in the required way. Thirdly, the length of the windows and the fact that they are 
overlapping might also not be the best configuration. A more thorough investigation definitely 
would be in place here. 

6.5 Parameter evaluation work 
Regarding the FM that has been used in this project, a lot of questions still remain. What are the 
most influential states for a specific control signal i.e. what states should be used as dimensions 
in the FM when controlling the torque split, the gear or any other parameter? What is the 
optimal quantization for the respective dimensions? Is the MSD a good value to look at when 
evaluating the performance of a FM, or are the better variants available? Is there some way to 
extract the SDTL directly from a trained FM or should the SDTL be a function of the number of 
hits, or are there other ways to see if a FM value is acceptable or not? Since all the parameters 
above are closely coupled to the total result some sort of evaluation method would be preferable 
to be able to see if the result converges or diverges from the optimal solution depending an a 
change in the parameter vector. 
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