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Reduction Index Modeling by Finite Elements

- Applied on a double leaf construction
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Abstract

When a sound is traveling from one room to another through a wall, it changes
character. In most cases the wanted change is to reduce the level of the sound and,
different walls do that differently well. A measure of how much the sound is lowered
in level is the so-called reduction index, which is dependent on the material properties
and geometry of the separating structure, (i.e. the wall).

The aim of this work has been to investigate the possibility to construct a computer
model for calculating the reduction index of a structure. The finite element method has
been used to investigate the vibrations in a structure cased by air-borne sound waves.
The vibrations propagate through the structure leading to a radiation of sound on the
opposite side. The difference in sound pressure level on both sides of the structure
determines the value of the reduction index for the specific structure.

When a 2D finite element model was developed, a parameter study was performed
where the material properties of the structure was changed in a controlled manner.
Conclusions of the results from the parameter study was drawn, both to get a
confirmation of the model and the influence material properties have on the reduction

index.

The results from the model agreed well with earlier calculation methods for double
walls. Therefore, the model is expected to deliver good results also for more complex
structures.

The parameter study show some interesting results when looking at two differently
stiff plates coupled to each by air and studs. At some frequencies the reduction index is
dependent of in which direction the sound is traveling through the structure. If the
sound hits the stiffer plate first, a higher reduction index can be seen than if the sound
hits the softer plate and is radiated from the stiff plate.

Key words: Reduction index, double leaf wall, finite element, modeling, building
acoustics
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1.Introduction

1.1. Background

There has always been an interest in knowing how well a sound is transmitted
through a structure. Preferably, even before it is constructed. Calculation models
have been developed through the years, based on structural mechanics but they are
hard to apply on a complex structure such as a multilayer wall with studs, etcetera.
Nowadays, when computer processors can perform billions of calculations per
second, a more detailed investigation of the sound transmission through a structure

can be performed in a reasonable period of time.

1.2. Aim

The aim of this report has been to investigate the possibility to construct a computer
model for calculating the reduction index of a structure. Further; to try to evaluate
the quality of the computed results with other calculation models. Also trying to
understand what causes the eventual differences and, finally to perform a parameter
study of the material properties and geometry of the structure.

1.3. Limitations

Most of the limitations are based in the computational time, such as the resolution of
the result and the investigated frequency region. But, one limitation that can not be
altered by faster computers is the fact that the structure has to be flat on the side
where the sound hits. The reason is that only incident angles between zero and
ninety degrees are investigated in the model. Finally, the program used for the
calculation has the limitation that the structure has to be finite but, this would not be
a problem when doing calculations on real structures.

The structure is modeled in 2D since the calculations should cover a large frequency
span (up to 5000 Hertz). If 3D would be used, the calculation time had been too long
if the same frequency span would be investigated. Why a so large span is of interest
is because frequencies up to 5000 Hertz is important when dealing with building

acoustics.



No effort was laid on measurements due to that the results were compared with
earlier calculations and those had been verified with measurements. It is of course
always good to verify your results with some measurements but the modeling was
the focus of this work which left no time to conduct any measurements.

1.4. Method

First, a literature study was performed in order to investigate what had been done
previously on the matter of finding a reduction index of a structure and, also which
properties that influences the value of the reduction index. From this knowledge
collected from previous investigations, an aim of this work was set up with the help
from the supervisor, Krister Larsson and the examiner, Wolfgang Kropp.

The possibility to use a finite element method (FEM) was investigated and the
conclusion was that it would be possible. Therefore, the program FEMLab® was
chosen due to it’s availability at the Division of Applied Acoustics. The program was
used to calculate the vibrations of the structure, due to a sound pressure load acting
on it. Even coupled structures (both structural vibrations and air pressure differences
in possible cavities) could be investigated. The results from the FEM-calculation were
brought into MatLab®, where the final calculations were performed in order to end

up with a reduction index.

When the model worked satisfactory; a parameter study was performed where the
material properties of the structure was changed in a controlled manner. Conclusions
of the results from the parameter study was drawn, both to get a confirmation of the
model and the influence material properties have on the reduction index.



2.Literature survey

The transmission of audible sound through building partitions has been under study
for almost one hundred years now. One of the pioneers was R. Berger, according to
[4], who found a model for calculating the transmission coefficient. It was based on a
single leaf wall with zero bending stiffness. Of course this was a far from complete
model but it was an early mass-law model.

The aim for most of the scientists were/is to understand what influences the
transmission through a building partition, e.g. a wall. With better knowledge of the
subject one could understand that the double leaf wall is superior to the single leaf
wall when it comes to reducing the sound passing through it. This is true for light
constructions which are popular today due to constructional and economical reasons.

Cramer [2] made a model of two parallel plates with an air gap between which is a
so-called double leaf wall. His model considered a soft and a stiff plate where the
critical frequency of the stiff plate is assumed to lie below the frequency region of
interest. The reason for this was so its radiation efficiency may be taken as unity for
all practical purposes, no matter if the plate is excited structurally or by air borne
sound. In reality this works well for e.g. a heavy brick wall covered with plaster
board panels.

Fahy [3] also developed a model for double leaf partitions. This model does not have
a restriction on one of the plates as Cramer had. It is modeled as two plates mounted
on springs and dampers with properties as of the medium (e.g. air) in between. With
this model he found out that at the mass-air-mass resonance frequency, the
maximum of the transmission coefficient occurs. Below this frequency the double
wall can be estimated as a single wall with a total mass equal to the sum of the two
plates. Consequently, the mass-law is valid. (See chapter 3.) In order to minimize
transmission at resonance, the plates can be chosen to have unequal mass per unit
area but, the drawback is that the performance at higher frequencies is reduced.

The models described have not considered the coupling between the two plates and
what affect this have on the transmission loss. Fahy has developed yet a model
where he takes advantage of some earlier results relating to scattering of waves in
plates by discontinuities and to sound radiation by line forces. Why line forces are
considered is because the model is based on a timber stud partition. Further, the
studs are assumed dynamically independent of each other (reasonable on a



frequency-average basis) and as rigid. These assumptions restrict the attenuation to
bending waves incident normally on the stud-leaf connection. Except near the mass-
air-mass frequency, the minima in sound reduction index are associated with
resonances of the cavity. Hence the ratio of stud-transmitted power to air-transmitted
power, in the frequency range of cavity resonances, is approximately unity when
choosing values typical for double-leaf constructions. This means that the sound
reduction index is not likely to exceed that given by the mass law for the total mass
of the partition. Measurements also confirm this, which should not be too surprising
since both the acoustic resonances and the studs force the two panels to vibrate with

similar velocities.

A more resent study was performed by Brick [1]. She investigated the vibration and
radiation of two plates, which are discontinuously coupled and compares it to the
continuously coupled case. One of the plates is excited by a point source and the
other is the interesting one, in a radiation point-of-view. Further, she adjusts the
stiffness of the plates individually, hence trying to affect the influence of the
discontinuous coupling. The model agrees quite well with her measurements. From
the results she draws the conclusion that the radiation efficiency of structures of
equally stiff plates can not be decreased by discontinuous coupling; whereas, a
structure of unequally stiff plates can lead to a reduced radiation efficiency. The non
uniform transmission of the vibration of the stiffer plate to the softer influences the
vibration pattern of the softer plate. It supports the appearance of a mode shape,
whose wavelength corresponds to the periodicity of the stiffness pattern of the
coupling. This is the reason for the reduced radiation efficiency.

In reality when a double wall is constructed, the plates (e.g. gypsum boards) have to
be fastened somehow to the framework (e.g. wooden studs). An investigation [5] was
made in order to see if the spacing of the connectors (in these case screws) has
anything to do with the sound reduction index of the wall. The results show that
screw spacing had a great effect in double walls where each gypsum board layer was
attached to each side of a timber frame. If the screw spacing is less than one half
bending wavelength of waves on the gypsum board, they behave as a continuous
line and if more than one half wavelength as a discrete point. In addition, when the
connection between the gypsum board and the frame behaves as points then the
structural coupling is proportional to the number of nails and increasing the number
of screws will increase structural transmission. In the case of a double wall where the
framework is divided up into two parts, one for each plate with an air gap in
between, the spacing of the screws does not have any noticeable influence on the
transmission. The reason is that there is no structural transmission.



All the research that has been made has contributed to the development of various
standards in building acoustics. For example, there exists standards where it is
strictly stated how to measure the reduction index of a building partition, both air-
borne and structure-borne sound, in order to get uniform results. Why this is
necessary is because some standards also contain requirement on the index, i.e.

minimum levels.

The calculation models found in literature makes a good approximation of the
reduction index but if you want a more detailed result there is not much to find.
Most of the times measurements are the best way to get the desired information but
they are expensive and time consuming. Therefore, an investigation of a possible
finite element model for this purpose is presented in this paper.






3. Theory & Background

3.1. Reduction index

The reduction index is a function of frequency and measures how much the sound is
reduced when passing through a structure, for example a wall. It is the difference
between the incident power and the transmitted power.

7 is the transmission coefficient (3.1)

trans

R= IOIOg(lj R is the reduction index (3.2)
T

The power which is not transmitted is reflected or absorbed in the structure and
transformed into heat. The amount of power which is not transmitted (reduced) is
different for different frequencies of the sound. There are some specific frequencies
where the reduction is bad and the reason for this will be explained in this chapter.

