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Three-Dimensional Modelling of Bond in Reinforced Concrete
Theoretical Model, Experiments and Applications
KARIN LUNDGREN
Division of Concrete Structures
Department of Structural Engineering
Chalmers University of Technology

ABSTRACT
The bond mechanism between deformed bars and concrete is known to be influenced
by multiple parameters, such as the strength of the surrounding structure, the
occurrence of splitting cracks in the concrete and the yielding of the reinforcement.
However, when reinforced concrete structures are analysed using the finite element
method, it is quite common to assume that the bond stress depends solely on the slip.
A new theoretical model which is especially suited for detailed three-dimensional
analyses was developed. In the new model, the splitting stresses of the bond action are
included; furthermore, the bond stress depends not only on the slip, but also on the
radial deformation between the reinforcement bar and the concrete. In addition, this
model includes the simulation of cyclic loading. Steel-encased pull-out tests subjected
to reversed cyclic loading were carried out. The tangential strain in the steel tubes was
measured to investigate how the splitting stresses are affected by cyclic loading.
Based on the results of these tests, several improvements of the model were made. Bar
pull-out tests with differing geometries and with both monotonic and cyclic loading
were analysed, using the new model for the bond action, and non-linear fracture
mechanics for the concrete. The results show that the model is capable of dealing with
a variety of failure modes, such as pull-out failure, splitting failure, and the loss of
bond when the reinforcement is yielding, as well as dealing with cyclic loading in a
physically reasonable way.

The new model was used in detailed three-dimensional analyses of frame corners.
Until recently, splicing of the reinforcement in frame corners had not been allowed by
the Swedish Road Administration. Since this had led to reinforcement detailing that
was hard to realise on site, it was of interest to examine how splicing of the
reinforcement affects the behaviour of the structure. Tests on frame corners subjected
to closing moments were also carried out. It was found that the analyses could
describe the test performance in a reasonable way. The tests and analyses showed that
splicing the reinforcement in the middle of the corner has advantages over splices
placed outside the bend of the reinforcement. They also indicated, in agreement with
previous work, that provided the splice length is as long as required in the codes, there
are no disadvantages in splicing the reinforcement within the corner of a frame
subjected to closing moment.

Key words: Reinforced concrete, bond, splitting effects, three-dimensional analysis,
pull-out tests, cyclic loading, finite element analysis, non-linear fracture
mechanics, splicing of reinforcement, frame corners.
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Tredimensionell modellering av vidhäftning i armerad betong
Teoretisk modell, experiment och tillämpningar
KARIN LUNDGREN
Avdelningen för betongbyggnad
Instutionen för konstruktionsteknik
Chalmers tekniska högskola

SAMMANFATTNING

Vidhäftningsmekanismen mellan kamstänger och betong påverkas av ett antal
parametrar, såsom hållfastheten hos den omgivande strukturen, uppkomsten av
spjälksprickor i betongen och om armeringen flyter. När armerade betong-
konstruktioner analyseras med finita elementmetoden antas dock vanligtvis att
vidhäftningen beror enbart på glidningen. En ny teoretisk modell har utvecklats, som
är speciellt lämpad för detaljerade tredimensionella analyser. I denna nya modell är
spjälkspänningarna som uppstår på grund av vidhäftningen inkluderade, och
vidhäftningen beror inte enbart på glidningen, utan också på den radiella
deformationen mellan armeringsjärnet och betongen. Modellen har även utvecklats
för simulering av cyklisk last. Stålmantlade utdragsförsök med cyklisk belastning har
utförts. De tangentiella töjningarna i stålrören mättes för att undersöka hur den
cykliska lasten påverkar spjälkspänningarna. Utgående från resultaten i dessa försök
gjordes flera förbättringar i modellen. Den nya modellen som beskriver
vidhäftningsmekanismen har använts, tillsammans med icke-linjär brottmekanik för
att beskriva betongen, i analyser av utdragsförsök med olika geometrier och med både
monoton och cyklisk belastning. Resultaten visar att den nya modellen kan hantera
olika brottyper, som utdragsbrott, spjälkbrott, att vidhäftningen minskar när
armeringen flyter, samt att den kan simulera cyklisk last på ett fysikaliskt rimligt sätt.

Den nya vidhäftningsmodellen har använts i detaljerade tredimensionella analyser av
ramhörn. Tidigare har Vägverket inte tillåtit att armeringen skarvas inom ramhörnet.
Eftersom det ledde till komplicerade detaljutformningar som var svåra att utföra, var
det av intresse att undersöka hur armeringsskarvar inom hörnområdet påverkar det
strukturella uppförandet. Ramhörn har provats med stängande moment. Det visade sig
att analyserna kunde beskriva försöksresultaten på ett rimligt sätt. Försöken och
analyserna visade att det är fördelaktigt att skarva armeringen mitt i hörnet, jämfört
med att placera skarven utanför armeringsbocken. De indikerar också, liksom tidigare
analyser och försök, att om skarvlängden är normenlig finns det inga nackdelar med
att skarva armeringen inom hörnområdet i ett hörn belastat med stängande moment.

Nyckelord: Armerad betong, vidhäftning, spjälkande effekter, tredimensionell
analys, utdragsförsök, cyklisk last, finita element-analys, ickelinjär
brottmekanik, skarvning av armering.
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NOTATIONS

CAPITAL LETTERS

A area

A’ area of one rib

D elastic stiffness matrix

D11 stiffness in the elastic stiffness matrix

D12 stiffness in the elastic stiffness matrix

D22 stiffness in the elastic stiffness matrix

Ec modulus of elasticity of concrete

F force

F1 yield line describing the friction

F2 yield line describing the upper limit at a pull-out failure

G plastic potential function

GF fracture energy of concrete

Ld length of damaged zone

LOWER CASE LETTERS

c parameter in yield function F2 (in the second version of the model the stress in

the inclined compressive struts)

d diameter

fcc compressive strength of concrete

fct tensile strength of concrete

l length

lk distance between ribs

r radius

ra inner radius

rb outer radius

t the tractions at the interface

tn normal splitting stress

tn0 apex of the yield lines in the first version of the model

tt bond stress
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u the relative displacements across the interface

un relative normal displacement at the interface

un
e elastic part of the relative normal displacement at the interface

un
p plastic part of the relative normal displacement at the interface

ut slip

ut
e elastic part of the slip

ut
p plastic part of the slip

utmax maximum value of the slip which has been obtained

utmin minimum value of the slip which has been obtained

GREEK LOWER CASE LETTERS

η parameter in the plastic potential function G

ηd the parameter η in the damaged deformation zone

ηd0 the lowest value of the parameter ηd in the damaged deformation zone

κ hardening parameter

λ plastic multiplier

µ coefficient of friction

µd the coefficient of friction in the damaged deformation zone

µd0 the lowest value of the coefficient of friction in the damaged deformation zone

µmax maximum coefficient of friction

υ the Poisson ratio
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1 INTRODUCTION

1.1 Background, Aim and Scope

The bond mechanism between deformed bars and concrete has been investigated by

numerous researchers. While it is known to be influenced by many parameters, the

most important are the confinement of the surrounding structure and yielding of the

reinforcement. However, when reinforced concrete structures are modelled with finite

element analysis, it is quite common to assume that the bond stress depends solely on

the slip. The confinement of the surrounding structure must then be evaluated before

the analysis can be started, in order to choose an appropriate bond-slip correlation as

input. Whether the reinforcement will yield or not must also be known in advance, for

the same reason. The goal of this project was to design a general model of the bond

mechanism for which the same set of input parameters can be used in all cases; here,

the bond-slip is a result of an analysis, rather than input. It was then intended to use

the model in analyses of spliced frame corners.

Until recently, splicing of the reinforcement in frame corners had not been allowed by

the Swedish Road Administration. This had led to complicated reinforcement layouts

that were hard to realise on site. It was therefore of interest to study how splicing the

reinforcement within the corner region affects the behaviour of a structure. The bends

of the reinforcement bars in the corners cause splitting stresses. When the

reinforcement is spliced, additional splitting stresses arising from the anchorage of the

reinforcement could cause a decreased bond capacity. By using detailed three-

dimensional models combined with a suitable model for the bond, these effects could

be taken into account in analyses.

1.2 Limitations

The goal here was to develop a general model of the bond mechanism to be used in

detailed finite element analyses of concrete structures. When such analyses are

conducted, suitable material models for the concrete are of course needed. The

material models used are the ones available in the finite element program DIANA, see

TNO (1998). The results of the analyses showed that sometimes the material model
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used was not sufficient to describe the behaviour accurately. This applied, for

example, to the analyses in which the concrete was exposed to cyclic loading or to a

triaxial stress state. The improvement of material models is, however, outside the

scope of this thesis.

