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Funtional Polytypi ProgrammingPatrik JanssonDepartment of Computing SieneChalmers University of Tehnology and G�oteborg UniversityAbstratMany algorithms have to be implemented over and over again for di�erent data-types, either beause datatypes hange during the development of programs, orbeause the same algorithm is used for several datatypes. Examples of suh al-gorithms are equality tests, pretty printers, and pattern mathers, and polytypiprogramming is a paradigm for expressing suh algorithms. This dissertationintrodues polytypi programming for funtional programming languages, showshow to onstrut and prove properties of polytypi algorithms, presents the lan-guage extension PolyP for implementing polytypi algorithms in a type safe way,and presents a number of appliations of polytypi programming. The applia-tions inlude a library of basi polytypi building bloks, PolyLib, and two largerappliations of polytypi programming: rewriting and data onversion.PolyP extends a funtional language (a subset of Haskell) with a onstrut forde�ning polytypi funtions by indution on the struture of user-de�ned data-types. Programs in the extended language are translated to Haskell.PolyLib ontains powerful strutured reursion operators like atamorphisms,maps and traversals, as well as polytypi versions of a number of standard fun-tions from funtional programming: sum, length, zip, (==), (6), et. Both thespei�ation of the library and a PolyP implementation are presented.The �rst larger appliation is a framework for polytypi programming on terms.We show that an interfae of four funtions is suÆient to express polytypi fun-tions for pattern mathing, uni�ation and term rewriting. Using this framework,a term rewriting funtion is spei�ed and transformed into an eÆient and orretimplementation.In the seond appliation, a number of funtions for polytypi data onversionare implemented and proved orret. The onversions onsidered inlude prettyprinting, parsing, paking and unpaking of strutured data. The onversion fun-tions are expressed in an embedded domain spei� language for data onversion(a hierarhy of Haskell's onstrutor lasses).Keywords: Programming languages, Funtional programming, Algebrai data-types, Polytypi programming, Generi programmingAMS 1991 subjet lassi�ation 68N15, 68N20
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Chapter 1Introdution
The ability to name and reuse ommon patterns of omputation as higher-orderfuntions is at the heart of the power of funtional languages. Higher-orderfuntions like maps and atamorphisms apture very general programming idiomsthat are useful in many ontexts. This kind of polymorphi funtions enables usto abstrat away from the unimportant details of an algorithm and onentrateon its essential struture.The type of a polymorphi funtion has type parameters, but all monomorphiinstanes of the funtion an use idential ode. A generalization is to parametrizealso the funtion de�nition on types. Funtions that are parametrized in this wayare alled polytypi funtions [61℄. Equality funtions, pretty printers and parsers,traversal funtions and other reursion ombinators are all examples of polytypifuntions.While a normal polymorphi funtion is an algorithm that is independent of thetype parameters, the lass of instanes of a polytypi funtion ontains funtionsthat are di�erent, but whih share a ommon struture. Any algorithm in thelass an be obtained by instantiating a template algorithm with (the strutureof) a datatype.Other terms used for polytypism in the literature are strutural polymorphism(Ruehr [94℄), type parametri programming (Sheard [97℄), generi programming(Bird, de Moor and Hoogendijk [7℄), polynomial polymorphism (Jay [55℄), shapepolymorphism (Jay [56℄) and type indexed funtions (Hinze [35℄). A detailedoverview of polytypi programming in related work is presented in Chapter 8.In the sequel we will assume that the reader has some knowledge of a funtionalprogramming language, preferably Haskell [90℄. This hapter explains brieywhat polytypi funtions are, why they are useful and how they an be imple-mented. It also desribes the sope of this dissertation and presents an overviewof the following hapters. 1



2 CHAPTER 1. INTRODUCTION1.1 What is a polytypi funtion?To give an example of what a polytypi funtion is we show that the de�nitionsof the funtion sum on di�erent datatypes share a ommon struture. The sumfuntion takes a struture ontaining integers and returns the sum of all theintegers in the struture. The normal sum funtion for lists an be de�ned asfollows in the funtional language Haskell:sum :: [Int ℄ ! Intsum [ ℄ = 0sum (x : xs) = x + sum xsWe de�ne sum on the following datatypes:data [a ℄ = [ ℄ j a : [a ℄data Tree a = Leaf a j Bin (Tree a) (Tree a)data Maybe a = Nothing j Just adata Rose a = Fork a [Rose a ℄We an de�ne the funtion sum for all of these datatypes (instantiated on integers)using atamorphisms. A atamorphism is a funtion that reursively replaesonstrutors with funtions. We write ataD fCi 7! eig for the atamorphism onthe datatype D a that replaes the onstrutors Ci with the expressions ei.sum[ ℄ :: [Int ℄! Intsum[ ℄ = ata[ ℄ f[ ℄ 7! 0; (:) 7! (+)gsumTree :: Tree Int ! IntsumTree = ataTree fLeaf 7! id ;Bin 7! (+)gsumMaybe :: Maybe Int ! IntsumMaybe = ataMaybe fNothing 7! 0; Just 7! id gsumRose :: Rose Int ! IntsumRose = ataRose fFork 7! �a l ! a + sum[ ℄ l gWe an already see some patterns in the parameters of the atamorphism: thetwo nullary onstrutors [ ℄ and Nothing are both replaed by 0 and the twounary onstrutors Leaf and Just are replaed by the identity funtion id . Thebinary onstrutors ((:), Bin and Fork) are replaed by funtions that sum thesubexpressions. All the de�nitions of sum are instanes of the following polytypide�nition of psum:psum :: Regular d ) d Int ! Intpsum = ata fsum



1.2. POLYMORPHISM AND POLYTYPISM 3polytypi fsum :: f Int Int ! Int= ase f ofg + h ! either fsum fsumg � h ! �(x ; y)! fsum x + fsum yEmpty ! �x ! 0Par ! idRe ! idd�g ! psum Æ pmap fsumConst t ! �x ! 0Figure 1.1: The de�nition of fsumFuntion fsum is de�ned (in Figure 1.1) by indution over the pattern funtorf that aptures the struture of the regular type onstrutor d . The polytypide�nition of funtion ata and the explanation of funtion fsum will have to waituntil the polytypi onstrut is de�ned in Setion 3.6.Higher-order funtions and polytypi funtions an be used together to obtaineven more general de�nitions. Exatly the same struture as that used for psum,an be used to de�ne the polytypi funtion on, whih onatenates all lists ina struture of type d [a ℄. We just replae 0 by [ ℄ and (+) with list onatenation(++) in the de�nition of fsum to obtain fon.on :: Regular d ) d [a ℄! [a ℄on = ata fonBoth psum and on are polytypi funtions and thus parametrized on the typeonstrutor d . By abstrating over the operator and its unit, we an generalizepsum (fsum) and on (fon) to the polytypi funtion rush (frush).rush :: Regular d ) (a ! a ! a)! a ! d a ! arush op e = ata (frush op e)where fsum = frush (+) 0 and fon = frush (++) [ ℄. These funtions, andmany others, are desribed in PolyLib (Chapter 5 and Appendix A).1.2 Polymorphism and polytypismA parametri polymorphi funtion suh ashead :: [a ℄! a



4 CHAPTER 1. INTRODUCTIONan be seen as a family of funtions | one for eah instane of a as a monomorphitype. Parametriity implies that head an make no assumptions about the type a.Thus all the funtions in the family are essentially the same.An ad ho polymorphi funtion suh as(+) :: Num a ) a ! a ! ais also a family of funtions, one for eah instane in the Num lass. Theseinstanes may be ompletely unrelated and eah instane is de�ned separately.In almost all ases, automati type inferene an be used to �nd the appropriateinstane for any given ourrene of the (+) operator.The polymorphism of a polytypi funtion suh aspsum :: Regular d ) d Int ! Intis somewhere in between parametri and ad ho polymorphism. A polytypifuntion an be seen as a type indexed family of funtions. A single de�nitionof psum suÆes, but psum has di�erent instanes in di�erent ontexts. Here theompiler generates instanes from the de�nition of the polytypi funtion and thetype in the ontext where it is used. A polytypi funtion may also be parametripolymorphi: funtion size :: Regular d ) d a ! Int , whih returns the size ofa value of an arbitrary datatype, is both polytypi and parametri polymorphi.Meertens [76℄ gives a nie example of the power of parametri polymorphism:Suppose we want a funtion to swap two integers: swap :: (Int ; Int)! (Int ; Int).This is not a very hard problem to solve, but there are in�nitely many type orretbut wrong solutions. (Two are id and �(x ; y)! (y +1; x ).) If we generalize thisfuntion to the polymorphi funtion swap :: (a; b)! (b; a), then we get a muhmore useful program and we an't make it wrong while type orret. (Stritlyspeaking this is true only in a strongly normalizing language. If we have bottoms,or non-terminating omputations, as in CPO and in Haskell, then we an stillwrite a few non-terminating (wrong) versions.) Similarly, even when a funtionmay be needed only for one spei� datatype, it may be helpful to de�ne itpolytypially to redue the risk of making a mistake.1.3 Why polytypi programming?Polytypi programming o�ers a number of bene�ts:Reusability: Polytypism extends the power of polymorphi funtions to allowlasses of related algorithms to be desribed in one de�nition. For example,



1.4. SCOPE 5the lass of printing funtions for di�erent datatypes an be expressed asone polytypi show funtion. Thus polytypi funtions are very well suitedfor building program libraries. PolyLib (Chapter 5) is an example of suha library.Adaptivity: Polytypi programs automatially adapt to hanging datatypes.For example, if we add a onstrutor Node (Tree a) a (Tree a) to thedatatype Tree a, then the same polytypi sum funtion an still be used tosum all integers in elements of the (new) tree type. This adaptivity reduesthe need for time onsuming and boring rewrites of trivial funtions andeliminates the assoiated risk of making mistakes.Closure and orthogonality: Currently some polytypi funtions an be usedbut not de�ned in ML (the equality funtion(s)) and Haskell (the membersof the derived lasses). This asymmetry an be removed by extending theselanguages with polytypi de�nitions.Appliations: Some problems are polytypi by nature: maps and traversals(Setion 5.4), pretty printing and parsing (Setion 7.6), data ompression(Setion 7.5), mathing (Setion 6.3.2), uni�ation (Setion 6.3.3), termrewriting (Setion 6.4), . . .Provability: More general funtions means more general proofs. If we onsiderpolytypi proofs, then eah of the earlier bene�ts obtains an additional in-terpretation: we get reusable proofs, adaptive proofs, less ad ho semantisof programming languages and new proofs of properties of printing andparsing (Setion 7.6), paking (Setion 7.5), term rewriting (Setion 6.4)et.1.4 SopeAs the title suggests this dissertation is about polytypi programming for fun-tional programming languages. More spei�ally, the programs in this disserta-tion are written in the funtional programming language Haskell 98 [90℄ extendedwith with support for polytypi de�nitions provided by the authors language ex-tension PolyP (Chapter 4).A polytypi funtion an be applied to values of a large lass of datatypes, butsome restritions apply. We require that a polytypi funtion is applied to valuesof regular datatypes only. A datatype D a is regular if it is not mutually reursive,ontains no funtion spaes, and if the arguments of the datatype onstrutor onthe left- and right-hand side in its de�nition are the same. The olletion ofregular datatypes ontains most onventional reursive datatypes, suh as Nat ,



6 CHAPTER 1. INTRODUCTION[a ℄, and di�erent kinds of trees. We use the onstrutor lass Regular to representthe olletion of regular datatypes.Polytypi funtions an be de�ned on a larger lass of datatypes, inluding multi-ple parameter datatypes [58℄, mutually reursive datatypes [14,35,45℄, datatypeswith funtion spaes [26, 78℄ and nested datatypes [8, 34℄ but we will not disussthese extensions.1.5 Approahes to writing polytypi programsThere are various ways to implement polytypi programs in a typed language.(Polytypi programs an be implemented in untyped languages like Lisp or C butwithout any (stati) type safety. We only onsider strongly typed languages inthis dissertation.) Three possibilities are:� using a universal datatype;� using higher-order polymorphism and onstrutor lasses;� using a speial syntati onstrut.Polytypi funtions an be implemented by de�ning a universal datatype, onwhih we de�ne the funtions we want to have available for large lasses of data-types. These polytypi funtions an be used on a spei� datatype if we providetranslation funtions to and from the universal datatype. An advantage of usinga universal datatype for implementing polytypi funtions is that we do not needa language extension for writing polytypi programs. However, using universaldatatypes has several disadvantages: type information is lost in the translationphase to the universal datatype, and type errors an our when programs arerun. Furthermore, di�erent people will use di�erent universal datatypes, whihwill make program reuse more diÆult.If we use higher-order polymorphism and onstrutor lasses for de�ning polytypifuntions (as in Jones [65℄), then type information is preserved, and we an usea funtional language suh as Haskell for implementing polytypi funtions. Inthis style all regular datatypes are represented by the typedata Mu f a = In (f a (Mu f a))and the lass system is used to overload funtions like map and ata. However,writing suh programs is rather umbersome: programs beome luttered withinstane delarations, and type delarations beome luttered with ontexts. Andthe user still has to write all translation funtions.



1.6. THE POLYP SYSTEM 7Beause the �rst two solutions to writing polytypi funtions are unsatisfatory,we have extended (a subset of) Haskell with a syntati onstrut for de�ningpolytypi funtions. We will use the name PolyP both for the extension and theresulting language.1.6 The PolyP systemPolyP is an extension of a funtional language that allows programmers to de�neand use polytypi funtions. The underlying language in this dissertation isa subset of Haskell and hene lazy, but this is not essential for the polytypiextension. The extension introdues a new kind of (top level) de�nition, thepolytypi onstrut, used to de�ne funtions by indution over the struture ofdatatypes. Beause datatype de�nitions an express sum-, produt-, parametriand reursive types, the polytypi onstrut must handle these ases.PolyP type heks polytypi value de�nitions and, when using polytypi values,types are automatially inferred. (Just as in Haskell, sometimes expliit typeannotations are needed to resolve overloading.) The type inferene algorithmis based upon Jones' theories of quali�ed types [64℄ and higher-order polymor-phism [66℄. The semantis of PolyP is de�ned by adding type arguments topolytypi funtions in a ditionary passing style. We give a type based transla-tion from PolyP to Haskell that uses partial evaluation to remove all ditionaryvalues at ompile time. Thus we avoid run time overhead for reating instanesof polytypi funtions.The ompiler for PolyP is still under development, and has a number of limita-tions. Polytypi funtions an only be applied to values of regular datatypes. Theunderlying subset of Haskell laks many useful onstruts suh as modules andinstane delarations. Extensions to handle multiple type arguments, mutuallyreursive datatypes and all of Haskell are planned for the forthoming suessorof PolyP: Generi Haskell [33℄.1.7 OverviewThe dissertation ontains an introdution to polytypi programming, a desrip-tion of the language extension PolyP and its library PolyLib and two largerpolytypi appliations: term rewriting and data onversion.Chapter 2 is a non-polytypi prelude to the rest of the dissertation. It de�nesnotation, useful funtions and laws to be used in the sequel.Chapter 3 is an introdution to funtional polytypi programming. This hapteris the one you should read if you want to learn how to write and use polytypi



8 CHAPTER 1. INTRODUCTIONfuntions: it de�nes atamorphisms, polytypimap funtions, funtion psum usedin the preeding example and presents the polytypi onstrut whih is usedfor de�ning polytypi funtions by indution over the struture of user-de�neddatatypes. This hapter also presents some polytypi proof rules and uses theserules to prove properties about polytypi funtions.Chapter 4 briey desribes the theory and implementation of PolyP: the type sys-tem that preserves Haskell-like type inferene provided the polytypi onstrutis expliitly typed, and the semantis in terms of a translation of PolyP-programsinto Haskell. The theory from this hapter is not essential for reading the restof the dissertation. The hapter is based on the POPL'97 paper PolyP | apolytypi programming language extension [46℄.Chapter 5 presents a library of polytypi building bloks that an be used inappliations. Eah funtion is presented with its type and a brief desriptionof what it does and how it is related to other polytypi funtions. The hapteris a revised version of the paper PolyLib | a polytypi funtion library [51℄.An implementation of PolyLib in the language extension PolyP is inuded inAppendix A.Chapter 6 presents the �rst larger polytypi appliation: term rewriting. Thishapter presents an interfae for polytypi programming on terms, and uses thisinterfae to desribe polytypi algorithms for mathing, uni�ation and eÆientterm rewriting together with some orretness proofs. The hapter is an extendedversion of the artile A framework for polytypi programming on terms, with anappliation to rewriting [52℄.Chapter 7 is the seond larger polytypi appliation: data onversion. It presentspolytypi funtions for maps and traversals, data ompression, and pretty print-ing. For eah onversion, a pair of inverse funtions is onstruted together witha proof of orretness. The onversion funtions are expressed in an embeddeddomain spei� language for data onversion. The embedded language is de�nedas a hierarhy of Haskell's onstrutor lasses, based on Hughes' Arrows [42℄.Chapter 8 gives an overview of polytypism in related work. It desribes the originsof polytypism, the di�erent approahes used to express, type hek and implementpolytypism and gives many referenes to further reading about polytypism.



Chapter 2Prelude
This hapter is for the dissertation what the standard prelude is for Haskell: aolletion of ommon resoures whih an be used everywhere without expliitlyhaving to de�ne them loally or import them. The prelude is divided into setionsthat present some notation and a few basi datatypes with assoiated operationsand laws.2.1 ContextFor spei�ations, program ode and proofs, we use Haskell [90℄ notation witha few typographial enhanements to improve readability. In a few plaes theseenhanements lash with the formal syntax for Haskell. For example, we use (;)for forward omposition (that is, f ; g = gÆf) although Haskell uses the semiolononly as a separator. Where possible, inluded program ode is automatiallypretty printed from Haskell or PolyP soure ode to avoid errors.In ategory theory, a funtor is a mapping between ategories that preserves thealgebrai struture of the ategory. Beause a ategory onsists of objets (types)and arrows (funtions), a funtor onsists of two parts: a de�nition on types, anda de�nition on funtions. We normally work in the ategory CPO of ompletepartial orders and ontinuous funtions between them.2.2 The funtion typeThe Haskell type of partial funtions from a to b is written a ! b and a lambdaexpression with pattern a and body b is written �a ! b. The identity funtion,9



10 CHAPTER 2. PRELUDEonstant funtion and funtion omposition are de�ned as follows:id :: a ! aid x = xonst :: a ! b ! aonst k = k(Æ) :: (b ! )! (a ! b)! (a ! )(f Æ g) x = f (g x )Funtions of multiple arguments are normally urried in ontrast to languageslike Ada, Java and SML where funtions normally take a tuple of arguments.The funtions urry and unurry onvert between these two views:urry :: ((a; b)! )! (a ! b ! )urry f x y = f (x ; y)unurry :: (a ! b ! )! ((a; b)! )unurry f p = f (fst p) (snd p)2.3 The disjoint sum typeThe disjoint sum type Either a b in Haskell onsists of left-tagged elements oftype a, and right-tagged elements of type b, and has onstrutors Left and Right ,whih injet elements into the left and right omponent of a sum respetively.data Either a b = Left a j Right bLeft :: a ! Either a bRight :: b ! Either a bFuntion l r r (written either l r in Haskell) is a shorthand notation for aseanalysis. Funtion ( r ) is the atamorphism on Either . It takes a funtion l oftype a !  and a funtion r of type b ! , and replaes Left with l and Rightwith r :( r ) :: (a ! )! (b ! )! (Either a b ! )(l r r) (Left x ) = l x(l r r) (Right y) = r yThe operator ( �+� ) is used to apply either l or r inside Left or Right . It is atwo-argument mapping funtion on Either .( �+� ) :: (a ! )! (b ! d)! (Either a b ! Either  d)(l �+� r) (Left x ) = Left (l x )(l �+� r) (Right y) = Right (r y)



2.4. THE UNIT TYPE 11The following funtional de�nition of ( �+� ) is equivalent and easier to alulatewith:l �+� r = (Left Æ l) r (Right Æ r)Funtion ( �+� ) satis�es two funtor laws and operator ( r ) satis�es two fusionlaws:id �+� id = id(f �+� g) Æ (h �+� i) = (f Æ h) �+� (g Æ i)f Æ (g r h) = (f Æ g) r (f Æ h)(f r g) Æ (h �+� i) = (f Æ h) r (g Æ i)2.4 The unit typeThe nullary produt type and its only onstrutor are both written as ():data () = ()2.5 The pair typeThe binary produt type and its elements are written as pairs (a; b). Funtionsfst and snd are the two projetions.data (a; b) = (a; b)fst (a; b) = asnd (a; b) = bThe duals of ( r ) and ( �+� ) are ( � ) and ( ��� ), respetively.( � ) :: (a ! b)! (a ! )! (a ! (b; ))(f � s) x = (f x ; s x )The operator ( ��� ) is the analogue of map on produts.( ��� ) :: (a ! )! (b ! d)! ((a; b)! (; d))(f ��� s) (x ; y) = (f x ; s y)By analogy with the de�nition of ( �+� ) we have an equivalent funtion levelde�nition:f ��� g = (f Æ fst) � (g Æ snd)



12 CHAPTER 2. PRELUDEFuntion ( ��� ) satis�es two bifuntor laws and operator ( � ) satis�es two fusionlaws:id ��� id = id(f ��� g) Æ (h ��� i) = (f Æ h) ��� (g Æ i)(f � g) Æ h = (f Æ h) � (g Æ h)(f ��� g) Æ (h � i) = (f Æ h) � (g Æ i)2.6 The Haskell bottomAll Haskell types have a bottom element denoting a non-terminating omputa-tion and we an de�ne a polymorphi value ? by the following trivial reursivede�nition:? :: a? = ?In ontrast to most theoretial frameworks the funtion type, the empty and thebinary produt type in Haskell are all lifted:(�x ! ?) 6= ? :: a ! b() 6= ? :: ()(?;?) 6= ? :: (a; b)Among other things, this means that for Haskell:� �-expansion is not semantis preserving: if f = ? :: a ! b, then�x ! f x = �x ! ? x = �x ! ? 6= ? = f :� The type () is not a terminal objet as it has two elements: ? and ().� And we do not have surjetive pairing: if p = ? :: (a; b), then(fst p; snd p) = (fst ?; snd ?) = (?;?) 6= ? = p :To sum up | almost no laws from CPO hold in Haskell! As this would lead toonsiderable problems in the detailed proofs, we restrit ourselves to the unliftedversions of these types. As we use Haskell for the implementations this means,stritly speaking, that most of the results presented in this dissertation are notproved for the atual running ode but for idealized versions. This has not turnedout to be a problem in pratie.



2.7. BOOLEANS, TRUTH VALUES AND PREDICATES 132.7 Booleans, truth values and prediatesThe boolean values False and True are the onstrutors of the type Bool :data Bool = False j TrueNote that the Haskell type Bool ontains a least value, ?, in addition to the twotruth values. When we really need only truth values we use the type Truth =fFalse;True g and onvert from Bool to Truth by identifying False and ?:b :: Bool ! TruthbTrue  = Trueb  = FalseThe expression bb means \the alulation of b terminates with the value True"and is pronouned \b is true" for short.We have the ommon operations impliation () ), and (^ ), or (_ ), and negation(:) for alulating with Booleans and with Truth values, and if -expressions toselet between two expressions. We use the same syntax for operations on Booland operations on Truth.We often work with prediates instead of booleans to simplify alulations. Weoften use the same syntax for the pointwise lifted operations.false; true :: a ! Boolfalse = onst Falsetrue = onst True() ); (^ ); (_ ) :: (a ! Bool)! (a ! Bool)! (a ! Bool)p ) q = �x ! p x ) q xp ^ q = �x ! p x ^ q xp _ q = �x ! p x _ q xi� p then t else e = �x ! if p x then t x else e xb :: (a ! Bool)! (a ! Truth)bp = �x ! bp x As an example of the use of the lifted boolean operations we an speify pre- andpost-onditions for a funtion f :bpre  ) bpost Æ f  :Expanding the de�nitions of the lifted operators this is equivalent to:�x ! bpre x  ) bpost (f x ) :



14 CHAPTER 2. PRELUDEIf this prediate equals true (that is, for all x the body is True), then f satis�esits spei�ation.The Haskell equality test (==) :: Eq a ) a ! a ! Bool is also lifted:(===) :: Eq b ) (a ! b)! (a ! b)! (a ! Bool)f === g = �x ! f x == g xThe lifted version of the law (f x == f y) ( (x == y) beomes:Lemma 2.1 Canel (f Æ):(f Æ g === f Æ h) ( (g === h)We will often reason about funtions that are equal when restrited to a subsetof their domains:De�nition 2.2 Funtion equality on a subset:( �=== ) :: Eq a ) (b ! Bool)! (b ! a)! (b ! a)! (b ! Truth)f p=== g = �x ! bp x  ) bf x == g x or, equivalently, using the lifted operations:f p=== g = bp ) bf === g We will later use the following property of ( p=== ):Lemma 2.3 Fator ( p=== ):g Æ f pÆf=== h Æ f === (g p=== h) Æ fThe lifted version of b satis�es the following laws:Lemma 2.4 Fator out f from b:bp Æ f  === bp Æ fLemma 2.5 Canel (Æf ):bp Æ f  ( bp



2.8. COMPUTATIONS THAT MAY FAIL 15Simple laws for booleans lift immediately to prediates:Law 2.6 (exp1): (a _ b) )  � (a ) ) ^ (b ) )Law 2.7 (exp2): a ) (b _ ) � (a ) b) _ (a ) ).Laws for i� then else :Lemma 2.8 i� then else -fusion:For all strit f :f (i� b then p else q) = i� b then f p else f qLemma 2.9 i� p then p(i� p then bp else x ) = (i� p then true else x )Lemma 2.10 Expressing (_ ) using i� then else :bp _ q  = i� bp then true else bq 2.8 Computations that may failThe datatype Maybe a is used to model omputations that may fail to give aresult.data Maybe a = Nothing j Just aFor example, we an de�ne the expression divide m n to be equal to Nothing if nequals zero, and Just (m = n) otherwise. A funtion that handles values of typeMaybe a onsists of two omponents: a omponent that deals with Nothing , anda omponent that deals with values of the form Just x .maybe :: b ! (a ! b)! Maybe a ! bmaybe n j Nothing = nmaybe n j (Just x ) = j xFuntion maybe is an example of a atamorphism. Funtion mapM takes a fun-tion f , and a value of type Maybe a, and returns Nothing in ase the argumentequals Nothing , and Just (f x ) in ase the argument equals Just x .mapM :: (a ! b)! Maybe a ! Maybe bmapM f = maybe Nothing (Just Æ f )



16 CHAPTER 2. PRELUDEFuntion mapM satis�es two funtor laws and funtion maybe satis�es two fusionlaws:mapM id === idmapM f ÆmapM g === mapM (f Æ g)f Æmaybe n j === maybe (f n) (f Æ j )maybe n j ÆmapM f === maybe n (j Æ f )It is sometimes useful to have prediates to test for Just and Nothing :isJust ; isNothing :: Maybe a ! BoolisJust (Just ) = TrueisJust Nothing = FalseisNothing Nothing = TrueisNothing (Just ) = False2.9 Polymorphi listsThe polymorphi list datatype in Haskell is written [a ℄ and has a onstrutor [ ℄for the empty list and an in�x (:) for prepending a value to a list. There is alsosyntati sugar for lists: for example [1; 2; 3℄ means 1 : 2 : 3 : [ ℄.data [a ℄ = [ ℄ j a : [a ℄The syntax for the list onstrutors is a little di�erent from other datatypes. Wewill sometimes use a de�nition more in line with other user-de�ned datatypes:data List a = Nil j Cons a (List a)You an think about this just as a di�erent syntax for the built-in lists.The Haskell funtion foldr ( � ) e is a atamorphism for lists | it replaes usesof the onstrutor (:) with (� ) and uses of [ ℄ with e:foldr (� ) e [ ℄ = efoldr (� ) e (a : as) = a � foldr (� ) e asFuntion map f maps the funtion f over all elements in a list:map f = foldr ((:) Æ f ) [ ℄



2.10. OVERLOADING AND CLASSES 17Funtion map satis�es two funtor laws and funtion foldr satis�es two fusionlaws: (h is strit)map id === idmap f Æmap g === map (f Æ g)h Æ foldr f e === foldr g (h e) ( 8 x y : h (f x y) == g x (h y)foldr f e Æmap g === foldr (f Æ g) eFor referene we present a few other list funtions here as well:null :: [a ℄! Boolnull [ ℄ = Truenull ( : ) = Falsenil :: b ! [a ℄nil x = [ ℄singleton :: a ! [a ℄singleton x = [x ℄(++) :: [a ℄! [a ℄! [a ℄xs ++ ys = foldr (:) ys xs2.10 Overloading and lassesWe will often use Haskell's lass system [66℄ to write generi overloaded ode. Thisis visible in types as ontext) normaltype where ontext lists the lass onstraintsthe variables in normaltype must satisfy. An example is sort :: Ord a) [a ℄! [a ℄where a is restrited to be in the lass Ord of types with a omparison operator.We use the Haskell lass Monad for monadi omputations [102℄.lass Monad m wherereturn :: a ! m a(>>=) :: m a ! (a ! m b)! m b(>>) :: m a ! m b ! m bfail :: String ! m a2.11 Fixed pointsFor alulations and proofs involving reursively de�ned values, we often use anexpliit �xed point ombinator to express reursive de�nitions. Haskell has built



18 CHAPTER 2. PRELUDEin support for reursive de�nitions over all types and we an diretly de�ne a�xed point ombinator �x :�x :: (a ! a)! a�x f = f (�x f )We all f an improvement funtion | it takes an approximation of the �xedpoint to a better approximation.2.11.1 Fixed point indutionTheorem 2.11 Fixed point fusion:f Æ g = h Æ f ) f (�x g) == �x hThe requirement of the �xed point fusion law is often too strong | a weakerrequirement an be obtained by observing that the equality is only needed for ahain of �nite approximations of g :8 i : f (g ai) = h (f ai) where ai = g i ?This in turn an be expressed indutively:P (?) ^ 8 x : P (x ) ) P (g x )where P (x ) = f (g x ) == h (f x )The rolling rule [84℄ is a simple appliation of �xed point fusion:Lemma 2.12 The rolling rule: for all funtions f :: a ! b and g :: b ! a�x (f Æ g) === f (�x (g Æ f ))In the sequel we will use a powerful �xed point law that relates n �xed points.For the formulation of the �xed point law we need to introdue the onept of aninlusive relation as de�ned in Shmidt [95℄ (other names used in the literatureare \admissible" and \limit losed").De�nition 2.13 A relation P is inlusive i� for all hains of tuples (ai1; :::; ain)(8 i : P (ai1; :::; ain)) ) P (Gi ai1; :::;Gi ain)



2.11. FIXED POINTS 19Inlusive relations are used to prove properties about �xed points from propertiesof �nite approximations of these �xed points. The expression Fi ai denotes theleast upper bound of the hain ai with respet to the approximation ordering (v)of the CPO . Tuples are ordered pointwise. A useful soure of inlusive relationsis the following theorem.Theorem 2.14 A lass of inlusive relations: [95, def. 6.28℄A relation P is inlusive if P (f1; :::; fn) has the form:8 d1 2 D1; :::; dm 2 Dm: k̂i=1 ( l_j=1 Qij)where Qij an be either1. A prediate using only the di as free identi�ers.2. An inlusion e1 v e2 where e1 and e2 are expressions using ontinuousfuntions and only the fi and the di as free identi�ers.A funtion is ontinuous if it is monotone with respet to the (v) ordering andif it preserves least upper bounds. All onstrutions in a funtional language likeHaskell are ontinuous, but some operators in the semanti domain are not. OnTruth, the operators (^ ) and (_ ) are ontinuous but negation (:) is not evenmonotone and as a ) b = : a _ b, neither is () ).Two examples of inlusive relations arer1 :: Bool ! Truthr1 (b) = bbr2 :: (Truth;Truth)! Truthr2 (a; b) = a ) bProof: Funtions r1 and r2 are inlusive, beause we an rewrite their de�nitionsto math the form of Theorem 2.14:r1 (b) = bb = (b v True) ^ (True v b)r2 (a; b) = a ) b = a v b :2



20 CHAPTER 2. PRELUDETheorem 2.15 Fixed point indution: [95, def. 6.26℄For every inlusive relation P, and for all improvement funtions i1; :::; in:(P (?; :::;?) ^ 8 f1 ::: fn: P (f1; :::; fn) ) P (i1 f1; :::; in fn)))P (�x i1; :::; �x in)A typial example appliation of this theorem is found in proving that two fun-tions g = �x ig and h = �x ih are equal on the set where a prediatep = �x ip holds. Note that the prediate is also de�ned as a �xed point.We use �xed point indution with n = 3, the relation P (x ; y ; z ) = x z=== yand improvement funtions ig, ih and ip.The base ase is easy: the prediate ? is never true, and all funtions are triviallyequal on the empty set, so what is left is the following:Theorem 2.16 �x-equality:(8 x y z : x z=== y ) ig x ip z=== ih y) ) �x ig �x ip=== �x ih2.11.2 Explaining �xed point indutionTo prove a property of a �xed point de�nition using �xed point indution we haveto identify a relation that implies the desired property if instantiated with the�xed points, and whih holds for all approximations of the �xed point as well.The proof of suh a property is similar to a proof by normal indution and onsistsof a series of steps. We formulate a relation P0 to be proved, we prove the basease and we start working on the indutive ase until we need a property that weannot prove without some side ondition. Assuming that the original theoremis true (and provable) it should be possible to prove the side ondition togetherwith P0. So then we formulate a relation P1 that implies the side ondition, andstrengthen the indutive hypothesis to P = P0 ^ P1. This means extra workin proving a new base ase and indutive ase for P1, but on the other hand theindutive ase for P0 makes a good leap forward. We repeat this proedure untilwe have an indutive proof of P = P0 ^ ::: ^ Pn | this trivially implies P0and we are done.If, more spei�ally, we want to prove that a funtion has a ertain property whenrestrited to a partiular set, where both the funtions and the set are de�ned as�xed points, then the new relations to prove are of two kinds | those relating allthe parameters and those restriting only the set. An example (overed in detailin Chapter 6) is proving that a rewriting funtion always produes a term innormal form when restrited to the set of normalizing terms. As we are interestedin proving a number of properties for the same set but with di�erent funtion