3.1.1. Single wall

For a wall consisting of an isotropic plate of a homogeneous material, the reduction
index follows the so-called mass-law at lower frequencies. This means that the
reduction index is mass controlled and that a doubling of the mass per unit area or a
doubling in frequency (one octave higher) will increase the reduction index by 6 dB.
(Le. the transmitted power is decreased by a factor four.) Since the waves in the plate
are dispersive, their wavelength is not changing linearly with frequency as the case is
for air. This means that there is a specific frequency where the wavelengths in air and
in the structure are exactly the same and, this frequency is called the coincidence
frequency. That is one of the frequencies for which the transmission is good because
the plate and the air interact with each other and, they do not hinder each others
movement when the waves are propagating with the same wavelength and speed.
The exact value of the coincidence frequency depends on the angle of incidence of
the incoming wave, why there can be many coincidence frequencies for a plate.
Coincidence can only occur above the so-called critical frequency, f.. Above the critical
frequency the transmission is stiffness controlled, leading to a greater increase per
octave of the reduction index than when it is mass controlled. [3]



3.1.2. Double wall

For a theoretical double wall, consisting of two isotropic plates of a homogeneous
material coupled together only by an air gap, there are two more specific frequencies
of interest. The one which appears lowest in frequency is the double wall resonance, fo.
Below this frequency the wall behaves as if it would consist of only one plate,
following the earlier described mass-law. (The plates move in phase.) The air in
between the plates can be seen as a spring connected to the two plates. The spring
constant depends on the properties of the air (molecular density, etc.) and is
therefore changing if the temperature and/or pressure vary. Further, if the space is
filled with another kind of gas, the “spring” will have different characteristics.

A spring connecting two masses has a resonance frequency where the masses move
in anti phase to each other. At this frequency, very little force is needed to move the
mass and, the movement of one mass will easily be transmitted to the other. Hence,
at this resonance a double wall will transmit a large portion of the incoming power,
leading to a very low reduction index.

Above the double wall resonance the plates can move independently of each other,
leading to an increase of the reduction index by 18 dB per frequency doubling
(octave). This fast increase of the reduction index is stopped when the influence of
the cavity resonances appears. At these frequencies (above fi) the reduction index has
an increase of 12 dB per octave until the earlier explained critical frequency is
reached. Depending on the geometry of the double wall, the cavity resonances can
appear higher in frequency than the critical frequency but, for the most commonly
used wall geometries this is not the case.

As a conclusion of the specific frequencies mentioned; the amplitude of the reduction
index around them depends on damping. For fo and fs, it is the damping in the air
(gas) between the plates that controls the reduction index and, the amplitude around
fe depends on the damping coefficient (1) of the material in the plates.

3.2. Hand calculation of the reduction index

A method for calculating the reduction index of a double wall will be presented and
also it’s restrictions. The method is assuming two infinite parallel plates with only air
in between. The damping in the air is unknown which makes the value of the
reduction index at the double wall resonance unknown as well. Further, the cavity
resonances do not show up as dips in the reduction index. Still their influence can
easily be seen when using this method.



Plate 1

...... —

Plate 2

Figure 3.1:  The sound hits the wall at plate 1, travels through the air and then leaves at plate 2.

Starting with the low frequencies below the double wall resonance (f), the reduction
index follows the mass-law.

R=R = 20log(2m)+20log(f)—49 [dB], for f<f, (3.3)

mass law

m is the mass per unit area of one plate, thus 2m is the total mass per unit area of the
wall. (The air is seen as mass-less.) The factor 49 dB comes from integrating the
power over all incident angles (diffuse sound field). This factor is changed to 47 dB
when dealing with finite plates because; the integration does not have to include all
angles in this case. (Angles close to grazing incidence do not contribute much to the
input power of a bounded plate [3].)

Since it is assumed to be only air in the gap and, further; that the plates have the

same mass per unit area, the double wall resonance can be approximated by:

85

fozm

[Hz] ,where d is the distance between the plates. (3.4a)

The approximation comes from the resonance of a mass-spring-mass system. The
derivation follows this procedure: (w is the angular frequency and k the spring

constant.)

1 1 2k
2
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o =2
2 k res 7#‘/‘65‘
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Above fo the plates can move independently of each other, as mentioned earlier. This
will lead to another way of calculating the reduction index. The mass-law is still
present in the formula but, now the mass dependence concerns one plate at a time.

R = R + 20 log(fd)_ 29 + Rmasslaw,plateZ [dB]/ for fO <f<ﬁ (35)

mass law, platel

Because the plates are assumed to be identical, the reduction index can be calculated

by:

R=2R, 1 piuer +20l0g(fd)-29=...= 40(10g(m1/ f3d»— 127 (3.6)

When fs is reached, the cavity resonances will destroy this rapid increase of the
reduction index. Therefore a change in the formula for the reduction index has to be
made.

55
=— 3.7
Ja 7 3.7)
R = Rmasslaw,platel + 6 + Rmasslaw,plateZ [dB]’ fOT .ﬁi <f<ﬁ (38)
This can, since the earlier mentioned symmetry, be simplified to:
R = 2Rmasslaw, platel + 6 =...= 40(10g(mf))— 92 (39)

The next frequency of importance is the critical frequency, f.. This is when the
wavelength of the vibrating plate matches the wavelength of the sound wave in the
surrounding air. The critical frequency is easily calculated if the material dependent
coincidence number (Kc) of the plate, is known.

K
f. =—= ,where Fh is the thickness of the plate. (3.10)
c= 7 p

If the coincidence number is unknown, f. can be calculated by finding the frequency
where the wavelengths are the same. Since bending waves on a plate are the
dominating ones when it comes to sound radiation, the formula for such
wavelengths (As) is used.

10



B = bending stiffness
= 5 p = density of plate material ; =

S = area of cross section

= f=—"2_=f (3.11)

This is exactly how the coincidence number is calculated for a plate material. It
depends on the Young’s modulus (E), the density (p) and the speed of sound in the
surrounding medium.

2
C

K, =2 Im/s] (3.12)
Erx’

3p

The reduction index at the critical frequency is calculated by:

R=2(R +10log7 +8) [dB] for f=f (3.13)

masslaw, platel

For frequencies above f., the reduction index can be calculated by the following
formula (identical plates):

R=2(1!2,‘WWp,m1 +1010g[%—1j+1010g77—2]+6 [dB] for f>f.  (3.14)

c

The 'inR . 1w, piaier 1Ndicates that the reduction only is calculated for a single

incoming plane wave at normal incidence and, 7 is the loss factor for the plate.

A calculation of the total reduction index, spanning from below fo to above fc is
shown in figure 3.2 below. The data of the calculated wall is shown in table 3.1.

11



h = 0013 [m] m = 104 [kg/m?
p = 800 [kg/m?]

E = 20E+09 [Pa] K. = 41 [m/s]
C.ir = 343 [m/s]

n = 002 [

d = 0.1 [m]

Table 3.1:  The left column of the table is the material data and the values in the right column are
calculated from these. The mass per unit area (m) is a function of thickness of the plate
(h) and the density of the plate (p). The coincidence number (K) is a function of
Young’s modulus (E), speed of sound in air (cair) and p.

Since the calculations have quite sharp transitions between the different frequency
regions, a smoother curve is hand sketched on the graph. Another reason for making
a hand sketch is that some values are not representing reality in a good way. For
example at f> f, the reduction curve should not start at 0 dB.

Examle of a hand calculation of reduction index for a double wall
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Octave bands [Hz]

Figure 3.2:  Reduction index calculation of an arbitrary double wall. The sketched curve on top of the
calculated is a better representation of reality and, the shape depends on the damping in
the structure. (Note that the added curve is only an approximation.)
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3.3. ISO717-1

When choosing the right building partitions between two rooms, it is complicated to
compare a reduction curve for each possible solution. Since the human ear is
constructed to be more sensitive to some frequencies and, sounds in offices and
residential houses are quite well defined, it would be good to weigh the reduction
curve with these known facts in order to get a single number for the sound insulation
quality of a wall. That is why this standard was developed.

The ISO standard number 717 part 1 deals with how it is possible to reduce a
reduction index curve into a single number, the so called weighted reduction index, Ru.
The standard is mostly used when a reduction curve is obtained from a lab
measurement or an in-situ measurement. This chapter deals with how values of a
reduction index in 1/3-octave bands can be transformed into a single value Ru.

The values in 1/3-octave bands, obtained from a measurement are adapted to a
reference curve which is constructed according to the properties of the human ear.
The reference curve only contains values from the 100 Hertz 1/3-octave band to the
3150 Hertz band. Therefore, the weighted reduction index is not affected by changes
above or below those 1/3-octave bands. The ISO-standard states that the reference
curve should be shifted towards the measured curve, by steps of 1 dB, until the sum
of the unfavorable deviation is as large as possible but not more than 32,0 dB. Rw is
then the value of the reference curve at 500 Hertz. It is probably easier to understand
by looking at figure 3.3.

What are meant by unfavorable deviations are those 1/3-octave bands where the
reference curve is above the measured curve. The sum of the differences at those 1/3-
octave bands should be as large as possible but not more than 32 dB. At, for example
250 Hertz, the deviation is approximately 10 dB which is a large part of the total sum.
Hence, a dip like that has a quite large effect on the weighted reduction index (the
triangle in the graph). For this imaginary wall, the weighted reduction index is 45 dB
which is a good value for a wall separating two rooms where people speak in a
normal voice (e.g. two offices).