For the tests and analyses of frame corners to investigate the effect of splices, the

study has been limited to closing moments. The reason for this was that the effect of

opening moments has been studied more extensively by other researchers already.

1.3 Outline of Contents

This thesis consists of four papers and this introductory part. An introduction to

selected topics is given in the first part: Non-linear fracture mechanics is briefly

presented in Chapter 2, the bond mechanism and related models are outlined in

Chapter 3, and the structural behaviour of frame corners is discussed in Chapter 5.

The new work is presented mainly in the papers. The work started with the design of a

new model for the bond mechanism between reinforcement bars and concrete. This

model and analyses of some pull-out tests are described in Paper I. Since there was a

lack of experimental data on how the splitting stresses are affected by cyclic loading,

pull-out tests on steel-encased concrete cylinders were carried out; these are presented

in Paper II. The results of these tests revealed some drawbacks to the model which

was then changed accordingly. The alteration of the model, with reasons for changes,

is presented in Chapter 4. The second version of the model is presented in Paper III,

together with analyses of pull-out tests, specially chosen to describe various types of

failure. Finally, the model was used in three-dimensional analyses of frame corners,

and the results therefrom are compared with results from experiments in Paper IV.

1.4 Original Features

A new theoretical model of the bond mechanism in monotonic and cyclic loading was

developed. The fundamentals of the model are the friction between the reinforcement

bar and the concrete, as well as the limitation of the stresses in the inclined

compressive forces that result from the bond action. This way of describing the bond

mechanism as a combination of basic mechanisms and combining them in an elasto-

plastic model has not, to the author’s knowledge, been tried before. Furthermore,
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tests, as well as finite element analyses of pull-out tests and frame corners were

conducted. The steel-encased pull-out tests with specimens subjected to cyclic loading

are believed to be unique, since no tests have been found in the literature that show

the effect of the splitting stresses measured during cyclic loading.
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2 NON-LINEAR FRACTURE MECHANICS FOR

CONCRETE STRUCTURES

2.1 Tensile Behaviour

Since the fictitious crack model was presented by Hillerborg et al. (1976), and the

crack band theory by Bažant and Oh (1983), non-linear fracture mechanics for

concrete structures has been extended and used by many researchers. A brief

overview of the subject is given here. For more information, see for example

Jirásek (1999).

The two basic ideas of non-linear fracture mechanics are that some tensile stress can

continue to be transferred after microcracking has started, and that this tensile stress

depends on the crack opening, which is a displacement, rather than on the strain (as it

does in the elastic region), see Figure 1. The area under the tensile stress versus crack

opening curve equals an energy which is denoted the fracture energy, GF. This is

assumed to be a material parameter.

w

σ

ε

ε

σ

ε

ft

w

.L

L∆

Unloading response

at maximum load

L+εL+w

σ

σ

w

wwu

= f ( w )
GF+

Figure 1 Mean stress-displacement relation for a uniaxial tensile test specimen,

subdivided into a general stress-strain relation and a stress-displacement

relation for the additional localised deformations.
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From the first models, that used discrete crack elements, the smeared approach was

devised. This means that the deformation of one crack is smeared out over a

characteristic length. When modelling plain concrete, or when slip is allowed between

the reinforcement and the concrete, this characteristic length is approximately the size

of one element. This means that the tensile stress versus strain used will depend on the

size of the element. For axisymmetric analyses, the characteristic length depends on

the number of radial cracks assumed. The more radial cracks that are assumed, the

smaller the characteristic length will be, see Figure 2. When modelling reinforced

concrete and assuming complete interaction between the steel and the concrete, the

deformation of one crack is smeared out over the mean crack distance.

In the first models that used the smeared approach, the direction of the cracks was

fixed. Special input was required in order to determine how large the shear stresses

were that could continue to be transferred across a crack. Several cracks could

develop within the same element. There was, however, a certain threshold angle, that

specified the minimum angle between two cracks. The transfer of shear stresses across

a crack, combined with this threshold angle, allowed the tensile stresses in the

material to exceed the tensile strength, as long as the direction of the tensile stress was

close enough to an already formed crack. In particular, when the direction of the

principal stress changes after cracking, there can be large tensile stresses.

characteristic length

Figure 2 Characteristic length in axisymmetric models.
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To avoid these large stresses, rotating crack models were developed. In these models,

the direction of a crack is not fixed, but rotates with the direction of the maximum

tensile strain. Generally, coaxiality between principal stresses and principal strains is

assumed. The special input for the shear stresses across the crack is no longer needed,

since these stresses become zero by definition. The behaviour of the rotating crack

models is rather close to elasto-plastic models that have been worked out and used, for

example the Rankine criterion that limits the maximum tensile stress.

After the smeared approach, the concept of embedded crack models was evolved, see

for example Åkesson (1996). Here, the crack is modelled as a strain localisation

within an element. This approach has the benefit of not needing any characteristic

length as input. However, since no three-dimensional model was available when this

project started, the smeared approach was chosen for the analyses.

As mentioned, the smeared approach needs a characteristic length as input. There are

some problems in choosing the characteristic length that arise almost immediately

when modelling reinforced concrete structures. Some examples that have appeared

during this work are discussed here. Since slip was allowed between the

reinforcement and the concrete in the analyses carried out, this characteristic length

should be related to the size of one element. However, this is a problem when the

dimensions of the elements are not the same in all directions. If the crack pattern is

known before the analysis is carried out, the most accurate assumption would be to

use the size of the element perpendicular to the crack plane, see Figure 3. If, however,

the crack pattern is not known in advance, or when cracks appear in more than one

direction in an element, a mean value is usually used. This means that the ductility of

the concrete in one direction is overestimated (the length of the elements), and in

another direction underestimated (the width of the elements).

characteristic length

Figure 3 Characteristic length in oblong elements.
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The easiest and simplest solution to this problem is of course to use meshes in which

the elements have about the same size in all directions. However, there can also be

problems in doing this. In the three-dimensional analyses of frame corners presented

in Paper IV, the mesh had to be adjusted to fit around the main reinforcement bar.

This means that the smallest dimension of an element had to be as small as about

4 mm. If this size had also been chosen for the dimension in the direction along the

reinforcement bar, the number of elements needed to model the corner region would

have become very large, and the time required for the analysis would not have been

reasonable. Furthermore, another problem was that slip between the main

reinforcement and the concrete was accounted for, while the transverse reinforcement

was modelled with complete interaction. These problems were solved (by good

fortune more than skill); the characteristic length was chosen as the length of the

elements along the main reinforcement bars and the splitting cracks localised in two

elements instead of in one, see Figure 11 in Paper III and Figure 14 in Paper IV. Thus,

the characteristic length chosen was rather realistic for cracks in both directions.

2.1 Compressive Behaviour

Since cracks are easy to spot, localisation of the deformations in a tensile failure of

concrete is not difficult to understand. However, there is also localisation of the

deformations in a compressive failure. Van Mier (1984) showed that the compression

softening behaviour is related to the boundary conditions and the size of the specimen.

An explanation could be that the lateral deformations are partly restrained at the

supports, even though brushes were used to reduce the frictional restraint at the end-

zones. However, these effects are most likely partly due to localisation of the

deformations in a compressive failure, see Figure 4. This has been confirmed in a

Round Robin Test, see van Mier et al. (1997). Markeset (1993) has presented a model

for this, see Figure 5. One of the parameters of the model was the length of the

damaged zone, Ld, shown in the figure. It was assumed to be about 2.5 times the

smallest lateral dimension for centric compressed specimens. When strain gradients

were present, it was assumed to depend on the depth of the damaged zone.

Reinforcement probably affects the length of the damaged zone also.
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Figure 4 Results from uniaxial compressive tests by van Mier (1984): (a) Stress

versus strain, and (b) Post-peak stress versus displacement for various

specimen heights.
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Figure 5 Illustration of the model developed by Markeset (1993) for a specimen

loaded in uniaxial compression.
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The model by Markeset (1993) can serve as a tool for analyses of beams and columns

with uniaxial compression. However, there is at present no convenient way to take the

effect of localisation into account in a generalised material model suited for finite

element analysis, especially not for a general case with triaxial stress states. One

problem is that the number of elements in which the compressive region will localise

is not known when the analysis is started. While in tension, it seems reasonable to

assume that a crack will localise in one element, an assumption that is not so obvious

for compression. In the analyses presented in this thesis, simple stress versus strain

relations for the compressive behaviour were used without taking into account the size

of the elements.
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3 BOND BETWEEN REINFORCEMENT AND

CONCRETE

3.1 The Bond Mechanism

The bond mechanism is the interaction between reinforcement and concrete. It is this

transfer of stresses that makes it possible to combine the compressive strength of the

concrete and the tensile capacity of the reinforcement in reinforced concrete

structures. Thus, the bond mechanism has a strong influence on the fundamental

behaviour of a structure, for example in crack development and spacing, crack width,

and ductility.