2.11. FIXED POINTS 21de�nitions, the set-only properties an be proven separately and reused for allthe proofs. This an be viewed as speializing the �xed point indution prinipleto an equality over a spei� set, or rather speializing the indutive step to aknown set improvement funtion i .A very useful set-only property isInLim :: ((a ! Bool)! (a ! Bool))! (a ! Bool)! (a ! Truth)InLim i p = bp ) b�x i This restrits the sets we need to onsider to subsets of the �xed point (for ex-ample �nite terms, or normalizing terms). Without this restrition the indutivestep has to be proven for an arbitrary p and that is often hard. Fortunately,InLim itself is easy to prove indutively:Lemma 2.17 InLim:If i :: (a ! Bool) ! (a ! Bool) is an improvement funtion for prediates thatis monotone in the following sense:8 p; q : (bp ) bq ) ) (bi p ) bi q )then InLimi an be used as a �xed point indution side ondition:InLim i ? ^ (8 p: InLim i p ) InLimi (i p))Base ase: InLimi ? = b? ) b�x i  = true.Indutive ase: By alulation:InLimi p� fDe�nition of InLim gbp ) b�x i ) fMonotoniity of i gbi p ) bi (�x i)� fDe�nition of �x : �x i = i (�x i) gbi p ) b�x i � fDe�nition of InLim gInLimi (i p)
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Chapter 3Basi polytypi programming
The essene of funtional polytypi programming is that funtions an be de�nedby indution on the struture of datatypes. The struture of a datatype is de-sribed by means of a pattern funtor that aptures the top level struture ofelements of the datatype. Just as in imperative languages where it is preferableto use strutured iteration onstruts suh aswhile-loops and for-loops instead ofunstrutured gotos, it is often advantageous to use strutured reursion operatorsinstead of unrestrited reursion when using a funtional language. Struturedprograms are easier to reason about and more amenable to (possibly automati)optimizations than their unstrutured ounterparts. Two very useful struturedreursion operators are the atamorphism operator ata and the polytypi map-ping funtion pmap. This hapter de�nes not only ata and pmap, but also aonstrut with whih it is possible to de�ne new reursion operators, tailored forspei� needs. (Examples of suh operators are the monadi traversal funtionsin Chapter 5 and the arrow maps and data onversion programs in Chapter 7.)This hapter is organized as follows: Setions 3.1{3.3 explain the struture of twoexample datatypes (lists and binary trees) in terms of pattern funtors. Thesesetions also introdue atamorphisms, maps and fusion laws for the exampledatatypes, and use fusion to prove a few laws in a alulational style. Setion 3.4de�nes regular datatypes and shows how pattern funtors are used to apture thestruture of regular datatypes. Setion 3.5 de�nes the isomorphisms inn and outthat onvert values between a regular datatype and the top level struture of thatdatatype. Setion 3.6 introdues the polytypi onstrut to express polytypifuntions by indution over pattern funtors. The de�nition of the polytypisum funtion psum from the introdution is used as an example. Setion 3.7de�nes polytypi atamorphisms and maps and Setion 3.8 explains how usea atamorphism as an evaluator for a small expression language. Setion 3.9presents a self-ontained polytypi program, together with the ode that thePolyP generates for that program. Finally, Setion 3.10 states and proves somepolytypi funtion laws. 23



24 CHAPTER 3. BASIC POLYTYPIC PROGRAMMING3.1 The struture of listsConsider the datatype List a that is de�ned bydata List a = Nil j Cons a (List a) :This datatype an be viewed as the �xed point with respet to the seond argu-ment of the datatype FList a r de�ned bydata FList a r = FNil j FCons a r :The datatype FList a r desribes the struture of the datatype List a. Notethat FList has one argument more than List . The extra argument is used torepresent the reursive ourrene of the datatype List a in the right-hand sideof its de�nition. Beause we are only interested in the struture of List a, thenames of the onstrutors of FList are not important. As an element of FList iseither a nullary onstrutor or a binary onstrutor with its two arguments, wean instead represent the type FList by:type FList a r = Either () (a; r)We all FList a pattern funtor as it aptures the reursion pattern of a datatype.We now abstrat from the arguments a and r to obtain a variable free desriptionof FList . We represent the �rst argument by the pattern funtor Par and theseond argument by Re.type Par a r = atype Re a r = rThe type onstrutors in FList are lifted to work on pattern funtors: Either islifted to +, the pair type onstrutor ( ; ) is lifted to � and the unit type () islifted to Empty .type (f + g) a r = Either (f a r) (g a r)type (f � g) a r = (f a r ; g a r)type Empty a r = ()As usual, � binds stronger than +. Using these pattern funtor onstrutors wean express FList in a variable free form.FList = Empty + Par � Re



3.1. THE STRUCTURE OF LISTS 25The initial objet in the ategory of FList a-algebras (that is, the �xed pointof FList with respet to its seond omponent) models the datatype List a.The initial objet onsists of two parts: the datatype List a, and a single stritonstrutor funtion innList , that ombines the onstrutors Nil and Cons.innList :: FList a (List a)! List ainnList = onst Nil r unurry ConsAs an example, the list ontaining only the integer 3, Cons 3 Nil , is representedby innList (Right (3; innList (Left ()))). Funtion outList is the inverse of funtioninnList .outList :: List a ! FList a (List a)outList Nil = Left ()outList (Cons a b) = Right (a; b)In the polytypi programming system PolyP these funtions are automatiallysupplied by the system for eah user-de�ned datatype.The pattern funtor FList takes two types and returns a type. FList is a bi-funtor, whih is witnessed by the existene of a orresponding ation, alledfmap2FList , on funtions. Funtion fmap2FList takes two funtions and returns afuntion.fmap2FList :: (a ! )! (b ! d)! (FList a b ! FList  d)fmap2FList p r = id �+� p ��� rThat fmap2FList is indeed a bifuntor follows immediately from the orrespondinglaws for ( �+� ) and ( ��� ).fmap2FList id id === idfmap2FList f g Æ fmap2FList h i === fmap2FList (f Æ h) (g Æ i)As an example of a program written using the ombinators de�ned so far we showmapList f xs that applies funtion f to all elements of the list xs:mapList :: (a ! b)! (List a ! List b)mapList f = innList Æ fmap2FList f (mapList f ) Æ outListFuntion mapList is really the same funtion as map in Haskell but we de�ne itdi�erently here to allow for a simple generalization to the polytypi ase.Just as FList and fmap2FList form a funtor, so do List and the funtion mapList :mapList id === idmapList f ÆmapList g === mapList (f Æ g)



26 CHAPTER 3. BASIC POLYTYPIC PROGRAMMING3.2 Catamorphisms and fusion for listsFuntion sizeList returns the number of elements in a List a (orresponding tothe funtion length in Haskell). The result of applying sizeList to an argument listan be omputed by replaing uses of the onstrutor Nil by 0, and uses of theonstrutor Cons by 1+.Cons 17 (Cons 3 (Cons 8 Nil ))1+ (1+ (1+ 0 ))Thus the size of this list is 3. We use a higher-order funtion to desribe funtionsthat replae onstrutors by funtions: the atamorphism. The atamorphism isa basi strutured reursion operator and on lists it is equivalent to funtion foldrin Haskell:foldr f e = ataList �where � :: FList a b ! b� = onst e r unurry fThe atamorphism ataList � replaes Nil by e, and Cons by f .Cons 17 (Cons 3 (Cons 8 Nil ))f 17 (f 3 (f 8 e ))Funtion ataList is de�ned using funtion outList to avoid a de�nition by patternmathing. Funtion fmap2FList id (ataList f ) applies ataList f reursively to therest of the list.ataList :: (FList a b ! b)! List a ! bataList f = f Æ fmap2FList id (ataList f ) Æ outListThe theoretial justi�ation for this de�nition is that in the ategory of FList a-algebras the FList a-algebra (List a; innList) is an initial objet. This means thatthere is a unique arrow from (List a; innList) to every FList a-algebra (b; f ). Thisunique arrow is the funtion ataList f . The initiality of this algebra also meansthat ataList innList is the identity funtion on List a.As examples we use funtion ataList to de�ne the funtion sizeList (orrespondingto length :: [a ℄! Int in Haskell) and list onatenation (++).sizeList :: List a ! IntsizeList = ataList (onst 0 r in)where in ( ; n) = 1 + n(++) :: List a ! List a ! List axs ++ ys = ataList (onst ys r unurry Cons) xs



3.2. CATAMORPHISMS AND FUSION FOR LISTS 27Funtion ataList satis�es the so-alled fusion law. The fusion law gives onditionsunder whih intermediate values produed by a atamorphism an be eliminated.Law 3.1 List-fusion: for strit h,h Æ ataList f = ataList g ( h Æ f = g Æ fmap2FList id h :Using List -fusion we an prove a lemma relating sizeList and (++).Lemma 3.2 The sizeList-(++)-lemma:sizeList (xs ++ ys) = sizeList xs + sizeList ys :Proof: In the alulations we abbreviate sizeList with #.# (xs ++ ys) = # xs +# ys( fAbstrat from xs g# Æ (++ys) = (+(# ys)) Æ#( fAssume both sides an be written as a atamorphism g# Æ (++ys) = ataList (n r ) = (+(# ys)) Æ#( fTwo subalulations using List -fusion gTrueIn the �rst subalulation we fuse # with (++ys).# Æ (++ys) = ataList (n r )� fDe�nition of (++ys) g# Æ ataList (onst ys r unurry Cons) = ataList (n r )( fFusion g# Æ (onst ys r unurry Cons) = (n r ) Æ fmap2FList id #� fDe�nition of fmap2FList g# Æ (onst ys r unurry Cons) = (n r ) Æ (id �+� (id ��� #))



28 CHAPTER 3. BASIC POLYTYPIC PROGRAMMING� f Laws for ( r ) g(# Æ onst ys) r (# Æ unurry Cons) = n r ( Æ (id ��� #))� f Split the ( r )s and simplify g# Æ onst ys = n ^ # Æ unurry Cons =  Æ (id ��� #)� f Introdue arguments: () and (x ; n) g# ys = n () ^ #(Cons x xs) =  (x ; # xs)� f Let n = onst (# ys) gTrue ^ 1 + # xs =  (x ; # xs)� f Let  = in gTrueIn the seond subalulation we let m = # ys and we fuse (+m) with # .(+m) Æ # = ataList (n r in)� fDe�nition of # g(+m) Æ ataList (onst 0 r in) = ataList (n r in)� fFusion g(+m) Æ (onst 0 r in) = (n r in) Æ fmap2FList id (+m)� fDe�nition of fmap2FList g(+m) Æ (onst 0 r in) = (n r in) Æ (id �+� (id ��� (+m)))� f Laws for ( r ) g((+m) Æ onst 0) r ((+m) Æ in) = n r (in Æ (id ��� (+m)))� f Split the ( r )s and simplify g(+m) Æ onst 0 = n ^ (+m) Æ in = in Æ (id ��� (+m))� f Introdue arguments: () and (x ; n) gm = n () ^ (in (x ; n)) +m = in (x ; n +m)� fDe�nitions of n and in gm = m ^ 1 + n +m = 1 + n +m� fTrivially gTrue2



3.3. THE STRUCTURE OF TREES 293.3 The struture of treesThe datatype Tree a is de�ned bydata Tree a = Leaf a j Bin (Tree a) (Tree a)Applying the same proedure as for the datatype List a, we obtain the followingfuntor that desribes the struture of the datatype Tree a.FTree = Par + Re � ReFuntions innTree and outTree are de�ned in the same way as funtions innList andoutList .innTree :: FTree a (Tree a)! Tree ainnTree = Leaf r unurry BinoutTree :: Tree a ! FTree a (Tree a)outTree (Leaf a) = Left aoutTree (Bin a b) = Right (a; b)The funtionsmapTree and ataTree are de�ned in terms of funtions innTree , outTreeand fmap2FTree :fmap2FTree :: (a ! )! (b ! d)! (FTree a b ! FTree  d)fmap2FTree p r = p �+� r ��� rmapTree :: (a ! b)! (Tree a ! Tree b)mapTree f = innTree Æ fmap2FTree f (mapTree f ) Æ outTreeataTree :: (FTree a b ! b)! (Tree a ! b)ataTree f = f Æ fmap2FTree id (ataTree f ) Æ outTreeNote that the de�nitions of mapTree and ataTree are almost idential to the def-initions mapList and ataList , only the indies are di�erent. Funtion sizeTree isde�ned bysizeTree :: Tree a ! IntsizeTree = ataTree (onst 1 r unurry (+))The funtion attenTree , whih returns a list ontaining the elements of the argu-ment tree, an also be de�ned using funtion ataTree :attenTree :: Tree a ! [a ℄attenTree = ataTree (singleton r unurry (++))



30 CHAPTER 3. BASIC POLYTYPIC PROGRAMMINGThe fusion law for trees looks the same as the fusion law for lists:Law 3.3 Tree-fusion: for strit h,h Æ ataTree f = ataTree g ( h Æ f = g Æ fmap2FTree id h :We an use this law to prove that sizeList Æ attenTree = sizeTree .# Æ attenTree = sizeTree� fBy de�nition, introduing the abbreviations � and � g# Æ ataTree � = ataTree �( fFusion g# Æ � = � Æ (fmap2FTree id #)� fBy de�nition of fmap2FTree g# Æ � = � Æ (id �+� (# ��� #))� fNew abbreviations: � = �1 r �2 and � = �1 r �2 g# Æ (�1 r �2) = (�1 r �2) Æ (id �+� (# ��� #))� f Laws for ( r ) g(# Æ �1) r (# Æ �2) = (�1 Æ id) r (�2 Æ (# ��� #))� f Split the ( r )s and simplify g# Æ �1 = �1 ^ # Æ �2 = �2 Æ (# ��� #)� f Introdue arguments, impliitly 8-quanti�ed g#(�1 x ) = �1 x ^ #(�2 (l ; l 0)) = �2 (# l ; # l 0)� fDe�nition of �i and �i g# [x ℄ = 1 ^ #(l ++ l 0) = # l + # l 0� f Lemma 3.2 gTrue ^ True



3.4. PATTERN FUNCTORS 313.4 Pattern funtorsA pattern funtor aptures the (top level) struture of a datatype. We repre-sent a pattern funtor in a variable free form by means of a number of funtoronstrutors. We have already introdued Par for the datatype parameter, Refor the reursive parameter, Empty for the empty produt and (+) and (�) forlifted versions of Either and (; ) and we have used them to de�ne the patternfuntors for lists and trees. In general, PolyP's pattern funtors are generated bythe following grammar:f ; g ; h ::= g + h j g � h j Empty j Par j Re j d�g j Const twhere d generates regular datatype onstrutors, and t generates monomorphitypes. We note the following about the funtor onstrutors:� The pattern funtor for a datatype with more than two onstrutors isrepresented by a nested binary sum assoiating to the right. Therefore, inthe onrete syntax, the onstrutor + is right-assoiative, so that f +g+hmeans f +(g+h). Construtor + may only our at top level, so f � (g+h)is an illegal funtor. This restrition orresponds to the syntati restritionin Haskell whih says that the vertial bar j that separates onstrutors mayonly our at the top level of datatype de�nitions.� Construtor � is right-assoiative and binds stronger than +.� The onstrutor Empty is the empty or nullary produt.� Composition of funtors d and g is denoted by d�g and is only de�nedfor a unary funtor d and a binary funtor g . Funtor omposition is usedto desribe the struture of types that are de�ned in terms of other user-de�ned datatypes, suh as the datatype of rose-trees:data Rose a = Fork a (List (Rose a))-- FRose = Par � (List�Re)� The pattern funtor Const t denotes a onstant pattern funtor with value t .The t stands for a monotype suh as Bool , Char or (Int ; [Float ℄). Thisis used when a datatype de�nition mentions a type other than the typeparameter and datatype itself. An example is the struture of the followingsimple datatype of types:data Type a = Con String j Var a j Fun (Type a) (Type a)-- FType = Const String + Par + Re � Re



32 CHAPTER 3. BASIC POLYTYPIC PROGRAMMING�List = FList = Empty + Par � Re�Tree = FTree = Par + Re � Re�Rose = FRose = Par � (List�Re)�Type = FType = Const String + Par + Re � ReFigure 3.1: Examples of pattern funtors.The type ontext Bifuntor f ) is used to indiate that f is a pattern funtor.Every regular reursive datatype d a in Haskell is impliitly de�ned as a �xedpoint of a pattern funtor �d a, that is d a �= �(�d a). PolyP provides a typeonstrutor FuntorOf d (we use �d as a shorthand) for this pattern funtor.Pattern funtors for the types de�ned in this hapter are summarized in Fig-ure 3.1. A datatype d a is regular (satis�es Regular d) if it ontains no funtionspaes, and if the argument of the type onstrutor d is the same on the left-and right-hand side of its de�nition. For eah regular datatype d a, PolyP auto-matially generates �d using roughly the same steps as those used manually forFList and FTree in previous setions. Pattern funtors are only onstruted fordatatypes de�ned by means of the data onstrut. If, somewhere in a program,a polytypi funtion is applied to a value of type Maybe (List a), then PolyP willgenerate an instane of the polytypi funtion on the datatype Maybe b (withb = List a), not on the type (Maybe�List) a.A regular datatype is de�ned as the �xed point of a pattern funtor. The patternfuntor �d may, in turn, refer to other (previously de�ned) regular datatypes inthe d�g ase. Thus the desriptions of regular datatypes and pattern funtorsare mutually reursive. In pratie, this means that most polytypi de�nitionsare given as two mutually reursive bindings | one for the datatype level andone for the pattern funtor level. Similarly, laws for polytypi funtions are oftenproved by mutual indution over the grammars for regular datatypes and patternfuntors. This indution is well-founded as we don't allow mutually reursivedatatypes and thus a datatype an only refer to a datatype that is de�ned earlier.In the rest of the paper we always assume that d a is a regular datatype andthat f is a pattern funtor, and we often omit the ontexts (Regular d )or Bifuntor f ) ) from the types for brevity. This is purely a notationalonvention in the dissertation, expliit types in atual PolyP programs mustontain the proper ontext.3.5 In and out of a regular datatypeIn the de�nition of a funtion that works for an arbitrary (as yet unknown)datatype we annot use the onstrutors to build values, nor pattern math



3.6. THE POLYTYPIC CONSTRUCT 33against values. Instead, we use two built-in funtions, inn and out, to onstrutand destrut a value of an arbitrary datatype from and to its top level om-ponents. Funtions inn and out are the fold and unfold isomorphisms showingd a �= �d a (d a).inn :: Regular d ) �d a (d a)! d aout :: Regular d ) d a ! �d a (d a)Theorem 3.4 Funtions inn and out are inverses.For every Regular datatype d a:inn Æ out === id :: d a ! d aout Æ inn === id :: �d a b ! �d a bNote that funtions inn and out are only de�ned for Regular datatypes d a.PolyP automatially generates instanes of inn and out for all regular datatypes.Example instanes were given in Setions 3.1 and 3.3.3.6 The polytypi onstrutPolyP introdues a new onstrut polytypi for de�ning polytypi funtions byindution over pattern funtors:polytypi p :: [Bifuntor f ) ℄ t = [�x1 ::: xn !℄ ase f of ffi ! eigHere p is the name of the value being de�ned, t is its type, f is a funtor vari-able, fi are funtor patterns and ei are PolyP expressions. The optional funtionabstration �x1 ::: xn ! is syntati sugar for a polytypi de�nition with thisabstration in eah of the branhes ei. The expliit type in the polytypi on-strut is needed beause we annot in general infer the type from the ases. Asthe ase analysis is over pattern funtors, f must be restrited by the ontextBifuntor f ) , but it is optional in the syntax.The informal meaning is that we de�ne a funtion that takes (a representationof) a pattern funtor as its �rst argument. This funtion selets the expressionin the �rst branh of the ase mathing the funtor, and the expression may inturn use the polytypi funtion (on subfuntors). Thus the polytypi onstrut isa (reursive) template for onstruting instanes of polytypi funtions given thepattern funtor of a datatype. The funtor argument of the polytypi funtionneed not (and annot) be supplied expliitly but is inserted by the ompiler duringtype inferene.



34 CHAPTER 3. BASIC POLYTYPIC PROGRAMMINGpsum :: Regular d ) d Int ! Intpsum = ata fsumpolytypi fsum :: f Int Int ! Int= ase f ofg + h ! fsum r fsumg � h ! �(x ; y)! fsum x + fsum yEmpty ! �x ! 0Par ! idRe ! idd�g ! psum Æ pmap fsumConst t ! �x ! 0Figure 3.2: The de�nition of psumAs an example we take the polytypi sum funtion disussed already in the intro-dution. Funtion psum (de�ned in Figure 3.2) sums the integers in a struturewith integers. The de�nitions of ata and pmap are given later in Setion 3.7.When psum is used on an element of type Tree Int , the ompiler produes theode in Figure 3.3 for psumTree and fsumFTree . Together with the ode generatedpsumTree :: Tree Int ! IntpsumTree = ataTree fsumFTreefsumFTree :: Either Int (Int ; Int)! IntfsumFTree = fsumPar r fsumRe�RefsumPar :: Int ! IntfsumPar = idfsumRe�Re :: (Int ; Int)! IntfsumRe�Re = �(x ; y)! fsumRe x + fsumRe yfsumRe :: Int ! IntfsumRe = idFigure 3.3: Generated Haskell ode for psumTree and fsumFTreefor ataTree (presented later in Figure 3.5), this is a omplete de�nition of theinstane psumTree . Funtion fsumRe�Re an be rewritten as unurry (+) and,if we inline all the instanes of fsum, then we obtain the following funtion for



3.7. CATAMORPHISMS AND MAPS 35summing a tree:psumTree :: Tree Int ! IntpsumTree = ataTree (id r unurry (+))As expeted, psumTree is a Tree-atamorphism that replaes the onstrutor Leafwith id and the onstrutor Bin with (+).3.7 Catamorphisms and mapsThis setion de�nes the funtions ata and pmap that were used in the de�nitionof funtion psum in Figure 3.2.The atamorphism, or generalized fold, on a datatype takes as many funtionsas the datatype has onstrutors (ombined into a single argument by means offuntion ( r )), and reursively replaes onstrutor funtions with orrespondingargument funtions. It is a generalization to arbitrary regular datatypes of thefuntion foldr that is de�ned on lists. In spite of its generality, funtion ata anbe de�ned in just one line in terms of the funtor map, fmap2 (de�ned later inFigure 3.4):ata :: Regular d ) (�d a b ! b)! (d a ! b)ata f = f Æ fmap2 id (ata f ) Æ outFuntion out makes the top level struture of the input expliit, fmap2 applies(ata f ) reursively to the immediate substrutures, and f ombines the resultsof the reursive alls into the �nal result. Exept for the indies, the de�nition ofthe polytypi ata is the same as the instanes on List a and Tree a. Similarly,we an de�ne a polytypi version of map:pmap :: Regular d ) (a ! b)! (d a ! d b)pmap p = inn Æ fmap2 p (pmap p) Æ outFuntion pmap p applies funtion p to all elements of type a in a value of typed a. Funtion out takes the argument apart, fmap2 applies f to parameters and(pmap f ) reursively to substrutures and inn puts the parts bak together again.We all it pmap to avoid a name lash with the normal Haskell funtion map.The types of ata and pmap are best explained by ommuting diagrams:d a out - �d a (d a)
bata f ?� f �d a bfmap2 id (ata f )? d a out - �d a (d a)

d bpmap f?� inn �d b (d b)fmap2 f (pmap f )?



36 CHAPTER 3. BASIC POLYTYPIC PROGRAMMINGAs explained in the prelude, a funtor is a mapping between ategories thatpreserves the algebrai struture of the ategory. As a ategory onsists of objets(types) and arrows (funtions), a funtor onsists of two parts: a de�nition ontypes, and a de�nition on funtions. A pattern funtor in PolyP is a funtionthat takes two types and returns a type. The part of the funtor that takes twofuntions and returns a funtion is alled fmap2, see Figure 3.4.polytypi fmap2 :: (a ! )! (b ! d)! (f a b ! f  d)= �p r ! ase f ofg + h ! fmap2 p r �+� fmap2 p rg � h ! fmap2 p r ��� fmap2 p rEmpty ! idPar ! pRe ! rd�g ! pmap (fmap2 p r)Const t ! idFigure 3.4: The de�nition of fmap2.Funtion fmap2g is the funtion ation of the pattern funtor g , and we an showthat pmapd is the funtion ation of the type onstrutor d , viewed as a funtor.As an example of an instane, Figure 3.5 presents the ode generated by PolyPfor ataTree . Funtion outTree was de�ned in Setion 3.3.ataTree :: (Either a (b; b)! b)! Tree a ! bataTree i = i Æ fmap2FTree id (ataTree i) Æ outTreefmap2FTree :: (a ! b)! ( ! d)! Either a (; )! Either b (d ; d)fmap2FTree = �p r ! fmap2Par p r �+� fmap2Re�Re p rfmap2Par :: (a ! b)! ( ! d)! a ! bfmap2Par = �p r ! pfmap2Re�Re :: (a ! b)! ( ! d)! (; )! (d ; d)fmap2Re�Re = �p r ! fmap2Re p r ��� fmap2Re p rfmap2Re :: (a ! b)! ( ! d)!  ! dfmap2Re = �p r ! rFigure 3.5: Generated ode for ataTree and fmap2FTreeFuntion fmap2 and funtion pmap are mutually reursive through the d�g ase.This reursive dependene is only in the ode generation phase. Take the instane



3.8. CATAMORPHISMS ON SPECIFIC DATATYPES 37pmapRose as an example: The generated instanes of pmap and fmap2 are shownin Figures 3.6 and 3.7 respetively (exept for funtions fmap2Par , fmap2Re,innList and outList whih have been de�ned already). Funtion pmapRose usesfmap2FRose and fmap2FRose uses pmapList . We see that the instanes are notmutually reursive as pmap is instantiated on di�erent types.pmapRose :: (a ! b)! Rose a ! Rose bpmapRose f = innRose Æ fmap2FRose f (pmapRose f ) Æ outRosefmap2FRose :: (a ! b)! ( ! d)! (a;List )! (b;List d)fmap2FRose = �p r ! fmap2Par p r ��� fmap2List�Re p rfmap2List�Re :: (a ! b)! ( ! d)! List  ! List dfmap2List�Re = �p r ! pmapList (fmap2Re p r)innRose :: (a;List (Rose a))! Rose ainnRose = unurry ForkoutRose :: Rose a ! (a;List (Rose a))outRose (Fork a b) = (a; b)Figure 3.6: Generated ode for pmapRosepmapList :: (a ! b)! List a ! List bpmapList f = innList Æ fmap2FList f (pmapList f ) Æ outListfmap2FList :: (a ! b)! ( ! d)! Either () (a; )! Either () (b; d)fmap2FList = �p r ! fmap2Empty p r �+� fmap2Par�Re p rfmap2Empty :: (a ! b)! ( ! d)! ()! ()fmap2Empty = �p r ! idfmap2Par�Re :: (a ! b)! ( ! d)! (a; )! (b; d)fmap2Par�Re = �p r ! fmap2Par p r ��� fmap2Re p rFigure 3.7: Generated ode for pmapList3.8 Catamorphisms on spei� datatypesThe �rst argument of funtion ata is a funtion of type �d a b ! b. Polytypifuntions of this form, that is funtions polymorphi in d , an only be onstruted



38 CHAPTER 3. BASIC POLYTYPIC PROGRAMMINGby means of funtions inn, out , and funtions de�ned by means of the polytypionstrut (like fsum). In all these ases the resulting funtion is also polytypi. Ifwe only want to use ata to de�ne a funtion from one spei� datatype D a, thenwe do not need a polytypi argument, but an onstrut an ordinary funtion oftype �D a b ! b where �D is the onrete type onstrutor representing thepattern funtor of the datatype D a.As an example we de�ne the funtion eval on the datatype BoolExp a by meansof a ata:data BoolExp a = Con aj Not (BoolExp a)j And (BoolExp a) (BoolExp a)j Or (BoolExp a) (BoolExp a)-- �BoolExp = Par + Re + Re � Re + Re � Reeval :: BoolExp Bool ! Booleval = ata fevalfeval :: �BoolExp Bool Bool ! Boolfeval = idr (:)r unurry (^ )r unurry (_ )-- eval = ata fCon 7! id ;Not 7! (:);And 7! (^ );Or 7! (_ )gThis evaluation funtion is an example of a funtion that annot be made poly-typi: The pattern funtor for BoolExp ontains two ourrenes of the funtorRe �Re (for And and Or), and eah polytypi funtion will behave in the sameway on these funtors. That eval annot be made polytypi should not be all toosurprising, it simply means that the there is no general algorithm that given theabstrat syntax for an expression language produes the intended semantis forthat language!3.9 Separate: a simple PolyP programThis setion presents a simple PolyP program for separating a datatype valueinto its shape and its ontent, together with the ode PolyP generates for thisprogram. To make the program self-ontained, we repeat those de�nitions frompreeding setions that are used in the algorithm. In fat, the remainder of thissetion is a literal sript ontaining the omplete PolyP program Separate andFigure 3.8 ontains the ode generated from this program by the PolyP ompiler.



3.9. SEPARATE: A SIMPLE POLYP PROGRAM 39The default starting point for ode generation in a PolyP �le is the value main.Everything possibly reahable from main is instantiated. In this example wehoose to test separate on a tree.main = print test >> print answer >> print (test == answer)test ; answer :: (Tree (); [Int ℄)test = separate (Bin (Leaf 17) (Leaf 38))answer = (Bin (Leaf ()) (Leaf ()); [17; 38℄)data Tree a = Leaf a j Bin (Tree a) (Tree a) deriving (Show ;Eq)Funtion separate takes an element of a regular datatype (of type d a) andgenerates a pair. The �rst omponent of the pair is just the struture of thedatatype without the ontents (of type d ()) and the seond omponent is justthe ontents without the struture (of type [a ℄). We return to funtion separatein Chapter 6.separate :: Regular d ) d a ! (d (); [a ℄)separate x = (pmap (onst ()) x ;atten x )Mappingpmap :: Regular d ) (a ! b)! d a ! d bpmap f = inn Æ fmap2 f (pmap f ) Æ outpolytypi fmap2 :: (a ! )! (b ! d)! f a b ! f  d= �p r ! ase f ofg + h ! (fmap2 p r) �+� (fmap2 p r)g � h ! (fmap2 p r) ��� (fmap2 p r)Empty ! idPar ! pRe ! rd�g ! pmap (fmap2 p r)Const t ! idNon-polytypi help funtions( ��� ) :: (a ! )! (b ! d)! ((a; b)! (; d))( �+� ) :: (a ! )! (b ! d)! (Either a b ! Either  d)f ��� g = �(x ; y)! (f x ; g y)f �+� g = Left Æ f r Right Æ g



40 CHAPTER 3. BASIC POLYTYPIC PROGRAMMINGFlatteningatten :: Regular d ) d a ! [a ℄atten = �atten Æ fmap2 singleton atten Æ outpolytypi �atten :: f [a ℄ [a ℄! [a ℄= ase f ofg + h ! �atten r �atteng � h ! �(x ; y)! �atten x ++�atten yEmpty ! nilPar ! idRe ! idd�g ! onat Æ atten Æ pmap �attenConst t ! nilHelp funtions for listssingleton :: a ! [a ℄singleton x = [x ℄nil :: a ! [b ℄nil x = [ ℄3.10 Polytypi lawsFuntion ata satis�es a generalization of the fusion law. The fusion law givesonditions under whih intermediate values produed by the atamorphism anbe eliminated. The fusion law is polytypi, that is, it holds for every regulardatatype. h Æ ata f = ata g( fFusion gh Æ f = g Æ fmap2 id h where 8>>>>>><>>>>>>: f :: �d a b ! bg :: �d a  ! h :: b ! ata f :: d a ! bata g :: d a ! The formulation of the fusion is an instane of the free theorem [101℄ of fun-tion ata. If we allow partial or in�nite objets, then we must add the extrarequirement that h be strit.



