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Abstract

In this report, an alternative approach to derive the Gaussian mixture cardinalized
probability hypothesis density (GM-CPHD) filter is presented. The derivations differ
in that the presented ones are based on ”ordinary” statistics, while the original
GM-CPHD derivation started from the finite set statistics (FISST) description of
the CPHD filter. The results of the derivations are compared with filter update
equations presented in another paper. The sets of equations are not completely
equivalent. However, initial performance evaluations of the approaches indicate
similar performance. Future work is needed to understand the differences between
different GM-CPHD filter equations.
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1 INTRODUCTION

The purpose of this report is to derive the Cardinalized Probability Hypothesis
Density (CPHD) filter, using ordinary (Bayesian) statistics. More precisely, we are
interested in the Gaussian Mixture version of the algorithm, called GM-CPHD. Since
previous derivations rely on higher-order mathematical concepts, we believe that a
derivation using more common mathematical statistics is of interest to more people
than the authors of this report.

CPHD is a recursive algorithm that updates both the so-called probability hypoth-
esis density, or intensity function, and the full cardinality distribution in each step.
The cardinality distribution is a representation of the number of targets in the scene,
while the intensity function represents the intensity of targets in each volume ele-
ment of the single-target state space. The integral of the intensity function over a
volume, gives the expected number of targets within that volume.

The original derivations of CPHD (Mahler 2006), (Mahler 2007) used Finite Set
Statistics (FISST), which is a higher-order mathematical concept invented by Mahler.
It has relations to point process theory (Daley 1988). A CPHD derivation using in-
finitesimal bins is given in (Erdinc et al. 2006). The first derivation of the gaussian
mixture version is in (Vo et al. 2006), with a more thorough discussion in (Vo et

al. 2007). The GM-CPHD algorithm is also summarized in (Ulmke et al. 2007).

The equations derived in this report regards the update step of the GM-CPHD filter.
The derived equations are compared to the equations in (Ulmke et al. 2007). The
update step has two parts, viz. the update of the cardinality distribution, and the
update of the mixture components of the intensity function representation. For the
cardinality distribution, the update equation derived in this report is equivalent to
the corresponding equation in (Erdinc et al. 2006). For the mixture components,
there is however a difference. Both equations have been used for tracking in a ground
target tracking scenario, for which the two alternative updates performs equally well.

1.1 Outline

The report is structured in the following way. The remaining parts of Section 1 is
devoted to notation used in the report and to the assumptions made in the CPHD
derivation. Section 2 regards the update of the cardinality distribution. In Section
3, we derive the update step for the intensity function. The results are summarized
in Section 4.
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2 Chapter 1 Introduction

1.2 Notation

The following list summarizes some of the notation used in this report. An RFS is
a random finite set. That is, the number of elements is a discrete random variable,
and each element is a random variable (often continuous).

Xk Target RFS at time k
Zk Measurement RFS (including both true and clutter measurements)
vk|k−1 Predicted intensity function at time k
Pr{n|Z1:k−1} Predicted cardinality distribution at time k
Nk|k−1 Expected number of targets at time k, given old data.
vk|k Posterior intensity function at time index k
Pr{n|Z1:k} Posterior cardinality distribution at time k
Nk|k Expected number of targets at time k, given data up to time k
nk Number of targets at time k
mk The cardinality of the measurement set at time k, mk = |Zk|
jk Number of target-generated measurements at time k
Pc The clutter cardinality distribution
d Vector that states which measurements in a set that are

target-generated, and which are clutter
a Vector that associates measurements to targets

1.3 Assumptions

The CPHD relies on the following assumptions.

• Clutter is a cluster RFS, which implies that the number of elements in the set
is described by an arbitrary cardinality mass function and that the elements of
the set are independent and identically distributed. Further, the clutter RFS
is independent of the object generated RFS.

• Predicted and posterior target RFSs are approximated as cluster RFSs.

• The birth RFS is a cluster RFS, and independent of the surviving target RFS.

• Each target evolves and generates measurements independently of each other.

In the derivations, we also utilize the following assumptions

• Motion and measurement models are linear and Gaussian.

• The detection probability is constant over the single-target state space.

• The clutter RFS homogeneous, which means that the clutter detections are
spatially homogeneous.



2 CARDINALITY UPDATE

Using Bayes’ rule, the posterior cardinality mass function is expressed as

Pr{nk|Z1:k} =
p(Zk|nk,Z1:k−1) Pr{nk|Z1:k−1}

p(Zk|Z1:k−1)
(2.1)

where the first factor p(Zk|nk,Z1:k−1) is the density of the measurement set, given
nk targets and old data. As a function of nk it is a likelihood. The second numerator
factor is the cardinality mass function at the previous time instant k − 1, which is
a prior on nk at time k.

2.1 The likelihood p(Zk|nk,Z1:k−1)

We start off by deriving the likelihood. Since Zk is an RFS, it is described by both
the probability of its cardinality mk = |Zk| and the density of those mk elements.
Thus,

p(Zk|nk,Z1:k−1) = p(Zk, mk|nk,Z1:k−1), (2.2)

since mk is an intrinsic property of Zk. We introduce the variable jk of target-
generated measurements at time k, as it provides a way of expressing the above
density. We marginalize over jk,

p(Zk, m|n) =

min{mk ,nk}
∑

jk=0

p(Zk, mk, jk|nk,Z1:k−1) (2.3)

=

min{mk ,nk}
∑

jk=0

p(Zk|mk, jk, nk,Z1:k−1) Pr{mk, jk|nk,Z1:k−1}

=

min{mk ,nk}
∑

jk=0

p(Zk|mk, jk, nk,Z1:k−1) Pr{mk|jk, nk,Z1:k−1} (2.4)

· Pr{jk|nk,Z1:k−1}.

Naturally, jk cannot be larger than the minimum of the number of targets and the
total number of measurements, hence the min function in the summation.

For notational simplicity, we introduce the notation

Z
p
k ≡ Z1:k−1. (2.5)

We now derive the latter two probabilities in the sum of (2.4). First, the probability
of receiving mk measurements, given that the true number of measurements is jk

3



4 Chapter 2 Cardinality Update

and the number of targets is nk. Here, nk and old data are uninformative given mk

and jk, so

Pr{mk|jk, nk,Z
p
k}=Pr{mk−jk clutter detections}=Pc(mk−jk), (2.6)

where Pc is the cardinality distribution of the clutter RFS, often assumed Poisson.
The third factor in the sum of (2.4) is the probability of obtaining jk true mea-
surements given that the number of targets is nk, and given old data. The jk true
detections can be drawn from the nk true ones in

(

nk

jk

)

ways, hence

Pr{jk|nk,Z
p
k} =

(

nk

jk

)

P jk

d (1 − Pd)
nk−jk =

nk!

jk!(nk − jk!)
P jk

d (1 − Pd)
nk−jk , (2.7)

where Pd is the detection probability, assumed constant over the measurement space
(if not, the average detection probability can be used).

The remaining factor p(Zk|mk, jk, nk,Z
p
k) in (2.4) is the most complicated one. In

order to find an expression for it, we start by transforming the measurement set
into a matrix, meaning that we introduce an ordering of the measurements. There
are mk! ways of ordering a set of mk elements, and all of them are equally likely.
Since a point in the mk-dimensional set space represents mk! different points in the
mk-dimensional vector space that all have the same interpretation, the set density
can be written as

p(Zk|mk, jk, nk) = mk!p(Zk|mk, jk, nk,Z
p
k), (2.8)

where Zk represents any of the mk! set-to-matrix transformations of the set. The
mapping from set to matrix is many-to-one, while the reverse mapping is one-to-
one. However, it does not matter which of the set-to-matrix transformations that are
chosen, since the density p(Zk|mk, jk, nk,Z

p
k) is equal regardless of how the columns

of Zk are ordered. Note that even though we order the set, we still do not know
which of the detections that are true and which are clutter. So to express the
density function, we want to marginalize over a variable that provides information
on if a measurement in Zk is clutter or target-generated. Out of the mk received
measurements, jk are target-generated. These jk observations can be drawn in

(

mk

jk

)

different ways from the set of observations. For one selection of target-generated
measurements (the rest being clutter), we introduce the vector d with the property

d(i) =

{

1 if measurement i is true
0 if it is clutter.

(2.9)

The marginalization over d is

∑

d

p(Zk,d|mk, jk, nk,Z
p
k) (2.10)

=
∑

d

p(Zk|d, mk, jk, nk,Z
p
k) Pr{d|mk, jk, nk,Z

p
k}.
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The factor Pr{d|mk, jk, nk,Z
p
k} is interpreted as the prior on d, which is uniform,

hence

Pr{d|mk, jk, nk,Z
p
k} =

1
(

mk

jk

) =
1

mk!
jk!(mk−jk)!