13



Example of measurement values with an adapted reference curve

80 —,
| | —©— Measurement in 1/3-oct bands
700+ R Shifted reference curve |
! ! A Rw
| |
| |

Reduction index [dB]

Octave bands [Hz]

Figure 3.3:  Graphical presentation of how the weighted reduction index of a wall is found. The
measurement curve is only an example of the reduction index of a double wall with
studs (i.e. not only air-coupling).

The ISO 717-1 will later be used when analyzing the results from the calculation
model (chapter 4). This will give a good value of how well the tested walls in the
parameter study (chapter 5) reduce the incoming sound. The model is constructed in
such a way that the results could be taken from a lab measurement, why it is
permissible to use the ISO-standard.
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4 Modeling

4.1. Model description

4.1.1. Overall description

The goal for the model is to give a good approximation for the sound reduction
index of an arbitrary structure, separating two gas volumes. In order to do this, one
has to know the amount of energy that is transmitted in to the structure due to the
sound pressure acting on it. When this is known for the entire contact surface, it is
possible to calculate the vibration pattern of the entire structure. Therefore, it is also
possible to calculate the velocity of the part of the structure which is in contact with
the opposite gas volume. The pressure can thus be calculated by the Rayleigh
integral and further also the output energy. The reduction index can easily be
computed when knowing the input and output energy.

4.1.2. Assumptions and restrictions

The normal projection of the sound wave, which hits the object in normal direction
to the surface, is assumed to reflect all of its energy out from the structure. This
assumption can be made for relatively hard walls with a reduction index of more
than approximately 20 dB.

The model takes advantage of the fact that studs that connect two plates usually are
very long, in comparison to its height and width. Hence the model is reduced to 2D
which decreases the calculation time enormously.

Finally, there is no load on the structure from the air on the opposite side (the
radiating side). This gives an impedance of zero on the radiating boundary. The
sound radiation was calculated separately in the post-processing and was not
included in the FEM calculations.

4.1.3. Finite Element modulation

The structural vibrations due to the sound pressure load are calculated with the
Finite Element Method (FEM), using the program FEMLab®. A Plain Strain 2D

15



model is used, which means that a cross section of the structure is investigated with
the assumption that there is no deformation along the z-direction (the third
dimension). For the air part in the model (when the structure contains cavities) the
2D Helmholtz’s equation is used. The 2D limitation give that the wave number is
equal to zero in the z-direction.

The load distribution on the structure depends both on incident angle and
frequency of the sound wave. Therefore, a number of calculations are made, one for
each angle containing the vibration behavior at all chosen frequencies. Why more
than one incident angle has to be considered is because the reduction index is
assuming diffuse sound field acting on the structure. Further, in theory, an incident
angle has one specific frequency where there is total transmission, which is also an

argument to consider more than one angle.

In order to get the influence from the structural vibrations and air pressure
differences, a coupled model had to be created (if the structure contains some sort
of air volumes which is the case for a double wall). What is meant by coupled is
that the vibration of a plate has to create pressure difference in the air on their
common boundary. Therefore, a change in air pressure has to create a load on the
plate. If the displacement of the plate (the boundary) is known, the normal
acceleration can by calculated with the help of the excitation frequency as follows:

Displacement = x (4.1a)
Velocity = jex (in the complex plane) (4.1b)
Acceleration =-@’x (in the complex plane) (4.1¢0)

where w=2rfand fis the excitation frequency

The acceleration of the boundary in normal direction (n) is directly proportional to
the air pressure on the same boundary. The change in sound pressure due to the
acceleration can be calculated as: (Compare with Newton’s second law; F=m a)

P __ av"——'a) =— 4.2
on 'Dét Jwpv, Pra, (4.2)

,where p is the density of the adjacent material. (p € a)

It is important to know if the normal direction is in positive or negative direction
according to the coordinate system used in the model, in order to know if the
acceleration is increasing or decreasing the pressure. Accordingly, the direction of
the load on the plate from the air pressure is equally important.
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The mesh resolution of the model is determined by the bending wavelength of the
plate. In order to get good enough results, the mesh elements (i.e. the longest side
of a triangle in the triangulated mesh) have to be as small as the length of one sixths
of the bending wavelength. The bending wavelength is calculated as follows:

c B
Ay =2 Cy =4|—o
B i ,where Cp oS (4.3)

Since the model also could contain air, the wavelength in air has also to be
considered when choosing an appropriate mesh. The shortest wavelength at the
maximum frequency of interest is dominating the choice of mesh resolution. At
high frequencies, the wavelength in air is shorter than on the plate and at low
frequencies it is the other way around. The break point is the critical frequency of
the plate. (See chapter 3 for details about the critical frequency.)

The elements used in the model are of the type Lagrange — Quadratic which means
that the solutions at the nodes in the mesh are not connected by linear function but
by a polynom of second order. This gives a smaller error of the solution than if
Lagrange — Linear elements would be used.

When the correct mesh is chosen, the pressure distribution on the structure has to
be set. The pressure acts as a negative or positive load on the plate, causing it to
move up or down. Since plane waves are considered, only the perpendicular
transpose of each wave contributes to the input load.

Incident angle

WL

\

Perpendicular
part

Figure 4.1:  Division of the incoming plane wave into normal (perpendicular) and tangential part.
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This will lead to that an incoming wave with an incident angle equal to 90 degrees
(gracing incidence), does not give any energy transmission (in the finite element
model) even though there is a pressure distribution.

The load acting on the structure is both dependent on incident angle and frequency
of the approaching plane wave. The frequency dependence comes from the wave
number k, which is equal to 27tf/c where c is the speed of sound in air.

Aejkxx

¢ (:W)

k is the wave number
of the incident wave

v ‘ .
. k k
Befkyy \/AZ+B2 e’ el

Figure 4.2:  The perpendicular part of the incoming wave contributes to the input power in the
structure.

Because of the assumption that all the energy is reflected on the surface of the
structure, the total pressure on the surface is two times the pressure of the incident

wave. This gives the load:

F y = e/t ,where y indicates a load parallel to the y-axis. (4.4)

The minus sign is due to the way the coordinate system is set in the model and, the
x in equation (4.4) is also linked to the coordinate system. (See fig. 4.3.) The load is
changing over the x-direction.

y Arbitrary
structure

Figure 4.3:  Definition of the coordinate system in the model.

Finally the boundaries at the end of the plates have to be defined and, a rigid
connection is chosen in order to mimic a real structure (wall) as good as possible.
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The choice of boundary conditions has most influence on the reduction index at low
frequencies since that is when the influence wave has longest wavelength. A closer
investigation of how long the structure has to be in order to get reasonable values
for the reduction index, shows that at least a 3 meter wide structure (wall) has to be
used. Of course an even wider structure will give better results in the low frequency
region but, it is a matter of calculation time. (Some calculations were made with a
10 meter wall for better detail. For example figures 4.6 and 4.7.)

4.1.4. Post processing

What is called the post processing is the calculation of the reduction index from the
obtained velocities from the FE-calculation. The velocities of interest are only those
of the radiating plate because, the velocity of the boundary where the sound wave
(plane wave) hits can easily be calculated as:

Jk cos(¢)

sin(@) = £sin((p) 4.5)
oc
The input energy is calculated using the following formula:

W, = ) Re[p q *] ,where g is the flow velocity. (¢ =v-meshsize) — (4.6)

The output energy can be calculated from the velocity of the radiating plate via the
pressure it creates in the far field. Why the pressure is calculated in the far field
instead of directly on the plate, is to avoid singularities when using the Rayleigh
integral. (If the pressure is calculated in one point, from to the velocity in the same
point, one will end up with a zero in the denominator.) Another benefit of being in
the far field is that the Hankel function in the Rayleigh integral (in 2D) can be

approximated by:
\/ 27[ e
HP (k,r) = LYEE ol 7) 4.7)
2 f . . )
,where k = and r is the distance from the velocity source to where the

air

pressure is calculated.
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The Rayleigh integral without this approximation is:

1 !

PO == Pk [ VOO H Y (ke (48)
0

,where [ is the length of the radiating plate in an infinite baffle.

The approximation speeds up the calculations of the total pressure tremendously
(instead of using the besselh function in Matlab). The output energy can now be

calculated by:
' ]l
_(Lrely. o bz - (L dé=[2—a¢=
Wout -([ 2 Re{p 1 }dé: v('). 2 ke paircair 5 .([ pai"cai" é:
(4.9)
1 2
= {Discreet problem} = Z AS
m=l1 paircair

,where L is the length of the half sphere. (See fig. 4.4)

The calculations are made on a half sphere around the radiating plate and the M
pressures from the Rayleigh integral are equally spaced on the sphere with a
distance A& from each other.