3.10. POLYTYPIC LAWS 41data Tree a = Leaf (a) j Bin (Tree a) (Tree a) deriving (Show ;Eq)main :: IO ()main = ((print test)>>(print answer))>>(print (test == answer))test :: (Tree (); [Int ℄)test = separateTree (Bin (Leaf 17) (Leaf 38))answer :: (Tree (); [Int ℄)answer = (Bin (Leaf ()) (Leaf ()); 17 : (38 : ([ ℄)))separateTree :: Tree a ! (Tree (); [a ℄)separateTree x = (pmapTree (onst ()) x ;attenTree x )pmapTree :: (a ! b)! Tree a ! Tree bpmapTree f = innTree Æ ((fmap2FTree f (pmapTree f )) Æ outTree)attenTree :: Tree a ! [a ℄attenTree = �attenFTree Æ ((fmap2FTree singleton attenTree) Æ outTree)innTree :: Either a (Tree a;Tree a)! Tree ainnTree = Leaf r unurry Binfmap2FTree :: (a ! b)! ( ! d)! Either a (; )! Either b (d ; d)fmap2FTree = �p r ! (fmap2Par p r) �+� (fmap2Re�Re p r)outTree :: Tree a ! Either a (Tree a;Tree a)outTree x = ase x of(Leaf a)! Left a(Bin a b)! Right (a; b)�attenFTree :: Either [a ℄ ([a ℄; [a ℄)! [a ℄�attenFTree = �attenPar r �attenRe�Resingleton :: a ! [a ℄singleton x = x : ([ ℄)( �+� ) :: (a ! b)! ( ! d)! Either a  ! Either b df �+� g = Left Æ f r Right Æ gfmap2Par :: (a ! b)! ( ! d)! a ! bfmap2Par = �p r ! pfmap2Re�Re :: (a ! b)! ( ! d)! (; )! (d ; d)fmap2Re�Re = �p r ! (fmap2Re p r) ��� (fmap2Re p r)�attenPar :: [a ℄! [a ℄�attenPar = id�attenRe�Re :: ([a ℄; [a ℄)! [a ℄�attenRe�Re = �(x ; y)! (�attenRe x ) ++ (�attenRe y)( ��� ) :: (a ! b)! ( ! d)! (a; )! (b; d)f ��� g = �(x ; y)! (f x ; g y)fmap2Re :: (a ! b)! ( ! d)!  ! dfmap2Re = �p r ! r�attenRe :: [a ℄! [a ℄�attenRe = idFigure 3.8: The Haskell ode generated from Separate.



42 CHAPTER 3. BASIC POLYTYPIC PROGRAMMINGProof: Assume h Æ f = g Æ fmap2 id h is true. Use �xed point indution(Theorem 2.15) with n = 2 and improvement funtions and inlusive relationgiven byi1 x = f Æ fmap2 id x Æ outi2 y = g Æ fmap2 id y Æ outP (x ; y) = h Æ x === y :Base ase: P (?;?) = h Æ ? === ? = true if h is strit.Indutive ase: We alulate as follows.h Æ i1 x === i2 y� fDe�nitions of i1 and i2 gh Æ f Æ fmap2 id x Æ out === g Æ fmap2 id y Æ out( fCanel (Æout) gh Æ f Æ fmap2 id x === g Æ fmap2 id y� fUse the assumption on the left gg Æ fmap2 id h Æ fmap2 id x === g Æ fmap2 id y� f Funtion fmap2 is a funtor (preserves omposition) gg Æ fmap2 id (h Æ x ) === g Æ fmap2 id y� f Indution hypothesis: P (x ; y) = h Æ x === y gTrue2As an example of the use of the fusion law we an prove that the funtion pmap falso an be de�ned as a atamorphism:pmap 0 :: Regular d ) (a ! b)! d a ! d bpmap 0 f = ata (inn Æ fmap2 f id)



3.10. POLYTYPIC LAWS 43Proof: The proof is by alulation:pmap f === pmap 0 f� f identity gpmap f Æ id === pmap 0 f� f identity is a atamorphism, de�nition of pmap 0 gpmap f Æ ata inn === ata (inn Æ fmap2 f id)( f fusion (pmap f is strit) gpmap f Æ inn === (inn Æ fmap2 f id) Æ fmap2 id (pmap f )� f de�nition of pmap, fmap2 is a bifuntor ginn Æ fmap2 f (pmap f ) Æ out Æ inn === inn Æ fmap2 f (pmap f )� f out is the inverse of inn, identity ginn Æ fmap2 f (pmap f ) === inn Æ fmap2 f (pmap f )� fTrivially gTrue2As examples of laws for polytypi funtions we present the laws expressing thatpmap and fmap2 are funtors:pmap id === idpmap f Æ pmap g === pmap (f Æ g)fmap2 id id === idfmap2 f g Æ fmap2 h i === fmap2 (f Æ h) (g Æ i)The funtor laws for fmap2 are easily proved from orresponding laws for (�+�)and (���) by indution over the struture of regular datatypes. The funtor lawsfor pmap are proved by �xed point indution using the laws for fmap2. Theselaws, and many others, are presented in PolyLib (Chapter 5).



44 CHAPTER 3. BASIC POLYTYPIC PROGRAMMING



Chapter 4PolyP | a polytypiprogramming language extension1
This hapter briey presents the underlying theory of the funtional programminglanguage extension PolyP. In PolyP, de�nitions of polytypi funtions are typeheked, and for all other expressions the types are inferred, using an extension ofJones' theories of quali�ed types and higher-order polymorphism. The semantisof PolyP programs is obtained by �rst adding funtor arguments to polytypifuntions in a ditionary passing style and then eliminating these argumentsusing partial evaluation to obtain a Haskell program. The notation and manyde�nitions in this hapter are based on the work of Jones [63{66℄. We are in theproess of moving from the PolyP system and the theory presented in this paper,to a system alled Generi Haskell [33℄ and Hinze's [35℄ theory of type indexedvalues.The hapter is organized as follows. Setion 4.1 disusses the type inferene andheking algorithms used in PolyP. Setion 4.2 gives the semantis of PolyP, andSetion 4.3 shows how to generate Haskell ode from PolyP programs. Setion 4.4presents a short overview of the implementation of PolyP. Setion 4.5 onludesthe hapter.4.1 Type inferenePolytypi value de�nitions an be type heked, and for all other expressions thetype an be inferred. This setion disusses the type heking and type inferenealgorithms.1This hapter is a revised version of an artile with the same title, presented at the ACMSymposium on Priniples of Programming Languages in 1997 [46℄.45



46 CHAPTER 4. POLYPE ::= x variablej E E appliationj �x:E abstrationj let Q in E let-expressionQ ::= x = E variable bindingC� ::= �� onstantsj �� variablesj C�0!�C�0 appliations� ::= C� types� ::= P ) � quali�ed types� ::= 8t�i :� type shemesFigure 4.1: The ore language QMLSetion 4.1.1 introdues the ore language without the polytypi onstrut, butwith quali�ed and higher-order polymorphi types. Setion 4.1.2 extends theore language with the polytypi onstrut and some built-in funtions, typesand lasses. Setion 4.1.3 disusses uni�ation in the extended language, and theSetion 4.1.4 shows how to type hek a polytypi value de�nition.4.1.1 The ore languageOur ore language is an extension of ore-ML with quali�ed types and higher-order polymorphism [66℄, see Figure 4.1. The non-terminal for types in thisgrammar is really a kind-indexed family of non-terminals where the supersriptdenotes its kind. For example, a basi type is in C� (has kind �), and a parametridatatype onstrutor suh as List is in C�!� (has kind � ! �). We all theresulting language QML. The set of onstrutor onstants ontains:(!); (; );Either :: � ! � ! �A program onsists of a list of datatype delarations and a binding for main.The typing rules and the type inferene algorithm are based on the extensionsof the standard rules and algorithm [17℄ that handle quali�ed and higher-orderpolymorphi types, see Jones [64,66℄. Compared to the traditional Hindley-Milnersystem the type judgments are extended with a set of prediates P . The rulesinvolving essential hanges in the prediate set are shown in Figure 4.2. Theother rules and the algorithm are omitted. The entailment relation k� relates setsof prediates and is used to reason about quali�ed types, see Jones [64℄.



4.1. TYPE INFERENCE 47()E) P j � ` e : � ) � P k��P j � ` e : �()I) P; � j � ` e : �P j � ` e : � ) �Figure 4.2: Some of the typing rules for QML4.1.2 The polytypi language extensionThe polytypi extension of QML onsists of two parts | an extension of the typesystem and an extension of the expression language. We all the extended QMLlanguage polyQML.Extending the type systemThe type system is extended by generalizing the uni�ation algorithm and byadding new types, kinds and lasses to the initial type environment. The initialtype environment of the language polyQML onsists of four omponents: a familyof funtor onstrutors �d , the types of the funtions inn and out , the type lassesRegular and Bifuntor , and the olletion of funtor onstrutors (+, �, Empty ,Par , Re, � and Const t).� For every regular datatype D a the type onstrutor �D (written FuntorOfD in the atual ode) represents its pattern funtor. The onstrutor �has kind 1 ! 2 where 1 abbreviates the kind of regular type onstrutors(� ! �) and 2 abbreviates the kind of pattern funtors (� ! � ! �).� The lass Regular ontains all regular datatypes and the lass Bifuntorontains the funtors of all regular datatypes. To reet this, the entailmentrelation is extended as follows for polyQML:k� Regular D , for all regular datatypes D aRegular d k� Bifuntor �d� The funtor onstrutors obtained from Setion 3.4 are added to the on-strutor onstants, and have the following kinds:�;+ :: 2! 2! 2Empty ;Par ;Re :: 2� :: 1! 2! 2Const :: � ! 2The orresponding rules in the entailment relation are the following:



48 CHAPTER 4. POLYPBifuntor f ;Bifuntor g k� Bifuntor (f + g);Bifuntor (f � g)k� Bifuntor Empty ;Bifuntor Par ;Bifuntor ReRegular d ;Bifuntor g k� Bifuntor (d�g)k� Bifuntor (Const t)� Funtions inn and out were introdued in Setion 3.5.out :: Regular d ) d a ! �d a (d a)inn :: Regular d ) �d a (d a)! d aNote that these funtions have quali�ed higher-order polymorphi types.The resulting type system is quite powerful; it an be used to type hek manypolytypi programs in a ontext assigning types to a number of basi polytypifuntions. But although we an use and ombine polytypi funtions, we annotde�ne new polytypi funtions by indution on the struture of datatypes.At this point we ould hoose to add some basi polytypi funtions that reallyneed an indutive de�nition to the type environment. This would give us roughlythe same expressive power as the language given by Jay [55℄ extended with quali-�ed types. As a minimal example we ould add fmap2 to the initial environment:fmap2 :: Bifuntor f ) (a ! b)! ( ! d)! f a  ! f b dThis would allow us to de�ne and type hek polytypi funtions like pmap andata. The type heking algorithm would for example derivepmap (+1) (Leaf 4) :: Regular Tree ) Tree Intbut it would, at best, be hard to write a polytypi version of a funtion likezip. Adding the polytypi onstrut to our language makes writing polytypiprograms muh simpler.Adding the polytypi onstrutTo add the polytypi onstrut, the prodution for variable bindings in thelet-expression, Q, is extended withpolytypi x :: � = ase f �!�!� of ffi ! eigwhere f is a funtor variable2, fi are funtor patterns (the grammar for funtorswas de�ned in Setion 3.4). The funtor patterns an be nested and overlapping,2Case analysis over more than one funtor an be simulated by handling all but the �rstfuntor in the ei by other polytypi onstruts. In the future we might extend the syntax tosimplify this.



4.1. TYPE INFERENCE 49�0 = (�; );  = (x : �); Pi j �0 ` ei : ff 7! fig�P1; : : : ; Pn j � ` polytypi x :: � = ase f of ffi ! eig : Figure 4.3: The typing rule for polytypitype (g + h) p r = Either (g p r) (h p r)type (g � h) p r = (g p r ; h p r)type Empty p r = ()type Par p r = ptype Re p r = rtype (d�g) p r = d (g p r)type Const t p r = tFigure 4.4: Interpreting funtors as type synonymsbut they must be linear. The resulting language is polyQML. To be able to do thease analysis over a funtor, the funtor must be onstruted from the operators+, �, � and the type onstants Empty , Par , Re and Const t . This is equivalentto being in the lass Bifuntor and thus the ontext Bifuntor f must alwaysbe inluded in the type � of a funtion de�ned by the polytypi onstrut. AsBifuntor f must always be in the type, PolyP inserts it automatially if it is notgiven expliitly.The typing rules for polyQML are the rules from QML together with the rulefor typing the polytypi onstrut given in Figure 4.3. For the notation used,see Jones [64℄. Note that the polytypi onstrut is not an expression but abinding, and hene the typing rule returns a binding. The rule is not as simple asit looks | the substitution ff 7! fig replaes a funtor variable with a funtorinterpreted as a partially applied type synonym, see Figure 4.4. For example,interpreting the funtors in the pattern funtor for List as type synonyms, wehave: �List p r� f �List = Empty + Par � Re g(Empty + Par � Re) p r� f Type synonym for + gEither (Empty p r) ((Par � Re) p r)� f Type synonyms for Empty and � gEither () (Par p r ;Re p r)



50 CHAPTER 4. POLYP� f Type synonyms for Par and Re gEither () (p; r)4.1.3 Uni�ationThe (standard but omitted) typing rule for appliation uses a uni�ation algo-rithm to unify the argument type of a funtion with the type of its argument.The uni�ation algorithm we use is the kind-preserving uni�ation algorithm ofJones [66℄, whih is an extension of Robinson's well-known uni�ation algorithm.We write C �� C 0 if C and C 0 are uni�ed by substitution �.Theorem 4.1 If there is a uni�er for two given types C, C 0, then C �� C 0 usingJones [66℄ algorithm for kind-preserving uni�ation, and � is a most general uni-�er for C and C 0. Conversely, if no uni�er exists, then the uni�ation algorithmfails.4.1.4 Type heking the polytypi onstrutInstanes of polytypi funtions generated by means of a funtion de�ned withthe polytypi onstrut should be type orret. For that purpose we type hekpolytypi funtions.Type heking a polytypi value de�nition amounts to heking that the inferredtypes for the ase branhes are more general than the orresponding instanes ofthe expliitly given type. So for eah polytypi value de�nitionpolytypi x :: � = ase f of ffi ! eigwe have to do the following for eah branh of the ase:� Infer the type of ei : �i.� Calulate the type the branhes should have aording to the expliit type:�i = ff 7! fig�.� Chek that �i is an instane of �i.When alulating the types of the alternatives the funtor onstrutors are treatedas type synonyms de�ned in Figure 4.4. The omplete type inferene/hekingalgorithm W is obtained by extending Jones' type inferene algorithm [66℄ withthe alternative for the polytypi onstrut. Some of the rules of the algorithm



4.1. TYPE INFERENCE 51(var) (x : 8ti:P ) �) 2 �; si new; S = fti 7! sigSP j � ẁ x : S�(let) S(�) ẁ q : ; Q j T (S�; ) ẁ e : �Q j TS(�) ẁ let q in e : �(bind) P j S(�) ẁ e : �;  = (x : 8S�(P ) �))S(�) ẁ x = e : 
(poly) �0 = (�; );  = (x : 8fg(�))Pi j Si(Ti�1�0) ẁ ei : �i8Tn�0(Sn � � �Si+1(Pi ) �i)) � ff 7! fig�T0 = fg; Ti = SiTi�1� ẁ polytypi x :: � = ase f of ffi ! eig : Figure 4.5: Some parts of Ware given in Figure 4.5. As an example we will sketh how the g � h and Rebranhes in the de�nition of fsum in Figure 1.1 are type heked:polytypi fsum :: f Int Int ! Int= ase f of:::g � h ! �(x ; y)! fsum x + fsum yRe ! id:::In the g � h branh of the polytypi ase, we �rst infer the type of the ex-pression e� = �(x ; y) ! fsum x ++ fsum y . Using fresh instanes of the ex-pliit type � = f Int Int ! Int for the two ourrenes of fsum we get �� =(x Int Int ; y Int Int)! Int . We then alulate the type ��:�� = ff 7! g � hg� = (g � h) Int Int ! Int = (g Int Int ; h Int Int)! IntBeause �� = fx 7! g ; y 7! hg�� we see that �� is an instane of ��.In the Re branh of the polytypi ase, we �rst infer the type of the expressioneRe = id . The type of this expression is �Re = a ! a. We then alulatethe type �Re = ff 7! Reg� = Re Int Int ! Int = Int ! Int . Beause�Re = fa 7! Intg�Re we see that �Re is an instane of �Re. The other branhesare handled similarly.



52 CHAPTER 4. POLYPIf a polytypi binding an be type heked using the typing rules, then algorithmW also manages to type hek the binding. Conversely, if algorithmW an typehek a polytypi binding, then the binding an be type heked with the typingrules too. Together with the results from Jones [64℄ we obtain the followingtheorem.Theorem 4.2 The type inferene/heking algorithm is sound and omplete.Proof sketh. Both the proof of soundness and of ompleteness are by indutionon the struture of the expression. The only part of the inferene algorithmthat is new is the handling of the polytypi onstrut. Beause the polytypionstrut is expliitly typed, all that soundness and ompleteness states is thatthe algorithm sueeds if and only if a type an be inferred for the ase branhes.Using Jones' lemmas about substitutions and type ordering (�) together withthe indution hypothesis we an show that the algorithm sueeds if and only ifthere is a derivation using the type rules.4.2 SemantisThe meaning of a QML expression is obtained by translating the expression intoa version of the polymorphi �-alulus alled QP that inludes onstruts forevidene appliation and evidene abstration. Evidene is needed in the odegeneration proess to onstrut ode for funtions with ontexts. As an example,the evidene for Regular D is a ditionary ontaining inn and out for D a, anda symboli representation of the orresponding funtor �D . Again, the resultsfrom this setion are based on Jones' work on quali�ed types [64℄.The language QP has the same expressions as QML plus three new onstruts:E ::= � � � same as for QML expressionsj Ee evidene appliationj �v:E evidene abstrationj ase v of fei ! Eig dependent ase over evidene� ::= C� typesj P ) � quali�ed typesj 8t�i :� polymorphi typesThe speial ase-statement is used in the translation of the polytypi onstrut.The typing rules for QP are standard exept for the dependent ase over bifun-tors.



4.2. SEMANTICS 53(var) x : 8ti:P ) � 2 �; si and v new; S = fti 7! sigv : SP j � ẁ x; xv : S�(let) S(�) ẁ q ; q0 : Q j T (S�; ) ẁ e; e0 : �Q j TS(�) ẁ (let q in e); (let q 0 in e 0) : �(bind) v : P j S(�) ẁ e; e0 : �;  = (x : 8S�(P ) �))S(�) ẁ (x = e); (x = �v:e0) : 
(poly) �0 = (�; );  = (x : 8fg(�))vi : Pi j Si(Ti�1�0) ẁ ei ; e0i : �i8Tn�0(Sn � � �Si+1(Pi ) �i)) �Ci 8fg(ff 7! fig�)T0 = fg; Ti = SiTi�1� ẁ polytypi x :: � = ase f of ffi ! eig ;x = �v:ase v of ffi ! Ci(�vi:e0i)vg : Figure 4.6: Some translation rulesThe translation rules for variables, let expressions, variable bindings and for thepolytypi onstrut are given in Figure 4.6. The remaining rules are simple andomitted. A translation rule of the form P j S(�) ẁ e; e0 : � an be read as anattribute grammar. The inherited attributes (the input data) onsist of a typeontext � and an expression e and the synthesized attributes (the output data)are the evidene ontext P , the substitution S, the translated QP expression e0and the inferred type � .fsum = �v:ase v ofg + h ! fsumg r fsumhg � h ! �(x ; y)! fsumg x + fsumh yEmpty ! �x ! 0Par ! idRe ! idd � g ! psumd Æ pmapd fsumgConst t ! �x ! 0Figure 4.7: The translation of funtion fsum into QPFor example, if we translate funtion fsum :: Bifuntor f ) f Int Int ! Int , then,after simpli�ation, we obtain the ode in Figure 4.7. Note that the branhes ofthe ase expression in the translated ode have di�erent (but related) types. This



54 CHAPTER 4. POLYPase expression is a restrited version of a dependent ase.In this translation we use a onversion funtion C, whih transforms evideneabstrations applied to evidene parameters into an appliation of the right type.Funtion C is obtained from the expression � �C �0, whih expresses that � ismore general than �0 and that a witness for this statement is the onversion fun-tion C : � ! �0. Funtion C is a non-reursive funtion distributing (parts of)the evidene parameters to their positions on the right hand side. In a polytypivalue de�nition, suh as fsum, where the struture of the patterns on the left handsides orresponds diretly to the struture of the expressions on the right handsides, the onversion funtion will behave exatly as the mathing operation inthe ase statement. In this ase, the onversion funtion is essentially the identity(just a variable renaming). The onversion funtion might be more omplex inthe ase where the reursive struture of the polytypi value de�nition does notorrespond diretly to the reursive struture of the funtor.The inputs to funtion � are the two type shemes � and �0, and the output (ifit sueeds) is the onversion funtion C. It sueeds if the uni�ation algorithmsueeds on the types and the substitution is from the left type to the righttype only, and if the evidene for the ontexts in � an be onstruted from theevidene for the ontexts in �0. The funtion C is onstruted from the entailmentrelation extended with evidene values.As evidene for the fat that a funtor f is a bifuntor we use the symbolirepresentation of f as an element of the datatype desribed by the grammar forpattern funtors from Setion 3.4:f ; g ; h ::= g + h j g � h j Empty j Par j Re j d�g j Const t :The evidene for regularity of a datatype D a is a ditionary with three om-ponents: the de�nitions of inn and out on the datatype and evidene that theorresponding funtor is indeed a bifuntor.Theorem 4.3 The translation from polyQML to QP preserves well-typednessand sueeds for programs with unambiguous type shemes.Proof sketh. The proofs are by indution on the struture of the expression.The use of a speial syntax for the dependent ase expression and the fat thatthis expression only is introdued by the translation of the polytypi onstrutallows us to reuse most of the proofs from Jones' dissertation for the other syn-tati onstruts.



4.3. CODE GENERATION 554.3 Code generationTo generate ode for a polyQML program, we generate a QML expression froma polyQML expression in two steps:� A polyQML expression is translated to a QP expression with expliit evi-dene parameters (ditionaries).� The QP expression is partially evaluated with respet to the evidene pa-rameters giving a program in QML.When the program has been translated to QP all ourrenes of the polytypionstrut and all referenes to the lasses Regular and Bifuntor have been re-moved and the program ontains evidene parameters instead. We remove allevidene parameters introdued by polytypism by partial evaluation (in the styleof Jones [63℄). The partial evaluation is started at the main expression (whihmust have an unambiguous type) and is propagated through the program bygenerating requests from the main expression and its subexpressions. A problemwith this sheme is that does not support separate ompilation: it requires thewhole program to be available for translation at one.The evidene for regularity of a datatype D a (the entailment k� Regular D)is a ditionary ontaining the funtions inn, out and the bifuntor �D . PolyPonstruts these ditionaries using a few straightforward indutive funtions overthe abstrat syntax of regular datatypes. Funtions inn and out are obtained byseleting the orret omponent of the ditionary.In pratie, a PolyP program (a program written in a subset of Haskell extendedwith the polytypi onstrut) is ompiled to Haskell. Setion 3.9 ontains anexample of a simple PolyP program and the ode that is generated by PolyP forthis program (in Figure 3.8) .If the size of the original program is n, and the total number of subexpressions ofthe bifuntors of the regular datatypes ourring in the program is m, then thesize of the generated ode is at most n � m. Eah request for an instane of afuntion de�ned by means of the polytypi onstrut on a datatype D a resultsin as many funtions as there are subexpressions in the bifuntor f for datatypeD a (inluding the bifuntors of the datatypes used in f ). The eÆieny of thegenerated ode is only a onstant fator worse than hand-written instanes ofpolytypi funtions. Most of the overhead is aused by the inn and out transfor-mations whih, as they are isomorphisms, ould probably be removed by a morelever implementation.



56 CHAPTER 4. POLYP4.4 ImplementationThis setion presents a brief overview of the implementation of the PolyP om-piler.The implementation of PolyP is written in Haskell and it is divided into about30 Haskell modules with a total of about 7000 lines of literate Haskell ode. Theaumulated time spent on the implementation of PolyP is lose to one man-year, but most of that time was spent on non-polytypi parts of the system. Asthe knowledge base in the �eld of polytypi programming has grown, and morestandard tools for Haskell ompiler onstrution have beome available, a newimplementation with enhaned funtionality ould probably be ompleted in lesstime. A re-implementation of the type inferene algorithm, for example, ouldbe based on \Typing Haskell in Haskell" by Jones [67℄.The information ow inside PolyP is as follows:� The parser takes an input �le to a list of equations expressed in the abstratsyntax.� Dependeny analysis splits these equations into datatype delarations andmutually reursive groups of funtion de�nitions.� For eah regular datatype the orresponding funtor is alulated.� The equation groups are labeled with type information and evidene valuesusing the type inferene algorithm from Setion 4.1.� The labeled equations are traversed to ollet requests for instanes of poly-typi funtions.� For every request, ode for an instane of a polytypi funtion is generatedand appended to the equation list.� The �nal equation list is pretty printed.More details about the implementation of PolyP are presented in Jansson's lien-tiate thesis [50℄.4.5 Conlusions and future workWe have shown how to extend a funtional language with the polytypi on-strut. The polytypi onstrut onsiderably simpli�es writing programs thathave the same funtionality on a large lass of datatypes (polytypi programs).



4.5. CONCLUSIONS AND FUTURE WORK 57The extension is a small but powerful extension of a language with quali�ed typesand higher-order polymorphism. We have developed a ompiler that ompilesHaskell with the polytypi onstrut to plain Haskell.A lot of work remains to be done. The ompiler has to be extended to handlemutual reursive datatypes with an arbitrary number of type arguments and inwhih funtion spaes may our. These extensions are planned for the suessorof PolyP: Generi Haskell [33℄.
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Chapter 5PolyLib | a polytypi funtionlibrary1
During the last few years we have used PolyP to onstrut a number of polytypiprograms, for example for pattern mathing, uni�ation, rewriting (Chapter 6),parsing (Chapter 7), et. These polytypi programs use several basi polytypifuntions, suh as the relatively well-known ata and pmap, but also less well-known funtions suh as propagate and thread . We have olleted these basipolytypi funtions in the library of PolyP: PolyLib. This hapter desribes thepolytypi funtions in PolyLib, motivates their presene in the library, and givesa rationale for their design.Of ourse, a library is an important part of a programming language. Languageslike Java, Delphi, Perl are popular partly beause of their useful and extensivelibraries. For a polytypi programming language it is even more important tohave a lear and well-designed library: writing polytypi programs is diÆult,and we do not expet many programmers to write polytypi programs. On theother hand, many programmers use polytypi programs suh as parser generators,equality funtions, et.We expet that both the form and ontent of this desription will hange overtime, in fat this is already the seond attempt at desribing the library of PolyP;the �rst was presented at the Workshop on Generi Programming, 1998 [47℄. Oneof the goals of that paper was to obtain feedbak on the library design from otherresearhers working within the �eld. This feedbak has led to a few minor or-retions and additions, and two bigger hanges: we have added laws relating thepolytypi funtions (mainly free theorems [101℄) and inluded the omplete im-plementation in Appendix A. At the moment the library only ontains the basipolytypi funtions, but we are atively developing speial purpose sub-libraries1This hapter is a revised version of an artile with the same title, presented at the Workshopon Generi Programming, 1998 [47℄. 59



60 CHAPTER 5. POLYLIBfor polytypi funtions with more advaned funtionality. Examples are the ap-pliations in the later hapters: mathing, uni�ation, rewriting (Chapter 6),pretty printing, parsing, paking and unpaking (Chapter 7).5.1 Desribing polytypi funtionsThis setion introdues the format that we use for desribing polytypi libraryfuntions, and gives an overview of the ontents of the library.The desription of a polytypi funtion onsists of (some of) the following om-ponents: its name and type; an informal desription of the funtion; propertiesand laws the funtion satis�es; other names the funtion is known by; known usesof the funtion; and its bakground and relationship to other polytypi funtions.A few related funtions at a time are presented as a manual page enlosed inbrakets like those surrounding this sentene.A problem with desribing a library of polytypi funtions is that it is not om-pletely lear how to speify polytypi funtions. The most basi ombinators haveimmediate ategory theoreti interpretations that an be used as a spei�ation,but for more ompliated ombinators the matter is not all that obvious. Thus,we will normally not provide formal spei�ations of the library funtions, thoughwe try to give referenes to more in-depth treatments. We also inlude examplesof laws that relate the di�erent funtions.5.1.1 Notation and namingFor the polytypi funtions that have Haskell ounterparts we prepend the let-ter p (for polytypi) to the Haskell name to avoid a name lash. The bifuntorvariants instead begin with an f . A polytypi funtion an be thought of as tak-ing (a representation of) a funtor as its �rst argument. This impliit argumentis normally omitted but sometimes written as a subsript for larity: pmapd .Polytypi funtions are only de�ned for regular datatypes d a. In the type thisis indiated by adding a ontext Regular d) . . . , but we will omit this here forbrevity. (The implementation of PolyLib in Appendix A ontains the full typedelarations.)5.1.2 Library overviewWe have divided the library into six parts, as shown in Figure 5.1. The �rst



5.2. RECURSION OPERATORS 61
pmap, fmap2, ataana, hylo, pararush, frush(a) Reursion operators pzip, fzippunzip, funzippzipWith, pzipWith 0pequal , fequalpompare, fompare(b) Zips et.pmapM , fmap2M , ataManaM , hyloM , paraMthread , fthreadpropagate, ross() Monad operators atten, �atten par ,  re, substrutures(d) Flatten funtionspsum, prod , omp, on, pand , porsize, atten, atten 0, pall , pany, pelem(e) MisellaneousFigure 5.1: Overview of PolyLibpart of the library ontains powerful reursion ombinators suh as pmap, ataand ana. This part is the ore of the library in the sense that it is used inthe de�nitions of all the funtions in the other parts. The seond part dealswith zips and some derivatives, suh as the equality funtion. The third partonsists of funtions that manipulate monads. The fourth and �fth parts onsistof simpler (but still very useful) funtions, like attening and summing. Thefollowing setions desribe eah of these parts in more detail.5.2 Reursion operatorspmap :: (a ! b)! d a ! d bfmap2 :: (a ! )! (b ! d)! f a b ! f  dFuntion pmap takes a funtion f and a value x of datatype d a, and applies freursively to all ourrenes of elements of type a in x .Properties: With d as a funtor ating on types, pmapd is the orrespondingfuntor ation on funtions. Funtion fmap2f is the orresponding funtor ation



62 CHAPTER 5. POLYLIBfor a pattern funtor f .pmap id === idpmap g Æ pmap h === pmap (g Æ h)fmap2 id id === idfmap2 g h Æ fmap2 i j === fmap2 (g Æ i) (h Æ j )Also known as: Funtion pmap is often alled map. In Jay et al. [58℄, pmap isalled map1 , fmap2 is alled map2 and, in general, an n-argument map is alledmapn . In harity [16℄, pmapd f x is written dff g(x ).Known uses: Everywhere! Funtion fmap2 is used in the de�nition of pmap,ata, ana, hylo, para and in many other PolyLib funtions.Bakground: The map funtion was one of the �rst ombinators distinguishedin the work of Bird and Meertens [10, 74℄. The traditional map :: (a ! b) ![a ℄! [b ℄ in funtional languages maps a funtion over a list of elements. Haskell98 also ontains an overloaded version of map:fmap :: Funtor f ) (a ! b)! f a ! f bFuntion fmap an be used as the polytypi pmap if instane delarations for allregular type onstrutors are given. Funtion pmap an be used to give defaultinstanes for the Haskell fmap.
ata :: (�d a b ! b)! (d a ! b)ana :: (b ! �d a b)! (b ! d a)hylo :: (f a b ! b)! ( ! f a )! ( ! b)para :: (d a ! �d a b ! b)! (d a ! b)Four powerful reursion operators on the type d a: The atamorphism, ata ,\evaluates" a value of a regular datatype by reursively replaing the onstru-tors with funtions. The anamorphism, ana a, works in the opposite diretionand reursively builds a value of a regular datatype from some other data. Thehylomorphism, hylo  a, is the generalization of these two funtions that simul-taneously builds and evaluates a struture. Finally, the paramorphism, para p,is a generalized form of ata that gives its parameter funtion aess not only tothe results of evaluating the substrutures, but also the struture itself.



5.2. RECURSION OPERATORS 63Properties: The atamorphism ata f satis�es the fusion law (proved in Se-tion 3.10) for every strit h:h Æ ata f = ata g( f fusion gh Æ f = g Æ fmap2 id h :A dual law holds for the anamorphism, and orresponding laws hold for hylo andpara, see Hoogendijk [37℄. The hylomorphism an be spei�ed as:hylo i o = ata i Æ ana oAlso known as:PolyLib Funtorial ML [58℄ Squiggol harity [16℄ata i fold1 i (jij) fj i jgana o - [(o)℄ (j o j)Funtions ata and para are losely related to the Visitor pattern [27℄.Known uses: Many polytypi funtions an be de�ned using ata: pmap,rush, thread , atten, propagate, and many of our appliations use it.Bakground: The atamorphism, ata, is the generalization of the Haskellfuntion foldr and the anamorphism, ana, is its (ategory theoreti) dual. Cata-morphisms were introdued by Malolm [71, 72℄. A hylomorphism is the fusedomposition of a atamorphism and an anamorphism. The paramorphism [75℄,para, is the elimination onstrut for the type d a from Martin-L�of type the-ory [83℄. It aptures the reursion pattern of primitive reursive funtions on thedatatype d a.
rush :: (a ! a ! a)! a ! d a ! afrush :: (a ! a ! a)! a ! f a a ! aThe funtion rush (� ) e takes a struture x and inserts the operator (� ) fromleft to right between every pair of values of type a at every level in x . (The valuee is used in empty leaves.)