=
jk!(mk − jk)!

mk!
. (2.11)

What now remains is an expression for the likelihood of the measurement matrix Zk,
given that we know which of the measurements are true and which are clutter. First
of all, we can separate the true detections from clutter, since they are independent

p(Zk|d, mk, jk, nk,Z
p
k) = p(Z

det

k |d, mk, jk, nk,Z
p
k) (2.12)

· p(Z
clut

k |d, mk, jk, nk,Z
p
k).

The conditioning on mk, jk, n is uninformative when also conditioning on d, but
is kept for clarity. The clutter detections are independent, with densities c (zk).
Assuming uniformly distributed clutter in the measurement space, we get

p(Z
clut

k |d, mk, jk, nk,Z
p
k) = cmk−jk (2.13)

where c is the clutter density in the measurement space. Conversion of density from
target state-space to measurement state-space is through a Jacobian. If one cannot
assume uniform distribution, the expression will get just a bit more complicated,
where the density at each clutter measurement has to be used instead of the constant
density.

To express the joint density p(Z
det

k |d, mk, jk, nk,Z
p
k) of the target-generated detec-

tions in (2.13), we need to marginalize over the target RFS Xk, which has nk elements

p(Z
det

k |d, mk, jk, nk,Z
p
k) =

∫

p(Z
det

k ,Xk|d, mk, jk, nk,Z
p
k)dXk. (2.14)

To proceed further, we transform Xk into a matrix Xk, just as we did for the
measurement set previously. There are nk! different transformations into a matrix,
for the set Xk. The resulting density is however the same, since the elements of the
set are unordered. So,

p(Z
det

k |d, mk, jk, nk,Z
p
k) = nk!

∫

p(Z
det

k |Xk,d, mk, jk, nk,Z
p
k) (2.15)

· p(Xk|d, mk, jk, nk,Z
p
k)dXk.

We start with the second factor. An assumption of the CPHD algorithm is that
targets are independent, which implies that the density can be split up into a product
of nk single-target densities p(x

(q)
k |d, mk, jk, nk) according to

p(Xk|d, mk, jk, nk,Z
p
k) =

nk
∏

q=1

p(x
(q)
k |d, mk, jk, nk,Z

p
k). (2.16)
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We now want to find an expression for p(Z
det

k |Xk,d, mk, jk, nk,Z
p
k) in (2.15). The

conditioning on the matrix of state vectors does not provide information about
which measurement that belongs to which target (if necessary). To be formal and
concise, we thus introduce an assignment vector a, which associates measurements
to targets. Then we marginalize over all such vectors, yielding

p(Z
det

k |Xk,d, mk, jk, nk,Z
p
k) =

∑

a

p(Z
det

k , a|Xk,d, mk, jk, nk,Z
p
k) (2.17)

=
∑

a

p(Z
det

k |a,Xk,d, mk, jk, nk,Z
p
k) Pr{a|Xk,d, mk, jk, n,Zp

k}. (2.18)

As stated several times, the targets are assumed identically distributed. This means
that all assignment vectors have the same probability

Pr{a|Xk,d, mk, jk, nk,Z
p
k} =

1
nk!
jk!

, (2.19)

where nk!
jk!

is the number of possible association vectors. For the likelihood

p(Z
det

k |a,Xk,d, mk, jk, nk,Z
p
k) we know that given the associations, the measure-

ments are independent. The joint density is thus split up into a product of the jk

single-detection likelihoods

p(Z
det

k |a,Xk,d, mk, jk, nk,Z
p
k) =

∏

s∈D

p(z
(s)
k |x(s)

k ), (2.20)

where we assume that the index of measurements and their associated targets are
the same, i.e., measurement s is associated with target s. The set D is introduced
to represent the indices of the target-generated detections, i.e., it is the set of all
indexes i for which d(i) = 1.

We now insert the results of (2.16) and (2.20) into (2.15),

p(Z
det

k |d, mk, jk, nk,Z
p
k) = nk!

∫

∑

a

∏

s∈D

p(z
(s)
k |x(s)

k )
1

nk!
jk!

(2.21)

·

nk
∏

q=1

p(x
(q)
k |d, mk, jk, nk,Z

p
k)dx

(1)
k · · ·dx(nk)

k .

Reordering the multiplications, we obtain

p(Z
det

k |d, mk, jk, nk,Z
p
k) = nk!

∫

1
nk!
jk!

∑

a

(2.22)

∏

s∈D

p(z
(s)
k |x(s)

k )p(x
(s)
k |d, mk, jk, nk,Z

p
k)dx

(s)
k

nk
∏

q=1

q 6=s

p(x
(q)
k |d, mk, jk, nk,Z

p
k)dx

(q)
k .
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The multi-dimensional integral can hence be separated into a product of single-
dimensional integrals

p(Z
det

k |d, mk, jk, nk,Z
p
k) = nk!

1
nk!
jk!

∑

a

∏

s∈D

∫

p(z
(s)
k |x(s)

k )p(x
(s)
k |d, mk, jk, nk,Z

p
k)dx

(s)
k

(2.23)

·
nk
∏

q=1

q 6=s

∫

p(x
(q)
k |d, mk, jk, nk,Z

p
k)dx

(q)
k .

The integral of the single-target density p(x
(q)
k |d, mk, jk, nk,Z

p
k) is one, so the last

factor will be equal to one, whereafter we have

p(Z
det

k |d,mk,jk,nk,Z
p
k)=nk!

1
nk!
jk!

∑

a

∏

s∈D

∫

p(z
(s)
k |x(s)

k )p(x
(s)
k |d, mk, jk, nk,Z

p
k)dx

(s)
k .

(2.24)

We change the integration variable from x
(s)
k to xk, which gives

p(Z
det

k |d, mk, jk, nk,Z
p
k) = nk!

1
nk!
jk!

∑

a

∏

s∈D

∫

p(z
(s)
k |xk)p(xk|d, mk, jk, nk,Z

p
k)dxk.

(2.25)

As we can see, no terms in the summation depend on the summation variable. The
summation is from 1 to nk!

jk!
, so the expression can be simplified

p(Z
det

k |d, mk, jk, nk,Z
p
k) = nk!

∏

s∈D

∫

p(z
(s)
k |xk)p(xk|d, mk, jk, nk,Z

p
k)dxk. (2.26)

Finally, we transform the ordered state vector into a state vector in the set, yielding

p(Z
det

k |d, mk, jk, nk,Z
p
k) =

∏

s∈D

∫

p(z
(s)
k |xk)p(xk|d, mk, jk, nk,Z

p
k)dxk. (2.27)

Replacing Z
p
k with its equivalent Z1:k−1 and removing uninformative variables for

clarity, we obtain

p(Z
det

k |d, mk, jk, nk,Z1:k−1) =
∏

s∈D

∫

p(z
(s)
k |xk)p(xk|Z1:k−1)dxk. (2.28)

Again, we now need to utilize the assumptions of CPHD. All targets are assumed
identically distributed according to v(x)/N where N is the expected number of
targets. Hence, the density

p(xk|Z1:k−1) =
vk|k−1(xk)

Nk|k−1

, (2.29)
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where vk|k−1(xk) is the predicted PHD and where Nk|k−1 is the expected number of
targets after prediction. Inserted into (2.28)

p(Z
det

k |d, mk, jk, nk,Z1:k−1) =
∏

s∈D

1

Nk|k−1

∫

p(z
(s)
k |xk)vk|k−1(xk)dxk. (2.30)

In the Gaussian-mixture CPHD, the predicted PHD is approximated as

vk|k−1(xk) ∼=

Jk|k−1
∑

q=1

w
(q)
k|k−1N

(

xk;m
(q)
k|k−1,P

(q)
k|k−1

)

, (2.31)

in which w
(q)
k|k−1 are the weights, m

(q)
k|k−1 the expected values and P

(q)
k|k−1 the covariance

matrices of the Jk|k−1 mixture components of the predicted PHD. Furthermore, the
single-detection likelihood is given by the measurement model

p(z
(s)
k |xk) = N

(

z
(s)
k ;Hxk,R

(s)
)

(2.32)

in the linear-Gaussian case, where H is the measurement matrix and R
(s) the mea-

surement uncertainties in the region of detection s. We obtain

p(Z
det

k |d, mk, jk, nk,Z1:k−1) =
∏

s∈D

1

Nk|k−1

Jk|k−1
∑

q=1

w
(q)
k|k−1 (2.33)

·

∫

N
(

z
(s)
k ;Hxk,R

(s)
)

N
(

xk;m
(q)
k|k−1,P

(q)
k|k−1

)

dxk.