3.1.1 Monotonic loading

The bond mechanism is considered to be a result of three different mechanisms:

chemical adhesion, friction, and mechanical interlocking between the ribs of the

reinforcement bars and the concrete, see Figure 6. This statement can be found in, for

example, ACI (1992). However, the mechanical interlocking can be viewed as

friction, depending on the level at which the mechanism is considered. The bond

resistance resulting from the chemical adhesion is small; it is lost almost immediately

when slipping between the reinforcement and the concrete starts, ACI (1992),

CEB (1982). The inclined forces resulting from the bearing action of the ribs make it

possible, however, to continue to transfer forces between the reinforcement and the

concrete. This implies that bond action generates inclined forces which radiate

outwards in the concrete. The inclined stress is often divided into a longitudinal

component, denoted the bond stress, and a radial component, denoted normal stress or

splitting stress, see Figure 7.

Bearing(c)Friction(b)Adhesion(a)

Figure 6 Idealised force transfer mechanisms, modified from ACI (1992).
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Stress on the concrete
and its components

(b)

P

Stress on the
reinforcing bar

(a)

Figure 7 Bond and splitting stresses between a deformed bar and the surrounding

concrete. From Magnusson (1997).

The inclined forces are balanced by ring tensile stresses in the surrounding concrete,

as explained by Tepfers (1973), see Figure 8. If the tensile stress becomes large

enough, longitudinal splitting cracks will form in the concrete. Another type of crack

that is directly related to the bond action are the transverse microcracks which

originate at the tips of the ribs, Goto (1971), see Figure 9. These cracks are due to the

local pressure in front of the ribs, which gives rise to tensile stresses at the tips of the

ribs. These transverse microcracks are also called bond cracks.

Splitting crack

Figure 8 Ring tensile stresses in the anchorage zone, according to Tepfers (1973).
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N

Adhesion and friction

Support of the ribs

Longitudinal
splitting

Large
deformation

Transverse crack

Figure 9 Deformation zones and cracking caused by bond, modified by

Magnusson (1997) from Vandewalle (1992).

It should be noted that the presence of the normal stresses is a condition for

transferring bond stresses after the chemical adhesion is lost. When, for some reason,

the normal stresses are lost, bond stresses cannot be transferred. This is what happens

if the concrete around the reinforcement bar is penetrated by longitudinal splitting

cracks, and there is no transverse reinforcement that can continue to carry the forces.

This type of failure is called splitting failure. The same thing happens if the

reinforcement bar starts yielding. Due to the Poisson effect, the contraction of the

steel bar increases drastically at yielding. Thus, the normal stress between the

concrete and the steel is reduced so that only low bond stress can be transferred.

When the concrete surrounding the reinforcement bar is well-confined, meaning that

it can withstand the normal splitting stresses, and the reinforcement does not start

yielding, a pull-out failure is obtained. When this happens, the failure is characterised

by shear cracking between two adjacent ribs. This is the upper limit of the bond

capacity.

A common way to describe the bond behaviour is by relating the bond stress to the

slip, that is the relative difference in movement between the reinforcement bar and the

concrete. As made clear above, the bond versus slip relationship is not a material

parameter; it is closely related to the structure. It also depends on several parameters

such as casting position, vibration of the concrete and loading rate. Examples of

schematic bond-slip relationships are shown in Figure 10.
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Bond
stress

Slip

(a)
(b)

Figure 10 Schematic bond-slip relationship: (a) pull-out failure; (b) splitting failure,

or loss of bond due to yielding of the reinforcement.

3.1.2 Cyclic loading

A typical response for bond in cyclic loading is shown in a bond versus slip diagram

in Figure 11. The monotonic curve is followed for the first loading until point A in the

figure. Thereafter occurs a steep unloading to point B, and then an almost constant,

low bond stress until the original monotonic curve is reached at point C. As for

monotonic loading, the response depends on the structure, and the influencing

parameters are the same. Moreover, the response is also influenced by the type of

cyclic loading. According to ACI (1992), load cycles with reversed loading cause a

greater degradation of bond strength and stiffness than the same number of load

cycles with unidirectional loading. The peak value of the slip is a critical factor.

Additional cycles between slip values smaller than earlier ones do not significantly

influence the bond behaviour, according to Eligehausen et al. (1983), Balázs (1991)

and ACI (1992).

B

A
Bond
stress

SlipC

Figure 11 Typical bond versus slip for cyclic loading.
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3.2 Steel-Encased Pull-Out Tests Subjected to Reversed Cyclic

Loading

As discussed in Section 3.1.1, anchoring deformed bars in concrete gives rise not only

to bond stresses but also to splitting stresses. Although many experiments have been

conducted to study the bond stresses, the splitting stresses are less investigated.

Tepfers and Olsson (1992) have done “ring tests” in which a reinforcement bar was

pulled out of a concrete cylinder surrounded by a thin steel tube. By measuring the

tangential strains in the steel tube, the splitting stresses could be evaluated. A few

other researchers have also carried out tests to find solutions to the problems of

measuring the splitting stresses, for example Malvar (1992). The effect on bond of

cyclic loading has been investigated by, among others, Eligehausen et al. (1983) and

Balázs and Koch (1995), who have conducted large programmes of pull-out tests with

cyclically loaded specimens. However, no tests were found in the literature that show

the effect of the splitting stresses measured during cyclic loading.

Therefore, steel-encased pull-out tests subjected to reversed cyclic loading were

carried out, see Paper II or Lundgren (1998). The main purpose of these tests was to

give reference information for calibrating models of the bond mechanism, to improve

knowledge of the splitting stresses, and to investigate how they are affected by

reversed cyclic loading. Hence, a reinforcement bar was pulled out of a concrete

cylinder surrounded by a thin steel tube. The effect of the splitting stresses during

cyclic loading could be studied by measuring the tangential strains in the steel tube,

together with the applied load and slip. In five tests, specimens were loaded by

monotonically increasing the load, while nine other tests subjected specimens to

reversed cyclic loading. All of the tests resulted in pull-out failures. The results from

the monotonic tests indicate that the splitting stresses decreased after the maximum

load had been obtained, although not as much as the load decreased. The results from

the cyclic tests show a typical response for bond in cyclic loading. When there was

almost no bond capacity left, the measured strain in the steel tubes stabilised and

remained more or less unaffected by the last load cycles. The test results provided

valuable information which influenced not only the calibration of the bond model but

also the formulation of the model; more detail is given in Section 4.2.
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3.3 Theoretical Models of the Bond Mechanism

When reinforced concrete structures are analysed, complete interaction between the

reinforcement and the concrete is perhaps the most frequent assumption. This

assumption is used in almost all hand calculations, for example in the analytical

models for bending moment in the ultimate limit state. In finite element analyses also,

this is a rather commonly used assumption; especially when the overall behaviour of a

larger structure is examined, this assumption is often sufficient for the level of

modelling desired.

Nevertheless, for more detailed analyses of smaller parts of a structure, especially if

one is interested in following the crack development more thoroughly, the bond

mechanism needs to be taken into account. The most usual way to do this is to employ

bond versus slip relations as input. Several researchers have examined the bond

mechanism and suggested various bond versus slip curves to be used in analyses, for

example Tassios (1979), and Eligehausen et al. (1983) include both monotonic and

cyclic loading. However, as discussed in Section 3.1.1, the bond versus slip depends

on the structure. As long as this is kept in mind, a reasonable bond versus slip relation

can be assumed by taking parameters such as the actual concrete cover, the amount of

transverse reinforcement etc. into account. If one wishes to study crack development

in structural members for example, then this way of taking the bond mechanism into

account offers a sufficient level of accuracy and detail.

However, for more detailed analyses of parts of a structural member where the bond

mechanism plays a decisive role for the behaviour, a more refined model for the bond

is needed. This is needed mainly for analyses of anchorage regions, such as in splices

and anchorage of the reinforcement at end supports, but also for analysis of the

rotational capacity, where the bond plays a crucial part. A requirement for this type of

model is that the bond mechanism be described in such a way that the bond versus

slip achieved in a structure is a result of the analysis, rather than input. Another

requirement is that the model includes not only the bond stresses, but also the splitting

stresses that result from the anchorage.