64 CHAPTER 5. POLYLIBProperties: We an push a funtion f through a rushf Æ rush (� ) e === rush (
 ) (f e) Æ pmap fprovided f is strit and the following distributive law holds:8 x ; y : f (x � y) = f x 
 f yThis an be used to prove that, for an assoiative operator (� ) with unit e:rush (� ) e === foldr (� ) e Æ attenKnown uses: A number of appliations of ruh within the library are pre-sented in Setion 5.6. Many of the funtions in that setion are, in turn, used inthe di�erent appliations.Bakground: The rush operator was �rst proposed in \Calulate polytypi-ally" by Meertens [76℄. As rush has the same arguments as fold on lists it anbe seen as an alternative to ata as the generalization of fold to regular datatypes.5.3 Zipspzip :: (d a; d b)! Maybe (d (a; b))punzip :: d (a; b)! (d a; d b)fzip :: (f a b; f  d)! Maybe (f (a; ) (b; d))funzip :: f (a; ) (b; d)! (f a b; f  d)Funtion punzip takes a struture ontaining pairs and splits it up into a pair ofstrutures ontaining the �rst and the seond omponents respetively. Funtionpzip is a partial inverse of punzip: it takes a pair of strutures and zips themtogether to Just a struture of pairs if the two strutures have the same shape,and to Nothing otherwise.Properties: Funtion punzip always produes a pair of strutures of the sameshape, and for suh pairs pzip always sueeds. Conversely, if pzip sueeds, thenpunzip reovers the original pair.pzip (x ; y) == Just z � (x ; y) == punzip zfzip (x ; y) == Just z � (x ; y) == funzip zNaturality laws:mapM (pmap (f ��� g)) Æ pzip === pzip Æ (pmap f ��� pmap g)mapM (fmap2 (f ��� g) (h ��� i)) Æ fzip === fzip Æ (fmap2 f h ��� fmap2 g i)



5.3. ZIPS 65Also known as: The zip funtions are alled zipm in Jay et al. [58℄ (withm = 1 for pzip and m = 2 for fzip), and pzip is alled zip.�.d in Hoogendijkand Bakhouse [38℄.Known uses: Funtion fzip is used in the de�nition of pzipWith.Bakground: The traditional funtion zipzip :: [a ℄! [b ℄! [(a; b)℄ombines two lists and does not need the Maybe type in the result as the longerlist an always be trunated. (In general suh trunation is possible for all typesthat have a nullary onstrutor, but not for all regular types.) A more general(\doubly polytypi") variant of pzip: transpose (alled zip.d.e in by Hoogendijkand Bakhouse [38℄)transpose :: d (e a)! e (d a)was �rst desribed by Ruehr [94℄. For a formal and relational de�nition, seeHoogendijk and Bakhouse [38℄.
pzipWith :: ((a; b)! Maybe )! (d a; d b)! Maybe (d )pzipWith 0 :: (�d  e ! e)! ((d a; d b)! e)!((a; b)! )! (d a; d b)! eFuntion pzipWith (
 ) works like pzip but uses the operator (
 ) to ombine thevalues from the two strutures instead of just pairing them. As the zip might fail,we also give the operator a hane to signal failure by giving it a Maybe-type asa result. The type onstrutor Maybe an be replaed by any monad with a zero,but we didn't want to lutter up the already ompliated type with ontexts.Funtion pzipWith 0 is a generalization of pzipWith that an handle two struturesof di�erent shape. In the all pzipWith 0 ins fail ( 
 ), the operator ( 
 ) isused to ombine values of the strutures as long as the strutures have the sameshape, fail is used to handle the ase when the two strutures mismath, and insombines the results from the substrutures. (The type of ins is the same as thetype of the �rst argument to ata.)Properties: Funtion pzip is just pzipWith Just and pzipWith is a speial aseof pzipWith 0:pzip === pzipWith JustpzipWith === pzipWith 0 (mapM inn Æ fthread) (onst mzero)



66 CHAPTER 5. POLYLIBAlso known as: Funtion pzipWith is alled zipopm in Jay et al. [58℄.Known uses: Funtion pzipWith 0 is used in the de�nition of polytypi equalityand an be used for mathing and even uni�ation.Bakground: Funtion pzipWith is the polytypi variant of the Haskell funtionzipWith zipWith :: (a ! b ! )! [a ℄! [b ℄! [(a; b)℄but pzipWith 0 is new.
pequal :: (a ! b ! Bool)! d a ! d b ! Boolfequal :: (a ! b ! Bool)! ( ! d ! Bool)! f a  ! f b d ! BoolThe expression pequal eq x y heks whether or not the strutures x and y areequivalent using the equivalene operator eq to ompare the elements pairwise.Funtion fequal is the orresponding equivalene hek for the pattern funtorlevel. Funtion fequal eqp eqr performs a top level equivalene hek and pequal eqa deep equivalene hek.Properties: A partial equivalene relation (a per) is a relation that is symmet-ri and transitive, but not neessarily reexive. (In CPO no interesting relationsare reexive. In fat, if eq ? ? = True, then, by monotoniity, eq x y = Truefor all x and y !) If eq is a per , then funtion pequal eq is also a per .Known uses: Funtion fequal is used in mathing, uni�ation and rewriting todetermine when two terms are top level equal. Funtion pequal is used almosteverywhere (indiretly through (==)).Bakground: An early version of a polytypi equality funtion was presentedby Sheard in 1991 [98℄. Funtion pequal an be instantiated to give a default forthe Haskell Eq-lass for regular datatypes:(==) :: (Regular d ;Eq a) ) d a ! d a ! Bool(==) = pequal (==)In Haskell the equality funtion an be automatially derived by the ompiler,and our polytypi equality is an attempt at moving that derivation out of theompiler into the prelude.



5.4. MONAD OPERATIONS 67pompare :: (a ! a ! Ordering)! d a ! d a ! Orderingfompare :: (a ! a ! Ordering)! (b ! b ! Ordering)!f a b ! f a b ! OrderingThe omparison operators ((<), (6), et.) in Haskell are de�ned in terms of themethod ompare of the Ord lass.data Ordering = LT j EQ j GTompare :: Ord a ) a ! a ! OrderingFuntion pompare is the polytypi version of ompare. The expression pompareomp x y ompares the strutures x and y with lexiographial ordering, usingthe funtion omp to ompare the elements pairwise.Also known as: Funtion pompare is alled mp by Hinze [35℄.Bakground: Funtion pompare an be instantiated to give a default for theHaskell Ord -lass for regular datatypes:ompare :: Ord a ) d a ! d a ! Boolompare = pompare ompare
5.4 Monad operationspmapM :: Monad m ) (a ! m b)! d a ! m (d b)pmapMl :: Monad m ) (a ! m b)! d a ! m (d b)pmapMr :: Monad m ) (a ! m b)! d a ! m (d b)fmap2M :: Monad m ) (a ! m )! (b ! m d)! f a b ! m (f  d)ataM :: Monad m ) (�d a b ! m b)! (d a ! m b)anaM :: Monad m ) (b ! m �d a b)! (b ! m (d a))hyloM :: Monad m ) (f a b ! m b)! ( ! m (f a ))!  ! m bparaM :: Monad m ) (d a ! �d a b ! m b)! d a ! m bFuntion pmapM is a variant of pmap that threads a monad m from left to rightthrough a struture after applying its funtion argument to all elements in thestruture. Funtion pmapMr is the same but for threading a monad m fromright to left through a struture. For symmetry's sake, the library also ontainsa funtion pmapMl , whih is equal to pmapM . Furthermore, the library alsoontains the left and right variants of funtions like ataM et. A monadi mapan, for example, use a state monad to reord information about the elements inthe struture during the traversal. The other reursion operators are generalizedin the same way to form even more general ombinators.



68 CHAPTER 5. POLYLIBProperties: The monadi map is losely related to thread (presented later):pmapM f === thread Æ pmap fthread === pmapM idThere are many more laws as well, but we only give these examples here.Also known as: Funtion pmapM (thread) is alled ative (passive) traversalin Jay et al. [58℄.Known uses: Monadi traversals are very useful for data onversion (Chap-ter 7).Bakground: Monadi maps and atamorphisms are desribed in Fokkinga [25℄and monadi anamorphisms and hylomorphisms are de�ned in Pardo [87℄. Aategory theoretial desription of pmapM and thread an be found in Moggi etal. [81℄.
thread :: Monad m ) d (m a)! m (d a)fthread :: Monad m ) f (m a) (m b)! m (f a b)Funtion thread is used to tie together the monad omputations in the elementsfrom left to right.Properties: Funtion thread an be used to de�ne the monadi map, and vieversa:pmapM f === thread Æ pmap fthread === pmapM idAlso known as: Other names for thread are distd (used by Fokkinga [25℄) andtraverse (used by Moggi et al. [81℄).Known uses: Funtion thread an be instantiated (with d = [ ℄) to the Haskellprelude funtionsequene :: Monad m ) [m a ℄! m [a ℄ :It an also be instantiated (with m = Maybe) to propagate and (with m = [ ℄) toross de�ned later.



5.5. FLATTEN FUNCTIONS 69propagate :: d (Maybe a)! Maybe (d a)ross :: d [a ℄! [d a ℄Funtion propagate propagates Nothing to the top level. Funtion ross is theross (or tensor) produt that given a struture x ontaining lists, generates a listof strutures of the same shape. This list has one element for every ombinationof values drawn from the lists in x . These two funtions an be generalized tothread any monad through a value.Known uses: propagate is used in the de�nition of pzip.Bakground: Funtion propagate is an instane of transpose [94℄, and bothpropagate and ross are instanes of thread .
5.5 Flatten funtionsatten :: d a ! [a ℄�atten :: f [a ℄ [a ℄! [a ℄ par :: f a b ! [a ℄ re :: f a b ! [b ℄substrutures :: d a ! [d a ℄Funtion atten x traverses the struture x and ollets all elements from leftto right in a list. Funtions �atten,  par and  re are variants of this for apattern funtor f . The list substrutures x ontains all substrutures of x .Properties: The free theorem for atten:atten Æ pmap f === map f Æ attenFlatten an be de�ned in terms of on = rush (++) [ ℄ and pmap:atten = on Æ pmap (:[ ℄)With normal Haskell lists and onatenation this has quadrati asymptoti om-plexity, but we an apply the standard aumulating parameter trik to obtain alinear implementation: (omp = rush (Æ) id)atten 0 = omp Æ pmap (:)atten l = atten 0 l [ ℄



70 CHAPTER 5. POLYLIBFuntions on, omp and atten 0 are also de�ned in Setion 5.6.Funtion substrutures an be de�ned in terms of  re and para:substrutures :: Regular d ) d a ! [d a ℄substrutures = para (�x y ! x : onat ( re y))Also known as: The integer-indexed family extratm;i de�ned in Jay et al. [58℄,ontains atten when (m; i) = (1; 0),  par when (m; i) = (2; 0) and  re when(m; i) = (2; 1). Another name for atten is listify (used in Hoogendijk andBakhouse [38℄).Known uses: Funtion  re is used in the uni�ation algorithm to �nd thelist of immediate subterms of a term.Bakground: In the relational theory of polytypism [38℄ there is a membershiprelation mem.d for every relator (type onstrutor) d. Funtion atten an beseen as a funtional implementation of this relation:a mem:d x � a 2 attend x
5.6 MisellaneousA number of simple polytypi funtions an be de�ned in terms of rush andpmap. For brevity we present this part of PolyLib by providing only the name,the type and the de�nition of eah funtion.psum :: d Int ! Intprod :: d Int ! Intomp :: d (a ! a)! (a ! a)on :: d [a ℄! [a ℄pand :: d Bool ! Boolpor :: d Bool ! Boolpsum = rush (+) 0prod = rush (�) 1omp = rush (Æ) idon = rush (++) [ ℄pand = rush (^ ) Truepor = rush (_ ) False



5.7. CONCLUSIONS 71All these are de�ned using rush only, and by ombining rush and pmap weimmediately get a few more useful funtions.size :: d a ! Intatten :: d a ! [a ℄atten 0 :: d a ! [a ℄! [a ℄pall :: (a ! Bool)! d a ! Boolpany :: (a ! Bool)! d a ! Boolpelem :: Eq a ) a ! d a ! Boolsize = psum Æ pmap (� ! 1)atten = on Æ pmap (�x ! [x ℄)atten 0 = omp Æ pmap (:)pall p = pand Æ pmap ppany p = por Æ pmap ppelem x = pany (�y ! x == y)
5.7 ConlusionsWe have given a desription of PolyLib: the library of PolyP. This library hasgrown out of our experiene with implementing polytypi funtions. PolyLibis very likely inomplete, but we think we have inluded most basi polytypiombinators. We have used PolyLib in the onstrution of speial purpose sub-libraries for mathing, uni�ation and rewriting (Chapter 6) and data onversion(Chapter 7), and some of these appliations will be inluded in future versions ofPolyLib. Both PolyP and PolyLib are available from the author's homepage.
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Chapter 6Rewriting1
AbstratGiven any value of a datatype (an algebra of terms), and rules torewrite values of that datatype, we want a funtion that rewrites thevalue to normal form if the value is normalizable. This hapter de-velops a polytypi rewriting funtion that uses the parallel innermostrewriting strategy. It improves upon our earlier work on polytypirewriting in two fundamental ways. Firstly, the rewriting funtionuses a term interfae that hides the polytypi part from the rest ofthe program. The term interfae is a framework for polytypi pro-gramming on terms. This implies that the rewriting funtion is in-dependent of the partiular implementation of polytypism. We giveseveral funtions and laws on terms, whih simplify alulating withprograms. Seondly, the rewriting funtion is developed togetherwith a orretness proof.6.1 IntrodutionA term rewriting system is an algebra (a datatype of terms) together with aset of rewrite rules. The rewrite rules desribe how to rewrite the terms of thealgebra. A rewrite rule is a pair (lhs; rhs) of terms ontaining variables withthe interpretation that any term that mathes the left hand side (lhs) may berewritten to the right hand side (rhs) with the variables replaed by the mathesfrom the left hand side.1This hapter is a revised and extended version of the artile \A framework for polytypiprogramming on terms, with an appliation to rewriting", Workshop on Generi Programming,2000 [52℄.



74 CHAPTER 6. REWRITING6.1.1 An example rewriting systemAn example of a term datatype is the type Expr :data Expr = EVar Int j Z j S Expr j Expr :+: Expr j Expr :�: Exprtype Rule t = (t ; t)plusZero :: Rule ExprplusZero = (x :+: Z ; x )where x = EVar 0For example, with the rule plusZero the left hand side x :+: Z mathes theexpression S Z :+: Z with the substitution fx 7! S Z g. Thus the rewritten termis the right hand side x after the substitution is applied: S Z . To introdue thenotation we an express this in Haskell syntax: the following expression evaluatesto True.let (lhs; rhs) = plusZeroJust s = math lhs (S Z :+: Z )in appSubst s rhs == S ZThe funtions involved are the following:appSubst :: Term t ) Sub t ! t ! tmath :: Term t ) t ! t ! Maybe (Sub t)( == ) :: Term t ) t ! t ! BoolFuntion appSubst takes a substitution and a term, and applies the substitutionto the term. The type Expr is an instane of a type lass for Terms de�ned in Se-tion 6.2.1. The de�nitions of appSubst and the type onstrutor for Substitutionsare given in Setion 6.3.1. Funtion math (de�ned in Setion 6.3.2) takes a termontaining variables, and a term without variables, and returns Just a substitu-tion s if the terms an be mathed by means of s, and Nothing otherwise. Theoperator (==) is the Haskell equality operator, de�ned for terms in Setion 6.2.3.A rule set is a olletion of rules, and a rule set mathes a term if at least one ofthe rules mathes that term. To keep the system deterministi, even when morethan one rule mathes, we order the rules and always use the �rst math. Inpratie this means that our rule set is a rule list.type Rules t = [Rule t ℄exprrules :: Rules Exprexprrules = [plusZero; plusSu; timesZero; timesSu ℄where plusZero = (x :+: Z ; x )plusSu = (x :+: S y ; S (x :+: y))timesZero = (x :�: Z ;Z )timesSu = (x :�: S y ; (x :�: y) :+: x )(x ; y) = (EVar 0;EVar 1)



6.1. INTRODUCTION 75Funtion rewrite (de�ned in Setion 6.4.2) rewrites a term to normal form byrepeatedly applying rules from a rule list:rewrite :: Term t ) Rules t ! t ! tBeause the rule list exprrules is normalizing, funtion rewrite will rewrite anyexpression of type Expr to normal form. In general, rewrite rs t terminates ifand only if the term t is normalizing with respet to the rule list rs .6.1.2 Polytypi rewritingFor other kinds of terms, rewriting behaves exatly as on expressions. We wouldlike to have a polytypi rewriting funtion: a rewriting funtion that an beapplied to any kind of terms.This hapter develops a polytypi rewriting funtion that uses the parallel inner-most rewriting strategy. We have hosen the parallel innermost rewriting strategybeause this lets us transform the rewriting funtion into an asymptotially op-timal solution. The results in this hapter improve upon our earlier work onpolytypi rewriting [62℄ in two fundamental ways.Firstly, the program uses an interfae that hides the polytypi part from the restof the program. The term interfae is a framework for polytypi programmingon terms. We assume that we have a type of terms, on whih several funtions,suh as a funtion that determines whether or not a term is a variable and afuntion that returns the hildren of a term, are de�ned. The rewriting funtion(inluding funtions for mathing and for applying a substitution) uses just thesefuntions on terms. This idea was also present in our previous work [2, 51℄,but it was only applied to uni�ation. It turns out that the same interfae forterms an be used for mathing and term rewriting. We also introdue someombinators on terms suh as mapTerm, whih maps a funtion over all variablesin a term, and bup whih applies a term transformer bottom up to all levels ofa term. Furthermore, to failitate alulating with programs, we give a numberof laws for these funtions. Programming against an interfae for terms impliesthat our rewriting funtions are independent of the partiular implementationof polytypism, so that we an use our rewriting funtions in future polytypiprogramming languages suh as Generi Haskell [33℄ too.Seondly, the program is developed together with a orretness proof, whih saysthat our rewriting funtion rewrites any normalizable term to normal form. Aspei�ation of rewriting is transformed in a few steps into an eÆient rewritingfuntion. We prove that the transformation steps are semantis preserving.This hapter is organized as follows. Setion 6.2 introdues terms, ombinatorson terms, and laws for these ombinators. Setion 6.3 gives three appliations



76 CHAPTER 6. REWRITINGof terms: substitutions, mathing and uni�ation. Setion 6.4 spei�es and im-plements polytypi funtions for rewriting and states the theorems they satisfy.Setion 6.5 ontains detailed proofs of some of the theorems. Setion 6.6 on-ludes.6.2 A term interfaeThis setion introdues an interfae for terms and shows that every regular data-type supports this interfae. Furthermore, it de�nes a few ombinators that workon terms, and states some laws that relate these ombinators. The proofs of theselaws are presented in Setion 6.5.6.2.1 TermsThis subsetion de�nes a Haskell lass for types that an be used as terms formathing, uni�ation and in a term rewriting system. A areful analysis of theproperties we need from terms reveals that� a term has (updatable) hildren,� two terms an be tested for top level equality,� and a term an be a variable.Eah of these requirements is aptured in a lass and the lass of terms is theintersetion of these requirements.lass (Children t ;TopEq t ;VarChek t) ) Term tIn the following subsetions we will de�ne the three lasses Children, TopEqand VarChek together with the laws we require from the instanes to make therewriting proofs go through later.ChildrenThe hildren (immediate subterms) of a term an be extrated or mapped over.lass Children t where hildren :: t ! [t ℄mapC :: (t ! t)! t ! t



6.2. A TERM INTERFACE 77The funtions hildren and mapC should be related by the following law:hildren ÆmapC f === map f Æ hildrenFuntion mapC should preserve identities and omposition:mapC id = idmapC (f Æ g) = mapC f ÆmapC gTop level equalityFuntion topEq is a shallow equality test. A typial topEq heks if two termshave the same outermost onstrutor.lass TopEq t where topEq :: t ! t ! BoolWe require topEq to be almost an equivalene relation:: (x = ?) ) btopEq x x btopEq x y  ) btopEq y x btopEq x y  ) (btopEq y z  ) btopEq x z )It should not depend on the hildren:btopEq x y  � btopEq x (mapC f y)And the number of hildren should be part of the top level:btopEq x y  ) blength (hildren x ) == length (hildren y)Cheking for variablesWe model variables with the type Var (any type with equality would do), and itshould be possible to hek whether or not a term is a variable, and if it is, whihvariable.newtype Var = MkVar Int deriving Eqlass VarChek t where varChek :: t ! Maybe VarIf a term is a variable, then it annot have hildren.bvarChek t == Just v  ) bhildren t == [ ℄



78 CHAPTER 6. REWRITING6.2.2 Polytypi Term instanesIn this subsetion we show that all Regular datatypes are, in fat, Terms. We dothis by de�ning polytypi instanes for hildren, mapC , topEq and varChek .Funtions hildren and mapCFuntion hildren :: Children t ) t ! [t ℄ returns the immediate subterms of aterm. We �nd these subterms by unfolding the term one level, using out , mappingthe parameters to empty lists and the subterms to singletons using fmap2 andattening the result to a list using �atten:instane Regular d ) Children (d a) wherehildren = �atten Æ fmap2 (onst [ ℄) (:[ ℄) Æ outmapC f = inn Æ fmap2 id f Æ outFuntion �atten :: f [a ℄ [a ℄! [a ℄ takes a value v of type f [a ℄ [a ℄, and returnsthe onatenation of all the lists (of type [a ℄) ourring in v . The polytypide�nition of �atten was given in Setion 3.9.Funtion topEqFuntion topEq :: TopEq t ) t ! t ! Bool ompares the top level of two termsfor equality. It is de�ned in terms of the polytypi equality funtion fequal de-sribed in PolyLib. The �rst argument to fequal ompares parameters for equality,the seond argument (whih ompares the subterms) is onstantly true (to gettop level equality) and the third and fourth arguments are the two (unfolded)terms to be ompared:instane (Regular d ;Eq a) ) TopEq (d a) wheretopEq t t 0 = fequal (==) (� ! True) (out t) (out t 0)Funtion varChekFuntion varChek :: VarChek t ) t ! Maybe Var heks whether or not a termis a variable. A polytypi varChek must reognize the datatype onstrutor thatrepresents variables, using only information about the struture of the datatype.We have for simpliity hosen to represent variables by the �rst onstrutor inthe datatype, whih should have one parameter of type Var .instane Regular d ) VarChek (d a) wherevarChek = fvarChek Æ out



6.2. A TERM INTERFACE 79
polytypi fvarChek :: f a b ! Maybe Var= ase f ofg + h ! fvarChek r onst NothingConst Var ! Justg ! onst NothingSummaryWe have made all regular datatypes instanes of the lass Term. Thus all ap-pliations written using only Term operations are automatially polytypi in thesense that they an be used with PolyP. Of ourse any suh appliation ouldhave used PolyP diretly, but restriting the use of polytypi funtions to a min-imal interfae (the lass Term), makes the ode more reusable and opens it upfor experimentation with alternative implementations of polytypism.6.2.3 Combinators on termsIn this setion we de�ne a few general purpose funtions on terms. A �rst exampleis the funtion size that alulates the number of nodes in a term.size :: Children t ) t ! Intsize t = 1 + sum (map size (hildren t))Using hildren we an easily extend the top level equality to deep equality:( == ) :: (TopEq t ;Children t) ) t ! t ! Boolx == y = topEq x y ^ and (zipWith ( == ) (hildren x ) (hildren y))If topEq is almost an equivalene relation (as de�ned in setion 6.2.1), then ( == )is an equivalene relation for all �nite terms.A simple appliation of the equality hek is to de�ne a prediate �xedBy f thatis true for the set of �xed points of f :�xedBy :: (TopEq t ;Children t) ) (t ! t)! t ! Bool�xedBy f x = x == f xFuntion bup f applies a term transformer at all levels of a term bottom up. Itis as lose we an get to a generi atamorphism for types in the Children lass.Funtion bup is more restrited than a normal atamorphism as the output is



80 CHAPTER 6. REWRITINGalways of the same type as the input, but it is suÆient to speify and implementrewriting.bup :: Children t ) (t ! t)! t ! tbup f = f ÆmapC (bup f )Funtion mapTerm is one possible generi map funtion for Terms with variables.The appliationmapTerm s maps s over all variables in a term, leaving the rest ofthe struture unhanged. It is implemented in terms of the more general funtionfoldTerm p s that also applies the funtion p to post-proess the results fromthe hildren. Funtion foldTerm an be seen as the ombination of a bup (aatamorphism) and a map.mapTerm :: Term t ) (Var ! Maybe t)! t ! tmapTerm s = foldTerm id sfoldTerm :: Term t ) (t ! t)! (Var ! Maybe t)! t ! tfoldTerm p s t = maybe (p (mapC (foldTerm p s) t))(maybe (p t) id Æ s)(varChek t)Funtion foldTerm traverses all nodes in a term ontaining variables bottom up.If a node is a variable, then it is replaed by the term to whih that variable isbound in the �nite map s, or transformed by p if it is not bound by s. If a nodeis not a variable, then foldTerm is applied reursively to the hildren (if any) andthe result is transformed by p.6.2.4 Laws for term ombinatorsUsing the properties required for the funtions from the Term lass we an derivea number of laws for the term ombinators. The proofs of these laws are given inSetion 6.5. The theorems for bup are restrited to �nite terms as aptured bythe prediate �n:De�nition 6.1 Finite terms:�n :: Children t ) t ! Bool�n = �x deeperdeeper :: Children t ) (t ! Bool)! (t ! Bool)deeper p = all p Æ hildren



6.2. A TERM INTERFACE 81The prediate �n is de�ned as the �xed point of deeper or equivalently as thelimit of a hain of approximations deepern ?. The prediate deepern ? is truefor all terms of depth less than n. Proofs by �xed point indution using �n anddeeper are losely related to proofs using the generi approximation lemma byHutton and Gibbons [44℄.Using �xed point indution we an prove a haraterization of bup:Theorem 6.2 bup-haraterization:(f �n=== g ÆmapC f ) � (f �n=== bup g)If we let f === g === id in the bup-haraterization theorem, then the premiseid �n=== id ÆmapC id follows trivially from the requirement mapC id === id ofthe lass Children. Thus we get the following orollary to bup-haraterization:Corollary 6.3 bup-identity:id �n=== bup idA law similar to the �x -equality law but for proving equality of funtions de�nedusing bup is an easy onsequene of bup-haraterization:Theorem 6.4 bup-equality:(g ÆmapC f �n=== h ÆmapC f ) � (bup g �n=== bup h)where f = bup gFuntion bup is losely related to foldTerm; both traverse the term bottom up,but bup does not distinguish variables from other (sub)terms. The behavior ofbup an be simulated by foldTerm if the substitution argument does Nothing forall variables:Theorem 6.5 bup is a foldTerm:foldTerm f (onst Nothing) �n=== bup fThe �nal theorem of this setion says that we an fuse the omposition of abottom-up traversal with a mapTerm s, where s is a funtion that maps variablesto Maybe some value, into a foldTerm, provided that the bottom-up traversal isthe identity on the result of s.Theorem 6.6 bup-mapTerm-fusion:bmapM (bup f ) Æ s === s  ) (foldTerm f s �n=== bup f ÆmapTerm s)



82 CHAPTER 6. REWRITING6.3 Substitutions, mathing and uni�ationThis setion presents three appliations expressed in terms of the methods of theTerm lass: substitutions, mathing and uni�ation. Substitutions and mathingare used in the following setion on rewriting.6.3.1 SubstitutionsA substitution is a mapping from variables to terms that hanges only a �nitenumber of variables. As the onrete representation of substitutions is irrelevantfor the de�nition of rewriting, we use an abstrat datatype Sub t for �nite mapsfrom variables to terms.idSubst :: Sub tmodBind :: (Var ; t)! Sub t ! Sub tlookupIn :: Sub t ! Var ! Maybe tThis ould be implemented as a onstrutor lass in Haskell, but we avoid thatbeause we don't want to lutter up the types with an extra type ontext. Thevalue idSubst represents the identity substitution, the all modBind (v ; t) s mod-i�es the substitution s to bind v to t (leaving the bindings for other variablesunhanged) and lookupIn s v looks up the variable v in the substitution s, givingNothing if the variable is not bound in s.Using lookupIn a substitution an be viewed as a funtion from variables to terms.To use substitutions as funtions from terms to terms we de�ne appSubst :appSubst :: Term t ) Sub t ! t ! tappSubst s = mapTerm (lookupIn s)We an also de�ne a variant of appSubst that does the equivalent of a bottom-up traversal with f after the substitution has been applied. A straightforwardimplementation would be the following:fromVarsUpAfterSubst :: Term t ) (t ! t)! (Sub t ; t)! tfromVarsUpAfterSubst f (s; t) = bup f (appSubst s t)Instead, we use a simple orollary of bup-mapTerm-fusion (Theorem 6.6) to obtaina more eÆient de�nition (for some ombinations of f and s).fromVarsUpAfterSubst :: Term t ) (t ! t)! (Sub t ; t)! tfromVarsUpAfterSubst f (s; t) = foldTerm f (lookupIn s) t



6.3. SUBSTITUTIONS, MATCHING AND UNIFICATION 83Corollary 6.7 bup-appSubst-fusion:bmapM (bup f ) Æ lookupIn s === lookupIn s )bfromVarsUpAfterSubst f (s; t) == bup f (appSubst s t)For example, if bup f is an implementation of rewriting to normal form and thesubstitution binds all variables to terms in normal form, then the ondition issatis�ed.6.3.2 MathingMathing a pattern p with a term t yields Just a substitution s suh thatappSubst s p == t or, if no suh substitution exists, then the mathing failswith Nothing . Both the pattern and the term may ontain variables, but themathing only allows variables in the pattern to be instantiated | any variablein the term is treated as a term onstant. Funtion math is de�ned in termsof math 0 that arries around a urrent substitution, starting with the identitysubstitution.math :: Term t ) t ! t ! Maybe (Sub t)math 0 :: Term t ) t ! t ! Sub t ! Maybe (Sub t)math p t = math 0 p t idSubstmath 0 p t s = maybe no yes (varChek p)where no = if topEq p t thenthreadList (zipWith math 0 (hildren p) (hildren t)) selseNothingyes v = Just (modBind (v ; t) s)We assume that the patterns are linear - that is, no variable ours twie inthe same pattern. It is easy to extend this de�nition to work in the presene ofnonlinear patterns; we do not, however, inlude the details here.The utility funtions threadList and (��) ompose monadi funtions in se-quene.threadList :: Monad m ) [a ! m a ℄! (a ! m a)threadList = foldr (��) return(��) :: Monad m ) (a ! m b)! ( ! m a)! ( ! m b)f �� g = �x ! g x >>= f



84 CHAPTER 6. REWRITING6.3.3 Uni�ationThe uni�ation algorithm desribed in this setion is inluded for ompletenessonly and it is not used in the rewriting algorithm. The reader may skip thissetion without loss of ontinuity.If we hange the pattern mathing funtion from Setion 6.3.2 to allow also vari-ables in the seond term to math expressions in the �rst term, thus making themathing symmetri, then we obtain uni�ation. A uni�ation algorithm triesto �nd a most general uni�er (mgu) of two terms. A most general uni�er oftwo terms is a smallest substitution of terms for variables suh that the substi-tuted terms beome equal. (If two �rst order terms are uni�able, then their mguis unique up to renaming [93℄.) Use of uni�ation is widespread; it is used intype inferene algorithms, rewriting systems, ompilers, et. (see the survey byKnight [68℄).Desriptions of uni�ation algorithms normally deal with a general datatype ofterms, ontaining variables and appliations of onstrutors to terms, but eahreal implementation uses one spei� instane of terms and a speialized versionof the algorithm for this term type. This setion desribes a funtional uni�ationprogram that works for all regular term types. However, we do not prove that itis a orret implementation of uni�ation.Substitutions and uni�ersA uni�er of two terms is a substitution that makes the terms equal. We startwith an example. Consider the uni�ation of the two terms F (x ; F (A;B)) andF (G(y ;A); y), where x and y are variables and F , G, A and B are term onstru-tors. Beause both terms have an F on the outermost level, these expressionsan be uni�ed if x an be uni�ed with G(y ;A), and F (A;B) an be uni�ed withy . As these two pairs of terms are uni�ed by the uni�er � = fx 7! G(y ;A); y 7!F (A;B)g, the original pair of terms is also uni�ed by applying the uni�er �,yielding the uni�ed term F (G(F (A;B);A); F (A;B)).As the example shows we use a slightly di�erent variant of appSubst for uni�ationthan the one used for mathing:appSubst :: Term t ) Sub t ! t ! tappSubst s = mapTerm (mapM (appSubst s) Æ lookupIn s)When alling appSubst s t , the substitution s is applied to all variables in theterm t as in the version for mathing, but here s is also applied reursively toall variables in the substituted terms. A substitution � is at least as general asa substitution �0 if and only if �0 an be fatored by �, that is, if there exists asubstitution � suh that appSubst �0 = appSubst � Æ appSubst �.