Using standard results from multiplication of normal densities, we get

N
(

z
(s)
k ;Hxk,R

(s)
)

N
(

xk;m
(q)
k|k−1,P

(q)
k|k−1

)

= N
(

z
(s)
k ; z

(q)
k|k−1,S

(q,s)
k|k−1

)

(2.34)

· N
(

xk;m
(q,s)
k|k ,P

(q,s)
k|k

)

,

where

S
(q)
k|k−1 = R + HP

(q)
k|k−1H

T (2.35)

m
(q,s)
k|k = m

(q)
k|k−1 + W

(

z
(s)
k − Hm

(q)
k|k−1

)

(2.36)

P
(q,s)
k|k = (1 − WH)P

(q)
k|k−1. (2.37)

As we see, the first Gaussian in (2.34) does not depend on xk and can be moved out
of the integral in (2.33), leaving only the integral of a Gaussian, which equals one.

Finally, we can express the density of target-generated measurements as

p(Zdet
k |d, mk, jk, nk,Z1:k−1) (2.38)

∼=
∏

s∈D

1

Nk|k−1

Jk|k−1
∑

q=1

w
(q)
k|k−1N

(

z
(s)
k ; z

(q)
k|k−1,S

(q,s)
k|k−1

)

.
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For notational simplicity we introduce the weighted single-detection likelihood

L
(s)
k =

1

Nk|k−1

Jk|k−1
∑

q=1

w
(q)
k|k−1N

(

z
(s)
k ; z

(q)
k|k−1,S

(q,s)
k|k−1

)

. (2.39)

We are now ready to express the density p(Zk|mk, jk, nk,Z1:k−1) in (2.8) by going
back to set notation (see (2.8)) and by inserting the results in (2.10), (2.11), (2.12),
(2.13), (2.38) and (2.39)

p(Zk|mk, jk, nk,Z1:k−1) ∼= mk!
∑

d

∏

s∈D

L
(s)
k cmk−jk

jk!(mk − jk)!

mk!
(2.40)

= jk!(mk − jk)!

(

1

Vz

)mk−jk
∑

d

∏

s∈D

L
(s)
k .

The last sum and product factor of the expression can be expressed using a so-called
elementary symmetric function σjk

σjk

({

L
(1)
k , . . . , L

(mk)
k

})

,
∑

d

∏

s∈D

L
(s)
k . (2.41)

The elementary symmetric function does just what we express with the sum and
the product symbols in (2.40), viz. it summarizes over all possible combinations of
jk measurements, and for each combination evaluates the product of the weighted
single-detection likelihoods of those jk measurements. Seen in a different way, if
{L(1)

k , . . . , L
(mk)
k } are the roots of a polynomial of order mk, then σjk

gives the cor-
responding polynomial coefficient of order jk (jk = 0, . . . , mk), where σ0 = 1 by
convention. The density p(Zk|mk, jk, nk) in (2.8) is now given by

p(Zk|mk, jk, nk,Z1:k−1) ∼= jk!(mk − jk)!c
mk−jkσjk

({

L
(1)
k , . . . , L

(mk)
k

})

. (2.42)

By this we are ready to express the likelihood p(Zk|nk,Z1:k−1) in (2.1). Combining
(2.4), (2.6), (2.7) and (2.42) we get

p(Zk, mk|nk,Z1:k−1) ∼=

min{mk ,nk}
∑

jk=0

n!

jk!(nk − jk!)
P jk

d (1 − Pd)
nk−jkPc(mk − jk)jk!

(2.43)

· (mk − jk)!c
mk−jkσjk

({

L
(1)
k , . . . , L

(mk)
k

})

.

Simplifying and rearranging,

p(Zk, mk|nk,Z1:k−1) ∼=

min{mk ,nk}
∑

jk=0

(mk − jk)!Pc(mk − jk)
nk!

(nk − jk!)
P jk

d (2.44)

· (1 − Pd)
nk−jkcmk−jkσjk

({

L
(1)
k , . . . , L

(mk)
k

})

.
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Since we have a normalization term in the update of the cardinality distribution,
constant factors, i.e., those that do not depend on nk or jk, can be removed from
the above expression, since they will be canceled in the normalization. The factor
cmk is constant and can be removed. We then obtain

p(Zk|nk,Z1:k−1) ∼=

min{mk ,nk}
∑

jk=0

(mk − jk)!Pc(mk − jk)
nk!

(nk − jk!)
P jk

d (2.45)

· (1 − Pd)
nk−jkc−jkσjk

({

L
(1)
k , . . . , L

(mk)
k

}

.
)

,

which is the equation we were after in this section. By comparing the expression
in (2.45) with the corresponding expression in (Ulmke et al. 2007), we note that
they have a factor 1

mk !
in the sum, which makes the expressions different. That is,

however, a constant, so it can be removed without effect, if it is also removed in the
normalization. Then, the above expression is equal to the one in (Ulmke et al. 2007).
Notice that c in this report equals λ in (Ulmke et al. 2007).

A fundamental assumption in CPHD is that target prior and predicted RFSs are
cluster-RFSs. That implies that the target are assumed independent and identically
distributed. Often, this is not a good assumption, which indicates that there are
room for improvements of the algorithm.

2.2 The prior Pr{nk|Z1:k−1}

The prior Pr{nk|Z1:k−1} in the Bayes’ update of the cardinality distribution is the
predicted cardinality mass function, which states the probability that there at time k
are nk targets in the scene, given data up to the previous time k−1. By marginalizing
over nk−1,

Pr{nk|Z1:k−1} =
∞

∑

nk−1=0

Pr{nk, nk−1|Z1:k−1} (2.46)

=

∞
∑

nk−1=0

Pr{nk|nk−1,Z1:k−1}Pr{nk−1|Z1:k−1}.

We identify the latter factor Pr{nk−1|Z1:k−1} as the cardinality distribution at the
previous time instant, which is known at the current instance. We thus only need
to find an expression for the first factor.

From the birth process, we have the probability

Pbirth(ik) = Pr{ik new targets appear between time k − 1 and time k}, (2.47)

and the death process provides information on

PS = Pr{An existing target at time k − 1 survives to time k}. (2.48)
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We define ik as the number of targets that survive from the previous time instant,
and marginalize over that variable. Naturally, ik is not larger than the minimum of
nk and nk−1. Using the probabilities of the birth and death processes, the sought
probability is expressed as

Pr{nk|nk−1,Z1:k−1} = Pr{nk|nk−1} =

min{nk,nk−1}
∑

ik=0

Pr{nk, ik|nk−1} (2.49)

=

min{nk,nk−1}
∑

ik=0

Pr{nk|ik, nk−1}Pr{ik|nk−1}. (2.50)

The first factor is the probability that nk − ik targets appear between time instants
k − 1 and k, expressed as

Pr{nk|i, nk−1} = Pr{nk|ik} = Pbirth(nk − ik). (2.51)

The second factor is the probability that ik targets survive. Of the nk−1 targets at
k − 1, the ik surviving ones can be drawn in

(

nk−1

ik

)

ways, so

Pr{ik|nk−1} =

(

nk−1

ik

)

P ik
S (1 − PS)nk−1−ik . (2.52)

The total expression for the prior is hence

Pr{nk|nk−1

∣

∣Z1:k−1} =
∞

∑

nk−1=0

Pr{nk−1|Z1:k−1} (2.53)

·

min{nk,nk−1}
∑

ik=0

Pbirth(nk − ik)

(

nk−1

ik

)

P ik
S (1 − PS)nk−1−ik .

In short form, we write this as

Pr{nk|Z1:k−1} =

∞
∑

nk−1=0

Pr{nk|nk−1}Pr{nk−1|Z1:k−1}, (2.54)

where the so-called transfer matrix is defined as

Pr{nk|nk−1} =

min{nk,nk−1}
∑

ik=0

Pbirth(nk − ik)

(

nk−1

ik

)

P ik
S (1 − PS)nk−1−ik . (2.55)

2.3 The normalization p(Zk|Z1:k−1)

What remains in the update of the cardinality distribution Pr{nk|Z1:k−1} is the
normalization factor in the Bayes’ update (see (2.1)). It is given as the sum over nk
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from 0 to infinity of the numerator, assuring that the result after the Bayes’ update
is a probability mass function. Utilizing the results of (2.45), we obtain

p(Zk|Z1:k−1) =
∞

∑

nk=0

p(Zk|nk) Pr{nk|Z1:k−1} (2.56)

∼=

∞
∑

nk=0

[

min{mk ,nk}
∑

jk=0

[

(mk − jk)!Pc(mk − jk)
nk!