The model by Gylltoft (1983) included the effect of normal stresses, which allows an

outer pressure to increase the capacity. Furthermore, the model could deal with cyclic

loading; fracture mechanics was used to describe the damage. However, the model did
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not include any active normal splitting stresses that result from the anchorage, and

bond versus slip was used for the input.

Some models that include the active splitting stresses, while still using a form of bond

versus slip as input, have been developed, see for example Mainz (1993). Also, some

attempts to model the bond mechanism in a more thorough way by including the ribs

of the reinforcement in the geometrical model have been done, for example by

Reinhardt et al. (1984). The model by den Uijl and Bigaj (1996), see also

Bigaj (1999), includes the splitting stress; the bond stress is related not only to the

slip, but also to the radial deformation between the reinforcement bar and the

concrete. The model can therefore describe the loss of bond if the reinforcement

yields. This is an analytical model, for which the effect of the confinement is obtained

from analyses of a thick-walled cylinder. The results of the model show good

agreement with test results. This model can serve as a valuable tool for getting

information about what bond versus slip should be used as input in an analysis of a

structure. However, it does not seem possible to implement it in a more general way,

for example in a finite element program. Hence, if a part of a structure is to be

modelled, some results of the analysis need to be known in advance, such as whether

splitting failure will occur.

The model by Åkesson (1993) and the one by Cox (1994) represent a new kind of

model. In these models, the splitting stresses are included, and the bond stress

depends not only on the slip but also on the radial deformation between the

reinforcement bar and the concrete. This makes it possible to include the effect of the

confinement of the surrounding structure. Both models use elasto-plastic theory, as

shown by the yield lines in Figure 12.

splitting
stress

bond
stress at max.

initial

bond
stress

splitting
stress(b)(a)

Figure 12 Yield lines of the models of (a) Åkesson (1993) and (b) Cox (1994).
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In Åkesson’s model, the yield line describes the friction with adhesion included. The

adhesion is assumed to decrease to zero for relatively small slip. This model was

devised for studies of the release of prestressed strands in hollow core slabs. It was

therefore intended to be used only for monotonic loads.

To limit the bond capacity, Åkesson made the elastic stiffness describing the relation

between the normal stress and the slip non-linear, with a maximum followed by

decreasing normal stress. This gives reasonable results for monotonic loading. For

cyclic loading, however, it can give unexpected results, such as that the normal stress

increases at unloading. Note, however, that the model was not intended for cyclic

loading.

Another drawback to Åkesson’s model is that there is no upper limit of the bond stress

prescribed by the yield lines; as can be seen in Figure 12 (a), the bond stress can

become infinitely high as long as enough normal stress is present. This does not agree

with the experimental results of, for example, Robins and Standish (1984). Their tests

showed that lateral confinement changed the failure mode from splitting failure to

pull-out failure. Yet, further increase of the lateral confinement had no effect on the

bond capacity. However, outer pressure was outside the scope of the model.

The model by Cox (1994) does not have this drawback; as can be seen in

Figure 12 (b), the bond stress curves towards an upper limit when the normal stress

increases. The initial increase followed by a decrease in bond stress (compare with the

bond versus slip curves in Figure 10) is obtained in this model by letting the yield

surface harden, as shown in Figure 12 (b), and thereafter soften almost to the initial

yield line again. This model is probably a more general model of the bond mechanism

than the model by Åkesson. Still, it has not been shown to describe the loss of bond

when the reinforcement yields. Furthermore, it seemed entirely possible that the

physical behaviour could be described in a more fundamental way.
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4 A NEW BOND MODEL

4.1 Presentation of a New Bond Model

A new bond model which includes the splitting stresses was developed. With one set

of input parameters, this new model produces different bond-slip curves, determined

by the confinement of the surrounding structure and whether or not the reinforcement

is yielding. The effect of cyclic loading with varying slip direction is also important

for the bond resistance, which is why this effect was included in the model. The

model was implemented in the finite element program DIANA, for more detail see

Lundgren (1999a). In DIANA, there are interface elements available, which describe

a relation between the tractions t and the relative displacements u at the interface.

These elements are used at the surface between the reinforcement bars and the

concrete. The physical interpretations of the variables tn, tt, un and ut are shown in

Figure 13. The interface elements have, initially, a thickness of zero.
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Figure 13 Physical interpretation of the variables tn, tt, un and ut.
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4.1.1 Elasto-plastic formulation

The new bond model is a frictional one, using elasto-plastic theory to describe the

relations between the stresses and the deformations. Thus, the model has yield lines,

flow rules, and hardening laws. The relation between the tractions t and the relative

displacements u is in the elastic range:
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where D12 is normally negative, meaning that slip in either direction will cause

negative tn, i.e. compressive forces radiating outwards. The yield lines are described

by two yield functions, one for the friction, F1, assuming that the adhesion is

negligible:

0=+= nt1 ttF µ . (2)

The other yield line, F2, describes the upper limit for a pull-out failure. This is

determined from the stress in the inclined compressive struts that result from the bond

action, see Figure 14.
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Figure 14 The stress in the inclined compressive struts determines the upper limit.
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For plastic loading along the yield line describing the upper limit, F2, an associated

flow rule is assumed. For the yield line describing the friction, F1, a non-associated

flow rule is assumed, for which the plastic part of the deformations is

0      , =+== nt
t

t tt
u
u

GGdd η
∂
∂λ

t
up (4)

where dλ is the incremental plastic multiplier. The yield lines, together with the

direction of the plastic part of the deformations, are shown in Figure 15. At the

corners, a combination of the two flow rules is used; this is known as the Koiter rule.

For the hardening law of the model, a hardening parameter κ is established. It is

defined by

22 p
t

p
n dudud +=κ . (5)

The variables µ and c in the yield functions are assumed to be functions of κ.
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Figure 15 The yield lines. The plastic part of the deformations, dup, is given by an

associated flow rule at the yield line describing the upper limit, F2, and a

non-associated flow rule at the yield line describing the friction, F1.
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4.1.2 Damaged and undamaged deformation zones

A typical response for bond with varying slip direction is a steep unloading and then

an almost constant low bond stress until the original monotonic curve is reached; this

is described in Section 3.1.2. To make the model describe this typical response, a new

concept, called damaged and undamaged deformation zones, is used. The idea is that

when the reinforcement slips in the concrete, the friction will be damaged (reduced) in

the range of the passed slip. This is a simplified way to describe the damage of the

cracked and crushed concrete. In Figure 16 (b), the reinforcement is back in its

original position after slipping in both directions. The concrete, consequently, is

crushed in the range of the passed slip. While this crushed concrete still has some

capacity to carry compressive load, it has no capacity at all in tension. The friction is

therefore assumed to vary in the damaged zone, depending on whether loading is

applied in the direction away from, or towards, the original position, as shown in

Figure 16 (c) and (d). It is assumed to drop immediately to a low value, µd0, at load

reversal, and to keep this value until the original position is reached. For further

loading, away from the original position, the friction is assumed to increase gradually

until the undamaged zone is reached and the normal value of µ is used again. To

describe this gradual increase, an equation of the second degree has been chosen.

The parameter η also has a lower value in the damaged deformation zone, varying in

the same way as just described for the coefficient of friction. This lower value

corresponds physically to the fact that the increase in the stresses is lower in the

damaged than in the undamaged deformation zone.
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Figure 16 (a) One load cycle with varying slip directions. (b) The reinforcement bar

is back in its original position, after slipping in both directions. Maximum

and minimum values of the slip are marked. (c) and (d) The parameters µ

and η vary within the damaged deformation zone depending on whether

the loading is directed towards or away from the original position.

4.2 Development of the Bond Model

The bond model described in the previous section is the same as that presented in

Paper III. In Paper I, an earlier version of this model is described. The two versions

are slightly different: the one in Paper III can be viewed as an improvement of the

first one. The main reason for the changes was the results from the steel-encased pull-

out tests that are reported in Paper II. Sections 4.2.1 through 4.2.4 cover the

differences between the two versions of the models with reasons for the changes.
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4.2.1 The yield line describing the upper limit

In both versions of the model, the yield lines are two yield functions, one describing

the friction and the other describing the upper limit of a pull-out failure. In the first

version of the model, little attention was paid to the formulation of the upper limit.

Only one example was considered: the theoretical one with zero bond stress, which

leads to a limit of the splitting stress about the same as the compressive strength of the

concrete. By examining the results from pull-out tests, a reasonably large bond

capacity was then obtained simply by setting an upper limit with straight lines, as

shown in Figure 17.