6.3. SUBSTITUTIONS, MATCHING AND UNIFICATION 85We want to de�ne a funtion that given two terms �nds a most general uni�erthat uni�es the terms or, if the terms are not uni�able, reports this.The uni�ation algorithmFuntion unify takes two terms, and returns their most general uni�er. It isimplemented in terms of unify 0, whih updates a urrent substitution that ispassed around as an extra argument. The uni�ation algorithm starts with theunify :: Term t ) t ! t ! Maybe (Sub t)unify 0 :: Term t ) t ! t ! Sub t ! Maybe (Sub t)unify tx ty = unify 0 tx ty idSubstunify 0 tx ty s = uni (varChek tx ; varChek ty) whereuni (Nothing;Nothing) j topEq tx ty = uniTerms tx ty sj otherwise = Nothinguni (Just i ; Just j ) j i == j = Just suni (Just i ; ) = (i 7! ty) suni ( ; Just j ) = (j 7! tx ) suniTerms :: Term t ) t ! t ! Sub t ! Maybe (Sub t)uniTerms x y = threadList (zipWith unify 0 (hildren x ) (hildren y))( 7!) :: Term t ) Var ! t ! Sub t ! Maybe (Sub t)(i 7! t) s = if oursChek i s t then Nothingelse ase lookupIn s i ofNothing ! Just (modBind (i ; t) s)Just t 0 ! unify 0 t t 0 sFigure 6.1: The ore of the uni�ation algorithmidentity substitution, traverses the terms and tries to update the substitution(as little as possible) while solving the onstraints found. If this sueeds, thenthe resulting substitution is a most general uni�er of the terms. The algorithmdistinguishes three ases depending on whether or not the terms are variables.� If none of the terms is a variable, then we have two sub-ases; either theonstrutors of the terms are di�erent (that is, the terms are not top levelequal) and uni�ation fails, or the onstrutors are equal and we unify allthe hildren pairwise.



86 CHAPTER 6. REWRITINGvars :: (Children t ;VarChek t) ) t ! [Var ℄vars t = [v j Just v  map varChek (subTerms t)℄subTerms :: Children t ) t ! [t ℄subTerms t = t : onat (map subTerms (hildren t))oursChek :: Term t ) Var ! Sub t ! t ! BooloursChek i s t = i 2 reahlist (vars t)wherereahlist l = l ++ onat (map reahable l)reahable v = reahlist (maybe [ ℄ vars (lookupIn s v))Figure 6.2: Auxiliary funtions in the uni�ation algorithm� If both terms are variables and the variables are equal, then we sueedwithout hanging the substitution. (If the variables are not equal, then thefollowing ase mathes.)� If one of the terms is a variable, then we try to add the binding of thisvariable to the other term, to the substitution. This sueeds if the variabledoes not our in the term and if the new binding of the variable an beuni�ed with the old binding (in the urrent substitution).A straightforward implementation of this desription gives the ode in Figure 6.1using the auxiliary funtions in Figure 6.2. Part of a orretness proof of thisimplementation an be found in the introdution to generi programming fromthe summer shool on Advaned Funtional Programming 1998 [2℄.6.4 RewritingThis setion spei�es polytypi rewriting by means of a learly orret, but inef-�ient funtion. The spei�ation an be transformed, using the proof tools for�xed points and terms presented in the previous setions, in a number of stepsinto an eÆient rewriting funtion.We start in Setion 6.4.1 with de�ning a funtion rewrite step , whih performs asingle rewrite step on a term. Funtion rewrite step is then used in a spei�ation(a learly orret, but very ineÆient version) of funtion rewrite in Setion 6.4.2.Using laws about least �xed points and the de�nitions of onrete �xed points inSetion 6.4.3, funtion rewrite is transformed into an eÆient rewriting funtionin a sequene of four steps in Setion 6.4.4.



6.4. REWRITING 87Many of the funtions de�ned in sequel are parametrized on the rule list (rep-resenting the rewriting system). As the rule list argument is �xed during therewriting alulations, we write this argument as a subsript to improve readabil-ity. For example, we write rewriters t for the appliation of funtion rewrite tothe rule list rs and the term t .6.4.1 One step rewritingGiven a rule list rs and a term t to math we an selet the �rst mathing rulewith �rstmathrs t :�rstmath :: Term t ) Rules t ! t ! Maybe (Sub t ; t)�rstmathrs t = �rstJust (map (try t) rs)where try t (lhs; rhs) = mapM (�s ! (s; rhs)) (math lhs t)�rstJust :: [Maybe a ℄! Maybe a�rstJust = foldr mplus Nothingmplus :: Maybe a ! Maybe a ! Maybe amplus (Just x ) m = Just xmplus Nothing m = mIf a rule mathes, then �rstmathrs t returns Just a pair (s; rhs) of the substi-tution and the right hand side of the mathing rule. A note on notation: weuse subsripts for the rule list parameter to various rewriting funtions, as in�rstmathrs . The subsript is used as a onvenient syntax for normal funtionappliation.Using �rstmath and appSubst we an transform a rule list to a top level redutionfuntion redueM that gives Just the rewritten term or Nothing. An immediatevariant is redue that returns the term unhanged if no rule mathes.redueM :: Term t ) Rules t ! t ! Maybe tredueMrs = mapM (unurry appSubst) Æ �rstmathrsredue :: Term t ) Rules t ! t ! treduers t = maybe t id (redueMrs t)The redue funtions only apply the rewrite rules on the top level of the term,but we want to apply the rules at any level. In a relational treatment of rewritingthis orresponds to extending the top level redution relation to a ongruene. Toretain the deterministi funtional view we have to hoose a rewriting strategy.We have hosen the parallel innermost rewriting strategy as this lets us transform



88 CHAPTER 6. REWRITINGthe rewriting funtion into an asymptotially optimal solution. Innermost meansthat we order the subterms by their depth and apply the redution funtion bot-tom up until the �rst math, and parallel means that all subterms at the samedepth are redued at the same time. Funtion parallelInnermost takes any toplevel term transformer to a global one step transformer, using the parallel inner-most rewriting strategy. (The orresponding funtion for the parallel outermostrewriting strategy, parallelOutermost , is inluded here for omparison, but is notused in the sequel.)parallelInnermost :: (Children t ;TopEq t) ) (t ! t)! t ! tparallelInnermost f = ontIfFixedBy f (mapC (parallelInnermost f ))parallelOutermost :: (Children t ;TopEq t) ) (t ! t)! t ! tparallelOutermost f = ontIfFixedBy (mapC (parallelOutermost f )) fontIfFixedBy :: (Children t ;TopEq t) ) (t ! t)! (t ! t)! t ! tontIfFixedBy r f = i� �xedBy f then r else fCombining parallelInnermost with redue we arrive at one-step rewriting:rewrite step :: Term t ) Rules t ! t ! trewrite steprs = parallelInnermost reduers6.4.2 Rewriting to normal formThe �nal step needed to obtain rewriting to normal form is, in relational termi-nology, the transitive losure. As a funtional ounterpart we use a �xed pointoperator fp that takes a one step redution funtion r to a normalizer by applyingr until the input term doesn't hange:fp :: Term t ) (t ! t)! t ! tfp f = i� �xedBy f then id else fp f Æ fThe result res == fp f x , when fp terminates, is a �xed point in the sense thatres == f res, that is, �xedBy f res holds. Now we are ready to de�ne rewritingto normal form:rewrite :: Term t ) Rules t ! t ! trewriters = fp rewrite steprsFuntion rewriters rewrites a term until no rule applies anymore, that is, itrewrites a term to normal form. A term is in normal form for a rule list rsif it is unhanged by rewrite steprs :normal :: Term t ) Rules t ! t ! Boolnormal rs = �xedBy rewrite steprs



6.4. REWRITING 89For rule lists rs orresponding to strongly normalizing rewrite systems, rewriterswill take any term to its normal form, but rewriters also works for the subset ofnormalizing terms of any other rewriting system. If a term has multiple normalforms, then rewriters alulates only the one (if any) reahable by the parallelinnermost rewriting strategy. If this strategy does not terminate for a ertainterm, then neither does rewriters . More formally, we de�ne normalizing termsand the �rst theorem for rewrite :De�nition 6.8 Normalizing terms:normalizing :: Term t ) Rules t ! t ! Boolnormalizingrs = �x moreNormal rsmoreNormal :: Term t ) Rules t ! (t ! Bool)! (t ! Bool)moreNormal rs p = normal rs _ p Æ rewrite steprsTheorem 6.9 Rewriting gives a normal form:bnormalizingrs  ) bnormal rs Æ rewriters The proof of this theorem by �xed point indution is in the next setion.Funtion rewriters an be seen as an exeutable spei�ation of rewriting to nor-mal form for a given rule list and a given term. It an be useful for experimentingwith di�erent rule lists but for larger terms it is unaeptably ineÆient. We de-�ne the norm of a term (with respet to a spei� rule list) to be the number of(parallel innermost) redution steps that it takes to reah normal form:norm :: Term t ) Rules t ! t ! Intnormrs t = if normal rs t then 0 else 1 + normrs (rewrite steprs t)The time it takes to exeute rewriters is linear in the norm, n, of the inputterm but quadrati in the (average) size, s, of the term being rewritten. Clearlyit should be possible to do better than that - optimally we hope to obtain arunning time of O(n + s). Using the laws for �xed points and terms given inthe previous setions, we an transform the spei�ation of rewriting, rewriters ,into an optimal funtion. The result of this transformation, whih is linear in thenorm of the input term, is presented in Setion 6.4.4.



90 CHAPTER 6. REWRITING6.4.3 Conrete �xed pointsUsing �x we an give the following equivalent de�nition of funtion fp presentedin Setion 6.4.2:fp :: Term t ) (t ! t)! t ! tfp f = �x (�p f )�p :: Term t ) (t ! t)! (t ! t)! (t ! t)�p f r = i� �xedBy f then id else r Æ fThe two parameters of �p f r are both funtions. The �rst parameter is usedto test if we have reahed a onrete �xed point. It does not hange duringthe alulation of �x (�p f ). The seond parameter, on the other hand, is anapproximation of fp f . It starts out as ? and improves in eah iteration of �x .Thus �p f is an example of an improvement funtion.Calulating �xed points using �p is often very ineÆient beause of the expensiveequality test in �xedBy. For some funtions f , the eÆieny an be improved ifthe equality test is fused with f , so that f t is Nothing if the term is left unhangedand Just the hanged term otherwise. The orresponding hange to �p results in�pM :�pM :: (a ! Maybe b)! (b ! a)! a ! a�pM fM r = �x ! maybe x r (fM x )A typial example of a funtion f with the desired property is, as we will seelater, reduers .A fusion lemma for �pM is an easy onsequene of the maybe - mapM - fusionlaw from the prelude (Chapter 2):Lemma 6.10 �pM - mapM - fusion:�pM (mapM f Æ g) r == �pM g (r Æ f )6.4.4 Improving rewritingIn this setion we transform the de�nition of rewrite step by step until we reaha linear algorithm. Eah transformation step is reasonably small and the orret-ness of the whole sequene is proved by a hain of equalities of the intermediateversions. As eah funtion is a version of rewrite we will use names suh asrewriteB, rewriteC et. Proofs of some of the theorems of this setion are givenin Setion 6.5.



6.4. REWRITING 91Children �rstAs a �rst step, we transform the spei�ation into a de�nition that atually hasa slightly worse running time than the original, but whih simpli�es the omingtransitions. We are aiming at using the bottom up nature of the parallel innermostrewriting strategy to obtain an eÆient rewriting algorithm that is a bottom uptraversal on the outermost level. With rewriting de�ned using bup we an makeoptimizations based on the invariant that all hildren already are in normal formwhen a ertain level is to be rewritten. For the �rst \improved" variant we thushoose:rewriteBrs = bup rewritersThe orretness of this �rst step follows from the fat that we an always rewritethe hildren to normal form �rst and only then start working on the top level.Theorem 6.11 Children �rst:rewriters �n=== rewriters ÆmapC rewritersIntuitively this theorem follows immediately from the use of an innermost rewrit-ing strategy, but the proof by �xed point indution is rather long and omittedfrom this presentation.Corollary 6.12 Version B equals the spei�ation:rewriters �n=== rewriteBrsThe orollary follows from theorem 6.11 by bup-haraterization.Using the normal hildren invariantFor the next transformation we need to look more losely at the de�nition ofrewriteB. The �rst thing to note is that the outermost bup means that we knowthat all hildren are in normal form when the argument to bup is applied. Thenit is learly overkill to use the full edged rewrite funtion at that stage, whena simpler variant would suÆe, but it is important that the simpler variant isguaranteed to produe only normal forms so that the \normal hildren" invariantis preserved. To get an idea of where to go next, we expand the de�nitions ofrewrite and fp to arrive at this equivalent de�nition of rewriteB:rewriteBrs = bup (�x (�p rewrite steprs))



92 CHAPTER 6. REWRITINGIf we unfold �x one level, then we see that the argument to bup is of the formr = �p rewrite steprs r 0. The \normal hildren" invariant means that thefuntion r will reeive a term whose hildren are in normal form. If we expandthe de�nition of �p, then we getr = i� �xedBy rewrite steprs then id else r 0 Æ rewrite steprsAs the hildren of the input term are in normal form, the bottom up rewrit-ing strategy implemented by rewrite steprs will not �nd a reduible term untilpossibly at the top level. More formally, this is aptured by the following lemma.Lemma 6.13 Rewrite with normal hildren is redue:rewrite steprs deeper normal rs=== reduersProof: Expand the de�nition of rewrite step one level and use Lemma 6.18. 2Thus we an replae rewrite step by redue in r to obtain r == �p reduers r 0.Unfortunately we annot immediately make the same transformation also for r 0as the term argument of r 0 is reduers t whose hildren need not be in normalform. But if we replae r 0 with bup r , then the funtion r will only be applied tonormal terms. (That this is really the ase is not easy to see, but it is on�rmedby a proof using �xed point indution.)To summarize, we an replae �x (�p rewrite steprs) by �x (�p reduers Æ bup)to arrive at the de�nition:rewriteCrs = bup (�x (�p reduers Æ bup))This mind boggling reature an be simpli�ed somewhat by the rolling rule:f (�x (g Æ f )) = �x (f Æ g)rewriteCrs = �x (bup Æ �p reduers)Theorem 6.14 Version B equals version C:rewriteBrs normalizingrs=== rewriteCrsThe asymptoti omplexity is not hanged by this transformation.



6.4. REWRITING 93Removing equality heksFuntion redue an be expressed in terms of �pM and redueM.reduers = �pM redueMrs idIf we expand this de�nition in version C, then we get:rewriteCrs = �x (bup Æ �p (�pM redueMrs id))We an simplify the expression �p (�pM redueMrs id) to �pM redueMrs andthus remove all equality heks, if we make an assumption about the rule list:bredueMrs t == Just x  ) b: (t == x )By examining the implementation of redueMrs , we an express the requirementas follows: in the rule list rs, a rule should only math a term, if applying thatrule hanges the term. This is a reasonable requirement. Otherwise, if a rulean math but leave the term unhanged, then rewriteDrs will loop even thoughrewriteCrs would have terminated (with the unhanged term).The new version of the rewriting funtion is the following:rewriteDrs = �x (bup Æ �pM redueMrs)Theorem 6.15 Version C equals version D:rewriteCrs normalizingrs=== rewriteDrsThe simple proof is presented in Setion 6.5.This transformation redues the asymptoti omplexity of rewriting: version A-Care quadrati in the size (as alulated by funtion size in Setion 6.2.3) but ver-sion D is linear in the size. They are all linear in the norm (that is, the numberof rewrite steps as alulated by funtion norm is Setion 6.2.3). Moreover, re-moving the equality tests is essential to obtain a version with a better omplexitythan linear in the size.



94 CHAPTER 6. REWRITINGAvoiding unneessary traversals of normal hildrenAn analysis of rewriteD shows that quite some time is spent on trying to rewriteterms that are already normal. After eah suessful rewrite step with a rule(lhs; rhs), the resulting term is traversed bottom up in searh of redees. Butas the inoming term has normal hildren, the resulting term is rhs with normalterms substituted for its variables. Clearly any redees in this result must bein the topmost part oming from rhs. The following transformation hangesrewriteD to limit the searh for redees to this topmost part.We start by using the rolling rule on version D.rewriteDrs� fDe�nition g�x (bup Æ �pM redueMrs)� fRolling rule (Lemma 2.12) gbup (�x (�pM redueMrs Æ bup))� f Introdue redueErs = �pM redueMrs Æ bup gbup (�x redueErs)Now we transform redueE.redueErs r� fDe�nition of redueErs g�pM redueMrs (bup r)� fDef.: redueMrs = mapM (unurry appSubst) Æ �rstmathrs g�pM (mapM (unurry appSubst) Æ �rstmathrs) (bup r)� f �pM -mapM -fusion (Lemma 6.10) g�pM �rstmathrs (bup r Æ unurry appSubst)� f bup-appSubst-fusion (Corollary 6.7) g�pM �rstmathrs (fromVarsUpAfterSubst r)



6.4. REWRITING 95The real improvement omes in the last step. In the next to last expression,remember that �rstmathrs t gives Just a pair (s; rhs) of a substitution andthe right hand side of the mathing rewrite rule, or Nothing if no rule applies.Funtion appSubst applies s to rhs, and bup r applies r at all levels in theresulting term. We know that all hildren of the inoming term are normal, andthis means that all variables in the substitution s will be bound to normal terms.But when appSubst is applied the information about whih terms are normal islost, and the bottom up traversal is used to restore the invariant.The improved version is obtained by fusing bup r with appSubst to a funtionfromVarsUpAfterSubst r . The improved version only applies r from the variablesin the right hand side of the mathing rule and upwards upwards, and leaves thenormal hildren alone. The improved version is thus:rewriteErs = bup (�x (�pM �rstmathrs Æ fromVarsUpAfterSubst))Theorem 6.16 Version D equals version E:rewriteDrs normalizingrs=== rewriteErsThis version of rewrite is linear in the number of steps needed to rewrite a term,and independent of the size of the intermediate terms. This big improvementis obtained by avoiding repeated traversals of already normal hildren. The im-proved version instead only traverses the right hand sides from the mathingrules.6.4.5 EÆieny omparisonA very simple measure of the running time for the di�erent rewriting funtions isthe number of Hugs-redution steps (not to be onfused with rewriting steps in therewriting system) required to run the funtions on some examples. The followingtable shows some measurements of the number of Hugs redutions required bythe di�erent versions to rewrite the expression 2n for n = 6; 7; 8. The number 2abbreviates S (S Z ) :: Expr and the exponentiation notation (2n), is a shorthandfor repeated multipliations (uses of ( :�: )). The expression is normalized usingthe rewrite rules exprrules de�ned in Setion 6.1.Hugs-redutions for versionexpression rewrite steps A B C D E26 107 7:4M 7:4M 2:7M 478k 72k27 179 47M 47M 20M 1:6M 122k28 323 344M 344M 156M 5:7M 218ke n O(e2n) O(e2n) O(e2n) O(en) O(n)



96 CHAPTER 6. REWRITINGThe last line in the table gives the asymptoti omplexity for the di�erent versionsin terms of the size of the answer e and the number of parallel innermost rewritesteps n. The number of rewrite steps n inreases more slowly than the size ofthe answer e as the parallel rewriting strategy performs more and more innerredutions in parallel as the terms grow. Hene, n is not quite proportional toe, and we an analyze the omplexity in terms of both variables. As we an seefrom the table all versions are linear in n but the dependene on e di�ers. Asn is the number of rewrite steps, we an think of the dependene on e as theomplexity per rewrite step.For versions A-C the omplexity an be explained by the test for equality at everynode in the term. As the equality hek and the number of nodes are both linearin e, we get a quadrati dependeny in total. An equality test that reports Falseis often quik, but determining that two terms are ompletely equal is of ourselinear. As the equality heks are performed to see if a term is in normal form, wean on�rm the suspiion that these versions do a lot of work on already normal(sub)terms.Version D redues the e omplexity to linear, by removing the equality heks,but in every rewrite step it still traverses the normal subterms and applies mathin searh for reduible terms. Version E ompletely removes the unneessarytraversals of normal subterms, and thus redues the ost of eah rewrite step toa onstant (determined by the rule list).6.5 ProofsIn this setion we prove the term ombinator laws from Setion 6.2.4 and aseletion of the rewriting funtion laws from Setion 6.4. We start with a fewlemmata used in the proofs.As variables have no hildren, they annot be hanged by mapC :Lemma 6.17 mapC does not hange variables:bisJust Æ varChek  ) bmapC f === id Lemma 6.18 Fixed by mapC :�xedBy (mapC f ) === deeper (�xedBy f )The following lemma (used in the proof of bup-haraterization) is an easy on-sequene of the laws required for Term instanes and the de�nition of ( == ).



6.5. PROOFS 97Lemma 6.19 Deep equality and mapC:mapC f === mapC g = deeper (f === g)The improvement funtion deeper used in the de�nition of �n = �x deeper ismonotone in the following sense:Lemma 6.20 deeper is monotone:For all p and q:(bp ) bq ) ) (bdeeper p ) bdeeper q )6.5.1 Proofs of term ombinator lawsIn this subsetion we restate and prove the laws from Setion 6.2.4.Theorem 6.2 (with proof) bup-haraterization:(f �n=== g ÆmapC f ) � (f �n=== bup g)Proof: The ( impliation follows immediately from the de�nition of bup. Forthe other impliation we �rst assume the left hand side is true and expand thede�nition of the right hand side to expose the �xed points:f �x deeper=== �x ((gÆ) ÆmapC )We use �xed point indution with n = 2, improvement funtions i1 = (gÆ) ÆmapC and i2 = deeper and relation P :P (h; p) = f p=== h ^ InLimi2 pThe side ondition InLimi2 p = bp ) b�n  follows from Lemma 6.20 (mono-toniity of deeper) and Lemma 2.17 (InLim), thus we only need to prove theequality here.Base ase: P (?;?) is trivially true as b? = false and (false ) q) = true.Indutive ase: We prove P (g ÆmapC h; deeper p) ( P (h; p) by alulation:



98 CHAPTER 6. REWRITINGP (g ÆmapC h; deeper p)� fDe�nitions gf deeper p=== g ÆmapC h( fTransitivity: a q===  ( (a q=== b) ^ (b q=== ) g(f deeper p=== g ÆmapC f ) ^ (g ÆmapC f deeper p=== g ÆmapC h)( fUse the assumption f �n=== g ÆmapC f on the left gg ÆmapC f deeper p=== g ÆmapC h( fCanel g , de�nition of ( q=== ) gbdeeper p ) bmapC f === mapC h � f Lemma 6.19 gbdeeper p ) bdeeper (f === h)( f Lemma 6.20: deeper is monotone gbp ) bf === h � fDe�nition of ( q=== ) and P (h; p) gP (h; p)2Theorem 6.4 (with proof) bup-equality:(g ÆmapC f �n=== h ÆmapC f ) � (bup g �n=== bup h)where f = bup gProof: We alulate as follows:g ÆmapC f �n=== h ÆmapC f� fBy de�nition: f = bup g gg ÆmapC (bup g) �n=== h ÆmapC (bup g)� fBy de�nition: g ÆmapC (bup g) === bup g gbup g �n=== h ÆmapC (bup g)� f bup-haraterization gbup g �n=== bup h2



6.5. PROOFS 99Theorem 6.5 (with proof) bup is a foldTerm:foldTerm f (onst Nothing) �n=== bup fProof: By bup-haraterization the theorem follows from:foldTerm f (onst Nothing) �n=== f ÆmapC (foldTerm f (onst Nothing))We let s = onst Nothing and alulate:foldTerm f s= fDe�nition of foldTerm g�t ! maybe (f (mapC (foldTerm f s) t))(maybe (f t) id Æ onst Nothing)(varChek t)= f Simplify maybe: maybe n j Æ onst Nothing === onst n g�t ! maybe (f (mapC (foldTerm f s) t))(onst (f t))(varChek t)= f Lemma 6.17: mapC does not hange variables g�t ! maybe (f (mapC (foldTerm f s) t))(onst (f (mapC (foldTerm f s) t)))(varChek t)= f Simpli�ation: maybe n (onst n) m == n if m is not ? g�t ! f (mapC (foldTerm f s) t)= fDe�nition of (Æ) gf ÆmapC (foldTerm f s)The value m in the seond last step is not ? beause the input term is �nite andvarChek terminates for �nite terms. 2Theorem 6.6 (with proof) bup-mapTerm-fusion:bmapM (bup f ) Æ s === s  � foldTerm f s �n=== bup f ÆmapTerm s



100 CHAPTER 6. REWRITINGProof: We give a alulational proof by indution over the depth of the inom-ing term. Thus the indution hypothesis is that the equality holds for terms oflower depth.bup f ÆmapTerm s= f de�nition of mapTerm, foldTerm gbup f Æ �t ! maybe (mapC (mapTerm s) t)(maybe t id Æ s)(varChek t)= fmaybe-fusion: g Æmaybe n j = maybe (g n) (g Æ j ) g�t ! maybe (bup f (mapC (mapTerm s) t))(maybe (bup f t) (bup f ) Æ s)(varChek t)= f Subalulations below of the �rst two arguments of maybe g�t ! maybe (f (mapC (foldTerm f s) t))(maybe (f t) id Æ s)(varChek t)= f de�nition of foldTerm gfoldTerm f sThe seond but last step, where we simplify the �rst two arguments to maybe, ismotivated by the following alulations. For the �rst argument we havebup f ÆmapC (mapTerm s)= fDe�nition bup gf ÆmapC (bup f ) ÆmapC (mapTerm s)= fmapC preserves omposition gf ÆmapC (bup f ÆmapTerm s)= f Indution hypothesis: bbup f ÆmapTerm s === foldTerm f s  gf ÆmapC (foldTerm f s)



6.5. PROOFS 101In the simpli�ation of the seond argument of maybe, we know that the inomingterm is a variable. Thus we an alulate as follows:maybe (bup f t) (bup f ) Æ s= fUnfold the �rst bup one level gmaybe (f (mapC (bup f ) t)) (bup f ) Æ s= f Lemma 6.17: mapC does not hange variables gmaybe (f t) (bup f ) Æ s= fmaybe-law: maybe n (j Æ g) === (maybe n j ) ÆmapM g gmaybe (f t) id ÆmapM (bup f ) Æ s= fAssumption mapM (bup f ) Æ s === s gmaybe (f t) id Æ s26.5.2 Proofs of rewriting transformationsIn this subsetion we restate and prove a seletion of the rewriting funtion lawsfrom Setion 6.4.Lemma 6.21 moreNormal is monotone:For all p and q:(bp ) bq ) ) (bmoreNormalp  ) bmoreNormal q )Theorem 6.9 (with proof) Rewriting gives a normal form:bnormalizingrs  ) bnormalrs Æ rewriters 



102 CHAPTER 6. REWRITINGProof: Expand the de�nitions of normalizing and rewrite to expose the �xedpoints:b�x moreNormal rs  ) bnormal rs Æ �x (�p rewrite steprs)Use �xed point indution with n = 2, prediateP (f ; p) = bp ) bnormal rs Æ f and the improvement funtions i1 = �p rewrite steprs and i2 = moreNormal rs .The base ase P (?;?) is trivial as the left hand side of the impliation is false.For the indutive step start by transforming normalrs Æ �p rewrite steprs f .bnormal rs Æ �p rewrite steprs f � fDe�nition of �p gbnormal rs Æ i� normal rs then id else f Æ rewrite steprs � f Lemma 2.8: i� then else -fusion gi� normalrs then bnormal rs  else bnormal rs Æ f Æ rewrite steprs � f Lemma 2.9 gi� normalrs then true else bnormal rs Æ f Æ rewrite steprs � f Lemma 2.10: _ expressed with i� then else . gbnormal rs _ (normalrs Æ f Æ rewrite steprs)� fDe�nition of moreNormal gbmoreNormal rs (normal rs Æ f )Thus prepared the alulation is simple:P (f ; p)� fDe�nition of P gbp ) bnormalrs Æ f ) fMonotoniity of moreNormal gbmoreNormal rs p ) bmoreNormalrs (normalrs Æ f )� fPreeding alulation gbmoreNormal rs p ) bnormalrs Æ �p rewrite steprs f � fDe�nition of P gP (�p rewrite steprs ;moreNormalrs f )2



6.5. PROOFS 103Theorem 6.15 (with proof) Version C equals version D:rewriteCrs normalizingrs=== rewriteDrsProof: The de�nitions of rewriteCrs and rewriteDrs are very similar:rewriteCrs = �x (bup Æ �p reduers)rewriteDrs = �x (bup Æ �pM redueMrs)Thus it is enough to show that �p reduers === �pM redueMrs . Rememberthat reduers t = maybe t id (redueMrs t) and alulate as follows:�p reduers r t == �pM redueMrs r t� fDe�nition of �p and �pM gif t == reduers t then t else r (reduers t)== maybe t r (redueMrs t)� fCase analysis on redueMrs t gase redueMrs t ofNothing ! (if t == t then t else r t) == tJust x ! (if t == x then t else r x ) == r x� f Simplify gase redueMrs t ofNothing ! t == tJust x ! if t == x then t == r x else r x == r x� fReexivity and assume : (t == x ) is true gTrueThus �p reduers === �pM redueMrs follows from the assumptionbredueMrs t == Just x  ) b: (t == x ) :2



104 CHAPTER 6. REWRITING6.6 ConlusionsWe have presented a framework for polytypi programming on terms, with whihpolytypi programs for mathing, uni�ation, rewriting, et. an be onstruted.The framework is an interfae onsisting of four funtions. Using these four basifuntions we have de�ned a set of ombinators on terms, and we have provedseveral laws for these ombinators. The framework has been used to alulate aneÆient rewriting program from an ineÆient, learly orret spei�ation.Beause the only polytypi omponents of the funtions for rewriting, mathingand uni�ation are the funtions in the term interfae, our funtions are inde-pendent of the partiular implementation of polytypism. This is an importantadvantage. Other, less domain spei�, frameworks for polytypi programmingare the monadi traversal library of Moggi, Bell�e and Jay [81℄ and the basi om-binator library PolyLib (Chapter 5). Very likely there are other domain spei�polytypi libraries, but they an only be determined by developing many examplepolytypi programs.



Chapter 7Polytypi Data ConversionPrograms1
AbstratSeveral generi programs for onverting values from regular datatypesto some other format, together with their orresponding inverses,are onstruted. The formats onsidered are shape plus ontents,ompat bit streams and pretty printed strings. The di�erent dataonversion programs are onstruted using John Hughes' arrow om-binators along with a proof that printing (from a regular datatypeto another format) followed by parsing (from that format bak tothe regular datatype) is the identity. The printers and parsers aredesribed in PolyP, a polytypi extension of the funtional languageHaskell.7.1 IntrodutionMany programs onvert data from one format to another, for example, parsers,pretty printers, data ompressors, enryptors and funtions that ommuniatewith a database. Some of these programs, suh as parsers and pretty printers,ritially depend on the struture of the input data. Other programs, suh as mostdata ompressors and enryptors, more or less ignore the struture of the data.Using the struture of the input data in a program for a data onversion problemalmost always gives a more eÆient program with better results. For example,1An artile version of this hapter has been submitted to Siene of Computer Programmingin 2000 [53℄. A shorter version, \Polytypi ompat printing and parsing", appeared in theproeedings of the European Symposium on Programming in 1999 [48℄.



106 CHAPTER 7. DATA CONVERSIONa data ompressor that uses the struture of the input data runs faster andompresses better than a onventional data ompressor. This hapter onstrutsseveral polytypi data onversion programs that make use of the struture of theinput data. We onstrut programs for determining the shape of data, pakingand pretty printing data.7.1.1 Data onversion programsShape.A value of a ontainer type d a an be uniquely represented by its shape (of typed ()) and a list of its ontents (of type [a ℄). As an example, onsider the datatypeof binary trees with leaves ontaining values of type a.data Tree a = Leaf a j Bin (Tree a) (Tree a)The following example binary treetree :: Tree Inttree = Bin (Bin (Leaf 1) (Bin (Leaf 7) (Leaf 3))) (Leaf 8)an be represented by a pair of its shapetreeShape :: Tree ()treeShape = Bin (Bin (Leaf ()) (Bin (Leaf ()) (Leaf ()))) (Leaf ())and its ontents [1; 7; 3; 8℄.Our �rst data onversion program is a program for separating a value into itsshape and its ontents, together with its inverse: a program that ombines ashape and some ontents into a datatype value. The onstrution proves thatthe two funtions are eah others' inverses. Note that shapes are at the heart ofJay's [56℄ theory of polytypism, but here we only use separate and ombine asexamples of simple data onversion programs.We start with this almost trivial data onversion problem beause these on-version funtions serve as nie examples of simple polytypi programs, but alsobeause muh of the essential struture of the paking and pretty printing pro-grams is present already at this stage.