(nk − jk!)
P jk

d (1 − Pd)
nk−jk (2.57)

· c−jkσjk

({

L
(1)
k , . . . , L

(mk)
k

})

]

Pr{nk|Z1:k−1}

]

.

The summations are absolutely convergent, which implies that the order of summa-
tion can be switched. By doing so, we obtain the normalization expression used in
(Ulmke et al. 2007) (except for a constant 1

mk!
)

p(Zk|Z1:k−1) =

∞
∑

nk=0

p(Zk|nk) Pr{nk|Z1:k−1} (2.58)

∼=

mk
∑

jk=0

[

∞
∑

nk=jk

nk!

(nk − jk!)
(1 − Pd)

nk−jk Pr{nk|Z1:k−1}

]

(2.59)

(mk − jk)!Pc(mk − jk)c
−jkP jk

d σjk

({

L
(1)
k , . . . , L

(mk)
k

})

.



3 PHD UPDATE

In this section, we derive the update equations for the mixture weights of the pos-
terior intensity function, in the Gaussian mixture version of the CPHD algorithm.
We assume that we have information on the predicted cardinality Pr{nk|Z1:k−1}
and the predicted PHD vk|k−1(xk), and seek an update equation for the posterior
PHD vk|k(xk). To do so, we start by expressing the posterior multi-target density
p(Xk|Z1:k). Then, we introduce the CPHD assumptions and necessary simplifica-
tions to finally reach the CPHD update for the posterior intensity function.

Using Bayes’ rule, we get

p(Xk|Z1:k) =
p(Zk|Xk,Z1:k−1)p(Xk|Z1:k−1)

p(Zk|Z1:k−1)
. (3.1)

We note that the denominator in (3.1) is equal to the one in (2.1), which we gave
expressions for in (2.57) and (2.59). To express the posterior multi-target den-
sity p(Xk|Z1:k), we thus need to find equations that describe the multi-target prior
p(Xk|Z1:k−1) and the multi-target likelihood p(Zk|Xk,Z1:k−1). This is an intricate
issue, which is combinatorial in nature and infeasible in practice. Approximations
are therefore a necessity. The CPHD update equation is an example of such an
approximation.

Instead of working with the posterior RFS Xk|Z1:k, we turn to its first-order moment
(in the FISST sense): the posterior PHD vk|k(xk). In the approximation, we lose
information on the relationship between the position of the targets and on the num-
ber of targets. In conjunction to the intensity function vk|k(xk), we also propagate
the cardinality distribution Pr{nk|Z1:k} in time, from which an expected value on
the number of targets is found.

An assumption in CPHD is that targets are independent and identically distributed.
Suppose that we randomly select one of the targets xk within the set Xk. According
to the assumptions, that target is then distributed according to

p(xk|Z1:k) =
vk|k(xk)

Nk|k

. (3.2)

So, in order to update the posterior intensity vk|k(xk), we choose a random target
and then calculate

vk|k(xk) = p(xk|Z1:k)Nk|k. (3.3)

Rewriting, using Bayes’ rule,

vk|k(xk) =
p(Zk|xk,Z1:k−1)p(xk|Z1:k−1)

p(Zk|Z1:k−1)
Nk|k. (3.4)

13
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With the CPHD assumptions of independent and identically distributed targets

at prediction, p(xk|Z1:k−1) =
vk|k−1(xk)

Nk|k−1

, where vk|k−1(xk) is the first-order FISST

approximation of the prior RFS Xk|Z1:k−1, and where Nk|k−1 is the predicted number
of targets at time k. Since the denominator of (3.4) is the same as for (3.1), which
we already have an expression for (see (2.57)), we only need to find an equation
describing p(Zk|xk,Z1:k−1), i.e., the density of the current measurement set, given
that there is at least one target with state xk, and that we have observed the old
data Z1:k−1.

The PHD update can be written as

vk|k (xk) ∝ p(Zk|xk,Z1:k−1)vk|k−1 (xk) , (3.5)

where we need to find an expression for p(Zk|xk,Z1:k−1). The update is then com-
pleted by normalizing vk|k (xk) such that

∫

vk|k (xk) dxk = Nk|k, where Nk|k is the
expected number of targets a posteriori, given by the updated cardinality distribu-
tion. We thus need to derive the likelihood p(Zk|xk,Z1:k−1) to be able to express
the CPHD update step for the intensity function.

We start by marginalizing over nk — the true number of targets at time k. Since
we have chosen one randomly selected target, nk > 0, so

p(Zk|xk,Z1:k−1) =
∞

∑

nk=1

p(Zk, nk|xk,Z1:k−1) (3.6)

=

∞
∑

nk=1

p(Zk|xk, nk,Z1:k−1) Pr{nk|xk,Z1:k−1}. (3.7)

With the approximation

Pr{nk|xk,Z1:k−1} ∼= Pr{nk|nk > 0,Z1:k−1} = {nk 6= 0} (3.8)

=
Pr{nk

∣

∣Z1:k−1}

1 − Pr{nk = 0
∣

∣Z1:k−1}
,

we identify Pr{nk

∣

∣Z1:k−1} as the predicted cardinality distribution, and 1−Pr{nk =
0
∣

∣Z1:k−1} as a constant, given by the predicted cardinality. The constant can be
moved out of the summation, and need not be calculated, since it can be added to a
large constant term which also includes the constant in (3.4). The constant factors
vanish in the normalization of vk|k. So,

Pr{nk|xk,Z1:k−1} ∼=
1

cnk=0
Pr{nk|Z1:k−1}, (3.9)

where cnk=0 is the constant. What remains to derive is the first factor in (3.6).

We first note that the distribution of the measurement set depends on if the target
xk under consideration is detected or not. By introducing the information sets

Idet
xk

= The target xk is detected (3.10)

Imiss
xk

= The target xk is not detected, (3.11)
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we can marginalize over these two events

p(Zk|nk,xk,Z1:k−1)=p(Zk, I
det
xk

|nk,xk,Z1:k−1)+p(Zk, I
miss
xk

|nk,xk,Z1:k−1) (3.12)

= p(Zk|nk,xk, I
det
xk

,Z1:k−1) Pr{Idet
xk

|nk,xk,Z1:k−1} (3.13)

+ p(Zk|nk,xk, I
miss
xk

,Z1:k−1) Pr{Imiss
xk

|nk,xk,Z1:k−1}.

The probability that the target is detected depends on the detection probability,
which is independent of the number of targets and the previous measurements,
given the target state. Hence,

p(Zk|nk,xk,Z1:k−1) = p(Zk|nk,xk, I
det
xk

,Z1:k−1) Pr{Idet
xk

|xk} (3.14)

+ p(Zk|nk,xk, I
miss
xk

,Z1:k−1) Pr{Imiss
xk

|xk}

= p(Zk|nk,xk, I
det
xk

,Z1:k−1)Pd (xk) (3.15)

+ p(Zk|nk,xk, I
miss
xk

,Z1:k−1) (1 − Pd (xk)) .

We will treat the detection and missed detection likelihoods separately, starting with
the detection likelihood.