A

Figure 4.4:  Schematic of the pressure calculation (Rayleigh integral) from the velocities of the
discreet points on the radiating plate of the wall. Length of the half sphere, L=MAE.
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AéE=AOR= (9m+1 -0, )R (A& is small in comparison (4.10)
with wavelength)
r., = R>+d>—2Rdcosh, (The cosine law) (4.11)

Now when both input and output energy is calculated, the reduction index, R can
be obtained via the transmission loss, T as follows:

1 w.
R = IOIOg(—J ,where 7 =—" 4.12)
T /4

out

In order to know how many (equally spaced) incident angles that have to be taken
into consideration, a test calculation for different number of angles was performed.
The resulting reduction indices at 1000 Hertz of an arbitrary structure is shown in
the graph below.
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Figure 4.5:  Resulting reduction index when changing the number of incident angles calculated.
Calculated on an arbitrary structure.
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The conclusion that 30 angles would give a good enough result was drawn. Because
the check was made at 1000 Hertz, frequencies above that could give a slightly
incorrect result for the reduction index. An increase in number of angles would of
course also increase the calculation time and, to be able to manage a parameter
study this angle trade off had to be made. The graph below shows how small the
difference in reduction index (for a double wall) is due to the change in number of
incident angles considered.

Reduction index for 30 and 90 incident angles
90 T T T

----- 30 angles | |
90 angles |

-10

I ]

1 1

1 1 1 1
31.5 63 125 250 500 1000 2000 4000
Octave bands [Hz]

Figure 4.6: A comparison between two reduction index calculations. One with 30 equally spaced
incident angles and one with 90 angles between 0 and 90 degrees. Calculations made
between 20 and 6000 Hertz of a 10 meter model of a double wall with only air coupling.

The calculation for 90 angles naturally takes three times longer time than the 30
angles calculation.
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4.2. Verification with results from literature

The theoretical method explained in chapter 3, for calculating the reduction index
of a double wall, is here compared with the results from the constructed calculation
model (FEM-calculation).

Table 4.1:

Figure 4.7:

h = 0.013 [m] m = 104 [kg/m?
p = 800 [kg/m’]

E = 20E+09 [Pa] K. = 41 [mls]
Cair 343 [m/s]

n = 0.02 []

d = 0.1 [m]

Material properties of the calculated wall. Exactly the same values are used in the hand
calculation as in the FEM-calculation. (Compare with table 3.1)

Hand calculation vs. FEM-calculation

110 I I I \ \
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Octave bands [Hz]
Results from both the hand calculation and the FEM-calculation. Since the wall consists

of finite plates, the factor -49 dB in the mass-law is changed to 47 dB. (See chapter 3)
The FEM-calculation includes 1 percent damping in the air between the plates.
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The results from the FEM-calculation correspond well with the hand calculations.
Note that these calculations only are valid for a wall that has no studs what so ever.
The only coupling between the plates is air. Naturally, the FEM-calculation was
performed in a similar way. There is a dip in the FEM-calculations which
corresponds to the coincidence (f;) between the plate and the air. The dip just below
the coincidence is exactly where one half wavelengths fit between the plates (the
first resonance between the plates). The influence from this resonance can be seen
for frequencies above fi. (See the brake point, just above 500 Hertz, of the hand
calculated curve in the graph.) The influence from the first cavity resonance in the
FEM-calculation appears higher up in frequency than for the hand calculation. If
more damping would be added in the model, the reduction index would be
influenced over a broader frequency range at the cavity resonance and, the dip
would not be as strong. To fix the differences above fi: between the two calculation
methods, it is not only to ad more damping in the FEM-calculation. Increased
damping would give a more similar curve shape but the reduction index for the
FEM-calculation would have higher overall level. (See for example fig 5.10.)
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5.Parameter study

When the model was assumed to be working properly, a parameter study was
performed in order to understand the influence of material properties on the
reduction index. Also a study of the physical connections of the plates was made.
Finally, the results were compared with the results Haike [1] obtained in her work.

5.1. Influence of parameters

The parameters that were changed were the following;:

1 2 3 4 5
1 E-mod of studs 1e7 1e8 1e9 1e10 1e11
2 E-mod of plates 1e7 1e8 1e9 1e10 1e11
3 | Varying E-mod (plate 1) 1e7 1e8 1e9 1e10 1e11
4 | Varying E-mod (plate 2) 1e7 1e8 1e9 1e10 1e11
5 | Density of plates 200 400 800 1600 3200
6 | Stud width (cm) 1 2 4 8 16
7 | Stud distance (cm) 10 20 40 60 80
8 | Damping in air 0 1e-5 1e-4 1e-3 1e-2

Table 5.1:  Parameters that were changed in the study. Values in bold type are default.
The values in bold type are the ones that are held constant when one parameter is
changed. These values are later referred to as default values or the default wall.

[mm]

Plate 1 Studs
L / 3000 [/ RN L

00l

Figure 5.1:  Geometry of the default wall with definition of plates and studs. The density of the studs
is held constant at 500 kg/m?. Also the damping in the plates and studs are constant at 2
percent.

One hundred, logarithmically spaced frequencies between 20 and 6000 Hertz were
calculated for each parameter setup. The results were then summed up into 1/3-
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octave bands in order to more easily take in the overall picture and also to be able
to calculate a weighted reduction index. The one hundred frequencies gives
approximately four frequencies per 1/3 octave band which could seem a bit on the
low side but, it is a matter of calculation time. (Each parameter setup takes
approximately 1 hour and 15 minutes to calculate on a DualG4 Mac.) The weighted
reduction index (Rw) is calculated according to the ISO 717-1 standard. It gives a
single value for the reduction index which is even easier to compare for different
parameter setups. The result of the parameter study in weighted reduction indices
can be seen in table 5.2.

1 2 3 4 5
1 E-mod of studs 40 42 45 43 42
2 E-mod of plates 46 44 43 32 29
3 | Varying E-mod (plate 1) 47 45 43 40 38
4 | Varying E-mod (plate 2) 48 47 43 41 38
5 | Density of plates 24 31 43 54 61
6 | Stud width (cm) 46 43 43 38 43
7 | Stud distance (cm) 44 39 37 43 46
8 | Damping in air 43 42 42 42 42

Table 5.2:  Results, in weighted reduction index, from the parameter study. The values in bold type
correspond to the default wall, why they all have the same value. The number above and to
the left of the table are the same as in table 5.1, making then easier to compare. (For example
the result cell (7,2) corresponds to the parameter value in cell (7,2) in table 5.1)

5.1.1. Young’s modulus in plates and studs

First the change in Young’s modulus (E-mod) of the plates and studs were
investigated. It can be seen that the change of the plates has a greater influence on
Rwthan the change of the studs. Why the increase in E-mod of the plates results in a
decrease of Rw is because the frequency of the double wall resonance also increases.
Since the ISO-standard only considers 1/3-octave bands between 100 and 3150
Hertz, the double wall resonance for the softer plates appears below the first 1/3-
octave band of interest. This will lead to that the fast increase of the reduction
index above the double wall resonance is taken into account earlier in frequency.
Hence, the walls with stiffer plates acts as single leaf partitions, following the mass-
law, for a wider frequency span. A more detailed display of the results from the
first two rows of the parameter study can be seen in the graphs below. (See figures
5.2 and 5.3) The results are in 1/3-octave bands from 20 to 5000 Hertz. (See table
5.3.)
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| 20 | 25 |315] 40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 | 250 | ...

... | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | 5000 |
Table 5.3:  List of the 1/3-octave bands (in Hertz) that are used in the calculation of the reduction index.

Varying E-mod of studs

Reduction index [dB]

7777777 L] 111

|

| | | | |
31.5 63 125 250 500 1000 2000 4000
Octave bands [Hz]

Figure 5.2:  Results from the parameter study in 1/3-octave bands between 20 and 5000 Hertz. The
different curves correspond to the values of row 1 in table 5.1.

As said earlier and which can be seen in figure 5.2, the change in E-mod of the
studs does not have a large effect on the reduction index. The double wall
resonance appears in the same 1/3-octave band but with different magnitudes.
(Note that a reduction index below zero is in reality impossible but, since there is
an assumption made in the model which only holds for a reduction index above 20
dB, a sub zero reduction index can occur, especially around the double wall
resonance. See chapter 4.1.2.)

Since the model is finite, the reduction index is stiffness controlled at frequencies
below the first resonance of the structure. L.e. for frequencies that have such a long
wavelength that a half wavelength is longer than the model width (in this case 3
meters). For example when the Young’s modulus is set to 10" Pascal, the bending
wavelength is so long that the first resonance of the structure is as high as 40 Hertz.
(See figure 5.3.)
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Varying E-mod of plates

Reduction index [dB]

1 1 1 1
250 500 1000 2000 4000
Octave bands [Hz]

Figure 5.3:  Results from the parameter study in 1/3-octave bands between 20 and 5000 Hertz. The
different curves correspond to the values of row 2 in table 5.1.

The next parameter that was changed was the Young’s modulus of one of the
plates while the other was held constant (10° Pa). First the plate on which the sound
wave hits was changed (plate 1). This gave a slightly better weighted reduction
index than if both plates were changed simultaneously. A reason for this can be
that it is easier to get differences in the vibration pattern of the plates, which can be
seen as uncoupled plates. This is good when it comes to reducing the transmission
of sound. Also here, a softer plate gives a higher Ruo.
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Varying E-mod of plate 1 (the other, E=1€9)

Reduction index [dB]

|

1 1 1 1 1
31.5 63 125 250 500 1000 2000 4000
Octave bands [Hz]

Figure 5.4:  Results from the parameter study in 1/3-octave bands between 20 and 5000 Hertz. The
different curves correspond to the values of row 3 in table 5.1.