7.1. INTRODUCTION 107Paking.Many �les that are distributed around the world, either over the Internet or onCD-rom, possess struture | examples are databases, HTML �les, and Java-Sript programs | and it pays to ompress these strutured �les to obtain fastertransmission or fewer CDs. Struture-spei� ompression methods give muhbetter ompression results than onventional ompression methods suh as theUnix ompress utility [6, 15℄. Strutured ompression is also used in heap om-pression and binary I/O [104℄.The idea of designing struture-spei� ompression programs has been aroundsine the beginning of the 1980s, but, as far as we are aware, there is no generidesription of the program, only example instantiations appear in the literature.This hapter desribes the ompression program generially by ombining a poly-typi parser with a polytypi paking program. The unompression program issimilarly omposed of a polytypi unpaker and a polytypi pretty printer.Our paking algorithm ompresses data by ompatly representing the strutureof the data using only stati information | the type of the data. Traditional(bit stream) ompressors that use dynami (statistial) properties of the dataare largely orthogonal to our approah and thus the best ompression results areobtained by omposing the paker with a bit stream ompressor.Pretty printing.Modern programming languages allow the user to de�ne new kinds of data. Whentesting or debugging a program, the user often wants to see values of these newdatatypes. Many languages support the automati derivation of printing fun-tions for user-de�ned datatypes. For example, by writing deriving Show after aHaskell datatype de�nition, the funtion show for this datatype is obtained forfree. Thus in Haskell one an use a built-in polytypi funtion show , but showan not be expressed in the language, and one an not de�ne alternative polytypipretty printing funtions.This hapter shows how one an de�ne polytypi versions of the funtions showand its inverse read that work for values of arbitrary regular datatypes. Again,the funtions show and read are eah others inverses by onstrution. Thuswe externalize the de�nitions of these funtions (in Haskell they are part of theompiler and annot be inspeted), and we show that our de�nitions are orret.7.1.2 Construting data onversion programsThe fundamental property of the three printing funtions print just desribed isthat eah of them has a right inverse with respet to forward omposition: the



108 CHAPTER 7. DATA CONVERSIONparsing funtion parse. That is, print ; parse = id , but parse ; print need not beid .2 In the rest of the hapter we will write just inverse, when we really mean rightinverse. This is a very ommon spei�ation pattern: all data onversion problemsare spei�ed as pairs of inverse funtions with some additional properties. In thishapter, the driving fore behind the de�nitions of the funtions print and parse isinverse funtion onstrution. Thus orretness of print and parse is guaranteedby onstrution. Interestingly, when we fored ourselves to only onstrut pairs ofinverse funtions, we managed to redue the size and omplexity of the resultingprograms onsiderably ompared with our previous attempts.The onversion programs are expressed using arrows | John Hughes' suggestionfor generalizing monads [42℄. The arrow ombinators an be seen as de�ning asmall (impure) funtional language embedded in Haskell. We use onstrutorlasses to allow for varying interpretations of this embedded language. Thus theonversion programs are impliitly parametrized with respet to the hoie ofimplementation and semantis for this embedded language, and the laws neededto prove the orretness of the onversion programs are expressed as restritionson the possible implementations.This hapter has the following goals:� onstrut a number of polytypi programs for data onversion problems,together with their inverses;� show how to onstrut and alulate with polytypi funtions.The implementation of the data onversion programs as PolyP ode an be ob-tained from the polytypi programming WWW page [49℄.The rest of this hapter is organized as follows. Setion 7.2 onstruts poly-typi programs for separating a datatype value into its shape and its ontents,and for ombining shape and ontents bak to the original value. Setion 7.3introdues an abstrat funtion onept alled arrows, whih is used a lot in thefollowing setions. Setion 7.4 de�nes two kinds of arrow maps and proves thatthey are inverses. Setion 7.5 skethes the onstrution and orretness proof ofthe paking program. Setion 7.6 onstruts polytypi programs for showing andreading values of datatypes. Setion 7.7 de�nes instanes of the various arrowlasses. Setion 7.8 onludes with an overview of the results, a disussion andsome suggestions for future work.2The omposition parse ; print is automatially almost id : if s = print x then(parse ; print) s = (print ; parse ; print) x = (id ; print) x = print x = s. Thus it is id onthe image of the print funtion (a subset of the set of values that an be parsed) | but thebehavior for other values is not spei�ed.



7.2. SHAPE 1097.2 ShapeThe shape of a value is its struture without its ontents. This setion de�nesfuntions for separating a datatype value into its shape and its ontents, and forombining shape and ontents to a datatype value. Furthermore, it proves thatthe omposition of these funtions is the identity.7.2.1 Funtion separateA �rst de�nition of funtion separate, using the funtions atten and pmap, waspresented already in Setion 3.9.separate :: Regular d ) d a ! (d (); [a ℄)separate x = (pmap (onst ()) x ;atten x )It is more diÆult to de�ne the funtion ombine, the inverse of funtion separate.A standard implementation of funtion ombine traverses the shape, arryingaround the ontent list, and inserts one element from the list at eah of theparameter positions in the shape. Beause it is not easy to prove that suh afuntion is the inverse of funtion separate, we rede�ne funtion separate to makethe inverse onstrution straightforward.The preeding de�nition of funtion separate traverses its input datatype valuetwie: one with pmap (onst ()), and one with atten. We an fuse these twotraversals into a single traversal that arries around an aumulating state pa-rameter. This traversal is arried out by a funtion similar to pmap whih weall an arrow map. The arrow map takes as argument a funtion, in this asethe funtion put , whih at eah parameter position prepends the element to theaumulating list, and replaes the element by the empty tuple. To avoid `pol-lution' of the types with state information, we introdue a new type onstrutorSA for funtions that side-e�et on a state.newtype SA s a b = SA ((a; s)! (b; s))We use the notation a ;s b for SA s a b. Using this type and an arrow mapalled pmapAr, we obtain the following de�nition for funtion separate.separate :: d a ;[a℄ d ()separate = pmapAr putput :: a;[a℄ ()put = SA (�(a; xs)! ((); a : xs))pmapAr :: (a;s b)! (d a ;s d b)



110 CHAPTER 7. DATA CONVERSIONwhere pmapAr is de�ned in Setion 7.4. The r in pmapAr denotes the diretionof the traversal: pmapAr is a right to left traversal. This means that given atree node with two subtrees, funtion pmapAr �rst traverses the right subtree,and then the left subtree. Diretion doesn't matter for normal maps, but formaps that arry around and update a state diretion is important. For separatewe ould have used put 0 = SA (�(a; xs)! ((); xs ++ [a℄)) and the left to righttraversal, pmapAl, but it turns out that the (somewhat ounterintuitive) right toleft traversal with put is lazier, more eÆient and easier to prove orret.7.2.2 Funtion ombineUsing the left to right traversing variant of the arrow map, pmapAl, we an writethe inverse of separate, alled ombine, as follows.ombine :: d ();[a℄ d aombine = pmapAl getget :: ();[a℄ aget = SA (�((); a : as)! (a; as))pmapAl :: (a;s b)! (d a ;s d b)It remains to de�ne the arrow maps, and to prove that ombine is the inverseof separate, that is, separate followed by ombine is the identity. Note that, dueto the onstrutor SA, we annot use normal funtion omposition for values oftype a;s b. Instead we de�ne a new omposition operator (>>>):(>>>) :: (a;s b)! (b;s )! (a;s )SA f >>> SA g = SA (f ; g)It is easy to see that get is the inverse of put , but we inlude the proof as areminder of the notation we use for alulational equality proofs.put >>> get= De�nitions of get and putSA (�(a; xs)! ((); a : xs)) >>> SA (�((); a : xs)! (a; xs))= De�nition of (>>>)SA ((�(a; xs)! ((); a : xs)) ; (�((); a : xs)! (a; xs)))= Simpli�ationSA idHere SA id :: a ;[a℄ a is the identity on SA and the operator ( = ) is equalityon SA.



7.3. ARROWS AND LAWS 1117.2.3 Funtion ombine is the inverse of separateThe main ingredient of the proof that ombine is the inverse of separate is a lawabout inverting arrow maps. More spei�ally, we have that pmapAl is the inverseof pmapAr provided the arguments of the maps are inverses:pmapAr :: (a;s b)! (d a ;s d b)pmapAl :: (b;s a)! (d b ;s d a)f >>> g = SA id ) pmapAr f >>> pmapAl g = SA id (7.1)Using this law (whih is proved in Setion 7.4) we have:separate >>> ombine= De�nitions of separate and ombinepmapAr put >>> pmapAl get= Law (7.1); put >>> get = SA idSA idThis proves the orretness of funtions separate and ombine.7.3 Arrows and lawsThis setion generalizes the type onstrutor SA s to Hughes' abstrat lass forarrows [42℄. The arrow lass an be seen as a minimal signature of an embeddeddomain spei� language as desribed by Paterson [89℄. For additional motivationand bakground for using arrows, see the papers by Hughes and Paterson [42,89℄. We use a hierarhy of arrow lasses as embedded domain spei� languagesfor expressing data onversion programs. We introdue the arrow ombinatorstogether with example implementations for the SA s arrow. In de�nitions andlaws that hold for arbitrary arrows we write a; b instead of a;s b.7.3.1 Basi de�nitions and laws for arrowsTo de�ne the arrow maps and to prove (a generalization of) Law (7.1), we need afew ombinators to onstrut and ombine arrows (that is, values of type a; b),together with some laws that relate these ombinators. The implementations aregiven for the type a ;s b (that is, SA s a b) to exemplify a typial arrow typebut as we will see later, the types and the laws for the ombinators form the



112 CHAPTER 7. DATA CONVERSIONsignature of a more general lass of arrows. Thus, any program written usingthese ombinators will automatially be parametrized over the instanes of thislass. The arrow lass and the arrow ombinators ome from Hughes' arrowpaper [42℄.Lifting.The funtion that lifts normal funtions to funtions that also take and return astate value is alled arr .arr :: (a! b)! (a;s b)arr f = SA (f ��� id)We will often write �!f instead of arr f . Funtion arr is a funtor from theategory of types and funtions to the ategory of types and arrows: it distributesover omposition (and trivially preserves the identity).�!f >>> �!g = ���!f ; gArrow omposition.Composition of arrows (de�ned already in Setion 7.2) satis�es the usual laws: itis assoiative, and �!id is its unit.�!id >>> f = f = f >>> �!id(f >>> g) >>> h = f >>> (g >>> h)We denote reverse omposition with (<<<), where f <<< g = g >>> f .Arrows between pairs.Funtion �rst applies an arrow to the �rst omponent of a pair, leaving the seondomponent unhanged.�rst :: (a;s b)! ((a; );s (b; ))�rst (SA f ) = SA (�((a; ); s)! let (b; s 0) = f (a; s)in ((b; ); s 0))Funtion �rst is a funtor, that is, it preserves (arrow) identities and distributesover (arrow) omposition.�rst �!f = ����!f ��� id�rst (f >>> g) = �rst f >>> �rst g



7.3. ARROWS AND LAWS 113The dual funtion seond that applies an arrow to the seond omponent of apair, an be de�ned in terms of �rst :seond :: (a; b)! ((; a); (; b))seond f = ���!swap >>> �rst f >>> ���!swapswap :: (a; b)! (b; a)swap (a; b) = (b; a)Using �rst and seond we an de�ne two andidates for produt funtors, butwhen the arrows have side-e�ets, neither of these are funtors beause they failto preserve omposition.(��>); (<��) :: (a; )! (b; d)! ((a; b); (; d))f ��> g = �rst f >>> seond gf <�� g = seond g >>> �rst fIf one of the two arguments of �rst and seond is side e�et free (doesn't hangethe state), then �rst ommutes with seond . The anonial form of a side e�etfree arrow is �!j for some funtion j .�rst �!f >>> seond g = seond g >>> �rst �!fArrows with a hoie.We an view the arrow ombinators as a very small embedded language. Withthe ombinators de�ned thus far we an embed funtions as arrows using �!� , wean plug arrows together using (>>>) and we an simulate a value environmentby using �rst , seond et. However, we annot write onditionals | there is noway to hoose between di�erent branhes depending on the input.We lift the operator (r) :: (a! )! (b! )! (Either a b ! ) to the arrowlevel to model a hoie between di�erent arrow branhes. For state arrows theimplementation is straightforward:(jjj) :: (a;s )! (b;s )! (Either a b ;s )SA f jjj SA g = SA (�(x ; s)! ((�a ! f (a; s)) r (�b ! g (b; s))) x )As a simple exerise in arrow plumbing we de�ne if -expressions:ifA :: (a; Bool)! (a; b)! (a; b)! (a; b)ifA p t e = ��!dup >>> �rst p >>> ��������!bool2Either >>> (t jjj e)where dup a = (a; a)bool2Either (b; x ) = if b then Left x else Right x



114 CHAPTER 7. DATA CONVERSIONThe lifted variant of operator (�+�) for arrows is de�ned by:(+++) :: (a; )! (b; d)! (Either a b ; Either  d)f +++ g = (f >>> ��!Left) jjj (g >>> ���!Right)Operator (+++) is a bifuntor on arrows | it preserves identities and distributesover omposition.�!f +++ �!g = ����!f �+� g(f +++ g) >>> (f 0 +++ g0) = (f >>> f 0) +++ (g >>> g0)7.3.2 A lass for arrowsThe type SA s a b enapsulates funtions from a to b that manipulate a state oftype s. However, most of the programs and laws we want to express don't refer tothe state. Therefore, we go one step further in the abstration by introduing theHaskell onstrutor lass Arrow [42, 89℄. An arrow type onstrutor (;) is anytwo-parameter type onstrutor that supports the operations of the lass Arrow .We require a number of laws to hold for the instanes of the arrow lass and fordoumentation purposes, we inlude these laws in the lass de�nition althoughthey an't be diretly expressed in Haskell.lass Arrow (;) wherearr :: (a ! b)! (a; b)(>>>) :: (a; b)! (b; )! (a; )�rst :: (a; b)! ((a; ); (b; ))-- Laws :�!f >>> �!g = ���!f ; g�!id >>> f = f = f >>> �!id(f >>> g) >>> h = f >>> (g >>> h)�rst �!f = ����!f ��� id�rst (f >>> g) = �rst f >>> �rst g�rst �!f >>> seond g = seond g >>> �rst �!fFor arrows with a hoie operator, (jjj), we de�ne the sublass ArrowChoie. Weinlude both the operator (jjj) and (+++), but it is suÆient to de�ne either of themin every instane beause of the defaults. The default delarations are part of theHaskell lass de�nition and an be seen as laws with immediate implementations.



7.3. ARROWS AND LAWS 115lass Arrow (;) ) ArrowChoie (;) where(+++) :: (a; )! (b; d)! (Either a b ; Either  d)(jjj) :: (a; )! (b; )! (Either a b ; )-- Defaults :f +++ g = (f >>> ��!Left) jjj (g >>> ���!Right)f jjj g = (f +++ g) >>> ����!id r id-- Laws :�!f +++ �!g = ����!f �+� g(f +++ g) >>> (f 0 +++ g0) = (f >>> f 0) +++ (g >>> g0)(f jjj g) >>> h = (f >>> h) jjj (g >>> h)The type onstrutor SA s is made an instane of Arrow and ArrowChoie bytaking the de�nitions of arr , (>>> ), �rst , ( jjj ) and (+++) from Setion 7.3.1.Normal funtions are trivially Arrows and they support hoie:instane Arrow (!) wherearr f = ff >>> g = f ; g�rst f = f ��� idinstane ArrowChoie (!) wheref +++ g = f �+� gf jjj g = f r gWith the de�nitions from these instanes, three of the laws from the Arrow andthe ArrowChoie lasses an be rewritten to a form whih more learly indiatesthat �!� lifts omposition, �rst and hoie from normal funtions to arrows:�!f >>> �!g = ����!f >>> g�rst �!f = ���!�rst f�!f +++ �!g = ����!f +++ gMany side e�eting omputations an be aptured by the Arrow signature, in-luding all funtions returning monadi results: we an de�ne a Kleisli arrow forevery Haskell Monad [102℄:newtype Kleisli m a b = Kleisli (a ! m b)instane Monad m ) Arrow (Kleisli m) wherearr f = Kleisli (�a ! return (f a))Kleisli f >>> Kleisli g = Kleisli (�a ! f a >>= g)�rst (Kleisli f ) = Kleisli (�(a; )! f a >>= �b ! return (b; ))instane Monad m ) ArrowChoie (Kleisli m) whereKleisli f jjj Kleisli g = Kleisli (f r g)



116 CHAPTER 7. DATA CONVERSION7.3.3 An inverse law for arrow produtsThe two produt operators (��>) and (<��) are inverses in a ertain sense:(f ��> g)�1 = f�1 <�� g�1We will prove this equality in a slightly more general form, whih will turn out tobe useful in the following setions. We generalize the inverse law by weakening theinverse requirement to require only the side-e�ets to be inverses. If f >>> f 0 = �!i ,then the arrow f 0 un-does the side-e�ets of the arrow f , leaving just a side-e�etfree omputation �!i . If i is hosen to be id , then we regain the usual (left-)inverse onept. The more general inverse onept will be used in the rest of thehapter. The generalized inverse law for the produt operators is:(<��) :: (a; )! (b; d)! ((a; b); (; d))(��>) :: (; a)! (d; b)! ((; d); (a; b))f >>> f 0 = �!i ) g >>> g0 = �!j ) (f <�� g) >>> (f 0 ��> g0) = ���!i ��� j (7.2)Perhaps a word on notation is appropriate here. We present the types of theprodut operators together with the inverse law, to stress that we are not dealingwith just a pair of inverse funtions, but rather with a triple ontaining twofuntions and a proof that they are inverses. We take a urried view of funtionswith two arguments, that is, they have type a ! b !  rather than (a; b) ! .Similarly, we prefer to write a proof term with two premises as P ) Q ) R,instead of the more traditional P ^Q ) R. Thus we stress that the omponentsof the triple share the same struture: they take two arrows (two proofs) andreturn an arrow (a proof).Proof: We assume f >>> f 0 = �!i and g >>> g0 = �!j and alulate as follows:(f <�� g) >>> (f 0 ��> g0)= De�nitions of <�� and ��>seond g >>> �rst f >>> �rst f 0 >>> seond g 0= �rst is a funtorseond g >>> �rst (f >>> f 0) >>> seond g 0= Assumption 1seond g >>> �rst �!i >>> seond g 0= �!i is side-e�et free�rst �!i >>> seond g >>> seond g 0= seond is a funtor



7.4. ARROW MAPS 117�rst �!i >>> seond (g >>> g 0)= Assumption 2�rst �!i >>> seond �!j= �rst , seond and (>>>) preserve �!��������������!(i ��� id) ; (id ��� j )= (���) is a bifuntor���!i ��� j27.3.4 Fixed point indution and arrowsSetion 7.4 proves an inverse law (7.4) for arrow maps. A similar law for normalmaps an be proved with the fusion law for atamorphisms. This fusion law isderived from the fat that datatypes are de�ned as initial funtor-algebras. Aatamorphism on arrows is de�ned in terms of the funtion Tr, but beauseTr is not a funtor, we annot prove, let alone apply, a fusion law. In theproof of the law for arrow maps we will use instead the �xed point indutiontheorem from Setion 2.11.1. We an instantiate Theorem 2.15 to a form thatis more suitable for our purposes by letting n = 3 and the (inlusive) relationP (x; y; z) = x >>> y = �!z . The instane takes the following form:(p0 >>> u0 = �!i0 ) f p 0 >>> g u 0 = �!h i 0)) �x f >>> �x g = ��!�x h (7.3)where we have left out the proposition ? >>> ? = �!? whih is true for the arrowsonsidered in this hapter.7.4 Arrow mapsIn Setion 7.2, separate and ombine were de�ned using the arrow maps pmapArand pmapAl. The arrow maps an be seen as simple data onversion programs,whih hange the ontents but leave the shape of the data unhanged. Using thearrow ombinators from Setion 7.3 we an now de�ne the arrow maps, and provea generalization of (7.1): if u is the inverse of p, then a left traversal with u isthe inverse of a right traversal with p.pmapAr :: ArrowChoie (;) ) (a ; b)! (d a ; d b)pmapAl :: ArrowChoie (;) ) (a ; b)! (d a ; d b)p >>> u = �!i ) pmapArd p >>> pmapAld u = �����!pmapd i (7.4)



118 CHAPTER 7. DATA CONVERSIONpolytypi Trf :: (a ; )! (b ; d)! (f a b ; f  d)= �p r ! ase f ofg + h �! Trg p r +++ Trh p rg � h �! Trg p r <�� Trh p rEmpty �! �!idPar �! pRe �! rd � g �! pmapArd (Trg p r)Const t �! �!idFigure 7.1: The de�nition of TrThe de�nitions of the arrow maps are obtained by a straightforward generaliza-tion of pmap to arrows.pmapArd p = ��!outd >>> Tr�d p (pmapArd p) >>> ��!inndpmapAld p = ��!outd >>> Tl�d p (pmapAld p) >>> ��!inndFuntions Tr and Tl are the orresponding generalizations of fmap2. All fun-tions used in the de�nition of fmap2 are lifted to the arrow level. For all asesexept the produt funtor ase there is only one hoie for a reasonable lifting,but when we lift the operator (���) we have two possible hoies: (<��) and (��>).This is the only di�erene between two two traversal funtions: the right to lefttraversal, Tr, uses (<��) and the left to right traversal, Tl, uses (��>). FuntionTr is de�ned in Figure 7.1 and funtion Tl is ompletely analogous and thereforeomitted. Funtions Tr and Tl satisfy the following inverse law:Trf :: (a ; )! (b ; d)! (f a b ; f  d)Tlf :: ( ; a)! (d ; b)! (f  d ; f a b)p >>> u = �!i ) p0 >>> u0 = �!i0 ) Trf p p 0 >>> Tlf u u 0 = �������!fmap2f i i 0 (7.5)Note the lose orrespondene between this law and the inverse law for theprodut operators (7.2).7.4.1 The arrow maps are inversesThe proof of Equation (7.4) an be interpreted either as fusing pmapAr p withpmapAl u to get a pure arrow �����!pmapd i or, equivalently, as splitting the fun-tion pmapd i into a omposition of two arrow maps. We use indution over thestruture of a regular datatype d a. As the grammars for datatypes and pattern



7.4. ARROW MAPS 119funtors are mutually reursive we get two indution hypotheses. The datatypelevel hypothesis is, that Equation (7.4) holds for datatypes de�ned earlier, andthe pattern funtor level hypothesis is, that Equation (7.5) holds for the sub-funtors. We rewrite the de�nitions of pmapAr, pmapAl and pmap to expose thetop level �xed points:pmapAr p = �x (�p 0 ! �!out >>> Tr p p 0 >>> �!inn)pmapAl u = �x (�u 0 ! �!out >>> Tl u u 0 >>> �!inn)pmap i = �x (�i 0 ! out ; fmap2 i i 0 ; inn)We assume p >>> u = �!i and alulate as follows:pmapAr p >>> pmapAl u = ����!pmap i( De�nitions of pmapAr, pmapAl, �xed point law (7.3)p0 >>> u0 = �!i0 )�!out >>> Tr p p 0 >>> �!inn >>> �!out >>> Tl u u 0 >>> �!inn =��������������!out ; fmap2 i i 0 ; inn� �!f >>> �!g = �!f ; g , inn ; out = id, f >>> �!id = fp0 >>> u0 = �!i0 )�!out >>> Tr p p 0 >>> Tl u u 0 >>> �!inn = �!out >>> �������!fmap2 i i 0 >>> �!inn( Law (7.5) and the assumption: p >>> u = �!iTrueWe prove Law (7.5) by indution over the struture of the pattern funtor f .Beause there are seven onstrutors for funtors, we have to verify seven ases.Although this is laborious, we want to show at least one omplete proof of astatement about polytypi funtions.The sum ase, g + h:Trg+h p p 0 >>> Tlg+h u u 0= De�nitions(Trg p p 0 +++ Trh p p 0) >>> (Tlg u u 0 +++ Tlh u u 0)= (+++) is a bifuntor(Trg p p 0 >>> Tlg u u 0) +++ (Trh p p 0 >>> Tlh u u 0)= Indution hypothesis 7.5 (twie)�������!fmap2g i i 0 +++ �������!fmap2h i i 0= �!f +++ �!g = ����!f �+� g, de�nition of fmap2g+h���������!fmap2g+h i i 0



120 CHAPTER 7. DATA CONVERSIONThe produt ase, g � h:Trg�h p p 0 >>> Tlg�h u u 0= De�nitions(Trg p p 0 <�� Trh p p 0) >>> (Tlg u u 0 ��> Tlh u u 0)= Inverse law for produts (7.2), indution hypothesis (7.5) (twie)�������������������!fmap2g i i 0 ��� fmap2h i i 0= de�nition of fmap2g�h���������!fmap2g�h i i 0The empty ase, Empty:TrEmpty p p 0 >>> TlEmpty u u 0= De�nitions�!id >>> �!id= �!id is the unit of >>>�!id= De�nition of fmap2Empty����������!fmap2Empty i i 0The onstant ase Const t is proved in exatly the same way as the empty ase;the alulation is omitted.The parameter ase, Par :TrPar p p 0 >>> TlPar u u 0= De�nitionsp >>> u= Assumption�!i= De�nition of fmap2Par���������!fmap2Par i i 0The reursive ase, Re, is proved in exatly the same way as the parameter ase;the alulation is omitted.The omposition ase, d � g:Trd�g p p 0 >>> Tld�g u u 0= De�nitions



7.5. PACKING 121pmapArd (Trg p p 0) >>> pmapAld (Tlg u u 0)= 8>>>>><>>>>>:The top level indution hypothesis (7.4) isf >>> g = �!h ) pmapAr f >>> pmapAl g = ����!pmap hwhere we take f = Trg p p 0, g = Tlg u u 0 and h = fmap2 i i 0and indution hypothesis (7.5) is preisely f >>> g = �!h .��������������!pmapd (fmap2g i i 0)= De�nition of fmap2d�g���������!fmap2d�g i i 0This onludes the proof.In the onlusions we will spend some words on (how to simplify) proving state-ments about polytypi funtions.7.5 PakingThis setion skethes the onstrution and orretness proof of a polytypi pakingprogram. The basi idea of the paking program is simple: given a datatype value(an abstrat syntax tree), onstrut a ompat (bit stream) representation of theabstrat syntax tree. For example, the following rather arti�ial binary tree,alled treeShape in the introdutory setion,treeShape :: Tree ()treeShape = Bin (Bin (Leaf ()) (Bin (Leaf ()) (Leaf ()))) (Leaf ())an be pretty-printed to a text representation of treeShape requiring 55 bytes.However, beause the datatype Tree a has only two onstrutors, eah onstrutoran be represented by a single bit. Furthermore, the datatype () has only oneonstrutor, so the single element (also written ()) an be represented by 0 bits.Thus we get the following representations:Bin1 (Bin1 (Leaf0 ()) (Bin1 (Leaf0 ()) (Leaf0 ()))) (Leaf0 ())The ompat representation onsists of 7 bits, so only 1 byte is needed to store thistree. In fat, the pretty-printed text of a value of type Tree () is asymptotially64 times bigger than the ompat representation.3 Of ourse, this is an unusuallysimple datatype, but the average ase is still very ompat.3A value of type Tree () with n leaves has n � 1 internal nodes. A leaf is printed as theseven harater string "Leaf ()" and a node as "Bin (", left subtree, ") (", right subtree, ")"| a total of nine haraters per node. Thus the pretty printed string representation of a treeontains exatly 7n+9(n�1) = 16n�9 bytes while the ompat representation with one bit peronstrutor ontains 2n�1 bits. The ratio is then 8(16n�9)=(2n�1) � 8(16n�8)=(2n�1) = 64.



122 CHAPTER 7. DATA CONVERSIONGiven a datatype value, the polytypi paking funtion prepends the ompatrepresentation of the value to a state, on whih it side e�ets. Let Text be thetype of paked values, for example String or [Bit ℄. Then the paking funtion anbe implemented using the state arrow type onstrutor SA Text, but we will keepthe arrow type abstrat and only require that it supports paking of onstrutors.To pak a value of type d a we need a funtion that an pak values of type a.We ould use separate and ombine to redue the paking problem to paking thestruture and the ontents separately, but instead we parametrize on the elementlevel (un)paking funtion. With Hinze style polytypism [35℄, this parametriza-tion omes for free.Our goal is to onstrut two funtions and a proof:� A funtion ppak (`polytypi paking') that takes an element level pakerto a datatype level paker.ppak :: (a ; ())! (d a ; ())For example, the funtion that paks the tree treeShape :: Tree () is obtainedby instantiating the polytypi funtion ppak on Tree and applying theinstane to a (trivial) paking program for the type ().� A funtion punpak (`polytypi unpaking') that takes an unpaker on theelement level a to an unpaker on the datatype level d a:punpak :: ((); a)! ((); d a)For the Tree example the element level parsing program is a funtion thatparses nothing, and returns (), the value of type ().� A proof that if p and u are inverses on the element level a, then ppak pand punpak u are inverses on the datatype level d a.Representing onstrutors.To onstrut the printer and the parser we need a little more struture thanprovided by the Arrow lass { we need a way of handling onstrutors. Be-ause a onstrutor an be oded by a single natural number, we an use a lassArrowPak to haraterize arrows that have operations for printing and parsingonstrutor numbers:lass ArrowChoie (;) ) ArrowPak (;) wherepakCon :: Nat ; ()unpakCon :: (); Nat-- Laws :pakCon >>> unpakCon = ��!idNat



7.5. PACKING 123With Text = [Nat ℄, the instanes for SA Text are just put and get from Se-tion 7.2, and the printing algorithm onstruted in the following setion will inits simplest form just output a list of numbers given an argument tree of anytype. A better solution is to ode these numbers as bits and here we have somehoies on how to proeed. We ould deide on a �xed maximal size for numbersand store them using their binary representation but, as most datatypes havefew onstrutors, this would waste spae. We will instead statially determinethe number of onstrutors in the datatype and ode every single number in onlyas many bits as needed. For an n-onstrutor datatype we use just d log2 ne bitsto ode a onstrutor. An interesting e�et of this oding is that the onstrutorof any single onstrutor datatype will be oded using 0 bits! We obtain betterresults if we use Hu�man oding with equal probabilities for the onstrutors,resulting in a variable number of bits per onstrutor. Even better results areobtained if we analyze the datatype, and give di�erent probabilities to the di�er-ent onstrutors. However, our goal is not to squeeze the last bit out of our data,but rather to show how to onstrut the polytypi program. Beause the numberof bits used per onstrutor depends on the type of the value that is ompressed,pakCon and unpakCon need in general be polytypi funtions. Their de�nitionsare omitted, but an be found in the ode on the web page for this dissertation.In the rest of this setion (;) will always stand for an arrow type onstrutorin the lass ArrowPak but, as with Regular , we often omit the type ontext forbrevity.7.5.1 The onstrution of the paking funtionWe onstrut a printing funtion ppak, whih promotes an element level paker toa datatype level paker, together with a parsing funtion punpak, whih similarlypromotes an unpaker to the datatype level. If the element level arguments areinverses, then we want punpak to be the inverse of ppak:ppak :: (a ; ())! (d a ; ())punpak :: ((); a)! ((); d a)p >>> u = �!i ) ppak p >>> punpak u = ����!pmap i (7.6)In the following proofs we will assume that the argument paker p and theunpaker u satisfy p >>> u = �!i .Overview of the onstrution.Again, the onstrution an be interpreted as fusing the `printer' ppak withthe `parser' punpak to get a pure arrow ����!pmap i . As we are de�ning polytypi



124 CHAPTER 7. DATA CONVERSIONfuntions the onstrution follows the struture of regular datatypes: a regulardatatype is a �xed point of a pattern funtor, the pattern funtor is a sum ofproduts of type terms, and the terms an involve type parameters, other types,et.The arrow ppak p prints a ompat representation of a value of type d a. Itdoes this by reursing over the value, printing eah onstrutor by omputingits onstrutor number, and eah element by using the argument printer p. Theonstrutor number is omputed by means of funtion Ps (`Pak Sum'), whihalso takes are of passing on the reursion to the hildren. An arrow pakConprints the onstrutor number with the orret number of bits. Finally, funtionPp (`Pak Produt') makes sure the information is orretly threaded throughthe hildren.Top level reursion.We want funtion ppak to be `on-line' or lazy: it should output ompatly printeddata immediately, and given part of the ompatly printed data, punpak shouldreonstrut part of the input value. Thus funtions ppak and punpak an alsobe used to pak in�nite streams, for example. Funtion ppak annot be de�nedwith a standard reursion operator suh as the atamorphism beause the sidee�eting arrows would be threaded in the wrong order. Instead of a reursionoperator we use expliit reursion on the top level, guided by Pt (`Pak Top-level') and Ut (`Unpak Top-level').As ppak deomposes its input value, and ompatly prints the onstrutor andthe hildren by means of a funtion Pt (de�ned later), punpak must do theopposite: �rst parse the omponents using Ut and then onstrut the top levelvalue: ppak p = Pt p (ppak p) <<< �!outpunpak u = Ut u (punpak u) >>> �!innHere (<<< ) is used to reveal the symmetry of the de�nitions. Thus we needtwo new funtions, Pt and Ut , and we an already guess that we will need aorresponding fusion law:Pt :: (a ; ())! (b ; ())! (f a b ; ())Ut :: ((); a)! ((); b)! ((); f a b)p >>> u = �!i ) p0 >>> u0 = �!i0 ) Pt p p 0 >>> Ut u u 0 = �������!fmap2 i i 0 (7.7)Given (7.7) we an now prove (7.6).



7.5. PACKING 125p >>> u = �!i ) ppak p >>> punpak u = ����!pmap i( De�nitions of ppak, punpak, pmap, �xed point law (7.3)p >>> u = �!i ) p0 >>> u0 = �!i0 )�!out >>> Pt p p 0 >>> Ut u u 0 >>> �!inn = ��������������!out ; fmap2 i i 0 ; inn( Equation (7.7), simpli�ationTruePaking onstrutors.We want to onstrut funtions Pt and Ut suh that (7.7) holds. Furthermore,these funtions should do the atual paking and unpaking of the onstrutorsusing pakCon :: Nat ; () and unpakCon :: () ; Nat from the ArrowPaklass: Pt p p 0 = pakCon <<< Ps p p 0Ut u u 0 = unpakCon >>> Us u u 0The arrow Ps p p 0 paks a value (using the argument pakers p and p 0 for theparameters and the reursive strutures, respetively) and returns the number ofthe top level onstrutor, by determining the position of the onstrutor in thepattern funtor (a sum of produts). The arrow pakCon prepends the onstru-tor number to the output. As pakCon >>> unpakCon = �!id by assumption,the requirement that funtion Pt an be fused with Ut is now passed on to Psand Us (`Unpak Sum'):Ps :: (a ; ())! (b ; ())! (f a b ; Nat)Us :: ((); a)! ((); b)! (Nat ; f a b)p >>> u = �!i ) p0 >>> u0 = �!i0 ) Ps p p 0 >>> Us u u 0 = �������!fmap2 i i 0 (7.8)The arrow unpakCon reads the onstrutor number and passes it on to the arrowUs u u 0, whih selets the desired onstrutor and uses its argument parsers uand u 0 to �ll in the parameter and reursive omponent slots in the funtor value.Calulating onstrutor numbers.The pattern funtor of a Haskell datatype with n onstrutors is an n-ary sum(of produts) on the outermost level. In PolyP this sum is represented by anested binary sum, whih assoiates to the right. Consequently, we de�ne Ps byindution over the nested sum part of the pattern funtor and defer the handlingof the produt part to Pp (`Pak Produt'). (The de�nitions of innNat and outNatare in Figure 7.2.)