In the second version of the model, the combinations of splitting stresses and bond

stresses were recognised as inclined compressive struts. By letting the stress in these

compressive struts be limiting, a new expression was derived for the upper limit, see

Figure 14. This new expression is believed to be better than the first one, since it

corresponds more closely to the physical reality. When results from analyses were

compared with results from the monotonically loaded steel-encased pull-out tests, it

also appeared that the second version of the model gave improved results. The main

drawback to the first version of the model was that the tangential strains in the steel

tube were too small in the analyses, when compared with the measured ones. With the

second version of the model, larger strains were obtained for the analyses. The reason

for this can be seen directly in Figure 17, where the second expression for the upper

limit gives greater splitting stress than the first one for the same bond stress. This is so

when the coefficient of friction is between zero and one, as it is when the maximum

capacity at a pull-out failure is obtained. When the coefficient of friction is larger than

one, it is the other way around; i.e. the second expression for the upper limit gives a

lower splitting stress than the first one for the same bond stress. Since the largest

value of the coefficient of friction was 1.0 in the calibration of the second version,

however, this example is not valid here.
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Figure 17 Comparison of the yield lines for the two versions of the model.

4.2.2 Splitting stress in the damaged deformation zone

In the first version of the bond model, it was assumed that the splitting stress

decreased during unloading until the bond stress was zero, and then increased again

when bond stress in the opposite direction was obtained. The results from the

cyclically loaded steel-encased pull-out tests showed, however, that this was not so.

As can be seen in Figure 18, the tangential strain in the steel tube decreased during

unloading, on the other hand, it continued to decrease also when there was a small

bond capacity in the opposite direction. The tangential steel strain did not start to

increase again until the reinforcement had returned to its original position, most

clearly shown in Figure 18 (b). This means that the splitting stresses due to the bond

action do not start to increase again until the slip is back to zero. The relation between

the tractions t and the relative displacement u in the elastic range was accordingly

changed from equation (1) in Paper I to (1) in Paper III:
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was changed to
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Also, the plastic potential function G was changed slightly, from

0)( 0 =−+= nnt tttG η (8)

to

0=+= nt
t

t tt
u
u

G η . (9)

With these changes, the splitting stress and the bond stress decrease until the

reinforcement is back in its original position, see Figure 19.
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Figure 18 Results from the first load cycles in the steel-encased pull-out test

No. C-0.5b: (a) Load versus tangential strain in the steel tube, and

(b) Tangential strain in the steel tube versus slip.
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Figure 19 Comparison of results for the two versions of the model, at unloading

back to the original position: (a) The first version, and (b) the second

version.

4.2.3 The apex of the yield lines

In the first version of the bond model, the apex of the yield lines was moved in the

direction of the loading, see Figure 20. The main reason for this was that the increase

of the splitting stress within the damaged deformation zone led to an increase of this

stress for each successive load cycle. With this large splitting stress, there could also

be a large bond stress, when the apex of the yield lines remained at the origin. To

avoid this large bond stress, which did not correspond with experimental results, the

apex of the yield surface was moved. When, in the second version of the model, the

splitting stress decreased until the slip was zero, this stress no longer increased for

every load cycle. This seems more reasonable physically. Also, it allows the bond

capacity to be reasonably large without moving the apex of the yield lines. The apex

therefore remains at the origin in the second version of the model.
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Figure 20 The apex of the yield lines was moved in the direction of the loading in

the first version of the model.

4.2.4 The parameters µµµµ and ηηηη within the damaged deformation zone

In the first version of the model, the coefficient of friction, µ, and the parameter η

were assumed to have constant values within the damaged deformation zone. The

parameter η within the damaged deformation zone, ηd, was set so low that the bond

stress was almost constant in this zone. When the undamaged deformation zone was

reached, a steep increase was obtained, see Figure 21 (a). A cyclic pull-out test by

Balázs and Koch (1995) was analysed in which the force was applied on one end of

the reinforcement bar, so the slip was not constant along the reinforcement bar. This

variation of the slip along the bar made the load increase in the analysis slightly less

abrupt than the increase in local bond stress, although this load increase was not as

gradual as was observed in their tests, see Figure 7 in Paper I.

ut

tt

ut

tt

(a) (b)

Figure 21 Bond stress versus slip: results from (a) the first version, and (b) the

second version of the model.
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However, the steel-encased pull-out tests were loaded in a rigid frame, so that both

ends of the reinforcement bar were active. The variation of the slip along the bar was

thus very close to zero. In the analysis, the abrupt increase of the bond stresses when

reaching the undamaged deformation zone therefore gave a corresponding abrupt

increase in the load versus slip curve. Since this was not the case for the measured

results, a revision of the model was indicated.

In the first version of the model, it was assumed that there were “empty holes” in the

concrete in the range of the passed slip. In the second version of the model, the

concrete that is crushed in front of the ribs was taken into account. While the crushed

concrete can still have some capacity to carry compressive load, it has no capacity at

all in tension. Consequently, the friction was assumed to vary in the damaged zone

according to whether loading was applied in the direction away from, or towards, the

original position. It was assumed to drop immediately to a low value at load reversal,

and to keep this value until the original position was reached. For further loading,

away from the original position, the friction was assumed to increase gradually, until

the undamaged zone was reached, when the normal value was used again. To describe

this gradual increase, an equation of the second degree was chosen. In Figure 22, a

comparison of the two versions of the model is shown.

µ,=η

utmin

µd0 , ηd0

first version

second version

utmax ut

Figure 22 The coefficient of friction, µ, and the parameter η in the damaged

deformation zone. Comparison of the two versions of the model.
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4.3 Calibration of the Model

The different versions of the model were calibrated against pull-out tests found in the

literature; the second version was also calibrated against the steel-encased pull-out

tests that are presented in Paper II. In order to investigate whether the model could

also describe the loss of bond when the reinforcement was yielding, a degree project

was carried out, see Haga and Olausson (1998), in which the first version of the model

was used. Since the calibration of the model was not quite finished, the input

parameters used were slightly different from the ones described in Paper I. Some

changes in the input assumptions were also made for the second version of the model,

compare Paper I with Paper III. In Figure 23 it can be seen that the coefficient of

friction was set slightly lower in the second calibration, to match the large tangential

strains that were measured in the steel-encased pull-out tests. Also the other

parameters were subjected to minor changes, for example the parameter η was

changed from 0.05 to 0.04.

Another, and perhaps more significant, change between the calibrations of the two

versions is that, for the second version, the stiffnesses in the stiffness matrix, D, were

assumed to be determined by the modulus of elasticity of the concrete rather than by

the compressive strength. The reason for this was further consideration about what the

stiffnesses physically described, and how they can be derived. The stiffnesses in the

elastic stiffness matrix, D, shall describe how the concrete between the ribs acts for

elastic conditions. In Appendix A it is shown how these stiffnesses were derived.
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Figure 23 The coefficient of friction versus the hardening parameter: input chosen.
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4.4 General Remarks

The new bond model was calibrated for reinforcement bars K500 φ 16 and normal

strength concrete (cylinder compressive strength about 30 MPa). However, the

calibration was made in such a way that the stiffnesses and the strength were

expressed in terms of modulus of elasticity and strength of the concrete. After this

calibration, Magnusson (2000) used the model in analyses of tests for which the same

type of reinforcement was used, although the concrete was a high strength one with

cylinder compressive strength of about 100 MPa. Since the analyses showed good

agreement with the tests, it seems as if the calibration is also applicable to concrete of

other qualities. The main reason for this is that the parameters are physically

meaningful, not chosen arbitrarily. Nevertheless, it must be emphasised that the way

the surrounding structure is modelled is critical. If splitting of the concrete dominates

the failure mode, parameters such as the fracture energy and the tensile strength of the

concrete are crucial.

Concerning other types of reinforcement bars, it is not very likely that the same

calibration will give good results. The stiffnesses D11 and D22 were derived for the

geometry of a reinforcement bar K500 φ 16, see Appendix A. However, if the same

derivations are made for the geometry of another kind of reinforcement bar, they can

probably be used. The input of the coefficient of friction will most likely also change

if the reinforcement type is changed. If the type of reinforcement is completely

different, new comparisons with tests would need to be done, preferably steel-encased

pull-out tests for which the tangential strains can be measured.