When changing the parameter of the second plate (plate 2), an even higher value of
the reduction index can be seen, especially in the high frequency region. (Compare
the values of row 3 and 4 in table 5.2)

Varying E-mod of plate 2 (the other, E=1€9)

Reduction index [dB]

777777777777777 —_— 111

,,,,,,,,,,,,,,,,,

|

1 1 1 1 1
31.5 63 125 250 500 1000 2000 4000
Octave bands [Hz]

Figure 5.5:  Results from the parameter study in 1/3-octave bands between 20 and 5000 Hertz. The
different curves correspond to the values of row 4 in table 5.1.
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5.1.2. Density of the plates

This parameter change is mostly done in order to see if the model behaves as
would be predicted. If the density (mass) of the plates is increased, the reduction

index will also increase. Figure 5.6 shows exactly that.

Varying density of plates

Reduction index [dB]

777777777777777 —e— 3200 |

|

| | | | |
31.5 63 125 250 500 1000 2000 4000
Octave bands [Hz]

Figure 5.6:  Results from the parameter study in 1/3-octave bands between 20 and 5000 Hertz. The
different curves correspond to the values of row 5 in table 5.1.

Note that the weighted reduction index does not change linearly (See table 5.2, row
5.) when the density is increased (doubled) even if the distance between the
reduction lines in the graph seem to be equally spaced in the high frequency
region. Again, it depends on in which 1/3-octave band the double wall resonance
appears, since Ro is only calculated from the 100 Hertz 1/3-octave band. (Look at
the reduction index at 125 Hertz in figure 5.6. Those values are not equally spaced.)

5.1.3. Stud width and distance between studs

The change of stud width and distance between the studs has a quite large
influence on the weighted reduction index. When looking at the graphs one has to
have in mind that the total mass of the wall also will change when changing the
stud width and distance. (psta=500 kg/m?®) This leads to, for example when the
distances between the studs are only 10 centimeters; it acts more as a heavy single
leaf wall than as a double leaf wall. (The double wall resonance appears above 2000
Hertz! See figure 5.8.)
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Compare the values of stud width and distance between the studs with the default

wall in figure 5.1, in order to get a better understanding what the changes do to the

wall’s geometry.

Varying stud width [cm]

[gp] xapul uononpay

Octave bands [Hz]

Results from the parameter study in 1/3-octave bands between 20 and 5000 Hertz. The

different curves correspond to the values of row 6 in table 5.1.

Figure 5.7:

Varying distance between studs [cm]

[gp] xapul uononpay

1000 2000 4000

500

Octave bands [Hz]

Results from the parameter study in 1/3-octave bands between 20 and 5000 Hertz. The

different curves correspond to the values of row 7 in table 5.1.

Figure 5.8:
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It can be seen that when the stud widths are 8 or 16 centimeters, the double wall
resonance appears in a higher 1/3-octave band than if the studs have a width of 1, 2
or 4 centimeters. (See figure 5.7) This is because when the width is changed, also
the width of the free span (of the plates) between the studs is changed. Hence, the

“spring” is stiffened up, leading to a higher resonance frequency.

5.1.4. Damping in the air

In the previously mentioned default wall, there is no damping in the air between
the plates. If such damping is introduced in the model (by using a complex speed
of sound, c=cy(1+in)) the results do not show the expected results at first. As can
be seen in the table 5.1, the values are all the same and lower if damping is
included. Figure 5.9 shows the same results.

Varying damping in air

80

700

60 - -

50 -

Reduction index [dB]
w
o

|
| | | | |
31.5 63 125 250 500 1000 2000 4000
Octave bands [Hz]

Figure 5.9:  Results from the parameter study in 1/3-octave bands between 20 and 5000 Hertz. The
different curves correspond to the values of row 8 in table 5.1.

To see if damping could be used in the model in a correct way, a more detailed
calculation of a double wall with no studs was made; one calculation with no
damping and two with differently strong damping in the air. Figure 5.10 shows a
more satisfying result than figure 5.9. Le. the peaks (resonances) are not as strong
for the damped models as for the un-damped one.
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Intruduction of damping in air in the model
120 I I

----- no damping
— 1 % damping

100 - 4

Reduction index [dB]

1 1

1 1 1 1
315 63 125 250 500 1000 2000 4000
Octave bands [Hz]

Figure 5.10:  Result of the (air) damping influence in the model. Calculations performed on a 10
meter wide wall between 20 and 6000 Hertz.

Also the overall reduction index is increased when there is damping in the model
which is natural when the wavelength comes closer to the distance between the
plates. (Higher frequencies are damped more than lower.)

Now when we know that the damping is correctly introduced in the model it is
harder to explain the values in the parameter study. A reason for that the reduction
index for all the walls with damping are the same, could be that one has to go
higher in frequency to see a difference. The frequency is too low to have many
wavelengths fit between the plates or studs. If different damping values are
investigated over a large distance at high frequency, the differences would be
visible. In figure 5.10 above, the damping effect is easily seen because there are no
studs and, the model is 10 meters wide instead of the default 3 meters. Le. it has a
much larger continuous air space. Another reason for the result in figure 5.9 could
be that the sound bridges the studs create are so dominant when it comes to sound
transmission that, an increase in air-damping does not affect the reduction index
much.
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5.2. Comparison with results from an earlier study

Why the study of unequally stiff plates was made, is because of the results Haike
showed in her paper. Some of the chosen values of the Young’s modulus fall within
the criterions that were set up by Brick [1]. She states that a decrease in radiation
efficiency can be seen when a discontinuous coupling pattern (between the plates)
is used instead of a continuous. A summary of the criterion is that the resonance
frequency of the air coupling has to be lower than the critical frequency of plate 1
and, the critical frequency of plate 1 has to be lower than the resonance frequency
of the studs. Further the critical frequency of plate 2 has to be higher than the
resonance frequency of the studs. (See also figure 5.11.)

1:crit, plate 1

.H fcrit, plate 2

- >
»

Frequency

Figure 5.11:  Interpretation of the criterions that Brick presented in her report. [1]

A calculation, using Brick’s model for radiated power, of two continuously coupled
and two discontinuously coupled plates was performed. The plates and interlayer
have properties that meet the above mentioned criterions and, the result of the
calculation can be seen in figure 5.12. Note the difference in radiated power above
the first resonances of the structure.

To see if the reduction index would behave the same way, a FEM-calculation of the
exact same structure was made. One stiff (aluminum) and one soft (lead) plate
were used and the coupling material (Sylomer V12 and air) was modeled as mass-
less in order to get good conformity with Brick’s results. Note, when comparing
figures 5.12 and 5.13, that the radiated power and the reduction index are inversely
proportional.

34



Radiated power with varying interlayer (Brick’s model)
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Figure 5.12:  Result from calculation of radiated power, using Brick’s model.
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Figure 5.13:  Result from the FEM-calculation of the reduction index.

The graph shows an approximate increase of 6 dB in reduction index at higher
frequencies, when using a discontinuous coupling pattern rather than a
continuous. To get an understanding of the reason for this effect, the displacement
of the structures has been plotted at 1000 Hertz. (See figures 5.14 and 5.15.)
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T

Figure 5.14:  Displacement of the continuously coupled plates at 1000 Hertz. A plane sound wave
hits the structure from above, at an incident angle of 45 degrees.

Figure 5.15:  Displacement of the discontinuously coupled plates at 1000 Hertz. A plane sound
wave hits the structure from above, at an incident angle of 45 degrees.

The wavelength and vibration pattern of the upper and lower plate of the
continuously coupled structure is similar, while for the discontinuous case this is
not true. Hence, the reduction of the sound is increased for the discontinuously
coupled plates.
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6.Discussion

6.1. Theory

The theory behind the reduction index is well developed when it comes to strict
geometries such as walls consisting of a single plate or two parallel plates with only
air between. But, when the structures become more complex, there is no general
approach that works any more. This could be a reason for that well known
constructions of walls mostly are used. These walls have well defined reduction
indices, based on data collected both from theory and measurements. Although the
building industry seems to be rather conservative, there would be an interest in new
constructions that reduce sound in a cost efficient way. Therefore, a more detailed
theory is needed to investigate this matter.

6.2. Model

The reduction index model presented in this report could be one way to do an
inexpensive and time efficient investigation on how to increase the reduction index
of a structure. The model is assumed to give approximately the same result as a
measurement would of a specific structure but since in finite element programs,
material properties are easily changed which is an advantage over doing
measurements. If for example the influence on reduction index from bending
stiffness of the studs should be investigated by measurements, one wall for each
parameter has to be built. That is impossible to do without (unknowingly) doing any
other modifications on the wall than the desired. Therefore, in this case a computer

model is superior.