126 CHAPTER 7. DATA CONVERSIONdata Nat = Z j S NatinnNat :: Either () Nat ! NatinnNat = (onst Z ) r SoutNat :: Nat ! Either () NatoutNat (Z) = Left ()outNat (S n) = Right nFigure 7.2: The de�nitions of innNat and outNat as Haskell ode.polytypi Psf :: (a; ())! (b; ())! (f a b ; Nat)= �p p 0 ! ase f ofg + h �! ���!innNat <<< (Pp p p 0 +++ Ps p p 0)g �! �����!�()! 0 <<< Pp p p 0polytypi Usf :: ((); a)! ((); b)! (Nat ; f a b)= �u u 0 ! ase f ofg + h �! ���!outNat >>> (Up u u 0 +++ Us u u 0)g �! �����!�0! () >>> Up u u 0The types for Pp and Up (`Unpak Produt') and the orresponding fusion laware unsurprising:Pp :: (a ; ())! (b ; ())! (f a b ; ())Up :: ((); a)! ((); b)! ((); f a b)p >>> u = �!i ) p0 >>> u0 = �!i0 ) Pp p p 0 >>> Up u u 0 = �������!fmap2 i i 0 (7.9)We prove Equation (7.8) by indution over the nested sum struture of thefuntor. The indution hypothesis is that (7.8) holds for Psh .The sum ase, g + h:Psg+h p p 0 >>> Usg+h u u 0= De�nitions(Ppg p p 0 +++ Psh p p 0) >>> ���!innNat >>>���!outNat >>> (Upg u u 0 +++ Ush u u 0)= innNat ; outNat = id(Ppg p p 0 +++ Psh p p 0) >>> (Upg u u 0 +++ Ush u u 0)= (+++) is a bifuntor



7.5. PACKING 127polytypi Ppf :: (a; ())! (b; ())! (f a b ; ())= �p p 0 ! ase f ofg � h �! ���������!�((); ())! () <<< (Ppg p p 0 <�� Pph p p 0)Empty �! �!idPar �! pRe �! p 0d � g �! ppakd (Ppg p p 0)polytypi Upf :: ((); a)! ((); b)! ((); f a b)= �u u 0 ! ase f ofg � h �! ���������!�()! ((); ()) >>> (Upg u u 0 ��> Uph u u 0)Empty �! �!idPar �! uRe �! u 0d � g �! punpakd (Upg u u 0)Figure 7.3: The de�nition of Pp (`Pak Produt') and Up (`Unpak Produt').(Ppg p p 0 >>> Upg u u 0) +++ (Psh p p 0 >>> Ush u u 0)= Equation (7.9) and the indution hypothesis�������!fmap2g i i 0 +++ �������!fmap2h i i 0= �!� preserves (+++), de�nition of fmap2g+h���������!fmap2g+h i i 0The base ase, g:Ppg p p 0 >>> �����!�()! 0 >>> �����!�0! () >>> Upg u u 0= (�()! 0) ; (�0! ()) = id()Ppg p p 0 >>> Upg u u 0= Equation (7.9)�������!fmap2g i i 0Sequening the parameters.The last part of the onstrution of the program onsists of the two funtions Ppand Up de�ned in Figure 7.3. The earlier funtions have alulated and printedthe onstrutors, so what is left is \arrow plumbing". The arrowPp p p 0 traverses



128 CHAPTER 7. DATA CONVERSIONthe top level struture of the data and inserts the orret ompat printers: p atargument positions and p 0 at substruture positions. The only di�erene betweenUp and Pp is, as with pmapAr and pmapAl earlier, the traversal diretion in theprodut ase; visible in the use of (<��) and (��>) respetively. The inverse proofis very similar to that for Tr and Tl, and is omitted.7.6 Pretty printingModern programming languages allow the user to de�ne new kinds of data.When testing or debugging a program, the user often wants to see values ofthese new datatypes. Many languages support the automati derivation of print-ing funtions for user-de�ned datatypes. For example, in Haskell one an writederiving (Show ;Read) after a datatype de�nition, and obtain the funtion show(whih prints values of the datatype) and read (whih reads them bak) for free.Thus a Haskell programmer an use (instanes of) a few prede�ned polytypifuntions, but she has no inuene over their de�nitions nor any means of de�n-ing her own polytypi funtions.This setion shows how one an de�ne polytypi versions of the funtions showand read . The polytypi funtions pshow and pread are eah others inverses byonstrution.7.6.1 More arrow lassesThis subsetion introdues a lass ArrowReadShow that provides the arrow opera-tions that are used in pretty printing and parsing. The new operations are dividedinto four lasses: ArrowZero, ArrowPlus, ArrowSymbol and ArrowPre. The two�rst lasses are used for error handling and are present already in Hughes' arrowpaper [42℄, but the last two lasses are new. The operations of ArrowSymbol areused to print and parse symbol, and the operations of ArrowPre handle operatorpreedenes.Arrows that an failUp to now the data onversion programs did not have to handle failure. Theunpaking algorithm would of ourse bene�t from error handling to allow forbad input data, but no error handling or baktraking is essential for expressingthe algorithm. But to parse a text representation of data values we really needto hoose between di�erent parsers (for di�erent onstrutors) and hene some



7.6. PRETTY PRINTING 129parser must be able to fail. Therefore we de�ne the lass ArrowZero for arrowsthat an fail:lass Arrow (;) ) ArrowZero (;) wherezeroA :: a; b-- Laws :�!f >>> zeroA = zeroA = zeroA >>> �!fThe arrow zeroA is the multipliative zero for omposition with (at least) purearrows and, as we will see later, the additive zero of a plus operator for arrows.Error handlingThe operator (<+>) in the lass ArrowPlus builds a parser that uses a seondarrow if the �rst one fails. The operator (<j>) is a kind of dual to the hoieoperator (jjj) :: (a ; ) ! (b ; ) ! (Either a b ; ) from ArrowChoie.The hoie operator makes a hoie depending on the input, while the operator(<j>) makes a hoie depending on some hidden state and delivers the result inthe orresponding summand in the output.lass ArrowZero (;) ) ArrowPlus (;) where(<j>) :: (a; b)! (a; )! (a; Either b )(<+>) :: (a; b)! (a; b)! (a; b)-- Defaults :f <j> g = (f >>> ��!Left) <+> (g >>> ���!Right)f <+> g = (f <j> g) >>> ����!id r id-- Laws :zeroA <+> f = f = f <+> zeroAf <j> zeroA = f >>> ��!LeftzeroA <j> f = f >>> ���!Rightf >>> (g <j> h) = (f >>> g) <j> (f >>> h)The default de�nitions show that only one of (<j>) or (<+>) need be de�ned |the relation between the ArrowPlus operators is the same as that between theArrowChoie operators. The arrow zeroA is the zero of the plus operator (<+>).Reading and writing symbolsAlmost all arrow lasses thus far have been very general and useful for a widevariety of appliations, but for pretty printing and parsing we need a few more



130 CHAPTER 7. DATA CONVERSIONspei� tools. To print and parse symbols (onstrutor names, parentheses andspaes) we use the lass ArrowSymbol :lass Arrow (;) ) ArrowSymbol (;) wherereadSym :: Symbol ! (a; a)showSym :: Symbol ! (a; a)-- Laws :showSym s >>> readSym s = �!idshowSym s >>> readSym s 0 = zeroA ( s 6= s0type Symbol = StringThe two laws apture the minimal requirements needed to prove that pshow andpread are inverses: reading a symbol is the inverse of writing the same symbolbut trying to read another symbol bak will fail. As examples we give one arrowfor printing and one for parsing parenthesized expressions:parenthesize; deparenthesize :: ArrowSymbol (;)) (a; b)! (a; b)parenthesize f = showSym "(" <<< f <<< showSym ")"deparenthesize f = readSym "(" >>> f >>> readSym ")"Preedene levelsFinally, we de�ne the lass ArrowPre to handle preedene levels and parenthe-ses. Our formulation is inspired by the funtions showsPre and readsPre in theHaskell lasses Show and Read .showsPre :: Show a ) Int ! a ! String ! StringreadsPre :: Show b ) Int ! String ! [(b; String)℄The integer argument passed to showsPre and readsPre is the preedene levelof the surrounding expression. It is used to determine whether or not the elementof type a should be surrounded by parentheses. As the PolyP system does nothandle in�x onstrutors, the preedene levels of Haskell an be ollapsed totwo levels: one for atomi expressions like unary onstrutors (that never needparentheses) and one for omplex expressions (that need parentheses when usedas subexpressions).Funtion showParen (readParen) is used to enlose its printer (parser) argumentwith parentheses when used in a subexpression. When p0 = showParen b p,the printer p 0 enloses p with parentheses if and only if b is True and p 0 isused as a subexpression. The printer (parser) likeParen p tells p to behave as a



7.6. PRETTY PRINTING 131subexpression (for example by hanging a preedene level hidden in the arrowtype).lass ArrowSymbol (;) ) ArrowPre (;) wherelikeParen :: (a; b)! (a; b)readParen :: Bool ! (a; b)! (a; b)showParen :: Bool ! (a; b)! (a; b)-- Laws :x >>> y = �!z ) likeParen x >>> likeParen y = �!zx >>> y = �!z ) showParen b (showSym n <<< x ) >>>readParen b (readSym n >>> y) = �!zn 6= n0 ) showParen b (showSym n <<< x ) >>>readParen b 0 (readSym n 0 >>> y) = zeroARead and showThe funtions pshow and pread use operations from ArrowChoie and from allof the four lasses just de�ned, and to apture this suintly in the types, wede�ne the lass synonym ArrowReadShow :lass (ArrowChoie (;);ArrowPlus (;);ArrowPre (;))) ArrowReadShow (;)For the rest of this setion, all ourrenes of (;) will denote an arrow in thelass ArrowReadShow .7.6.2 De�nition of pshow and preadThe de�nition is divided into four levels, following the struture of datatypede�nitions: the top level (pshow and pread) is a reursive de�nition, the seondlevel (Ss and Rs) breaks down the sum struture of the funtor, the third level(Sp and Rp) analyzes the produt struture and �nally the forth level (Sr andRr) deals with parameters and uses of other datatypes.The top level alulates the list of onstrutors of the datatype and passes themdown to the next level. The seond level shows (reads) the onstrutor name andhandles parentheses (depending on the preedene of the expression and arityof the onstrutor). The third level inserts spaes between the arguments ofthe onstrutors and marks the arguments as being subexpressions (potentiallyneeding parentheses). Finally the bottom level just applies the appropriate show(read) funtions passed down as parameters or alls pshow (pread) for ourrenesof other datatypes.



132 CHAPTER 7. DATA CONVERSIONWe will de�ne a polytypi show funtion pshow and a polytypi read funtionpread and we will prove that pread is the inverse of pshow:pshow :: (a; ())! (d a ; ())pread :: ((); a)! ((); d a)s >>> r = �!i ) pshow s >>> pread r = ����!pmap i (7.10)
Top level reursionWe use the built-in polytypi de�nition onstrutorsd to aess the representationsof the onstrutors of the datatype d a.onstrutorsd :: [Construtor ℄A value of the abstrat type Construtor an be though of as a pair of theonstrutors name and its arity. In the following proofs we use two properties ofthe onstrutor list: the list has at least one element (there are no 0-onstrutordatatypes in Haskell) and all the onstrutor names are distint.Funtion pshow uses out to expose the top level struture of the datatype valueand handles the reursion by passing itself as an argument to Ss (`Show Sum',de�ned later). Similarly, pread alls Rs (`Read Sum') and onverts the result toa datatype value using inn.pshowd s = Ss�d onstrutorsd s (pshowd s) <<< ��!outdpreadd r = Rs�d onstrutorsd r (preadd r) >>> ��!inndThe two helper funtions Ss and Rs have their own inverse law:Ssf :: [Construtor ℄! (a; ())! (b; ())! (f a b ; ())Rsf :: [Construtor ℄! ((); a)! ((); b)! ((); f a b)s >>> r = �!i ) s0 >>> r0 = �!i0 ) Ssf s s s 0 >>> Rsf s r r 0 = �������!fmap2f i i 0 (7.11)We assume s >>> r = �!i , let s be the list of onstrutors and alulate as followsfor Equation (7.10):pshow s >>> pread r = ����!pmap i( Fixed point indution (7.3)s0 >>> r0 = �!i0 )�!out >>> Ssf s s s 0 >>> Rsf s r r 0 >>> �!inn = ���������������!out ; fmap2f i i 0 ; inn( Simpli�ation



7.6. PRETTY PRINTING 133s0 >>> r0 = �!i0 ) Ssf s s s 0 >>> Rsf s r r 0 = �������!fmap2f i i 0( Law (7.11)TruePrinting onstrutorsOn the top level, every pattern funtor is a right assoiative sum, and this ismirrored in the de�nitions of Ss and Rs as well as in the orresponding part ofthe proof. The abstrat type Construtor has seletors for the name and thearity of the onstrutor.name :: Construtor ! Stringarity :: Construtor ! IntWe use arity to hek for nullary onstrutors, whih are atomi and don't needparentheses.polytypi Ssf :: [Construtor ℄! (a; ())! (b; ())! (f a b ; ())= �( : s) s s0 ! ase f ofg + h �! Ssg [℄ s s 0 jjj Ssh s s s 0g �! showParen (arity  > 0 )(showSym (name ) <<< Spg s s 0)polytypi Rs :: [Construtor ℄! ((); a)! ((); b)! ((); f a b)= �( : s) r r0 ! ase f ofg + h �! Rsg [℄ r r 0 <j> Rsh s r r 0g �! readParen (arity  > 0 )(readSym (name ) >>> Rpg r r 0)where funtions Sp (for `Show Produt') and Rp (for `Read Produt') have thefollowing properties:Spf :: (a; ())! (b; ())! (f a b ; ())Rpf :: ((); a)! ((); b)! ((); f a b)s >>> r = �!i ) s0 >>> r0 = �!i0 ) Spf s s 0 >>> Rpf r r 0 = �������!fmap2f i i 0 (7.12)We prove (7.11) by indution over the nested sum part of the pattern funtor.We strengthen the indution hypothesis to inlude also the following law. For allb, x and y, and for all 0 62 s0:Rsf s 0 r r 0 <<< showParen b (showSym (name  0) <<< x ) = zeroA (7.13)Ssf s 0 s s 0 >>> readParen b (showSym (name  0) >>> y) = zeroA (7.14)We assume s >>> r = �!i and s0 >>> r0 = �!i0 and alulate as follows for Equa-tion (7.11):



134 CHAPTER 7. DATA CONVERSIONThe sum ase, g + h:We prove the three equations separately, starting with (7.11):Ssg+h ( : s) s s 0 >>> Rsg+h ( : s) r r 0= De�nitions(Ssg [℄ s s 0 jjj Ssh s s s 0) >>> (Rsg [℄ r r 0 <j> Rsh s r r 0)= Distribution laws for (jjj) and (<j>)((Ssg [℄ s s 0 >>> Rsg [℄ r r 0) <j> (Ssg [℄ s s 0 >>> Rsh s r r 0)) jjj((Ssh s s s 0 >>> Rsg [℄ r r 0) <j> (Ssh s s s 0 >>> Rsh s r r 0))The �rst term is idential to the term in the default-ase below. Use indutionhypothesis (7.13) and (7.14) for the seond and third terms, and indutionhypothesis (7.11) for the fourth term.(�������!fmap2g i i 0 <j> zeroA) jjj (zeroA <j> �������!fmap2h i i 0)= Laws for zeroA and (<j>)(�������!fmap2g i i 0 >>> ��!Left) jjj (�������!fmap2h i i 0 >>> ���!Right)= Relation between (jjj) and (+++)�������!fmap2g i i 0 +++ �������!fmap2h i i 0= (+++) preserves �!��������������������!fmap2g i i 0 �+� fmap2h i i 0= De�nition of fmap2g+h���������!fmap2g+h i i 0Now we turn to (7.13):showParen b (showSym (name  0) <<< x ) >>> Rsg+h s 0 r r 0= De�nition of Rsg+h , let ( : s) = s 0showParen b (showSym (name  0) <<< x ) >>>(Rsg [℄ r r 0 <j> Rsh s r r 0)= Distribution law for (<j>)(showParen b (showSym (name  0) <<< x ) >>> Rsg [℄ r r 0) <j>(showParen b (showSym (name  0) <<< x ) >>> Rsh s r r 0)= The seond law of showParen and the indution hypothesiszeroA <j> zeroA= Laws for (<j>) and zeroAzeroA



7.6. PRETTY PRINTING 135The proof of (7.14) is very similar and omitted.The default ase, g:As the onstrutor list has the same number of elements as the number of sub-funtors in the sum struture of the funtor, there will be only one elementleft in the onstrutor list in the base ase. Thus we an math on [℄ insteadof ( : s).Ssg [℄ s s 0 >>> Rsg [℄ r r 0= De�nitionsshowParen (arity  > 0 ) (showSym (name ) <<< Spg s s 0) >>>readParen (arity  > 0 ) (readSym (name ) >>> Rpg r r 0)= 8><>:With b = arity  > 0, n = name , x = Spg s s 0 andy = Rpg r r 0 we an apply the �rst law for showParenas x >>> y = �������!fmap2g i i 0 is exatly (7.12).�������!fmap2g i i 0Both (7.13) and (7.14) follow immediately from the seond law of showParen.Printing onstrutor argumentsThe funtion Sp (Rp) inserts (reads) a spae before eah argument of a onstru-tor, and marks eah argument as a subexpression (potentially needing enlosingparentheses).polytypi Spf :: (a; ())! (b; ())! (f a b ; ())= �s s 0 ! ase f ofg � h �! ���������!�((); ())! () <<< (Spg s s 0 <�� Sph s s 0)Empty �! �����!�()! ()g �! showSym " " <<< likeParen (Srg s s 0)polytypi Rpf :: ((); a)! ((); b)! ((); f a b)= �r r 0 ! ase f ofg � h �! ���������!�()! ((); ()) >>> (Rpg r r 0 ��> Rph r r 0)Empty �! �����!�()! ()g �! readSym " " >>> likeParen (Rrg r r 0)where funtions Sr (for `Show Rest') and Rr (for `Read Rest') have the followingproperties:Srf :: (a; ())! (b; ())! (f a b ; ())Rrf :: ((); a)! ((); b)! ((); f a b)s >>> r = �!i ) s0 >>> r0 = �!i0 ) Srf s s 0 >>> Rrf r r 0 = �������!fmap2f i i 0 (7.15)



136 CHAPTER 7. DATA CONVERSIONWe prove (7.12) by indution over the produt struture of the funtor f :The produt ase, g � h:Spg�h s s 0 >>> Rpg�h r r 0= De�nitions(Spg s s 0 <�� Sph s s 0) >>> ���������!�((); ())! () >>>���������!�()! ((); ()) >>> (Rpg r r 0 ��> Rph r r 0)= (�((); ())! ()) ; (�()! ((); ())) = id(();())(Spg s s 0 <�� Sph s s 0) >>> (Rpg r r 0 ��> Rph r r 0)= Inverse law for (<��), indution hypothesis (twie)�������������������!fmap2g i i 0 ��� fmap2h i i 0= De�nition of fmap2g�h���������!fmap2g�h i i 0The empty ase, Empty:Trivial.The base ase, g:Spg s s 0 >>> Rpg r r 0= De�nitionslikeParen (Srg s s 0) >>> showSym " " >>>readSym " " >>> likeParen (Rrg r r 0)= Law for showSym and readSymlikeParen (Srg s s 0) >>> likeParen (Rrg r r 0)= Law for likeParen and Equation (7.15)�������!fmap2g i i 0Printing the restAt the bottom level all that is left is to apply the orret printer (parser): Parand Re selet from the parameters and d�g alls the top level pshow (pread)reursively.polytypi Srf :: (a; ())! (b; ())! (f a b ; ())= �s s 0 ! ase f ofPar �! sRe �! s 0d � g �! pshowd (Srg s s 0)



7.7. GENERATING ARROW INSTANCES 137polytypi Rr :: ((); a)! ((); b)! ((); f a b)= �r r 0 ! ase f ofPar �! rRe �! r 0d � g �! preadd (Rrg r r 0)The only remaining proof obligation is (7.15) and the proof is one again byindution on the struture of the funtor | the Par and Re ases follow imme-diately from the assumptions, and the d � g ase from the top level indutionhypothesis (7.10) and the loal indution hypothesis (7.15). This ompletes theproof that pread is the inverse of pshow.7.7 Generating arrow instanesMost of the ode presented in this hapter is generi in two ways. We use poly-typism to parametrize our de�nitions by a regular datatype, and we use Haskell'sonstrutor lasses to parametrize by the hoie of onrete arrow implementa-tion. Using PolyP, we obtain spei� instanes of the polytypi funtions auto-matially, but we do have to write instanes for the arrow lasses. This setiondesribes a few general arrow onstrutors and shows how to ombine them toobtain an example instane for ArrowReadShow that satis�es the neessary laws.We have already presented three arrow instanes: the trivial funtion arrow a !b, the Kleisli arrows Kleisli m a b for every monad m and the state arrow a;sb for any state type s. The state arrow an be generalized to a state arrowtransformer that adds state passing to any other arrow:newtype StateArrT s (;) a b = SAT ((a; s); (b; s))With this de�nition the simple state arrow SA s is equivalent to adding statepassing to the trivial arrow: StateArrT s (!). The state arrow transformerinstanes for Arrow , ArrowChoie, ArrowZero and ArrowPlus are in Figure 7.4.The Kleisli arrows were de�ned in Setion 7.3 together with instanes for Arrowand ArrowChoie. If the underlying monad has a zero and a plus operation (isan instane of the Haskell lass MonadPlus), then we an de�ne instanes forArrowZero and ArrowPlus as well:newtype Kleisli m a b = Kleisli (a ! m b)instane MonadPlus m ) ArrowZero (Kleisli m) wherezeroA = Kleisli (onst mzero)instane MonadPlus m ) ArrowPlus (Kleisli m) whereKleisli f <+> Kleisli g = Kleisli (�x ! mplus (f x ) (g x ))



138 CHAPTER 7. DATA CONVERSIONinstane Arrow (;)) Arrow (StateArrT s (;)) where�!f = SAT (���!�rst f )SAT f >>> SAT g = SAT (f >>> g)�rst (SAT f ) = SAT (����!swap23 >>> �rst f >>> ����!swap23 )swap23 :: ((a; b); s)! ((a; s); b)swap23 = �((a; b); s)! ((a; s); b)instane ArrowChoie (;)) ArrowChoie (StateArrT s (;)) whereSAT f jjj SAT g = SAT (������!eitherout >>> (f jjj g))eitherout :: (Either a a 0; s)! Either (a; s) (a 0; s)eitherout (x ; s) = (pairs �+� pairs) x where pairs a = (a; s)instane ArrowZero (;)) ArrowZero (StateArrT s (;)) wherezeroA = SAT zeroAinstane ArrowPlus (;)) ArrowPlus (StateArrT s (;)) whereSAT f <+> SAT g = SAT (f <+> g)Figure 7.4: Instane delarations for the state arrow transformer.All the arrow onstrutors de�ned so far were de�ned also in Hughes' arrowpaper [42℄, but the following onstrution is new. The monad arrow onstrutorMonadArrT wraps a monad around the arrow type:4newtype MonadArrT m (;) a b = MAT (m (a ; b))For every monad we an lift an arrow to an arrow, but to support hoie, failureand error handling we need to restrit the monad to, essentially, a reader monad.The reader arrow transformer ReaderArrT is a speial ase of the monad arrowtransformer:type ReaderArrT r = MonadArrT (r !)The transformer ReaderArrT r adds an environment of type r to any arrow. Thisan also be simulated with StateArrT but when no update is needed, ReaderArrTis more eÆient and also simpli�es the proofs. We use the shorthand notationa r; b for ReaderArrT r (;) a b. (Note the di�erene between the notationa ;s b for the state arrow and a r; b for the reader arrow.) The instanes forMonadArrT and ReaderArrT are in Figure 7.7.4The monad arrow onstrutor is a speial ase of an even more general stati arrow on-strutor (Paterson [88℄) that wraps any artesian funtor around the arrow type.
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instane (Monad m;Arrow (;))) Arrow (MonadArrT m (;)) where�!f = MAT (liftM0 �!f )MAT f >>> MAT g = MAT (liftM2 (>>>) f g)�rst (MAT f ) = MAT (liftM �rst f )instane ArrowChoie (;)) ArrowChoie (ReaderArrT r (;)) whereMAT f jjj MAT g = MAT (liftM2 (jjj) f g)instane ArrowZero (;)) ArrowZero (ReaderArrT r (;)) wherezeroA = MAT (liftM0 zeroA)instane ArrowPlus (;)) ArrowPlus (ReaderArrT r (;)) whereMAT f <j> MAT g = MAT (liftM2 (<j>) f g)MAT f <+> MAT g = MAT (liftM2 (<+>) f g)liftM0 :: Monad m ) a! m aliftM0 f = return fliftM :: Monad m ) (a ! b)! (m a ! m b)liftM f m = m >>= �x! return (f x )liftM2 :: Monad m ) (a! b! )! (m a ! m b ! m )liftM2 f m n = m >>= �x! n >>= �y! return (f x y)Figure 7.5: Instane delarations for MonadArrT and ReaderArrT .



140 CHAPTER 7. DATA CONVERSIONTwo useful operations on ReaderArrT arrows are getEnv and setEnv :getEnv :: Arrow (;)) a r; rgetEnv = MAT (�x ! ����!onst x )setEnv :: r ! (a r; b)! (a s; b)setEnv x (MAT f ) = MAT (onst (f x ))The arrow getEnv ignores its input and returns the value of the environment.The arrow setEnv x f transforms f by shielding it from the outside environmentso that all getEnvs from f give x .7.7.1 An instane for ArrowReadShowWe an ombine the three general arrow onstrutors to obtain an arrow RS thatan be made an instane of ArrowReadShow :type RS = ReaderArrT Int (StateArrT Tokens (Kleisli ([ ℄)))type Tokens = [String ℄The transformer ReaderArrT Int adds an environment ontaining an integer tohandle the preedene level, the transformer StateArrT Tokens adds a state on-taining a token list and the inner arrow Kleisli ([ ℄) handles the list of alternativeparses. By unfolding the de�nitions of the arrow onstrutors we getRS a b �= Int ! (a;Tokens)! [(b;Tokens)℄ :This an be ompared with the types for showsPre and readsPre from theHaskell prelude.showsPre :: Show a ) Int ! a ! String ! StringreadsPre :: Show b ) Int ! String ! [(b; String)℄These types use String where RS uses Tokens, but are otherwise very similar toRS a () and RS () b, respetively.The arrow RS is by onstrution an instane of Arrow , ArrowChoie, ArrowZeroand ArrowPlus. Hene to make RS an instane of ArrowReadShow all we needis instanes for ArrowSymbol and ArrowPre. Funtion readSym is the standarditem parser and showSym is even simpler (both ignore the preedene). The fun-tions likeParen, showParen and readParen use the preedene level environmentto determine when to read or write parentheses (using readSym and showSym).Example instantiations of ArrowSymbol and ArrowPre for the arrow RS are inFigure 7.6, where high is the preedene level of expressions that need parenthe-ses. The proofs that the instanes satisfy the laws of the lasses are long butrelatively simple.



7.8. RESULTS AND CONCLUSIONS 141instane ArrowSymbol RS whereshowSym s = MAT (return (SAT (seond ��!(s :))))readSym s = MAT (return (SAT (seond (Kleisli (readToken s)))))readToken t (s : ss) j s == t = return ssreadToken t = mzeroinstane ArrowPre RS wherelikeParen = setEnv highshowParen b f = ifHighPre b (parenthesize f ) freadParen b f = ifHighPre b (deparenthesize f ) fifHighPre :: ArrowChoie (;)) Bool ! (a Int; b)! (a Int; b)! (a Int; b)ifHighPre b = ifA (getEnv >>> ��������������!�p! b ^ p == high)Figure 7.6: Instanes for ArrowSymbol and ArroParen.7.8 Results and onlusionsOverview of the resultsWe have de�ned the following pairs of data onversion programs and related themwith inverse laws:� Shape plus ontent: (Setion 7.2)separate :: d a ;[a℄ d ()ombine :: d ();[a℄ d aseparate >>> ombine = �!id� Arrow maps: (Setion 7.4)pmapAr :: ArrowChoie (;) ) (a ; b)! (d a ; d b)pmapAl :: ArrowChoie (;) ) (a ; b)! (d a ; d b)f >>> g = �!i ) pmapAr f >>> pmapAl g = ����!pmap i� Paking: (Setion 7.5)ppak :: ArrowPak (;) ) (a ; ())! (d a ; ())punpak :: ArrowPak (;) ) ((); a)! ((); d a)p >>> u = �!i ) ppak p >>> punpak u = ����!pmap i



142 CHAPTER 7. DATA CONVERSION� Pretty printing: (Setion 7.6)pshow :: ArrowReadShow (;) ) (a; ())! (d a ; ())pread :: ArrowReadShow (;) ) ((); a)! ((); d a)s >>> r = �!i ) pshow s >>> pread r = ����!pmap iWe an ombine the last two appliations to obtain ompression and deompres-sion. The omposition of the polytypi read funtion pread with the pakingfuntion ppak gives a strutured ompression algorithm pompress that takes aplain text representation of a datatype value to a bit stream. The orrespondingdeompression algorithm pdeompress is a omposition of the unpaking funtionpunpak and the polytypi show funtion pshow. Funtion pdeompress is theinverse of pompress for all strings that represent a value. This fat follows fromthe inverse laws for pretty printing and paking.ConlusionsWe have onstruted polytypi programs for several data onversion problems.As far as we are aware, these are the �rst implemented generi desriptions ofprograms for data onversion problems. Reent work by Hinze [33℄ also ontainsa polytypi show funtion and a simple paking funtion, but his language stilllaks an implementation.For eah of the data onversion problems onsidered in this hapter we onstruta pair of funtions. These pairs of funtions are inverse funtions by onstru-tion. Sine we started applying the inverse funtion requirement rigorously inthe onstrution of the programs, the size and the omplexity of the ode havebeen redued onsiderably. Compare for example Bj�ork's [13℄ and Huisman's [43℄de�nitions, with the polytypi read and show funtions de�ned in this hapter.We �rmly believe that suh a rigorous approah is the only way to obtain elegantsolutions to involved polytypi problems. Another onept that simpli�ed theonstrution and form of the program is arrows. In our �rst attempts to poly-typi programs for paking and unpaking we used monads instead of arrows.Although it is possible to onstrut the (un)paking funtions with monads (seeHalenbeek [31℄), the inverse funtion onstrution, and hene the orretnessproof, is simpler with arrows.We have shown how to onstrut programs for several data onversion problems.We expet that our programs and proofs will be very useful in the onstrutionof programs for other data onversion problems.Although all our data onversion programs are linear, both time and spae ef-�ieny of our programs leave muh to be desired. We expet that suÆiently



7.8. RESULTS AND CONCLUSIONS 143sophistiated forms of partial evaluation will improve the performane of our pro-grams onsiderably. We want to experiment with partial evaluation of polytypifuntions in the future.We have presented a few alulations of polytypi programs. We think thatalulating with polytypi funtions is still rather umbersome, and we hope toobtain more theory, in the style of Meertens [76℄ and Hinze [36℄, to simplifyalulations with polytypi programs. If we take Hinze's approah to polytypiprogramming [35℄, then we only have 4 onstrutors for pattern funtors insteadof 7, and this should redue the length of the proofs. In ollaboration with Hinze,we are urrently working on an implementation of his approah as a suessor toPolyP.