3.1 Detection likelihood

To find the detection likelihood p(Zk|nk,xk, Idet
xk

,Z1:k−1), we start by marginalizing
over the number of target-generated detections jk, which under the detection hy-
pothesis ranges from 1 to the minimum of the number of targets nk and the number
of received measurements mk. The number of measurements mk is inherent in the
measurement set, and can be introduced without changing the pdf.

p(Zk, mk|nk,xk, I
det
xk

,Z1:k−1) =

min{mk ,nk}
∑

jk=1

p(Zk, mk, jk|nk,xk, I
det
xk

,Z1:k−1) (3.16)

=

min{mk ,nk}
∑

jk=1

p(Zk|mk, nk, jk,xk, I
det
xk

,Z1:k−1) Pr{mk, jk|nk,xk, I
det
xk

,Z1:k−1} (3.17)

=

min{mk ,nk}
∑

jk=1

p(Zk|mk, nk, jk,xk, I
det
xk

,Z1:k−1) (3.18)

· Pr{mk|jk, nk,xk, I
det
xk

,Z1:k−1}Pr{jk|nk,xk, I
det
xk

,Z1:k−1}

The second factor is

Pr{mk|jk, nk,xk, I
det
xk

,Z1:k−1} = Pr{mk|jk} = Pc (mk − jk) . (3.19)

The third factor is

Pr{jk|nk,xk, I
det
xk

,Z1:k−1} = Pr{jk|nk,xk, I
det
xk

}. (3.20)
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Equation (3.20) states the probability that, given nk targets, one of which is the
randomly selected and detected target xk, we receive jk target-generated measure-
ments. One of the targets have already been detected, so there are jk − 1 targets
more to be detected. The number of missed detections is (nk−1)−(jk−1) = nk−jk.
The remaining jk − 1 targets that give rise to a detection, can be chosen in

(

nk−1
jk−1

)

ways, hence

Pr{jk|nk,xk, I
det
xk

} =

(

nk − 1

jk − 1

)

P jk−1
d (1 − Pd)

nk−jk . (3.21)

We now turn to the remaining pdf. As a start, we transform the set Zk into an
ordered matrix Zk,

p(Zk|mk, nk, jk,xk, I
det
xk

,Z1:k−1) = mk!p(Zk|mk, nk, jk,xk, I
det
xk

,Z1:k−1). (3.22)

Next, we introduce the association variable a which connects a measurement in Zk

to the randomly selected target xk, and marginalize over the mk different a scalars

p(Zk|mk, nk, jk,xk, I
det
xk

,Z1:k−1)=
∑

a

p(Zk, a|mk, nk, jk,xk, I
det
xk

,Z1:k−1) (3.23)

=
∑

a

p(Zk|a, mk, nk, jk,xk, I
det
xk

,Z1:k−1)Pr{a|mk, nk, jk,xk, I
det
xk

,Z1:k−1}. (3.24)

The probability that a certain measurement is associated to the randomly selected
target is uniform a priori. Thus,

Pr{a|mk, nk, jk,xk, I
det
xk

,Z1:k−1} =
1

mk

. (3.25)

The measurement associated to xk is independent of the rest of the measurements
in the set. We call that measurement z

(s)
k . Then,

p(Zk|a, mk, nk, jk,xk, I
det
xk

,Z1:k−1) = p
(

z
(s)
k |a,xk, mk, nk, jk, I

det
xk

,Z1:k−1

)

(3.26)

· p
(

Zk \ z
(s)
k |a, mk, nk, jk,xk, I

det
xk

,Z1:k−1

)

.

We leave the first factor in (3.26) for now, and consider the second factor.

To find an expression for the second pdf in (3.26), we marginalize over the remaining
targets in the target RFS Xk,

p
(

Zk \ z
(s)
k |a, mk, nk, jk,xk, I

det
xk

,Z1:k−1

)

(3.27)

=

∫

p
(

Zk \ z
(s)
k ,Xk \ xk|a, mk, nk, jk,xk, I

det
xk

,Z1:k−1

)

dXk \ xk

=

∫

p
(

Zk \ z
(s)
k |Xk, a, mk, nk, jk, I

det
xk

,Z1:k−1

)

(3.28)

· p
(

Xk \ xk|a, mk, nk, jk, I
det
xk

,Z1:k−1

)

dXk \ xk.
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We then transform the target set into an ordered matrix, whose pdf is equal for any
ordering. Thus,

p
(

Zk \ z
(s)
k |a, mk, nk, jk,xk, I

det
xk

,Z1:k−1

)

(3.29)

= (nk − 1)!

∫

p
(

Zk \ z
(s)
k |Xk, a, mk, nk, jk, I

det
xk

,Z1:k−1

)

· p
(

Xk \ xk|a, mk, nk, jk, I
det
xk

,Z1:k−1

)

dXk \ xk.

By indexing the target under consideration x
(n)
k = xk, we note that

p
(

Xk\xk|a, mk, nk, jk, I
det
xk

,Z1:k−1

)

=
vk|k−1

(

x
(1)
k

)

Nk|k−1

· · ·
vk|k−1

(

x
(nk−1)
k

)

Nk|k−1

, (3.30)

since all targets in Xk\x
(nk)
k are independent and identically distributed according to

the predicted PHD divided by the expected number of targets Nk|k−1 at prediction.

The matrix Xk has always its last column x
(nk)
k = xk.

To differ between detection types, we introduce the vector d, which states which
detections in Zk\z

(s)
k that are target-generated and which are clutter. We marginalize

over that vector

p
(

Zk \ z
(s)
k |Xk, a, mk, nk, jk, I

det
xk

,Z1:k−1

)

(3.31)

=
∑

d

p
(

Zk \ z
(s)
k |d,Xk, a, mk, nk, jk, I

det
xk

,Z1:k−1

)

· Pr{d|a, mk, nk, jk, I
det
xk

,Z1:k−1}.

All measurement classifications are equally probable, so

Pr{d|a, mk, nk, jk, I
det
xk

,Z1:k−1} =
1

(

mk−1
jk−1

) =
(jk − 1)!(mk − jk)!

(mk − 1)!
. (3.32)

Further, the clutter measurements are independent from the target-generated mea-
surements, by which

p
(

Zk \ z
(s)
k |Xk, a, mk, nk, jk, I

det
xk

,Z1:k−1

)

(3.33)

=
∑

d

p
(

Z
clut

k |d,Xk, a, mk, nk, jk, I
det
xk

,Z1:k−1

)

· p
(

Z
det

k \ z
(s)
k |d,Xk, a, mk, nk, jk, I

det
xk

,Z1:k−1

) (jk − 1)!(mk − jk)!

(mk − 1)!
.

The clutter detections are independent, with densities c (zk). Assuming uniformly
distributed clutter in the target state-space, we get

p
(

Z
clut

k |d,Xk, a, mk, nk, jk, I
det
xk

,Z1:k−1

)

= cmk−jk (3.34)
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where c is the clutter density in the measurement space, assumed uniform. Con-
version of density from target state-space to measurement state-space is through a
Jacobian. If one cannot assume uniform distribution, the expression will get just
a bit more complicated, where the density at each clutter measurement has to be
used instead of the constant density.

To express the joint target-generated detections density, we introduce the association

vector a
det, which states the association between measurements in Z

det

k \z(s)
k to targets

in Xk \ x
(nk)
k . It does not include the association of z

(s)
k to x

(nk)
k , since it is given by

a. There are jk − 1 measurements to associate, so nk − jk targets will be without
detection. We marginalize

p
(

Z
det

k \ z
(s)
k |d,Xk, a, mk, nk, jk, I

det
xk

,Z1:k−1

)

(3.35)

=
∑

adet

p
(

Z
det

k \ z
(s)
k , adet|d,Xk, a, mk, nk, jk, I

det
xk

,Z1:k−1

)

=
∑

adet

p
(

Z
det

k \ z
(s)
k

∣

∣a
det,d,Xk, a, mk, nk, jk, I

det
xk

,Z1:k−1

)

(3.36)

· Pr
{

a
det

∣

∣d,Xk, a, mk, nk, jk, I
det
xk

,Z1:k−1

}

.

The measurements are independent, given their associations, so

p
(

Z
det

k \ z
(s)
k |d,Xk, a, mk, nk, jk, I

det
xk

,Z1:k−1

)

(3.37)

=
∑

adet

Pr{adet|a,Xk,Z1:k−1}
∏

i∈D

p
(

z
(i)
k |x(i)

k ,Z1:k−1

)

,

where uninformative variables have been removed for clarity. For notational sim-
plicity, we use the same superscript for associated measurements and targets. In

(3.37), D represents the target-generated detections in Z
det

k \ z
(s)
k , i.e., it is the set

of indices i for which d(i) = 1. We do not express the association probability at the
current stage. For notational simplicity, we use the short-form

Pa = Pr{adet|a,Xk,Z1:k−1}. (3.38)

We are now ready to turn back to (3.28), inserting the expressions derived thereafter,

p
(

Zk \ z
(s)
k |a, mk, nk, jk,xk, I

det
xk

,Z1:k−1

)

(3.39)

=
(jk − 1)!(mk − jk)!

(mk − 1)!
(nk − 1)!

∫

∑

d

cmk−jk

·
∑

adet

Pa

∏

i∈D

p
(

z
(i)
k |x(i)

k ,Z1:k−1

)

·
vk|k−1

(

x
(1)
k

)

Nk|k−1

· · ·
vk|k−1

(

x
(nk−1)
k

)

Nk|k−1

dx
(1)
k · · ·dx(nk−1)

k .
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Combining likelihoods p(z
(i)
k |x(i)

k ,Z1:k−1) with densities vk|k−1(x
(i)
k ) we can write

p
(

Zk \ z
(s)
k |a, mk, nk, jk,xk, I

det
xk

,Z1:k−1

)

(3.40)

=
(jk − 1)!(mk − jk)!