The limitation to 2D in the model does not seem to give incorrect results. Even
though the first reason to limit it to 2D was because of the calculation time. One has
to have in mind that there is one vibration pattern to calculate for each frequency and
incident angle of the plane wave hitting the structure. (In the parameter study, 30
incident angles and 100 frequencies are considered which gives 3,000 different
vibration patterns and, each of the 3000 calculations has approximately 45,000
degrees of freedom.) Looking at the result from a calculation of a double wall and
comparing it to a hand calculation (see chapter 4.2) they seem to have a good
agreement even though the hand calculation is based on 3D theory.
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The model gives of course not a perfect representation of reality and, there are still
some modifications that could improve its efficiency. In the model, the plates are
perfectly glued to the studs and in reality there is total connection only where the
screws (or nails, etcetera) are placed. This point connection could possible be
implemented in the model. Modifications could also be done on the plates alone. A
plate in the model consists of one large plate but in reality, for example gypsum
boards are used and they are smaller than regular walls. It means that several boards
have to be placed side by side in order to represent one plate in the model. The result
is that waves could travel easier in the model plate than from one board to the other
in reality. The difference in vibration pattern will be seen in the low frequency
region. Modifications of this sort could be implemented in the model but there is no
reason to make it more complex since it is impossible to mimic reality perfectly
anyway. Naturally the model should be as close to reality as possible but it is always

a matter of computer resources and calculation times.

6.3. Parameter study

The parameter study was performed on a wall structure that measured 3 meters in
length. This length was chosen so that the first resonance of the whole structure
would be lower in frequency than the double wall resonance since, below the first
resonance the reduction index is stiffness controlled. If the double wall resonance
would be in the stiffness controlled region it would not be seen as a dip in the

reduction index.

The parameters that were changed were chosen because they, intuitively, have the
most influence on the reduction index. Also the stiffness dependence Brick [1] found
out had influence on the choice of parameters. The study could of course include
many more parameters but that reaches beyond the scope of this report.
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7.Summary & conclusions

7.1. Model

The construction of a complex computer model in order to find out the reduction
index of an arbitrary structure is possible. The results agree well with earlier
calculation models for single and double leaf structures. A draw back is that a full
calculation (high frequency resolution over a large frequency span) requires a lot of
computer resources but, the computer industry produces faster computers every
year. With today’s computers, a detailed investigation in a specific frequency region
can be done in a few minutes, for example a closer look at the double wall resonance.

In the model, a finite element calculation is used in order to determine the vibration
pattern of the structure in question, due to a sound pressure load acting on it. The
finite element method is constructed to give the displacement in discrete points of
the structure. The number and location of the points are determined by the so-called
mesh, whose resolution is determined by the wavelength of the vibrations in the air
and structure. Six discrete points for each wavelength is enough to reconstruct the
correct vibration pattern. When the vibrations of the radiating side of the structure
are known, the pressure it creates can be calculated by the Rayleigh integral. Because
the added power on the structure is known, the reduction index can be determined

for the calculated frequencies.

The model is limited to 2D in order to keep calculation time down. Since the length
of possible studs in a wall usually is much longer than their width and height, this is
a reasonable approximation. A modification of the model could be to calculate the
vibrations in the 3D-domain but, when the calculated result is compared with the
hand calculation method (see chapter 4.2) a good agreement can be seen. Since that
the method agrees well with measurements of double walls with no studs [6], the
conclusion that the calculation model presented in this paper also agrees with
measurements, is drawn. This is also an argument to limit the model to two

dimensions.
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7.2. Parameter study

The parameter study shows both results that can verify the model and also results
that correspond well with earlier results [1]. A verification of the model is easily seen
when changing the density of the plates in a double wall with studs. An increase in
density will lead to an increate in reduction index. Results that verify an earlier study
is when the Young’s modulus of the two plates is changed individually (resulting in
different bending stiffness of the plates). The reduction index can be increased by
using plates with different Young’s modulus, making them vibrate with different
patterns more easy. To obtain different vibration patterns is one aim when trying to
increase the reduction index. (This makes the difference in reduction index between
single leaf and double leaf constructions.)

7.3. Future work

Modifications of the model could also be of interest. Another FEM program that
allows infinite structures could be used to exclude the boundary effects at low
frequencies. An extension into 3D could be of interest if the coupling between the
plates does not consist of infinite studs but, of solids that are finite in all directions
(for example a rubber cube). At least at low frequencies this would be possible.

A well controlled measurement could be done in order to validate the calculation
model. Especially a wall with studs since the validation done in this work is only of a
wall with no studs. (See chapter 4.2.)

Optimization of a wall structure, both in a geometrical point of view and in a

material property point of view. Then to realize such wall with reasonable building
materials if possible.
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Appendix

Below is the MatLab®/FEMLab® code from part of the parameter study presented.
There is one main program (tot calc_adpmesh ) where the frequency vector,
incident angle vector and some material data is specified. The program calls two sub-
programs (default studs & W_calc ) where the velocity of the radiating boundary
is calculated by FEMLab® and input and output power calculated from the obtained
velocities. Finally, the reduction index is calculated in the main program.

function [f tot,R tot]=tot calc adpmesh;

9990000000000 0000000000000000000000000009000000

oe
o

Reduction index calculation, using finite elements

o° o oe
o° o o

Developed by: Morten Lindborg
Department of Civil and Environmental Engineering
Division of Applied Acoustics
CHALMERS UINIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2005
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global ang f velo max mesh E h rho

disp('Start time:'")
disp (num2str (clock))
tO0=clock;

$ Material data

% Air

c=343; % Speed of sound

% Plates

E=1e9; % Youns's modulus of the plates
h=0.013; % Thickness

rho=800; % Density

% Which angel/-s to calculate:

o°

o

o\
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for ff=1:length(f tot);

f=f tot (ff);

oe

Mesh size (Adaption for a optimal mesh is done for each frequency.)

e

% Wavelength calculation in the air and in the plate
lambda=c/f;

lambda B=sqgrt (sqrt (E*h"2*pi~2/(3*rho))/f);

% The dominating wavelength is chosen

max mesh=min (lambda/6, lambda B/6);

[velo]=default studs(max mesh,ang, f); %$SUB-PROGRAM!

o

oe
Q
Q
’_l
Q
[«
’_l
Q
o+
’_l.
O
jo]
O
s
’_l.
jo]
o]
[
-+
Q
jo]
Q.
O
[«
jart
o]
[
jart
o]
O
=
0]
[

o°

[W in,W out]=W calc(velo,ang,f); %SUB-PROGRAM!

o

% Reduction index calculation

o°

delta ang=90/length (ang) ;

W in tot (ff)=2*delta ang*pi/180*sum(W _in,1);
W out tot(ff)=2*delta ang*pi/180*sum(W out,1);

Tau_tot (ff)=W out tot(ff)/W in tot (ff);

R tot (ff)=10*%1logl0(1l./Tau_tot (ff));

end
disp('Total calculation time (min):"'")
disp(etime (clock,t0)/60)
disp('Finish time:"'")
(

disp (num2str (clock))
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function [velo]=default studs (max mesh,ang, f);

\

% FEMLab-calculation of the vibration of the structure:

flclear fem

Q

% Femlab version
clear vrsn

vrsn.name = 'FEMLAB 3.0';

vrsn.ext = 'a';

vrsn.major = 0;

vrsn.build = 228;

vrsn.rcs = '$Name: $';

vrsn.date = '$Date: 2004/04/05 18:04:31 $';
fem.version = vrsn;

\o

s Geometry

$ Plates:
gl=rect2('3','h', 'base', 'corner', 'pos', {'0','0.113"}, '"rot','0");
g2=rect2('3','h', 'base', 'corner', 'pos', {'0','0"}, "rot','0");

% End studs:
g3=rect2('0.02','0.1", 'base"', 'corner', 'pos',{'0','0.013"},'"rot"','0");
gd=rect2('0.02','0.1', 'base', 'corner', 'pos',{'2.98','0.013"}, 'rot','0")

’

% Studs:

gb=rect2('0.04','0.1", 'base', 'center', 'pos',{'0.6"','0.063"},'rot','0");
gb=rect2('0.04','0.1"', 'base', 'center', 'pos',{'1.2','0.063"}, 'rot','0");
g7=rect2('0.04','0.1"', 'base', 'center', 'pos',{'1.8','0.063"}, 'rot','0");
g8=rect2('0.04','0.1"', 'base', 'center', 'pos',{'2.4','0.063"},"'rot','0");

o

$ Alr cavities:
g9=rect2('0.56','0.1"', 'base', 'corner', 'pos',{'0.02','0.013"}, '"rot','0")

élO=rect2('O.56','O.l','base','corner','pos',{‘0.62','0.013'},'rot','O'
;il=rect2('0.56','O.l','base','corner','pos',{'1.22','0.013'},'rot','O'
;i2=rect2(‘0.56‘,‘O.l','base','corner‘,‘pos‘,{‘1.82‘,‘0.013‘},'rot','O'
;iBZreth('O.56','O.l','base','corner','pos',{'2.42','0.013'},'rot','O'
)7

clear s

s.objs={g2,95,96,97,98,94,93,91,99,910,g11,912,g13};
S.name={'P2','S1','S2','S3"','S4"','SB',"SA','P1','Al",'A2"',"A3",'A4", 'A5
'}
s.tags:{|g2|,|g4|,|g5V,Vg6V,Vg7V,Vg8|,|g3|,|g1|,|g9!,!g10!,!g11l,lglzl,
'gl3'};

fem.draw=struct('s',s);
fem.geom=geomcsqg (fem) ;
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% Initialize mesh

fem.mesh=meshinit (fem,
'hmax', [max mesh], ...% <--- MESH
'hmaxfact', 1,
'hgrad', 1.3,
'hcurve', 0.3,
'hcutoff',0.001,
'hnarrow', 1,
'hpnt', 10,
'xscale', 1.0,
'yscale',1.0);