The model was calibrated with tests that were selected to show five different types of

failure; i.e. pull-out failure, splitting failure, pull-out failure after yielding of the

reinforcement, rupture of the reinforcement bar, and cyclic loading. The results show

that the model is capable of dealing with all these kinds of failure modes in a

physically meaningful way, and reasonably good agreement between analyses and

experimental results was found, see Paper III. On the other hand, there are still other

parameters that are known to influence the bond action. Two such parameters are the

presence of outer pressure, and shrinkage of the concrete; although the model was not

specifically calibrated with any tests for these two parameters, the behaviour of the

model was observed in relation to their presence or absence.
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4.4.1 Outer pressure

Pull-out tests with short embedment length, Magnusson (1997), were analysed

without any outer pressure, for Paper III. Here, an outer pressure of 5 MPa was

applied, and kept constant while the pull-out force was applied. The results are

compared with results from the analysis without outer pressure, see Figure 24. While

the outer pressure was applied, the radial deformation between the reinforcement bar

and the concrete decreased, which implies a normal stress tn, see Figure 25. This

means that, when slipping between the concrete and the reinforcement began, some

normal stresses were already present. Therefore, the first part of the loading was

elastic, until the yield line was reached. Thus, the load versus slip starts with a stiff,

elastic part. The capacity is, however, not influenced, since the failure mode is pull-

out failure in both cases; the pull-out failure in the model is governed by the upper

limit in the form of the yield line, F2, which is determined from the compressive

strength of the concrete. Test results of Robins and Standish (1984) indicate that this

is a correct behaviour. They carried out cube pull-out tests with deformed bars with

lateral pressure varying from 0 to 28 MPa. They concluded that the maximum

capacity was increased for low levels of confinement, since the failure mode was

changed from splitting failure to pull-out failure. On the other hand, further increase

of the lateral confinement had no influence on the maximum capacity.
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Figure 24 Comparison of results from analyses of a pull-out test where pull-out

failure is limiting, with and without an outer pressure.
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Figure 25 The effect of either outer pressure or shrinkage of the concrete, in the

stress space: (a) Without outer pressure and shrinkage of the concrete, and

(b) With either an outer pressure or shrinkage of the concrete taken into

account.

There are tests described in the literature that report a higher capacity due to outer

pressure. However, when these references were read more thoroughly, it appeared that

splitting cracks were present, Untrauer and Henry (1965), Eligehausen et al. (1983).

As these splitting cracks had probably reduced the capacity, the presence of an outer

pressure would have a beneficial effect. This also reflects the behaviour of the model

presented. The bar pull-out splitting test without spiral reinforcement carried out by

Noghabai (1995), see Paper I, was analysed both with and without a confining outer

pressure. In the analysis without outer pressure, failure was due to splitting of the

concrete. As can be seen in Figure 26, an outer pressure then increased the capacity.

In this example, the applied outer pressure was great enough to prevent the

development of splitting cracks; thus, the capacity was increased to the level of a pull-

out failure. For a low confining pressure, the formation of the splitting cracks would

only have been delayed, meaning that the capacity would have been greater than for

the unconfined specimen, although not enough to lead to a pull-out failure.
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Figure 26 Comparison of results from analyses of a pull-out test where splitting

failure is limiting, with and without an outer pressure.

Magnusson (2000) has applied the model in some analyses of beam ends. The beam

ends were either supported at their lower edge, so that the support reaction gave

confinement to the reinforcement anchored over the support, or they were hung, so

that the support reaction acted over the reinforcement bars, i.e. there was no

confinement. It appeared from the analyses that the model could describe the

behaviour accurately, and reasonably good agreement was found between the analyses

and the test results. When no confinement was present, splitting failure occurred,

which reduced the anchorage capacity in both the analyses and the tests. The

confinement made it possible to obtain a pull-out failure in the analyses, i.e. the

capacity was increased by about as much as in the tests. From these tests and analyses,

it seems as if the model can also describe the effect of outer pressure in a reasonable

way. The results indicate that outer pressure can increase the bond capacity to the

limit of the pull-out failure, although no further.
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4.4.2 Shrinkage

The adhesion between the concrete and the reinforcement bar is assumed to be

negligible in the new bond model. On the other hand, in pull-out tests it is usual to

have a first part of the load versus slip curve that is very stiff; this part is usually said

to be due to the adhesion. However, a part of it may be caused by shrinkage of the

concrete. When the concrete around the reinforcement bar shrinks, there are normal

stresses between the concrete and the reinforcement bar before slipping starts. This

resembles the situation with outer pressure discussed before, see Figure 25. Yet there

is a difference which is that the shrinkage of the concrete also causes tensile stresses

around the reinforcement bar, so that splitting cracks could appear. This is in contrast

to the application of outer pressure which does not give rise to any tensile stresses.

The pull-out tests with short embedment length, Magnusson (1997), were analysed

both with and without shrinkage of the concrete being taken into account. A shrinkage

strain of -1.1·10-5 was then applied, calculated from CEB (1993), taking into account

how the test specimens were stored. The results are compared in Figure 27. As can be

seen, the first part is stiffer when shrinkage is taken into account. However, for larger

values of the slip, there is no difference between the two analyses.
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Figure 27 The results from analysis of a pull-out test, with and without shrinkage of

the concrete taken into account.
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5 FRAME CORNERS SUBJECTED TO CLOSING

MOMENTS

Frame corners have been investigated by several researchers. Experimental work, for

example Mayfield et al. (1971) and Nilsson (1973), has shown that frame corners

subjected to opening moments are more sensitive to the method of detailing in the

reinforcement than those subjected to closing moments. Hence, most publications for

the past few decades have concentrated on opening moments. In the Swedish

Standards, Boverket (1994), it is recommended not to splice the reinforcement within

a corner region and, until recently, this has not been allowed by the Swedish Road

Administration, see Vägverket (1994). The reason for this was that for opening

moments the behaviour of the corner is sensitive to the detailing of the reinforcement.

Although corners subjected to closing moments were less well investigated, splices

were not allowed for this type either. The aim of this work was to investigate whether

splicing of the reinforcement can be allowed, at least for closing moments. In this

section, the structural behaviour of frame corners subjected to closing moments is

discussed. For a literature survey of work carried out on frame corners, see

Nilsson (1973) which treats work done before 1973 and Karlsson (1999) for later

work, or Johansson (2000).

5.1 Internal Forces in a Corner Subjected to Closing Moment

The internal forces in a corner subjected to a closing moment are shown in Figure 28.

After cracking of the concrete, the tensile forces are carried by the reinforcement, as

shown in Figure 28 (b). If the corner is well-designed, failure will be due to bending

in the sections adjacent to the corner, with yielding of the reinforcement. According to

Stroband and Kolpa (1983), there are three possible failure modes that will cause

premature failure of the corner.
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(a) (b)

Figure 28 The internal forces in a corner subjected to a closing moment:

(a) Uncracked corner, and (b) corner with bending cracks. From Stroband

and Kolpa (1983).

•  Crushing of the concrete in the compressive zone

For elastic materials, there are stress concentrations at corners. For a corner

subjected to closing moment, this leads to large compressive stress at the inner

part of the corner. However, when the concrete reaches the plastic stage, this

stress concentration is no longer so pronounced. Furthermore, there will be a

biaxial compressive state, due to the compressive stresses from both sides of the

corner, or even a triaxial stress state if lateral deformations are restricted. Thanks

to this bi- or triaxial compressive stress state, the concrete will have a greater

capacity, and also more ductility. However, as shown in Paper IV, the tested

corner specimens were very close to this failure mode.

•  Crushing of the concrete in the compressive diagonal

In Figure 28, where the internal forces in a corner subjected to a closing moment

are shown, it can be seen that the compressive zones from each part of the corner

are balanced by a compressive diagonal. If the stress in this compressive diagonal

becomes large, crushing of the concrete might occur.

•  Bearing failure at the bend of the reinforcement

When a reinforcement bar is bent, radial compressive stresses are present, see

Figure 29 (a). When these compressive stresses spread, as shown in Figure 29 (b),

tensile stresses act out of the plane of the bar curvature. If these tensile stresses
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become too large, splitting cracks will appear. At first, this type of failure was

thought to be important in combination with reinforcement splices. Splicing the

reinforcement also causes splitting stresses, and it was believed that the

combination of these effects could cause splitting cracks that would reduce the

bond capacity. Nevertheless, the tests and analyses presented in Paper IV show

that this did not happen. Note, however, that bearing failure at the bend of the

reinforcement is more likely to occur near a reinforcement bar close to a free edge.

The main interest of this study is corners in bridges. Here, the corners have a long

extension with a large number of reinforcement bars. Furthermore, the edges are

usually not free; they are connected to other parts of the structure. Accordingly,

the failure mode with a splitting side cover is of no special interest in this study.