(mk − 1)!
(nk − 1)!

∫

∑

d

cmk−jk

·
∑

adet

Pa

∏

i∈D

p
(

z
(i)
k |x(i)

k ,Z1:k−1

) vk|k−1

(

x
(i)
k

)

Nk|k−1

·
∏

l 6∈D

vk|k−1

(

x
(l)
k

)

Nk|k−1
dx

(1)
k · · ·dx(n−1)

k ,

where l 6∈ D points out the clutter detections in Zk \ z
(s)
k , given by d. The multi-

dimensional integral can be split up into a product of single-dimensional (in terms
of xk) integrals

p
(

Zk \ z
(s)
k |a, mk, nk, jk,xk, I

det
xk

,Z1:k−1

)

(3.41)

=
(jk − 1)!(mk − jk)!

(mk − 1)!
(nk − 1)!

∑

d

cmk−jk

∑

adet

Pa

·





∏

i∈D

∫

p
(

z
(i)
k |x(i)

k ,Z1:k−1

) vk|k−1

(

x
(i)
k

)

Nk|k−1

dx
(i)
k





·





∏

l 6∈D

∫ vk|k−1

(

x
(l)
k

)

Nk|k−1

dx
(l)
k



 .

The integral of a pdf is one, so the last factor is equal to one. Thus,

p
(

Zk \ z
(s)
k |a, mk, nk, jk,xk, I

det
xk

,Z1:k−1

)

(3.42)

=
(jk − 1)!(mk − jk)!

(mk − 1)!
(nk − 1)!

∑

d

cmk−jk

∑

adet

Pa

·





∏

i∈D

∫

p
(

z
(i)
k |x(i)

k ,Z1:k−1

) vk|k−1

(

x
(i)
k

)

Nk|k−1

dx
(i)
k



 .

By changing integration variable from x
(i)
k to xk and by going back to set notation

for Xk \ xk (where xk is again a vector in the unordered set), we obtain

p
(

Zk \ z
(s)
k |a, mk, nk, jk,xk, I

det
xk

,Z1:k−1

)

(3.43)

=
(jk − 1)!(mk − jk)!

(mk − 1)!

∑

d

cmk−jk

∑

adet

Pa

·

[

∏

i∈D

∫

p
(

z
(i)
k |xk,Z1:k−1

) vk|k−1 (xk)

Nk|k−1

dxk

]

.
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In the Gaussian-mixture CPHD, the predicted intensity function is a sum of Gaus-
sian components,

vk|k−1 (xk) =

Jk|k−1
∑

q=1

w
(q)
k|k−1N

(

xk;m
(q)
k|k−1,P

(q)
k|k−1

)

.

Furthermore, the measurement models gives

p
(

z
(i)
k |xk,Z1:k−1

)

= N
(

z
(i)
k ;Hxk,Rk

)

. (3.44)

Using the product rule for Gaussian densities in (2.34), (2.35)–(2.37), we get
∫

p
(

z
(i)
k |xk,Z1:k−1

) vk|k−1 (xk)

Nk|k−1

dxk (3.45)

=
1

Nk|k−1

Jk|k−1
∑

q=1

w
(q)
k|k−1

∫

N
(

z
(i)
k ; z

(q)
k|k−1,S

(q,s)
k|k−1

)

N
(

xk;m
(q,s)
k|k−1,P

(q,s)
k|k−1

)

dxk

=
1

Nk|k−1

Jk|k−1
∑

q=1

w
(q)
k|k−1N

(

z
(i)
k ; z

(q)
k|k−1,S

(q,s)
k|k−1

)

= L
(i)
k , (3.46)

where L
(i)
k is the weighted single-detection likelihood, introduced in (2.39).

We thus have

p
(

Zk \ z
(s)
k |a, mk, nk, jk,xk, I

det
xk

,Z1:k−1

)

(3.47)

=
(jk − 1)!(mk − jk)!

(mk − 1)!

∑

d

cmk−jk

∑

adet

Pa

∏

i∈D

L
(i)
k .

As we see, there is no a
det dependency in the sum over a

det, since D is determined
only by d. So, since Pa sums to one, we can remove the sum over the association
vector a

det. Hence,

p
(

Zk \ z
(s)
k |a, mk, nk, jk,xk, I

det
xk

,Z1:k−1

)

(3.48)

=
(jk − 1)!(mk − jk)!

(mk − 1)!

∑

d

cmk−jk

∏

i∈D

L
(i)
k .

The sum over d is the permutation of all combinations of jk − 1 detections from the
set Zk\z

(s)
k , so it never includes measurement s. The sum-multiplication of weighted

single-detection likelihoods can be expressed as the elementary symmetric function
(cf. (2.41))

σjk−1

({

L
(1)
k , . . . , L

(mk)
k

}

\ L
(s)
k

)

,
∑

d

∏

i∈D

L
(i)
k . (3.49)

We are now ready to express the detection likelihood in (3.16), where we transform
back to set notation of measurements (cf. (3.62)). We also reintroduce the pdf
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p
(

z
(s)
k |xk,Z1:k−1

)

that we left unconsidered in (3.26), where measurement z
(s)
k is

determined by the association variable a. We obtain

p(Zk, mk|nk,xk, I
det
xk

,Z1:k−1) (3.50)

=

min{mk,nk}
∑

jk=1

(

nk − 1

jk − 1

)

P j−1
d (1 − Pd)

nk−jk Pc (mk − jk)

· mk!
∑

a

1

mk

p
(

z
(s)
k |xk,Z1:k−1

) (jk − 1)!(mk − jk)!

(mk − 1)!

· cmk−jkσjk−1

({

L
(1)
k , . . . , L

(mk)
k

}

\ L
(s)
k

)

.

Expanding the binomial coefficient, and using that mk(mk − 1)! = mk!, we get

p(Zk, mk|nk,xk, I
det
xk

,Z1:k−1) (3.51)

=

min{mk ,nk}
∑

jk=1

(nk − 1)!

(nk − jk)!(jk − 1)!
P jk−1

d (1 − Pd)
nk−jk Pc (mk − jk)

· mk!
∑

a

p
(

z
(s)
k |xk,Z1:k−1

) (jk − 1)!(mk − jk)!

mk!

· cmk−jkσjk−1

({

L
(1)
k , . . . , L

(mk)
k

}

\ L
(s)
k

)

.

Simplification yields

p(Zk, mk|nk,xk, I
det
xk

,Z1:k−1) (3.52)

=

min{mk ,nk}
∑

jk=1

(mk − jk)!
(nk − 1)!

(nk − jk)!
P jk−1

d (1 − Pd)
nk−jk Pc (mk − jk)

·
∑

a

p
(

z
(s)
k |xk,Z1:k−1

)

· cmk−jkσjk−1

({

L
(1)
k , . . . , L

(mk)
k

}

\ L
(s)
k

)

.

Note that summing over a implies summing over all measurements z
(s)
k ∈ Zk.

There is still one unknown factor, the likelihood p
(

z
(s)
k |xk,Z1:k−1

)

. This pdf is given

by the measurement model,

p
(

z
(s)
k |xk,Z1:k−1

)

= N
(

z
(s)
k ;Hxk,R

)

. (3.53)

After multiplication with the predicted intensity function vk|k−1 (xk|Z1:k−1) (cf. (3.5)),
we will obtain components

N
(

z
(s)
k ;Hxk,R

) 1

Nk|k−1

Jk|k−1
∑

q=1

w
(q)
k|k−1N

(

xk;m
(q)
k|k−1,P

(1)
k|k−1

)

(3.54)

=

Jk|k−1
∑

q=1

w
(q)
k|k−1N

(

z
(s)
k ; z

(q)
k|k−1,S

(q,s)
k|k−1

)

N
(

xk;m
(q,s)
k|k ,P

(q,s)
k|k

)

. (3.55)
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The latter Gaussian is the updated component of the Gaussian mixture, when mea-
surement z

(s)
k has been declared a target measurement. The first Gaussian is the

likelihood of mixture component q, given measurement z
(s)
k . For each component in

the above sum, we will obtain mk components, when multiplying with (3.52) (exclud-

ing p(z
s)
k |xk)). Thus, in the detection update, we will obtain one posterior Gaussian

mixture component for each component in the prediction and for each measurement

in Zk, in total Jk|k−1mk components.

When comparing the expression in (3.52) with the corresponding expression in
(Ulmke et al. 2007), it is observed that the expressions differ by a factor nk. We
will discuss more about the differences between the equation after the subsequent
section.