% Application mode 1 (Plain strain)

clear appl
appl.mode.class = 'SmePlaneStrain';
appl.mode.type = 'cartesian';

L}

appl.dim = {'u',
appl.sdim = {'x','y

v','u t','v.t'};
‘y'z')s

appl.name = 'pn';

appl.shape = {'shlag(2,''u''")"', 'shlag(2,"'"'v'")"'};
appl.sshape = 2;

appl.border = 'off';

A}

appl.assignsuffix =
appl.assign =
{'Ex','Ex pn','Ey','Ey pn','Ez','Ez pn','Fx','Fx pn', '"FxAmp', 'FXAmp p
n','Fxph', 'FxPh pn', 'Fxg', 'Fxg pn','Fy','Fy pn', 'FyAmp', 'FyAmp pn','F
yPh', 'FyPh pn', 'Fyg', 'Fyg pn','Gxy', 'Gxy_pn', 'Tax', 'Tax_pn', 'Tax_amp'
;'Tax _amp pn', 'Tax ph', 'Tax ph pn', 'Tay', 'Tay pn', 'Tay amp', 'Tay amp
pn', 'Tay ph', 'Tay ph pn', 'alphax', 'alphax pn', 'alphay', 'alphay pn', 'a
lphaz', 'alphaz pn', 'ex','ex pn','ex amp', 'ex amp pn', 'ex ph','ex ph p
n','exi','exi pn', 'exy', 'exy pn', 'exy amp', 'exy amp pn', 'exy ph', 'exy
_ph pn','exyi','exyi pn','ey','ey_pn','ey_amp','ey _amp pn','ey ph','e
y ph pn','eyi','eyi pn','ezi', 'ezi pn', 'nuxy', 'nuxy pn', 'nuxz', 'nuxz__
pn', 'nuyz', 'nuyz pn', 'sx','sx pn','sx amp', 'sx amp pn', 'sx ph', 'sx ph
_pn','sxi','sxi pn', 'sxy', 'sxy pn','sxy amp', 'sxy amp pn','sxy ph','s
xy_ph _pn','sxyi', 'sxyi_pn','sy','sy_pn','sy_amp','sy_ amp pn','sy ph',
'sy ph pn','syi','syi pn','sz','sz pn','sz amp', 'sz amp pn','sz ph','
sz _ph pn','szi',"'szi pn'};

clear prop

prop.elemdefault="Lag2’';

prop.analysis="'freq';

prop.largedef="'off"';

prop.impl="'weak';

prop.eigtype="'freq';
prop.weakconstr=struct ('value', {'off'}, 'dim', {{'1ml"', "Im2"', "Im3"', '1m4
"TH)s

appl.prop = prop;

clear pnt

pnt.Fx = {'0'};

pnt.FxAmp = {'1'};

pnt.FxPh = {
pnt.Fy = {'0'};
pnt.FyAmp = {'1"'};

pnt.FyPh = {'0'};
pnt.loadcoord = {'global'};
pnt.constrcoord = {'global'};
pnt.constrtype = {'standard'};
pnt.H = {{'0','0';'0"','0"}};

_pn';
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pnt.R = {
pnt.Rx =

{'0";'0"}};
{'0"};
pnt.Hx = {'0'};
{'o"}
{'0"}
1

~

~

pnt.Ry =
pnt.Hy
ent.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,1,1,1,1,1,1,11;
appl.pnt = pnt;

clear bnd

bnd.Fx = {IOI,IOI,IOI,IOI,IOI,l_pl,lpl};

bnd.FxAmp = {'1','1','12","12","1"','"1"'","1"};

bnd.FxPh = {'0','0','0','0','0"','0"','0"};

bnd.Fy = {'0','0', '-2*exp (i*k*cos (theta*pi/180)*x)"', 'p', '-
p','0','0"};

bnd.FyAmp — {lll,lll,lll,lll,lll,lll,lll};

bnd.FyPh — {lOl,lOl,lOl,lOl,lOl,lOl,lOl};

bnd.loadcoord =

{'global', 'global', 'global', 'global', 'global', 'global', 'global'};
bnd.locadtype = {'area', 'area', 'area', 'area', 'area', 'area', 'area'};
bnd.constrcoord =

{'global', 'global', 'global', 'global', 'global', "global', 'global'};
bnd.constrtype =

{'standard', 'standard', 'standard', 'standard', 'standard', 'standard', 's
tandard'};

bnd.H =
{{IOI,lOl;lOl,lOl},{lOl,lOl,.lOl,IOI},{IOI,IOI;IOI,IOI},{IOI,IOI;IOI,l
O'},{'O',‘O‘;‘O‘,‘O‘},{'O','O';'O','0‘},{‘0‘,‘0‘;‘0‘,‘0‘}};

bnd.R =
{{'O',"O'},{'O';'O'},{'O',"O'},{'0',"0'},{'0',"O'},{'O';'O'},{'O',"O'
Py

bnd.Rx= {lOl’lOl,lOl,lOl,lOl,lOl,lOl};

bl’ld.HX= {VOV,VlV,VOV,VOV,VOV,VOV,V()!};

bnd.Ry: {‘O‘,‘O‘,‘O‘,'O','O','O','O‘};

bnd‘Hy= {'O','1','0','0','0','0','0'};

bnd.ind =
[2111111121113161514171111161514/7/1/1/6/5/4/7/1/1/6/5/4/7/1/1/6/5/4/
7,1,1,2,1,2];

appl.bnd = bnd;

clear equ

equ.shape = {[1;2],[1;2],[1;2]};

equ.gporder = {{4;4},{4;4},{4:4}};

equ.cporder = {{2;2},{2;2},{2;2}};

equ.init = {{!O!;!O!;'O';'O'},{VOV;VO!;|O|;|O|},{|O!;!O!;!O!;!Ol}};
equ.usage = {0,1,1};

~

-

equ.E = {'2.0ell','E','1el0'};% <--- E-mods
('""air"', 'plate’', 'studs')
equ.rho = {'7850', 'rho','500"'};% <--- Densities

('""air"', 'plate’', 'studs')

equ.alphadM = {'1','0','0"};

equ.betadkK = {'0.001','0.02/omega','0.02/omega'};% <--- Damping
('""air"', 'plate’', 'studs')

equ.materialcoord = {'global', 'global', 'global'};
equ.materialmodel = {'iso','iso', 'iso'};
equ.hardeningmodel = {'iso', 'iso', 'iso'};
equ.yieldtype = {'mises', 'mises', 'mises’'};
equ.isodata = {'tangent', 'tangent', 'tangent'};
equ.ETkin = {'2.0el10','2.0el10','2.0el0"'};
equ.ETiso = {'2.0el10','2.0el0','2.0el0"'};

equ.Sys = {'2.0e8','2.0e8"','2.0e8'};

equ.Syfunc = {'mises pn', 'mises pn', 'mises pn'};
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equ.Syfunc kin = {'misesKin pn', 'misesKin pn', 'misesKin pn'};

equ.Shard = {'2.0el10/(1-2.0el0/2.0ell)*epe pn','2.0el0/ (1-

2.0el0/2.0ell) *epe pn','2.0el0/(1-2.0e10/2.0ell) *epe pn'};

equ.
equ.
equ.
.exyli =
equ.
equ.
equ.
equ.
equ.
equ.
equ.
equ.
equ.
equ.
equ.
equ.
equ.
equ.
equ.
equ.
equ.

equ

equ
equ

0.33)"

2*0
2*0

0.33)"

2*0
2*0

0.33)"

2*0
2*0
2*0
2*0

0.33)"

2*0
2*0

0.33)"

2*0
2*0
2*0
2*0

equ.
equ.
equ.
equ.
equ.
equ.
equ.
equ.

sxyi

sxi
exi
syi
eyi
szi

alph
nu =
Gxy

Ex =
nuyz

Ey =
nuxz

.Ez =
.D =

.33

.33

.33)
.33))
.33))
.33))

.33
.33)
.33)
.33)

)

)
)
.33))

Fx =

FxPh

ezi =

a

nuxy =
alphax
{ A}

alphay
{ A\l

alphaz
{'2.0ell1','2.0ell1','2.0ell"'};

ini stress = {'0','0','0"};
ini strain = {'0','0','0"};

{'O','OV,VO'};

{'O','OV,VO'};
{'O','O','O'},‘
{'O','O','O'};
{lOl,lOl,lOl};
{'O',VOV,VO'};
{'O',VOV,VO'};
{'O','O','O'},‘

= {'l.2e-5"',"'1.2e-5","'1.2e-5"};
{'0.33','0.35",'0.35"};

{'7.52e10','7.52e10"',"'7.52el10"};
{'0.33",'0.33",'0.33"};
{'1.2e-5","'"1.2e-5","'1.2e-5"};

.0ell','2.0ell"','2.0ell"};

'0.33','0.33"','0.33"};
{'1l.2e-5","'1.2e-5","'1.2e-5"};

.0ell','2.0ell','2.0ell"};

'0.33','0.33",'0.33"};
{'1.2e-5","'1.2e-5","'1.2e-5"};

=N~ |

{{'2.0ell/ ((1+0.33)*(1-2*%0.33)) *(1-

*0.33','2.0ell/((1+0.33) *(1-
*0.33','0';'2.0ell/((1+0.33)* (1-
*0.33','2.0el1l/((1+0.33)*(1-2*0.33)) * (1-