For the corners of beams, in particular when only two reinforcement bars are

present, the effect of the edges is of course much greater. Splitting of the side

cover must then be prevented, in order to avoid premature failure of the corner.

For these types of failure, the strength of the concrete is critical. In the first and

second failure types discussed, premature crushing of the concrete, it is the

compressive strength that is decisive. Also the amount of reinforcement is important:

the larger the amount of reinforcement, the greater the forces the concrete must be

able to carry. Stroband and Kolpa (1983) derived an analytical expression for how

much reinforcement can be allowed; this was to avoid the premature failure of the

concrete in the compressive diagonal. In the third type of failure, bearing failure at the

bend of the reinforcement, it is mainly the tensile strength that has an influence on the

result, and also the thickness of the concrete cover.

(a) (b)

Figure 29 Bent reinforcement bar causing (a) radial compressive stresses and

(b) splitting stresses out of the plane of the bar curvature.
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For a spliced corner, there is also a fourth type of premature failure:

•  Anchorage of the reinforcement

If the anchorage of the reinforcement is not adequate, premature failure of the

corner will occur. To avoid this, a minimum splice length is required. The tests

and analyses presented in Paper IV show that the splice lengths required by the

existing codes are sufficient.

Altogether, this shows that splicing the reinforcement within a corner region does not

seem to have any negative effect on the behaviour of the corner, since the behaviour

of the spliced corner differs only a little from a corresponding unspliced corner. The

same conclusion has been drawn in Stroband and Kolpa (1983),

Plos (1994a, 1994b, 1995), Johansson (1995, 1996a, 1996b), Lundgren and

Plos (1996), and Olsson (1996). However, it is worth noting that, for certain

conditions, the capacity of a corner (spliced or unspliced) is less than the capacity of

the adjoining sections. For corner regions with free edges, splitting of the side cover

must be prevented, either with a sufficient thickness of the concrete cover or with

confining reinforcement. When this is done, or if the corner region does not have free

edges, the capacity of the corner is greater than the capacity of the adjoining sections

for the concrete qualities and amount of reinforcement that are usually used today. For

the low concrete qualities that were used some years ago (with a compressive strength

as low as about 15 MPa), premature failure of the corner might occur. Also, if the

capacity of the steel were dramatically increased beyond what is normal today, or

very large amounts of reinforcement were used, premature failure of the corner might

occur.

5.2 Frame Corners Subjected to Cyclic Loading

Frame corners subjected to closing moments and cyclic loading have been

investigated by Plos (1994b, 1995). In that investigation, spliced and unspliced

specimens were compared. Even though all of the reinforcement was spliced in the

same cross-section, no disadvantage in splicing the reinforcement could be found. All

of the tests resulted in fatigue of the reinforcement.

The results from the static analyses and tests indicate that reinforcement splices in a

corner region behave in about the same way as reinforcement splices in beams.
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Probably, the same is valid also for cyclic loading. Therefore, there is little reason to

believe that it would be more dangerous to splice the reinforcement within the corner

region than outside it. The behaviour of lap splices in beams subjected to cyclic

loading has been examined by many researchers. A summary of the results can be

found in ACI (1992). By following the design rules for splices subjected to cyclic

loading, a sufficient level of safety can be obtained.

5.3 Tests and Analyses of Frame Corners

Tests and analyses within an earlier part of the project, “Detailing of frame corners in

concrete bridges”, did not reveal any disadvantages in splicing the reinforcement

within a frame corner. Hence, it was decided to investigate the worst case. Here, a

brief summary of the study is given; for more details see Paper IV or

Lundgren (1999b). Four frame corners with differing detailing were subjected to a

closing moment, combined with shear and a normal force. The detailing of the main

reinforcement is shown in Figure 30. One corner had unspliced reinforcement, (a),

while another had spliced reinforcement with the splice length required by the

codes, (b). The two last frame corners, (c) and (d), had spliced reinforcement with a

splice length that was less than half of that required by the codes. All of the test

specimens had a relatively high amount of reinforcement; the main reinforcement was

placed in one layer, and the distance between the main reinforcement bars was the

minimum distance allowed according to the Swedish Standards, Boverket (1994). The

reason for these choices was to investigate what was considered to be the worst case.
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Figure 30 Detailing of the reinforcement in the corners of the test specimens.

Measurements, compressive and transverse reinforcement in (b), (c) and

(d) were the same as in (a). Dimensions given in mm.

The tests with unspliced reinforcement and with a long splice showed very similar

behaviour, with the maximum capacity determined by the bending capacity of the

adjoining cross-sections. After yielding of the reinforcement, concrete began to spall

off at the inner part of the corner, in the compressive zone. Thereafter, inclined cracks

in the concrete led to a sudden failure in the test with unspliced reinforcement; the test

with the long splice was interrupted before this stage.

In one of the tests with a short splice length, centred in the corner, only slightly less

capacity than in the unspliced test was obtained. The failure here was caused by the

rather sudden appearance of an inclined crack in the concrete, after yielding of the

reinforcement. In the other test with a short splice length, with the splice placed
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outside the bend of the reinforcement, fracture of the splice limited the capacity,

which was then only about half of the capacity of the unspliced corner.

Furthermore, detailed three-dimensional non-linear finite element analyses of the

corner regions of the frame corners tested were carried out. The second version of the

developed model was used to describe the bond mechanism; thus, the splitting stresses

resulting from the anchorage were taken into account. The results from these analyses

show that the overall behaviour of the specimens could be quite well described; in all

of the analyses the failure mode was the same as in the tests. In particular, it was

noted that the fracture of the splice in the specimen with the splice situated outside the

bend of the reinforcement was described realistically in the analyses.

Frame corners in large portal bridges have considerably larger dimensions than the

specimens tested. Therefore, a large frame corner was also analysed. It had

dimensions large enough for one splice, with a splice length as required in the codes,

along one of the sides of the corner. The analysis showed that the maximum capacity

was determined by the bending capacity of the adjoining cross-sections; i.e. the

capacity of the splice was enough so that it was not limiting.

In conclusion, the tests and analyses show that splicing the reinforcement in the

middle of the corner has advantages over splices placed outside the bend of the

reinforcement. They also indicate, in agreement with the previous analyses and tests,

that provided the splice length is as long as required in the codes, there are no

disadvantages in splicing the reinforcement within the corner of a frame.
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6 CONCLUSIONS AND SUGGESTIONS FOR

FUTURE RESEARCH

From the work that has been carried out, the following conclusions can be drawn. The

first version of the proposed bond model could describe the behaviour of the bond

mechanism relatively well. The results from the steel-encased pull-out tests, however,

provided new information about the bond mechanism, in particular for cyclic loading.

Consequently, some drawbacks to the first version of the model became apparent.

This method of combining theoretical modelling with experimental work is believed

to give better results and, perhaps most valuable, to give a deeper understanding of the

problem studied than if the work were limited to only one of these aspects. The bond

model could thereby be further developed, and the second version of the model is

believed to reflect reality quite closely. Analyses of pull-out tests with differing

geometries and with both monotonic and cyclic loading showed that the new model is

capable of dealing with a variety of failure modes, such as pull-out failure, splitting

failure, and the loss of bond when the reinforcement is yielding, as well as dealing

with cyclic loading in a physically reasonable way. Results from Magnusson (2000)

also indicate that the effect of outer pressure is well described by the improved

version of the model.

The refined model was used in detailed three-dimensional analyses of frame corners,

to investigate the effect of splices within the corner region. When compared with

results from tests on the frame corners, it was found that the analyses could describe

the test results in a reasonable way. In particular, it was noted that the fracture of the

splice was described closely in the analyses. The tests and analyses showed that

splicing the reinforcement in the middle of the corner has advantages over splicing

placed outside the bend of the reinforcement. They also indicate, in agreement with

previous analyses and tests, Plos (1995), that provided the splice length is as long as

required by the codes, there are no disadvantages in splicing the reinforcement within

the corner of a frame subjected to closing moments.

The proposed bond model can also be used in other analyses where the bond

mechanism plays an important role. It is believed to be a powerful tool for parameter

studies of, for example, the effect of transverse reinforcement, anchorage at end
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supports under different conditions, and rotation capacity. Such parameter studies can

serve as a basis for design codes. The model is calibrated for normal strength

concrete, but analyses by Magnusson (2000) show that this calibration also gives

satisfactory results for high strength concrete. Hence, it is likely that the calibration

would also be useful for other types of concrete, e. g. light weight concrete or fibre

reinforced concrete. Nevertheless, for each new application, it is recommended that

analyses be compared with experimental data first. This is recommended especially if

the model is intended to be used for other types of reinforcement bars. Since changing

the geometry of the ribs would most definitely affect the friction between the concrete

and the reinforcement bar, the calibration of the model would need to be revised for

this.