3.2 Missed detection likelihood

To express the missed detection likelihood p(Zk|nk,xk, I
miss
xk

,Z1:k−1) in (3.14), we
start by marginalizing over the true number of target-generated detection jk. Since
we know that target xk is not detected, the true number of detections is somewhere
between 0 and min{mk, nk − 1}, hence

p(Zk, mk|nk,xk, I
miss
xk

,Z1:k−1) =

min{mk ,nk−1}
∑

jk=0

p(Zk, mk, jk|nk,xk, I
miss
xk

,Z1:k−1) (3.56)

=

min{mk,nk−1}
∑

jk=0

p(Zk|mk, nk, jk,xk, I
miss
xk

,Z1:k−1) (3.57)

· Pr{mk, jk|nk,xk, I
miss
xk

,Z1:k−1}

=

min{mk,nk−1}
∑

jk=0

p(Zk|mk, nk, jk,xk, I
miss
xk

,Z1:k−1) (3.58)

· Pr{mk|jk, nk,xk, I
miss
xk

,Z1:k−1}Pr{jk|nk,xk, I
miss
xk

,Z1:k−1}.

In (3.58), the second factor is

Pr{mk|jk, nk,xk, I
miss
xk

,Z1:k−1} = Pr{mk|jk} = Pc (mk − jk) , (3.59)

and the third factor is

Pr{jk|nk,xk, I
miss
xk

,Z1:k−1} = Pr{jk|nk,xk, I
miss
xk

}. (3.60)

Equation (3.60) states the probability that, given nk targets, one of which is the
randomly selected and not detected target xk, we receive jk target-generated mea-
surements. Of the nk − 1 targets which could have given rise to a measurement,
jk of them actually has. The number of ways in which jk detections can be chosen
from nk − 1 targets is

(

nk−1
jk

)

, hence

Pr{jk|nk,xk, I
miss
xk

} =

(

nk − 1

jk

)

P jk−1
d (1 − Pd)

nk−1−jk . (3.61)
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To express the density p(Zk|mk, nk, jk,xk, Imiss
xk

,Z1:k−1) in (3.60), we transform the
RFS Zk into an ordered matrix

p(Zk|mk, nk, jk,xk, I
miss
xk

,Z1:k−1) = mk!p(Zk|mk, nk, jk,xk, I
miss
xk

,Z1:k−1). (3.62)

We then marginalize over the remaining targets Xk \ xk

p(Zk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1) (3.63)

=

∫

p
(

Zk,Xk \ xk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1

)

dXk \ xk

=

∫

p
(

Zk

∣

∣Xk, mk, nk, jk,xk, I
miss
xk

,Z1:k−1

)

(3.64)

· p
(

Xk \ xk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1

)

dXk \ xk.

By transforming the RFS Xk \ xk into an ordered matrix, we obtain

p(Zk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1) (3.65)

= (nk − 1)!

∫

p
(

Zk

∣

∣Xk, mk, nk, jk,xk, I
miss
xk

,Z1:k−1

)

· p
(

Xk \ xk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1

)

dXk \ xk.

By indexing the target under consideration x
(n)
k = xk, we note that

p
(

Xk\xk|mk, nk, jk, I
miss
xk

,Z1:k−1

)

=
vk|k−1

(

x
(1)
k

)

Nk|k−1

· · ·
vk|k−1

(

x
(nk−1)
k

)

Nk|k−1

, (3.66)

since all targets in Xk\x
(nk)
k are independent and identically distributed according to

the predicted PHD divided by the expected number of targets Nk|k−1 at prediction.

The matrix Xk has always its last column x
(nk)
k = xk.

To describe the density p
(

Zk

∣

∣Xk, mk, nk, jk,xk, Imiss
xk

,Z1:k−1

)

, we introduce the vec-

tor d, which states which detections in Zk that are target-generated and which are
clutter. We marginalize over that vector

p
(

Zk|Xk, mk, nk, jk, I
miss
xk

,Z1:k−1

)

(3.67)

=
∑

d

p
(

Zk|d,Xk, mk, nk, jk, I
miss
xk

,Z1:k−1

)

· Pr{d|Xk, mk, nk, jk, I
miss
xk

,Z1:k−1}.

All measurement classifications are equally probable, so

Pr{d|Xk, mk, nk, jk, I
miss
xk

,Z1:k−1} =
1

(

mk

jk

) =
jk!(mk − jk)!

mk!
. (3.68)
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Further, the clutter measurements are independent from the target-generated mea-
surements, by which

p
(

Zk|Xk, mk, nk, jk, I
miss
xk

,Z1:k−1

)

(3.69)

=
∑

d

p
(

Z
clut

k |d,Xk, mk, nk, jk, I
miss
xk

,Z1:k−1

)

· p
(

Z
det

k |d,Xk, mk, nk, jk, I
miss
xk

,Z1:k−1

) jk!(mk − jk)!

mk!
.

The clutter detections are independent, with densities c (zk). Assuming uniformly
distributed clutter in the measurement space, we get

p
(

Z
clut

k |d,Xk, a, mk, nk, jk, I
det
xk

,Z1:k−1

)

= cmk−jk (3.70)

where c is the clutter density in the measurement space.

To express the joint target-generated detections density, we introduce the association

vector a
det, which states the association between measurements in Z

det

k to targets in

Xk \ x
(nk)
k . There are jk measurements to associate, so nk − 1 − jk targets will be

without detection, since target x
(nk)
k is undetected. We marginalize

p
(

Z
det

k |d,Xk, mk, nk, jk, I
miss
xk

,Z1:k−1

)

(3.71)

=
∑

adet

p
(

Z
det

k , adet|d,Xk, mk, nk, jk, I
miss
xk

,Z1:k−1

)

=
∑

adet

p
(

Z
det

k

∣

∣a
det,d,Xk, mk, nk, jk, I

miss
xk

,Z1:k−1

)

(3.72)

· Pr
{

a
det

∣

∣d,Xk, mk, nk, jk, I
miss
xk

,Z1:k−1

}

.

The measurements are independent, given their associations, so

p
(

Z
det

k |d,Xk, mk, nk, jk, I
miss
xk

,Z1:k−1

)

(3.73)

=
∑

adet

Pr{adet|Xk,Z1:k−1}
∏

i∈D

p
(

z
(i)
k |x(i)

k ,Z1:k−1

)

,

where uninformative variables have been removed for clarity. For notational simplic-
ity, we use the same superscript for associated measurements and targets. In (3.73),

D represents the target-generated detections in Z
det

k , i.e., it is the set of indices i for
which d(i) = 1. We do not express the association probability at the current stage.
For notational simplicity, we use the short-form

Pa = Pr{adet|Xk,Z1:k−1}. (3.74)
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We can now express (3.65), by using the expressions derived thereafter,

p(Zk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1) (3.75)

= (nk − 1)!

∫

∑

d

jk!(mk − jk)!

mk!
cmk−jk

∑

adet

Pa

∏

i∈D

p
(

z
(i)
k |x(i)

k ,Z1:k−1

)

·
vk|k−1

(

x
(1)
k

)

Nk|k−1
· · ·

vk|k−1

(

x
(nk−1)
k

)

Nk|k−1
dx

(1)
k · · ·dx(nk−1)

k .

Combining likelihoods p(z
(i)
k |x(i)

k ,Z1:k−1) with densities vk|k−1(x
(i)
k ) we can write

p(Zk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1) (3.76)

= (nk − 1)!

∫

∑

d

jk!(mk − jk)!

mk!
cmk−jk

∑

adet

Pa

·
∏

i∈D

p
(

z
(i)
k |x(i)

k ,Z1:k−1

) vk|k−1

(

x
(i)
k

)

Nk|k−1

·
∏

l 6∈D

vk|k−1

(

x
(l)
k

)

Nk|k−1

dx
(1)
k · · ·dx(n−1)

k ,

where l 6∈ D points out the clutter detections in Zk, given by d. The multi-
dimensional integral can be split up into a product of single-dimensional (in terms
of xk) integrals

p(Zk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1) (3.77)

= (nk − 1)!

∫

∑

d

jk!(mk − jk)!

mk!
cmk−jk

∑

adet

Pa

·





∏

i∈D

∫

p
(

z
(i)
k |x(i)

k ,Z1:k−1

) vk|k−1

(

x
(i)
k

)

Nk|k−1

dx
(i)
k





·





∏

l 6∈D

∫ vk|k−1

(

x
(l)
k

)

Nk|k−1

dx
(l)
k



 .