,'2.0el1l/ ((1+0.33)*(1-2*%0.33))*0.33",'0';'2.0ell/((1+0
.33))*0.33",'2.0ell/ ((1+0.33) * (1-

))*0.33','2.0el1l/((1+0.33)*(1-2*0.33))* (1~
'0';'0','0','0",'2.0ell/ ((1+0.33)*2) "}, {'2.0ell/ ((1+0
) *(1-0.33)"','2.0ell/((1+0.33)* (1-

*0.33','2.0el11/ ((1+0.33)* (1-
*0.33','0';'2.0e11/((1+0.33)*(1-
*0.33','2.0el1l/((1+40.33)*(1-2*%0.33)) *(1-
0.33)','2.0el1l1/((1+40.33)*(1-2*0.33))*0.33"','0';'2.0ell/((1+0
2*0.33))*0.33"','2.0ell/ ((1+0.33)*(1-
2*¥0.33))*0.33','2.0ell/((1+0.33)*(1-2*%0.33)) *(1-
0.33)','0"';'0','0','0"','2.0e11/((140.33)*2)"}};
equ.alphavector = {{'1.2e-5";"'1.2e-5"';'1.2e-5";'0"},{'1.2e-5";"1.2e-
5';'1.2e-5";'0"},{'1.2e-5"';"'1.2e-5";"'1.2e-5";'0"}};

thickness = {'1','1',"'1"'};
{'O','O','O'};
FxAmp = {'1','1','1"};

{lOl,lOl,lOl};
VOV,VOV,VO'};

= {‘l‘,‘l','l'};

{'Ol,lol,lol};

loadcoord = {'global', 'global', 'global'};
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equ.Tflag = {'0','0"','0"};
equ.Temp = {'0','0','0"};
equ.Tempref = {'0','0','0"};

equ.loadtype = {'volume', 'volume', 'volume'};
equ.constrcoord = {'global','global', 'global'};
equ.constrtype = {'standard', 'standard',6 'standard'};

equ.H — {{'O','O';‘O‘,'O'},{'O','0';'0‘,‘0‘},{‘0‘,‘O‘;‘O‘,‘O'}};
equ.R = {{'0';'0"},{'0";'0"},{'0";'0"}};

equ.Rx = {'0','0','0"};

equ.Hx = {'0','0','0"};

equ.Ry = {'0','0",'0"};

equ.Hy = {'0','0','0"};

equ.ind = [2,3,2,1,3,1,3,1,3,1,3,1,31;

appl.equ = equ;

appl.var = {'freq',6 "freq'};

fem.appl{l} = appl;

o)

% Application mode 2 (Acoustics)

clear appl
appl.mode.class = 'Acoustics';
appl.mode.type = 'cartesian';

appl.dim = {'p','p t'};
appl.sdim = {'x','y','z"'};

appl.name = 'aco';

appl.shape = {'shlag(2,"'"'p'") "'},
appl.sshape = 2;

appl.border = 'off';
appl.assignsuffix = ' aco';

clear prop

prop.elemdefault="'Lag2';

prop.analysis='harmonic';

prop.weakconstr=struct ('value',{'off'}, 'dim’', {{"'Im5"', '1Im6"'}});
appl.prop = prop;

clear bnd

bnd.po = {‘O‘,‘O‘,‘O‘,'O','O','O'};

bnd.zZ =
{'1.25%343"','1.25*%343","'1.25*%343",'1.25%343","'1.25*%343"','1.25*%343"};
bnd.nacc = {'0','0',"'-a wall', 'a wall','a wood', '-a wood'};

bnd.x0 = {vov’vov,vov,vov,vov,vov};
bnd.yO — {'O','O','O','O','O','O'};

bnd.gs0 =
({70770}, {1070}, {10 ;70 ), {"0";"0"}, {00}, {'0"; 10"} };
bnd.kdir = {{'-nx';"'-ny'},{'-nx';'"-ny'},{'-nx';'"-ny'},{"'-nx"'; '~

A}

ny'}, {'-nx";'"-ny'},{'-nx"';"'-ny'}};

bnd.type = {'SS','cont','NA','NA', 'NA', 'NA'};

bnd.wavetype = {'PL','PL','PL','PL','PL',"'PL"};

bnd.ind =
[1/1/1/2111211151413/6/212151413161212151413/612121514131612121514131
6,2,2,1,1,11;

appl.bnd = bnd;

clear equ

equ.shape = {[1]1,[1]};

equ.gporder = {{4},{4}};

equ.cporder = {{2},{2}};

equ.init = {{'0';'0"},{'0';'0"}};

equ.usage = {1,0};

equ.rho = {'1.25','1.25"};

equ.cs = {'343"','c'};% <--- Speed of sound ('"structure"',K6 'air')
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equ.gs = {{'0';'0"},{'0"';'0"}};
equ.ind = [2,2,2,1,2,1,2,1,2,1,2,1,2]1;
appl.equ = equ;

appl.var = {'freq',6 "freq', 'p ref','20e-6"};

fem.appl{2} = appl;
fem.sdim = {'x','y'};
% Simplify expressions
fem.simplify = 'on';
fem.outform = 'weak';

% Boundary expressions
clear bnd
bnd.ind =

(,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1, 1,

1,1,1,1,1,11;
bnd.dim = {'u','v','p'};
bnd.var = {};

bnd.expr = {'a wall', {'-omega”2*v'},'a wood', {'-omega”2*u'}};

fem.bnd = bnd;
fem.bnd = bnd;

o

oe

different incident angles.

e

for ii=l:length (ang);

o

% Global expressions

Loop for calculating the velocities of the radiating boundary for

fem.expr = {'omega', '2*pi*freq’','k','2*pi*freq/343"', " 'theta’',ang(ii)};

Q

% Functions
fem.functions = {};

% Multiphysics
fem=multiphysics (fem) ;

[}

% Extend mesh

fem.xmesh=meshextend (fem, 'geoms', [1], 'egvars', 'on',

plbndsh', 'off');

% Solve problem

fem.sol=femlin (fem,
'method', 'eliminate',
'nullfun', 'flnullorth',
'blocksize', 5000,
'complexfun', 'off',
'conjugate', 'off"',
'symmetric', 'off’,
'SOlCOH‘lp',{'U', vpv, VVV}
'outcomp', {'v'},
'rowscale','on',
'pname’', 'freq',
'plist', [f],
'porder',1,
'nonlin', 'off"',
'linsolver', '"umfpack',
'thresh',0.1,

oo ~
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{|u|,|p|,|v|}

<--- FEM SOLVER



'umfalloc',1, ...% <--— MEMORY ALLOCATION (0.1-1)
'uscale', 'auto');

% Extraction of the velocity from the solution
v (ii)=posteval (fem, 'v_t','cont','on', 'refine', 1, 'edim’',1, ...
'dl', 2, 'solnum', [l:1length(f)1]);

end

oe
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velo data=zeros (length (v (1l) .p),length(f), length(v));
for ii=l:length(v);

velo data(:,:,ii)=[v(ii).d"];
end

velo=struct ('info', {'Point velocity for different freqgs and angles,
velo.data=[points, freq,angle], velo.p=[point x-coord]'}, ...
'data',velo data, 'p',x);
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function [W in,W out]=W calc(velo,ang,f);

Calculation of the input and output power:

o°

o

Calculation of the distance from point on the plate to the
points on the half sphere around the radiating plate

oe

e

d=abs (velo.p(2)-velo.p(l));
mesh=length (velo.p);

r=10;

n=[1:mesh];

phi=pi/mesh* (n-1);
rho=1.21;

c=343;

delta x=r*pi/mesh;

W _in=zeros (length(ang),length(f));
pnt dist=zeros (mesh,mesh);
l=linspace (-velo.p (round (mesh/2)),velo.p (round (mesh/2+1)),mesh);

% The cosine law
for ii=l:length(phi);
pnt dist (ii,:)=sqrt(r*2+1.72-2*r*1*cos(phi(ii)));

% Calculation of input power and, output power via the Rayleigh
integral

for rr=1l:1length(ang);

% Rayleigh
data 2=velo.data(:,:,rr);
p=zeros (mesh, length (f) ,mesh) ;

for ii=1:mesh;
Rm=pnt dist(ii,:);
for iii=l:length(f)
k=2*pi*f (iii)/c;
p(:,iii,ii)=2*%pi*f(iii)*rho/2*data 2(ii,iii,1)*...
(i/pi*sqrt (2*pi) ./sqgrt (k*Rm) .*exp (-
i* (k*Rm+pi/4))) '*d;
end
end

p_pnt=sum(p, 3); S%pressure in each point with contribution from all
points

% Output power
W out(rr,:)=delta x/(1.21*%343*2)*sum(abs(p_pnt).”"2,1);

% Pressure on sending side
theta=ang (rr); %angle of insidence
k=2*pi*f/c;

p_send=zeros (length(velo.p),length(f));
for ii=l:length(velo.p);

p_send(ii, :)=exp (i*k*cos (theta*pi/180) *velo.p(ii));
end
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g=p_send/ (rho*c) *d*sin(theta*pi/180); % flow velocity

o)

% Input power
for ii=l:length(f);

W in(rr,ii)=abs(sum(0.5*real (p send(:,1ii).*conj(g(:,11)))));
end
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