The finite element analyses were all carried out using the finite element program

DIANA. These analyses show clearly the advantage of using a rotating crack model

instead of fixed crack directions. In some of the analyses, both types of material

models gave the same result, while in the analyses where the direction of the principal

stress was changed after cracking had occurred, the rotating crack model gave results

that corresponded more closely to the measured response. Even though DIANA is

believed to have the best material models for concrete among commercial programs

today, the material models used to describe concrete still need to be improved. For

example, when the material model used is subjected to triaxial compressive stress

states, it does give an increase in capacity that seems to correspond well with the

measured one, but the increase in ductility appears to be too low for some stress

states. Another problem is how to take into account the effect of localisation in

compression. Although some research exists in this field, still more needs to be done,

especially when combining localisation with triaxial stress states. Furthermore, it

ought to be possible to take cyclic loading into account in a more generalised way. At

present, the only material models available that can deal with cyclic loading are one-

dimensional. The establishment of three-dimensional material models that can cope

with cyclic loading would be most useful.
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APPENDIX A

DERIVATION OF THE ELASTIC STIFFNESSES

IN THE ELASTIC STIFFNESS MATRIX

The stiffnesses in the elastic stiffness matrix, D, describe how the concrete between

the ribs behaves under elastic conditions. The dimensions of the ribs on several

reinforcement bars K500 φ 16 were measured in Al-Fayadh (1997). Here, the average

of the measured values are used, see Fig. A-1.

5.80

β

A’sin β

9.24

15.65

17.66

 A’ = 20.32 mm2

 β = 58.6°

 [mm]

Fig. A-1 Dimensions of the ribs of reinforcement bars K500 φ 16. Values are

average values from measurements on several bars in Al-Fayadh (1997).
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The Stiffness D22

The stiffness D22 is the relation between the elastic part of the slip, ut
e, and the bond

stress, tt. An upper limit of D22 can be estimated by assuming that all of the bond

stress is carried by one rib, and that the next rib acts as a support, see Fig. A-2.
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Fig. A-2 Assumptions used to estimate the upper limit of the stiffness D22.

The stiffness D22 is also recognised as the stiffness of the first part, or the unloading

stiffness, in a bond-slip curve which can be measured experimentally. Since it is

difficult to measure the small deformations of the first part, the unloading stiffness

was used, see Fig. A-3. Balázs and Koch (1995) measured a value of about

4·1011 N/m3 for concrete with a wet cube compressive strength of about 30 MPa. This

corresponds to about 13·Ec. In the cyclically loaded steel-encased pull-out tests, the

stiffness was approximately 8·1010 N/m3 for concrete with a wet cylinder compressive

strength of about 35 MPa, which corresponds to about 2.5·Ec. The stiffness was

chosen to be somewhere between the two measured results, and below the upper limit

in the first equation:

-1
222222 m 0.6  , =⋅= KEKD c . (A-1)
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Fig. A-3 The stiffness D22 is the unloading stiffness in a bond-slip curve.

The Stiffness D11

The stiffness D11 describes the relation between the elastic part of the radial

deformation, un
e, and the splitting stress, tn. This stiffness was estimated by examining

the concrete between the ribs. The geometry was approximated as a thin ring with an

inner radius the same as the smallest radius of the reinforcement bar (without the

ribs). The outer radius was determined by the condition that the cross-sectional area of

the ring should equal the cross-sectional area of the ribs projecting from the bar core,

compare Fig. A-1 and Fig. A-4.

rb

tn

ra

1-A Fig. see mm, 82.7
2

== i
a

dr

( )

( )

mm 50.8        

1082.76.58sin1032.202         

sin'2

sin'2

23
6

2

22

=

=⋅+°⋅⋅=

=+=

−=

−
−

π

π
β

πβ

ab

ab

rAr

rrA

Fig. A-4 Approximated geometry to estimate the stiffness D11.
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The outer edges of the ring were assumed to be free, i.e. only the structural behaviour

of the ring itself was taken into account. The deformation at the distance r from the

centre of a ring is, according to Chen and Han (1987),
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It was also noted that the larger the D11 chosen, the more variation there was of the

stresses along the reinforcement bar. This variation arises from differences in the

strength of the structure modelled, as for example when stirrups are taken into

account. Since the derived value of D11 gave a physically reasonable variation, D11

was designated

-1
111111 m 0.11  , =⋅= KEKD c . (A-2)
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The Stiffness D12

The stiffness D12 describes the relation between the elastic part of the slip, ut
e, and the

splitting stress, tn. Thus, it describes how much splitting stress will be caused by a

given slip. Since the calibration of the coefficient of friction derives from

experimental results, the model is expected to work in such a way that loading occurs

along the yield line. Therefore, the elastic loading ought to cause a larger bond stress

than that given by the yield line. From Fig. A-5, it follows that

ttn duDduDduD 221211 <⋅+ µ .

To be sure that this condition is fulfilled, the stiffness D12 is chosen so that

 
µ

22
12

DD < .

The value of the stiffness D12 determines how large a part of the splitting stress

remains after unloading. The larger the value of |D12| chosen, the smaller the splitting

stress will be after unloading. By comparison with results from experiments, and

taking the previous derived expression into account, the D12 chosen was

 
max

22
12 9.0

µ
DD −= . (A-3)
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te = Ddu
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D22 dut
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Fig. A-5 The trial stress ought to cause a larger bond stress than is given by the yield

line.


	CONTENTS
	PREFACE
	NOTATIONS
	1	INTRODUCTION
	1.1	Background, Aim and Scope
	1.2	Limitations
	1.3	Outline of Contents
	1.4	Original Features

	2	NON-LINEAR FRACTURE MECHANICS FOR CONCRETE STRUCTURES
	2.1	Tensile Behaviour
	2.1	Compressive Behaviour

	3	BOND BETWEEN REINFORCEMENT AND CONCRETE
	3.1	The Bond Mechanism
	3.1.1	Monotonic loading
	3.1.2	Cyclic loading

	3.2	Steel-Encased Pull-Out Tests Subjected to Reversed Cyclic Loading
	3.3	Theoretical Models of the Bond Mechanism

	A NEW BOND MODEL
	4.1	Presentation of a New Bond Model
	4.1.1	Elasto-plastic formulation
	4.1.2	Damaged and undamaged deformation zones

	4.2	Development of the Bond Model
	4.2.1	The yield line describing the upper limit
	4.2.2	Splitting stress in the damaged deformation zone
	4.2.3	The apex of the yield lines
	4.2.4	The parameters ( and ( within the damaged deformation zone

	4.3	Calibration of the Model
	4.4	General Remarks
	4.4.1	Outer pressure
	4.4.2	Shrinkage


	5	FRAME CORNERS SUBJECTED TO CLOSING MOMENTS
	5.1	Internal Forces in a Corner Subjected to Closing Moment
	5.2	Frame Corners Subjected to Cyclic Loading
	5.3	Tests and Analyses of Frame Corners

	6	CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH
	REFERENCES
	AppendixA.pdf
	APPENDIX A
	The Stiffness D22


	artikel-I.pdf
	MODELLING SPLITTING AND FATIGUE EFFECTS OF BOND
	Abstract
	1  Introduction
	2  Modelling of the interface
	2.1  Elasto-plastic formulation
	2.2  Damaged / undamaged deformation zones
	2.3  Hardening

	3  Comparison with pull-out tests
	3.1  Input parameters for the interface
	3.2  Monotonic pull-out tests
	3.3  Cyclic pull-out tests

	4  Conclusions
	References

	artikel-II.pdf
	4.1 Monotonically loaded tests
	4.2 Cyclically loaded tests

	artikel-III.pdf
	BOND MODELLING IN THREE-DIMENSIONAL
	FINITE ELEMENT ANALYSES
	Abstract
	Introduction
	Theoretical model
	Elasto-plastic formulation
	Three-dimensional modelling
	Damaged / undamaged deformation zones
	Discussion of the model
	Input parameters for the interface

	Comparison with pull-out tests
	Pull-out failure
	Splitting failure
	Yielding of the reinforcement
	Cyclic pull-out tests

	Conclusions
	References

	artikel-IV.pdf
	Two-Dimensional Models
	Three-Dimensional Models
	Fracture Caused by Inclined Crack
	Fracture of the Splice
	Large Frame Corner

	Doctoral Theses.pdf
	Doctoral Theses and Licentiate Theses at the Division of Concrete Structures, Chalmers University of Technology, 1990 - 1999