144 CHAPTER 7. DATA CONVERSION



Chapter 8
Related work
In this hapter we desribe work related to funtional polytypi programming. Webriey desribe a number of subjet areas whih have inuened the developmentof polytypism and give many referenes to further reading.
8.1 BMF �= SquiggolPolytypism has its roots in the branh of onstrutive algorithmis that wasnamed the Bird-Meertens Formalism (BMF) [10, 74℄ by Bakhouse [3℄. BMFis not really a well de�ned formalism, but rather a olletion of de�nitions,transformations and laws for alulating with programs. In the \Theory ofLists" [10, 11, 60℄ many laws for alulating with programs are proved and usedto derive eÆient algorithms from learly orret (but often hopelessly ineÆ-ient) spei�ations. Polytypi funtions are widely used in the Squiggol ommu-nity [4,7,24,72,75{77,79℄, where the list based alulus is generalized and extendedto datatypes that an be de�ned by means of a regular funtor. Polytypi versionsof many list funtions are de�ned: ata, map, zip, sum et. and together withthe funtions, also the theorems and the transformation tehniques developed inthe theory of lists are generalized. Bakhouse et al. [4℄ argues onviningly thatthe basis of the theory of polytypism is best desribed in a relational setting.Bird, de Moor and Hoogendijk [7℄ use this setting to generalize the theory of seg-ments of lists to all datatypes. The onnetion between polytypi programmingand dependent types (in the ontext of Martin-L�of type theory [83℄) has beeninvestigated by Bakhouse [5℄, Pfeifer and Rue� [91℄ and Dybjer [18, 19℄.145



146 CHAPTER 8. RELATED WORK8.2 Theories of datatypesA polytypi value is a family of values indexed by (the struture of) datatypes.Thus the hoie of formalism to represent datatypes is of entral importane forpolytypi programming. The Squiggol ommunity takes the ategorial view ofmodeling datatypes as initial funtor-algebras. This is a relatively old idea, onwhih a large amount of literature exists, see, amongst others, Lehmann andSmyth [69℄, Manes and Arbib [73℄, and Hagino [30℄. B�ohm and Berardui [14℄have a more algebrai approah to modeling datatypes. They de�ne a data system(a group of mutually reursive datatypes) to be a �nite parametri heterogeneousterm algebra. This is one of the few referenes where mutually reursive data-types with multiple parameters are desribed in detail. Hoogendijk, de Moor andBakhouse [37{39℄ argue that a datatype (or, more spei�ally, a ontainer type)is a relator with a membership relation.8.3 Beyond regular datatypesPolytypi funtions are traditionally de�ned for regular datatypes. Regular data-types are initial �xed points of regular funtors or, in the relational setting, regularrelators [4℄.Jay [56,57℄ has developed an alternative theory for polytypi funtions, in whihvalues are represented by their struture and their ontents. He uses a ategorytheoreti formulation of polytypism based on the notion of strong funtor [80℄.The lass of datatypes on whih polytypi funtions an be de�ned an be ex-tended (with some e�ort) to inlude datatypes with funtion spaes. Freyd [26℄provides the ategory theoreti bakground for this extension. The problem withthe extension is that if a datatype parameter ours in a negative position (tothe left of an odd number of funtion arrows) in a datatype de�nition, thenthe reursive de�nition of the atamorphism uses its own (right) inverse. Mei-jer and Hutton [78℄ apply Freyd's theory to the de�nition of atamorphisms fordatatypes with embedded funtions. They solve the problem of negative param-eters by simultaneously de�ning both the atamorphism and its right inverse (ananamorphism). Fegaras and Sheard [21℄ point out that this solution is too re-stritive: there are funtions that an be de�ned as atamorphisms even thoughthey lak a right inverse. They give an alternative de�nition of the atamorphismusing an approximate inverse and give a type system that rejets the ases whenthis approximation would not be safe.Reent results extend polytypi programming to work on non-regular, so allednested datatypes [8℄. Bird and Paterson [9℄ suggest generalized folds and Hinze [34℄shows how one an de�ne most other polytypi funtions so that they work also



8.4. SPECIFIC POLYTYPIC FUNCTIONS 147on nested datatypes.Fokkinga extends the theory of datatypes to inlude \Datatype Laws withoutSignatures" [22℄ enabling abstrat datatypes like staks to be de�ned in a ategorytheoreti setting. To extend polytypi programming in this diretion would bean interesting subjet for future work.8.4 Spei� polytypi funtionsGenerating instanes for spei� polytypi funtions, suh as (==), map, ataet. for a given type, is rather simple and has been demonstrated by severalauthors [14, 45, 46, 55, 75, 82, 96, 98℄. Catamorphisms were generated by B�ohmand Berardui [14℄ (in the �-alulus) and Sheard [98℄ (in an ML-like language).Sheard also gave programs to automatially generate other kinds of traversalfuntions like aumulations and equality funtions.The paramorphism, a more general reursion operator than the atamorphism,was introdued by Meertens [75℄. (The reursion pattern aptured by the para-morphism in essentially the same as the pattern in the elimination rule for adatatype in onstrutive type theory.) Many other reursion operators are de-�ned by de Moor and Fokkinga [24,82℄. A atamorphism an also be generalizedto a monadi atamorphism [25,79℄ that threads a monad through the struture.The use of anamorphisms is advoated in \The Under-Appreiated Unfold" byGibbons and Jones [29℄ and monadi anamorphisms are de�ned by Pardo [87℄.Polytypi funtions for spei� programming problems, suh as the maximumsegment sum problem and the pattern mathing problem were �rst given byBird et al. [7℄ and Jeuring [61℄. (The �rst published use of the term polytypifuntion was by Jeuring [61℄.) Many other algorithms have also been expressedpolytypially: uni�ation [51℄, pattern mathing [61℄, data ompression [46, 53℄,parsing and pretty printing [53℄, rewriting [52,54,62℄, geneti programming [100℄,downwards aumulations [28℄, et.All these polytypi funtions are parametrized on one datatype. There is, how-ever, no theoretial problem with de�ning multiply parametrized polytypi fun-tions. One example is the doubly parametri funtion transpose (also alled zip)de�ned by Ruehr [94℄ and Hoogendijk and Bakhouse [38℄. In PolyP it ouldhave the type:transpose :: (Regular d ;Regular e) ) d (e a)! e (d a)It is a generalization of the transpose operation on matries.If the inner datatype e in the type for transpose is replaed by a monad m, thena polytypi (and monadi) traversal [47, 79, 81℄ funtion is obtained. Traversals



148 CHAPTER 8. RELATED WORKan be used for a wide range of problems | examples are the data onversionprograms in Chapter 7. Traversals are also widely used in \imperative polytypiprogramming" | the topi of the Setion 8.8. As an example, the Visitor designpattern [27℄ is a traversal.8.5 Type systemsType systems for languages whih allow the use of polytypi funtions have beendeveloped by several people:� Ruehr [94℄ gives a full higher-order type pattern language. The higher-order aspets of the type system makes the language a bit impratial buthe also presents a trade-o� design for a more manageable language withtype inferene.� Jones' type system [64,66℄ is based on quali�ed types and higher-order poly-morphism. The type system is implemented in the Haskell system Hugs.Haskell has no onstrution for writing polytypi funtions by indution onuser de�ned datatypes but an be used to simulate and type hek polytypifuntions using onstrutor lasses.� Sheard and Nelson [97℄ gives a type system for a restrited version of Com-pile time Reexive ML. CRML is a two-level language and a polytypiprogram is obtained by embedding seond level type delarations as valuesin �rst level omputations. The restrition is that reursion in the �rst level(that is exeuted at ompile time) must be expressed using atamorphismsonly, to guarantee termination. The type system uses dependent types anda speial type onstrution for the types of atamorphisms.� Harper and Morrisett [32℄ present a type system for a language with \inten-sional polymorphism". A dependently typed typease onstrut for expliitmathing on prede�ned types is used to de�ne generi funtions that workfor di�erent types. The typease annot, however, be used to math on thestruture of user de�ned datatypes.� Our type system (desribed in Chapter 4 and in Jansson and Jeuring [46℄)extends Jones' system [64, 66℄ with the possibility to introdue and typehek polytypi funtions de�ned by indution on the struture of userde�ned datatypes.� Jay et al. [55,58℄ desribe a type system for \Funtorial ML", an intermedi-ate language with some prede�ned polytypi funtions inluding map andata (they all it fold). The language an deal with multiple parameterdatatypes, but not mutual reursive datatypes.



8.6. IMPLEMENTATIONS 149� Hinze [35, 36℄ presents another approah to polytypi programming witha type system for type indexed values. In this setting polytypi funtionsan be de�ned not only for regular datatypes, but for a muh wider lass,inluding nested datatypes, mutually reursive datatypes and higher-orderdatatypes.8.6 ImplementationsIn this dissertation we have argued that a polytypi programming system should� type hek polytypi ode,� allow de�nitions of new polytypi funtions, and� generate instanes of these polytypi funtions for regular datatypes.In the language Charity [16℄ polytypi funtions like the atamorphism and mapare automatially provided for eah user-de�ned datatype. But it is not possibleto de�ne new polytypi funtions in Charity . The funtional language P2 [55℄does not satisfy the seond requirement, but a few generations later, Jay's ongoingwork with the language FISh [59℄ supports all three requirements. Hinze [35℄presents a promising approah to polytypi programming and proposes to add thisas a generi programming extension for Haskell [33℄, but it is not yet implemented.Our system PolyP, desribed in Chapter 4 satis�es these requirements and weknow of only one other suh system: that of Sheard [96℄ using a restrited ompiletime reetive setting. The reason we are not using Sheard's system is that ituses a two level language built on ML (Compile-time Reexive ML [40℄) extendedwith a type system using some dependent types. We did not want to move thatfar away from the Haskell (type) system. Using the expliit type parameters ofCayenne [1℄ (a language ombining the programming power of Haskell with thespei�ation power of Martin-L�of's type theory [83℄) we ould perhaps obtain apolytypi extension with less overhead than the urrent Haskell based system.We are planning for a suessor of PolyP: Generi Haskell [33℄ in whih we ombinethe experienes from the PolyP system with Hinze's new ideas (extensions tohandle multiple type arguments, mutually reursive datatypes) .8.7 Polytypi transformations and proofsMalolm [72℄ and Fokkinga [22{24℄ develop ategorial tehniques for alulatingand transforming programs. The most well know polytypi transformation is the



150 CHAPTER 8. RELATED WORKfusion law, �rst desribed by Malolm [71, 72℄. (Malolm alls it the promotiontheorem following Bird's terminology for lists [10℄.) The fusion law (for appli-ations, see Chapter 3) gives the onditions under whih the omposition of afuntion with a atamorphism an be fused to a single atamorphism. Takanoand Meijer [99℄ use another polytypi law, the aid-rain theorem, to apply de-forestation [103℄ transformations and Hu [41℄ uses a number of polytypi lawsto eliminate multiple traversals of data by ombining funtions that reurse overthe same struture. The alulational fusion system HYLO [85℄ an be used toalulated with programs expressed in terms of hylomorphisms (a generalizedombination of atamorphisms, maps and anamorphisms).Both the fusion law and the aid-rain theorem are examples of free theorems [101℄.A free theorem an be derived automatially from the polymorphi type of afuntion. For example, the fusion law is the free theorem of funtion ata. Fegarasand Sheard [21, Appendix A.1℄ (in more detail: [20℄) give a funtion that given atype onstruts its free theorem.More examples of polytypi alulation of programs an be found in Jeuring [61℄,Meertens [76℄, in the textbook `Algebra of Programming' by Bird and de Moor [12℄and, of ourse, in this dissertation.Hutton and Gibbons present the generi approximation lemma [44℄ | a beautifulresult that an be used to prove generi properties of funtions that work onpossibly in�nite data. Hinze [36℄ presents a powerful proof rule for his kind ofpolytypi funtions and uses this rule to prove that the polytypi map funtionis a funtor.8.8 Imperative Polytypi ProgrammingIn the imperative world polytypi programming appears under the broader on-ept \design patterns" [27℄, and more spei�ally as \adaptive objet-orientedprogramming" [70, 86℄. Adaptive OOP addresses some of the same issues aspolytypi programming and, although the assoiated programming style is verydi�erent from funtional polytypi programming, the resulting programs havevery similar behavior. In adaptive OOP a method (orresponding to a polytypifuntions) is attahed to a group of lasses (orresponding to a datatype) thatusually satis�es ertain onstraints (suh as being regular).Lieberherr et al. [70℄ desribes a system that allows the programmer to writetemplate programs ontaining a number of methods with assoiated `propagationpatterns'. The template programs are parametrized on (the struture of) a groupof related lasses and the system automatially instantiates these templates fordi�erent lass dependeny graphs. Eah method in the template program has asignature (the type of the method), a pattern (that spei�es the set of paths in



8.8. IMPERATIVE POLYTYPIC PROGRAMMING 151the lass dependeny graph on whih the method should be used) and a odepart (to be exeuted for all mathing paths).Advaned uses of the C++ Standard Template Library (STL) [92℄ an also beonsidered polytypi programming, but as C++ laks reursive types the style isvery di�erent from the style of funtional polytypi programming in this disser-tation. Muh of the work with STL is programming against a \generi" interfae(for example iterators) to obtain reusable ode. The losest math in this disser-tation is the Term interfae used in Chapter 6, but many things that STL addsto C++ (for example, parametri polymorphism) are already present in Haskellwithout the polytypi extensions.
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Appendix AAn implementation of PolyLib
This appendix presents the implementation of the polytypi funtion libraryPolyLib (Chapter 5) as PolyP ode. All funtions from Chapter 5 are imple-mented and also a few variants and extensions. Eah setion is presented as aHaskell style module, but the urrent version of PolyP ignores the information inthe module head. Eah module is a literate sript ontaining the soure ode andsome typesetting information. The LATEX soure used to typeset this appendixwas automatially generated by Ralf Hinze's lhs2tex program.A.1 Strutured reursion operatorsmodule Base (pmap; fmap2; ata; ana; hylo; para; ( ��� ); ( �+� )) wherepmap :: Regular d ) (a ! b)! d a ! d bpmap f = inn Æ fmap2 f (pmap f ) Æ outpolytypi fmap2 :: (a ! )! (b ! d)! f a b ! f  d= �p r ! ase f ofg + h ! (fmap2 p r) �+� (fmap2 p r)g � h ! (fmap2 p r) ��� (fmap2 p r)Empty ! id :: ()! ()Par ! pRe ! rd�g ! pmap (fmap2 p r)Const t ! idata :: Regular d ) (�d a b ! b)! (d a ! b)ata i = i Æ fmap2 id (ata i) Æ out165
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ana :: Regular d ) (b ! �d a b)! (b ! d a)ana o = inn Æ fmap2 id (ana o) Æ ohylo :: Bifuntor f ) (f a b ! b)! ( ! f a )!  ! bhylo i o = i Æ fmap2 id (hylo i o) Æ opara :: Regular d ) (d a ! �d a b ! b)! d a ! bpara i x = i x (fmap2 id (para i) (out x ))Non-polytypi help funtions( ��� ) :: (a ! )! (b ! d)! ((a; b)! (; d))( �+� ) :: (a ! )! (b ! d)! (Either a b ! Either  d)f ��� g = �(x ; y)! (f x ; g y)f �+� g = Left Æ f r Right Æ gA.2 Crushmodule Crush (rush; frush) whereimport Base (ata; pmap)rush :: Regular d ) (a ! a ! a)! a ! d a ! arush op e = ata (frush op e)polytypi frush :: (a ! a ! a)! a ! f a a ! a= �op e ! ase f ofg + h ! frush op e r frush op eg � h ! �(x ; y)! op (frush op e x )(frush op e y)Empty ! �x ! ePar ! idRe ! idd�g ! rush op e Æ pmap (frush op e)Const t ! �x ! e



A.3. MONADIC RECURSION OPERATORS 167A.3 Monadi reursion operatorsmodule BaseM (pmapM ; fmap2M; ataM ; anaM ; hyloM ; paraM ;innM ; outM ; idM ; (��)) whereimport Base (( ��� ))pmapM :: (Regular d ;Monad m) ) (a ! m b)! d a ! m (d b)pmapM fM = liftM inn Æ fmap2M fM (pmapM fM ) Æ outpolytypi fmap2M :: Monad m ) (a ! m )! (b ! m d)!f a b ! m (f  d)= �p r ! ase f ofg + h ! summapM (fmap2M p r) (fmap2M p r)g � h ! prodmapM (fmap2M p r) (fmap2M p r)Empty ! returnPar ! pRe ! rd�g ! pmapM (fmap2M p r)Const t ! returnsummapM :: Monad m ) (a ! m )! (d ! m e)!Either a d ! m (Either  e)summapM f g = (liftM Left Æ f ) r (liftM Right Æ g)prodmapM :: Monad m ) (a ! m )! (d ! m e)! (a; d)! m (; e)prodmapM f g p = f (fst p)>>= �x ! g (snd p)>>= �y ! return (x ; y)prodmapMr f g p = g (snd p)>>= �y ! f (fst p)>>= �x ! return (x ; y)ataM :: (Regular d ;Monad m) ) (�d a b ! m b)! (d a ! m b)ataM iM = iM �� fmap2M idM (ataM iM ) Æ outanaM :: (Regular d ;Monad m) ) (b ! m �d a b)! (b ! m (d a))anaM oM = liftM inn Æ fmap2M idM (anaM oM ) �� oMhyloM :: (Bifuntor f ;Monad m) ) (f a b ! m b)! ( ! m (f a ))! ! m bhyloM iM oM = iM �� fmap2M idM (hyloM iM oM ) �� oMparaM :: (Regular d ;Monad m) ) (d a ! �d a b ! m b)! d a ! m bparaM iM x = iM x =<< fmap2M idM (paraM iM ) (out x )



168 APPENDIX A. AN IMPLEMENTATION OF POLYLIBNew names for symmetry:idM :: Monad m ) a ! m aidM = returninnM :: (Regular d ;Monad m) ) �d a (d a)! m (d a)innM = idM Æ innoutM :: (Regular d ;Monad m) ) d a ! m �d a (d a)outM = idM Æ outA synonym.pmapMl :: (Regular d ;Monad m) ) (a ! m b)! d a ! m (d b)pmapMl = pmapMReverse order traversalspmapMr :: (Regular d ;Monad m) ) (a ! m b)! d a ! m (d b)pmapMr fM = liftM inn Æ fmap2Mr fM (pmapMr fM ) Æ outpolytypi fmap2Mr :: Monad m)(a ! m )! (b ! m d)! f a b ! m (f  d)= �p r ! ase f ofg + h ! summapM (fmap2Mr p r) (fmap2Mr p r)g � h ! prodmapMr (fmap2Mr p r) (fmap2Mr p r)Empty ! returnPar ! pRe ! rd�g ! pmapMr (fmap2Mr p r)Const t ! returnataMr :: (Regular d ;Monad m) ) (�d a b ! m b)! (d a ! m b)ataMr iM = iM �� fmap2Mr idM (ataMr iM ) Æ outanaMr :: (Regular d ;Monad m) ) (b ! m �d a b)! (b ! m (d a))anaMr oM = liftM inn Æ fmap2Mr idM (anaMr oM ) �� oMhyloMr :: (Bifuntor f ;Monad m) ) (f a b ! m b)! ( ! m (f a ))! ! m bhyloMr iM oM = iM �� fmap2Mr idM (hyloMr iM oM ) �� oM



A.4. THREAD 169Traversal either way: pmapM 0 (True ! left to right, False ! right to left)pmapM 0 :: (Regular d ;Monad m) ) Bool ! (a ! m b)! d a ! m (d b)pmapM 0 ord fM = liftM inn Æ fmap2M 0 ord fM (pmapM 0 ord fM ) Æ out
polytypi fmap2M 0 :: Monad m ) Bool ! (a ! m )! (b ! m d)!f a b ! m (f  d)= �ord p r ! ase f ofg + h ! summapM (fmap2M 0 ord p r) (fmap2M 0 ord p r)g � h ! opM ord Æ (fmap2M 0 ord p r ��� fmap2M 0 ord p r)Empty ! returnPar ! pRe ! rd�g ! pmapM 0 ord (fmap2M 0 ord p r)Const t ! return
opM :: Monad m ) Bool ! (m a;m b)! m (a; b)opM b p = ase b ofTrue ! fst p >>= �x ! snd p >>= �y ! return (x ; y)False ! snd p >>= �y ! fst p >>= �x ! return (x ; y)Monad operations (that are not in PolyP's prelude)liftM :: Monad m ) (a ! b)! m a ! m bliftM f mx = mx >>= �x ! return (f x )(��) :: Monad m ) (b ! m )! (a ! m b)! (a ! m )f �� g = �y ! g y >>= fA.4 Threadmodule Thread (thread ; pmapM ; fthread ; fmap2M) whereimport Base (ata; inn; pmap)import BaseM (pmapM ; fmap2M; (��))



170 APPENDIX A. AN IMPLEMENTATION OF POLYLIBthread :: (Regular d ;Monad m) ) d (m a)! m (d a)thread = ata (liftM inn Æ fthread)polytypi fthread :: Monad m ) f (m a) (m b)! m (f a b)= ase f ofg + h ! sumthread Æ (fthread �+� fthread)g � h ! prodthread Æ (fthread ��� fthread)Empty ! returnPar ! idRe ! idd�g ! thread Æ (pmap fthread)Const t ! returnsumthread :: Monad m ) Either (m a) (m b)! m (Either a b)sumthread = liftM Left r liftM Rightprodthread :: Monad m ) (m a;m b)! m (a; b)prodthread (mx ;my) = mx >>= �x ! my >>= �y ! return (x ; y)Monad operations (that are not in PolyP's prelude)liftM :: Monad m ) (a ! b)! m a ! m bliftM f mx = mx >>= �x ! return (f x )Alternative de�nitions of pmapM and fmap2M :pmapM :: (Regular d ;Monad m) ) (a ! m b)! d a ! m (d b)pmapM f = thread Æ pmap ffmap2M :: (Bifuntor f ;Monad m) ) (a ! m )! (b ! m d)!f a b ! m (f  d)fmap2M f g = fthread Æ fmap2 f gA.5 ThreadFunsmodule ThreadFuns (propagate; ross) whereimport Thread (thread)ross :: Regular d ) d [a ℄! [d a ℄ross = threadpropagate :: Regular d ) d (Maybe a)! Maybe (d a)propagate = thread



A.6. PROPAGATE 171A.6 Propagatemodule Propagate (propagate; fprop; sumprop; prodprop;mapM ) whereimport Base (ata; inn; pmap)propagate :: Regular d ) d (Maybe a)! Maybe (d a)propagate = ata (mapM inn Æ fprop)polytypi fprop :: f (Maybe a) (Maybe b)! Maybe (f a b)= ase f ofg + h ! sumprop Æ (fprop �+� fprop)g � h ! prodprop Æ (fprop ��� fprop)Empty ! JustPar ! idRe ! idd�g ! propagate Æ (pmap fprop)Const t ! Justsumprop :: Either (Maybe a) (Maybe b)! Maybe (Either a b)sumprop = mapM Left r mapM Rightprodprop :: (Maybe a;Maybe b) ! Maybe (a; b)prodprop p = ase p of(Just x ; Just y) ! Just (x ; y)! NothingMaybe funtionsmapM :: (a ! b)! Maybe a ! Maybe bmapM f = maybe Nothing (Just Æ f )A.7 Zipmodule Zip (pzip; fzip; pzipWith; pzipWith 0; fzipWith; fzipWith) whereimport Base (pmap; fmap2; ( �+� ); ( ��� ))import Propagate (fprop; sumprop; prodprop; propagate;mapM )



172 APPENDIX A. AN IMPLEMENTATION OF POLYLIBIn this module Maybe ould be replaed by any Monad using fail "err" forzeroM .punzip :: Regular d ) d (a; b)! (d a; d b)punzip x = (pmap fst x ; pmap snd x )funzip :: Bifuntor f ) f (a; ) (b; d)! (f a b; f  d)funzip x = (fmap2 fst fst x ; fmap2 snd snd x )pzip :: Regular d ) (d a; d b)! Maybe (d (a; b))pzip = (innM �� (fprop Æ fmap2 returnM pzip) �� fzip) Æ (out ��� out)pzipWith 0 :: Regular d ) (�d  e ! e)!((d a; d b)! e)!((a; b)! )! (d a; d b)! epzipWith 0 ins fail op (x ; y) =maybe (fail (x ; y)) (ins Æ fmap2 op (pzipWith 0 ins fail op))(fzip (out x ; out y))A possible variant:pzipWith 0 ins fail op (x ; y) =maybe (fail (x ; y)) ins (fzipWith op (pzipWith 0 ins fail op) (out x ; out y))pzipWith :: Regular d ) ((a; b)! Maybe )! (d a; d b)! Maybe (d )pzipWith = pzipWith 0 (mapM inn Æ fprop) (onst zeroM )Note: the parameters to fzipWith do not have the the same types as the argumentsto pzipWith.fzipWith :: ((a; a 0)! )! ((b; b 0)! d)! (f a b; f a 0 b 0)! Maybe (f  d)fzipWith f g = mapM (fmap2 f g) Æ fzippolytypi fzip :: (f a b; f  d)! Maybe (f (a; ) (b; d))= ase f ofg + h ! (sumprop Æ (fzip �+� fzip)) �� sumzipg � h ! (prodprop Æ (fzip ��� fzip)) �� prodzipEmpty ! onst (returnM ())Par ! returnMRe ! returnMd�g ! (propagate Æ (pmap fzip)) �� pzipConst t ! onstzip



A.7. ZIP 173
sumzip :: (Either a b;Either  d) ! Maybe (Either (a; ) (b; d))sumzip p = ase p of(Left s;Left t) ! returnM (Left (s; t))(Right s;Right t) ! returnM (Right (s; t))! zeroMprodzip :: ((a; b); (; d))! Maybe ((a; ); (b; d))prodzip ((a; b); (; d)) = returnM ((a; ); (b; d))Using this de�nition of onstzip in the Const t ase, formally requires an Eq tonstraint, whih is inexpressible in PolyP (in this position). However the imple-mentation of PolyP allows this for onveniene, even though it is not really typesafe.onstzip :: Eq t ) (t ; t)! Maybe tonstzip (x ; y) = if x == y then returnM x else zeroMThe intended (and implemented) meaning is fairly lear: one branh Const T !onstzip in the polytypi ase for eah type T that is an instane of Eq .Maybe-monad funtionsreturnM :: a ! Maybe areturnM x = Just xbindM :: Maybe a ! (a ! Maybe b)! Maybe bbindM x f = maybe Nothing f x(��) :: (a ! Maybe b)! ( ! Maybe a)!  ! Maybe bg �� f = �a ! f a `bindM ` gzeroM :: Maybe azeroM = NothinginnM :: Regular d ) �d a (d a)! Maybe (d a)innM = returnM Æ inn



174 APPENDIX A. AN IMPLEMENTATION OF POLYLIBA.8 Equalmodule Equal (pequal ; fequal ; peq) wherepeq :: (Regular d ;Eq a) ) d a ! d a ! Boolpeq = pequal (==)pequal :: Regular d ) (a ! b ! Bool)! d a ! d b ! Boolpequal eq x y = fequal eq (pequal eq) (out x ) (out y)polytypi fequal :: (a ! b ! Bool)! ( ! d ! Bool)!f a  ! f b d ! Bool= �p r ! ase f ofg + h ! sumequal (fequal p r) (fequal p r)g � h ! prodequal (fequal p r) (fequal p r)Empty ! � ! TruePar ! pRe ! rd�g ! pequal (fequal p r)Const t ! (==)sumequal :: (a ! b ! Bool)! ( ! d ! Bool)!Either a  ! Either b d ! Boolsumequal f g a b = ase (a; b) of(Left x ;Left v) ! f x v(Right y ;Right w) ! g y w! Falseprodequal :: (a ! b ! Bool)! ( ! d ! Bool)! (a; )! (b; d)! Boolprodequal f g p q = f (fst p) (fst q) ^ g (snd p) (snd q)A slightly less lazy variant:prodequal f g (x ; y) (v ;w) = f x v ^ g y w



A.9. COMPARE 175A.9 Comparemodule Compare (pompare 0; pompare; fompare) wherepompare 0 :: (Regular d ;Ord a) ) d a ! d a ! Orderingpompare 0 = pompare omparepompare :: Regular d ) (a ! a ! Ordering)! d a ! d a ! Orderingpompare eq x y = fompare eq (pompare eq) (out x ) (out y)polytypi fompare :: (a ! a ! Ordering)! (b ! b ! Ordering)!f a b ! f a b ! Ordering= �p r ! ase f ofg + h ! sumompare (fompare p r) (fompare p r)g � h ! prodompare (fompare p r) (fompare p r)Empty ! � ! EQPar ! pRe ! rd�g ! pompare (fompare p r)Const t ! omparesumompare :: (a ! a ! Ordering)! (b ! b ! Ordering)!Either a b ! Either a b ! Orderingsumompare f g a b = ase (a; b) of(Left x ;Left v) ! f x v(Right y ;Right w) ! g y w(Left ;Right ) ! LT(Right ;Left ) ! GTprodompare :: (a ! a ! Ordering)! (b ! b ! Ordering)!(a; b)! (a; b)! Orderingprodompare f g p q = f (fst p) (fst q) `ordop` g (snd p) (snd q)ordop :: Ordering ! Ordering ! Orderingordop x y = ase x ofEQ ! y! x



176 APPENDIX A. AN IMPLEMENTATION OF POLYLIBA.10 Flattenmodule Flatten (atten;�atten; par ; re; all ; singleton; nil) whereimport Base (pmap; fmap2)atten :: Regular d ) d a ! [a ℄atten = �atten Æ fmap2 singleton atten Æ outpolytypi �atten :: f [a ℄ [a ℄! [a ℄= ase f ofg + h ! �atten r �atteng � h ! �(x ; y)! �atten x ++�atten yEmpty ! nilPar ! idRe ! idd�g ! onat Æ atten Æ pmap �attenConst t ! nil par :: Bifuntor f ) f a b ! [a ℄ re :: Bifuntor f ) f a b ! [b ℄ all :: Bifuntor f ) f a a ! [a ℄ par = �atten Æ fmap2 singleton nil re = �atten Æ fmap2 nil singleton all = �atten Æ fmap2 singleton singletonA variant: de�ning atten using ata:atten = ata (�atten Æ fmap2 singleton id)Funtion atten an also be de�ned using rush (see the module CrushFuns).substrutures :: Regular d ) d a ! [d a ℄substrutures x = x :�atten (fmap2 nil substrutures (out x ))Help funtions for listssingleton :: a ! [a ℄singleton x = [x ℄nil :: a ! [b ℄nil x = [ ℄



A.11. SUM 177A.11 Summodule Sum (psum; fsum; size) whereimport Base (ata; pmap)psum :: Regular d ) d Int ! Intpsum = ata fsumpolytypi fsum :: f Int Int ! Int= ase f ofg + h ! fsum r fsumg � h ! �(x ; y)! fsum x + fsum yEmpty ! �x ! 0Par ! idRe ! idd�g ! psum Æ pmap fsumConst t ! �x ! 0size :: Regular d ) d a ! Intsize = psum Æ pmap (� ! 1)The funtions psum and size an also be de�ned using rush (see the moduleCrushFuns).A.12 CrushFunsmodule CrushFuns (psum; prod ; on; pand ; por ;size;atten; pall ; pany; pelem) whereimport Crush (rush)import Base (pmap)psum :: Regular d ) d Int ! Intprod :: Regular d ) d Int ! Intomp :: Regular d ) d (a ! a)! (a ! a)on :: Regular d ) d [a ℄! [a ℄pand :: Regular d ) d Bool ! Boolpor :: Regular d ) d Bool ! Bool
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psum = rush (+) 0prod = rush (�) 1omp = rush (Æ) idon = rush (++) [ ℄pand = rush (^ ) Truepor = rush (_ ) Falsesize :: Regular d ) d a ! Intatten :: Regular d ) d a ! [a ℄pall :: Regular d ) (a ! Bool)! d a ! Boolpany :: Regular d ) (a ! Bool)! d a ! Boolpelem :: (Regular d ;Eq a) ) a ! d a ! Boolsize = psum Æ pmap (� ! 1)atten = on Æ pmap (�x ! [x ℄)pall p = pand Æ pmap ppany p = por Æ pmap ppelem x = pany (�y ! x == y)A linear variant of atten an be de�ned by using an aumulating parameter:atten 0 :: Regular d ) d a ! [a ℄! [a ℄atten 0 = omp Æ pmap (:)A.13 ConstrutorNamemodule ConstrutorName whereFuntions datatypeName and fonstrutorName are built in.datatypeName :: Regular d ) d a ! StringfonstrutorName :: Bifuntor f ) f a b ! StringonstrutorName :: Regular d ) d a ! StringonstrutorName = fonstrutorName Æ out



A.13. CONSTRUCTORNAME 179
onstrutorNames :: Regular d ) d a ! [String ℄onstrutorNames = fonstrutorNames Æ outfonstrutorNames :: Bifuntor f ) f a b ! [String ℄fonstrutorNames x =map fonstrutorName (fonstrutors `asTypeOf ` [x ℄)The use of asTypeOf is a way to propagate type information to the orret des-tination. It is used to work around the lak of expliit funtor arguments.onstrutorNamesAndArities :: Regular d ) d a ! [(String ; Int)℄onstrutorNamesAndArities = fonstrutorNamesAndArities Æ outfonstrutorNamesAndArities :: Bifuntor f ) f a b ! [(String ; Int)℄fonstrutorNamesAndArities x =map (mapFst fonstrutorName)(fonstrutorsAndArities `asTypeOf ` [(x ;?)℄)onstrutors :: Regular d ) [d a ℄onstrutors = map inn fonstrutorspolytypi fonstrutors :: [f a b ℄ =ase f ofg + h ! map Left fonstrutors ++map Right fonstrutorsg ! [?℄polytypi fonstrutorsAndArities :: [(f a b; Int)℄ =ase f ofg + h ! map (mapFst Left) fonstrutorsAndArities++map (mapFst Right) fonstrutorsAndAritiesg ! (�x ! [(x ; fonstrutorArity x )℄) ?polytypi fonstrutorArity :: f a b ! Int =ase f ofg � h ! �p ! fonstrutorArity (fst p)+fonstrutorArity (snd p)Empty ! onst 0f ! onst 1
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onstrutor2Int :: Regular d ) d a ! Intonstrutor2Int = fonstrutor2Int Æ outpolytypi fonstrutor2Int :: f a b ! Int =ase f ofg + h ! onst 0 r ((�n ! 1 + n) Æ fonstrutor2Int)g ! onst 0int2onstrutor :: Regular d ) Int ! d aint2onstrutor n = onstrutors !! nint2fonstrutor :: Bifuntor f ) Int ! f a bint2fonstrutor n = fonstrutors !! nmapFst :: (a ! b)! (a; )! (b; )mapFst f p = (f (fst p); snd p)