The integral of a pdf is one, so the last factor is equal to one. Thus,

p(Zk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1) (3.78)

= (nk − 1)!

∫

∑

d

jk!(mk − jk)!

mk!
cmk−jk

∑

adet

Pa

·





∏

i∈D

∫

p
(

z
(i)
k |x(i)

k ,Z1:k−1

) vk|k−1

(

x
(i)
k

)

Nk|k−1

dx
(i)
k



 .
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By changing integration variable from x
(i)
k to xk and by going back to set notation

for Xk \ xk (where xk is again a vector in the unordered set), we obtain

p(Zk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1) (3.79)

=

∫

∑

d

jk!(mk − jk)!

mk!
cmk−jk

∑

adet

Pa

·

[

∏

i∈D

∫

p
(

z
(i)
k |xk,Z1:k−1

) vk|k−1 (xk)

Nk|k−1

dxk

]

.

Using the results from (3.45) and (3.46), we get

p(Zk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1) (3.80)

=
∑

d

jk!(mk − jk)!

mk!
cmk−jk

∑

adet

Pa

∏

i∈D

L
(i)
k .

As we see, there is no a
det dependency in the sum over a

det, since D is determined
only by d. So, since Pa sums to one, we can remove the sum over the association
vector a

det. Hence,

p(Zk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1) (3.81)

=
∑

d

jk!(mk − jk)!

mk!
cmk−jk

∏

i∈D

L
(i)
k .

Using the elementary symmetric function, defined in (2.41), we write

p(Zk

∣

∣mk, nk, jk,xk, I
miss
xk

,Z1:k−1) (3.82)

=
jk!(mk − jk)!

mk!
cmk−jkσjk

({

L
(1)
k , . . . , L

(mk)
k

})

.

We are now ready to express the missed-detection likelihood p(Zk|nk,xk, Imiss
xk

,Z1:k−1)
in (3.56)

p(Zk, mk|nk,xk, I
miss
xk

,Z1:k−1) (3.83)

=

min{mk ,nk−1}
∑

jk=0

mk!
jk!(mk − jk)!

mk!
cmk−jkσjk

({

L
(1)
k , . . . , L

(mk)
k

})

· Pc (mk − jk)

(

nk − 1

jk

)

P jk−1
d (1 − Pd)

nk−1−jk .

By expanding the binomial factor
(

nk−1
jk

)

, we obtain

p(Zk, mk|nk,xk, I
miss
xk

,Z1:k−1) (3.84)

=

min{mk ,nk−1}
∑

jk=0

mk!
jk!(mk − jk)!

mk!
cmk−jkσjk

({

L
(1)
k , . . . , L

(mk)
k

})

· Pc (mk − jk)
(nk − 1)!

jk! (nk − 1 − jk)!
P jk−1

d (1 − Pd)
nk−1−jk .
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By simplifying and rearranging, we get the final result

p(Zk, mk|nk,xk, I
miss
xk

,Z1:k−1) (3.85)

=

min{mk,nk−1}
∑

jk=0

(nk − 1)!

(nk − 1 − jk)!
(mk − jk)!Pc (mk − jk)

· P jk−1
d (1 − Pd)

nk−1−jk σjk

({

L
(1)
k , . . . , L

(mk)
k

})

.

The update under missed detection described by (3.85), differs from the numerator
of the corresponding expression in (Ulmke et al. 2007) by a factor nk, which was also
the case for the detection update in section (3.1). However, the weights calculated
according to the equations in this section are to be normalized, so they do not
describe the final weight after missed detection update.

3.3 Update equations

In order to update the intensity function of the GM-CPHD algorithm, we saw previ-
ously that it can be performed by multiplying the predicted intensity function with
the density p(Zk|xk,Z1:k−1), followed by a normalization. The density function is
first expressed in (3.6). Using the results from Sections 3.1 and 3.2, we can explicitly
express the density.

p(Zk|xk,Z1:k−1) ∼=

∞
∑

nk=1

Pr{nk|Z1:k−1} (3.86)

p(Zk|nk,xk, I
det
xk

,Z1:k−1)Pd (xk)

+ p(Zk|nk,xk, I
miss
xk

,Z1:k−1) (1 − Pd (xk))

For a missed detection, each component q in the predicted intensity function becomes
a component in the posterior intensity function. The mean and covariance of the
updated component are equal to the predicted ones. The unnormalized weight w

(q,0)
k|k ,

where 0 represents missed detection, is given by

w
(q,0)
k|k = w

(q)
k|k−1

(

1 − P
(q)
d

)

∞
∑

nk=1

Pr{nk

∣

∣Z1:k−1}
(nk − 1)!

(nk − 1 − jk)!
(3.87)

·

min{mk,nk−1}
∑

jk=0

(mk − jk)!Pc (mk − jk) P jk−1
d (1 − Pd)

nk−1−jk

· σjk

({

L
(1)
k , . . . , L

(mk)
k

})

,

where P
(q)
d is a state-dependent detection probability, associated with component q.

Often, a constant detection probability Pd = P
(q)
d is used.
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For each detection z
(s)
k and each predicted mixture component q, a new mixture

component (q, s) is created after the measurement update. The mean and covariance
matrix of this component is given by

m
(q,s)
k|k = m

(q)
k|k−1 + Wk

(

z
(s)
k − Hm

(q)
k|k−1

)

(3.88)

P
(q,s)
k|k = (1 − WkH)P

(q)
k|k−1, (3.89)

where

Wk = Pk|k−1H
T
k S

−1
k (3.90)

Sk = HkP
(q)
k|k−1H

T
k + Rk. (3.91)

The matrix Hk is the measurement model, P
(q)
k|k−1 is the covariance matrix of the

predicted mixture component q, and m
(q)
k|k−1 is its mean value. The unnormalized

weight w
(q,s)
k|k of the mixture component is given by

w
(q,s)
k|k = w

(q)
k|k−1P

(q)
d N

(

z
(s)
k ; z

(q)
k|k−1,S

(q,s)
k|k−1

)

(3.92)

·
∞

∑

nk=1

Pr{nk

∣

∣Z1:k−1}
(nk − 1)!

(nk − jk)!

min{mk,nk}
∑

jk=1

(mk − jk)!

· P jk−1
d (1 − Pd)

nk−jk Pc (mk − jk)

· cmk−jkσjk−1

({

L
(1)
k , . . . , L

(mk)
k

}

\ L
(s)
k

)

,

where P
(q)
d is the component-dependent detection probability, which is often assumed

equal for all components, i.e., P
(q)
d = Pd.

The update equations for both detection and missed detection differs from the nu-
merator equations in the corresponding expressions in (Ulmke et al. 2007). However,
in the procedure of this report, the calculated weights of the mixture components
are to be normalized such that they sum to the expected number of targets. That
is, the weights are normalized such that the sum equals NMAP

k|k . After normalization,
the sum of the weight will thus be equal to the sum of the weights obtained by the
approach in (Ulmke et al. 2007). It is hence clear that the cardinality estimates will
not differ between the approaches. The mean and covariance of the mixture com-
ponents propagate in the same manner for both descriptions. The only thing that
can differ between the presented result and the one in (Ulmke et al. 2007) is then
the distribution of the component weights among the mixture components. In order
to determine if there is a difference in practise between the two GM-CPHD update
equations, the two sets of expressions were implemented. The alternative filters were
run on a ground target tracking scenario, described in (Svensson et al. 2009). For
the specific scenario tested, no difference in performance was observed. As measure
of performance the Optimal Subpattern Assignment (OSPA) measure (Schuhmacher
et al. 2008) was used.



4 CONCLUSION

In this report, an alternative derivation of the update equations of the Gaussian
mixture cardinalized probability hypothesis density (GM-CPHD) filter has been
presented. The equations have been compared with the equations in (Ulmke et

al. 2007). However, since the update procedures are a bit different, the comparison
is not direct. It does however appear to be a slight difference in the update of the
weights of the mixture components between the two sets of expressions. To study
if any of the sets of equations is beneficial, both filter equations were implemented,
and evaluated on a ground target tracking scenario. The preliminary results indicate
that there is no substantial difference between the two weight equations, when it
comes to performance of the filter.

For the cardinality update, the aproach presented in this report provides the same
equations as is presented in (Ulmke et al. 2007). Since the weights sum to the
expected number of targets for both setups, it is only in the distribution of the
weights among the components that the two descriptions differ.

Future work is needed in order to determine if there is a motivation for using the
one or the other approach. It is also necessary to compare the two considered filter
equations with the original GM-CPHD description in (Vo et al. 2006).
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