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ABSTRACT 
In signal processing, the most widely used digital filter type is the Finite Impulse Response 
(FIR), mainly for its guaranteed stability. However, these filters requiring a higher order for 
the same specification compared with its recursive correspondence, the Infinite Impulse 
Response (IIR) filter. The order can be seen as required number of adders, multipliers and 
memory for the filter. In Application Specific Integrated Circuits (ASIC) and Field 
Programmable Gate Arrays (FPGA) applications, especially number of multipliers is 
desirable to keep low due the extensive logic. Hence, signal processing with FIR filters will 
result in a large amount of silicon or gates used. This thesis proposes two recursive filters, the 
Cascaded Integrator Comb- (CIC) filter and the Wave Digital Filter (WDF), where the former 
is used mainly for interpolation- or decimation. The CIC is a recursive moving average filter 
which is multiplier free, consisting only of two building blocks and has a linear phase. The 
WDFs simulates an analog lossless network, such as the ladder- or the lattice structure by 
using the bilinear transform and voltage waves as signal parameters. For fair comparison of 
the filters, methods for estimating the hardware cost are developed. A FIR halfband filter is 
also included and may be seen as a reference in both hardware cost and performance. For 
comparing performance Error Vector Magnitude (EVM) and Adjacent Channel Leakage 
Ratio is used, according the method described in 3GPP (3rd Generation Partnership Project). 
Moreover, interpolation and decimation is handled in a mathematical way to show the 
importance of using good lowpass filters in multirate systems. 
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1 Introduction 
 
The main purpose of this thesis is to evaluate other filters than the commonly used FIR (Finite 
Impulse Response) filters, this to broaden the knowledge of the subject in the department. In 
order to do this, and narrow it down, we would like to answer a more concrete question: is 
there a better way of designing the down- and uplink filter chains than the solution used today.  
 
FIR filter has the advantages that they are easy to design, easy to implement and above all, 
they are always stable. The main disadvantage of using these filters, are the cost of the 
hardware, which is the main drive to look at other filters. 
 
In order to evaluate the filters we will use a test matrix with requirements of EVM (Error 
Vector Magnitude) and ACLR (Adjacent Channel Leakage Ratio) values. To do an estimation 
of the hardware cost we will calculate how many adders, multipliers and memory there will 
be a need of in every filter. 
 
The downlink filter chain that will be evaluated consists of one RRC (Root Raised Cosine) 
filter and four half-pass interpolation filters. The purpose of the RRC filter is to shape the 
input signal and is basically an ideal low pass filter. The total interpolation factor of the chain 
is 32, multiples of interpolation with two. Meaning, when the input signal has a sample rate of 
3.84 MHz the outgoing up-sampled rate is 122.8 MHz. The two filter types that will be 
evaluated are the CIC (Cascaded Integrator Comb) filter and the WDF (Wave digital filter) as 
illustrated in Figure 1-1. 
 
 

 
Figure 1-1: Interpolation chain  
 
 
The reader of this thesis is supposed to have basic knowledge of signal processing and 
electronics. The thesis will start with a theoretical part about multirate filtering, CIC and 
WDF theory and an explanation of the evaluation tool used. After this the empirical part, i.e. 
the results, will follow. The report will thereafter be summarized in discussion and 
conclusions. 
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1.1  Multirate systems 
A multirate system can be explained as a system with multiple sample rates. It increases or 
decreases the sample rate in a system. The reason to use multiple sample rates is twofold. For 
example, if two subsystems are running at different sampling rates and are supposed to work 
together, then a rate conversion is required. But the most and common reason to use multiple 
sample rates is the possibility to greatly increase processing efficiency, which reduces the 
hardware cost in the system. Hence, multirating is simply the technology of changing 
sampling rates. Multirate consists of three parts; interpolation, decimation and resampling. 
 

1.1.1  Interpolation 
Upsampling is the process that inserts 1−L  zero-valued samples between the original 
samples which also adds undesired spectrum mirror images of the signal centered at multiples 
of the original signal’s sample-rate. Interpolation is upsampling followed by an ideal lowpass 
filter to remove the mirrors, as illustrated in Figure 1-2. The filtering process is needed, 
otherwise the signal is distorted.   
 
 

 
 
Figure 1-2: Sampling rate increase by L with interpolation. 
 
 
An ideal interpolator can be described as 
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To accomplish this digitally, consider the input signal )(nx into the upsampler which give the 
output signal according 
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The z-transform of )(mxL  is given as 
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Evaluating ( )zX L  on the unit circle, ωjez = , gives the Fourier transform of the input signal’s  
spectrum as given as 
 

( ) ( )ωω LXX L =  (1-4)
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Hence, upsampling creates undesired mirror images in the spectrum which can be removed by 
a lowpass filter according 
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which in the frequency domain will look as 
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where the frequency response for a lowpass filter is 
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The interpolation process is shown in Figure 1-3. 
 
 

 
 
Figure 1-3: Interpolation by two. 
 
 
Furthermore, an interpolation process can be done in multiple stages, which are sometimes 
more economical. The restriction is that the interpolation factor not is a prime [2].  
 

1.1.2 Decimation 
Downsampling is the process that removes M-1 samples from the input-signal. If the input-
signal has frequency components outside the low-rate Nyquist frequency, aliasing will occur. 
Hence, a lowpass filtering before the downsampling is needed to avoid distortion of the 
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output signal. A decimation process is a lowpass filtering followed by downsampling, as 
illustrated in Figure 1-4. 
 
 

 
 
Figure 1-4: Sampling rate decrease by M with decimation 
 
 
It is of interest to see the impact of using a non-ideal lowpass filter with a signal that has 
frequency components outside the low-rate Nyquist frequency, 2'

sF . For a more explained 
derivation, refer to [2]. 
 
First )(nw  can be written as 
 

( ) ( )knxkhnw
k

−= ∑
∞

−∞=

)(  (1-8)

 
and let )(nw′ be defined according to 
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Hence, for ( )nwnw =′ )(  at all sampling instances at ( )ny , otherwise zero. An impulse-train 
expressed in a discrete Fourier series can be used to express )(nw′ , given by 
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where the term in brackets corresponding to the Fourier representation. Now it can be stated 
that ( ) ( ) ( )MmwMmwmy =′= . 
 
The z-transform of ( )my  is given by 
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where )(mw′  is zero at all sampling instances, expect for multiples of M , which gives 
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It is clear that ( ) ( ) ( )zXzHzW =  and ( )zY  can be expressed according 



9 
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This equation can be rewritten to evaluate ( )zY  on the unit-circle, as given by 
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where ω′= jez and '2 sfTπω =′ .  
 
This expresses the output signal ( )my  of the aliased components of the filtered input 

signal ( )nx .  
It can also be expressed as given by 
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It is desirable that ( )ωjeH  rejects the spectral components above the frequency Mπω = since 
otherwise these will be folded into the information band. Hence, ( )ωjeH  acts as an anti-
aliasing filter. 
 
If ( )ωjeH  are ideal, then 
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The decimation process is shown in Figure 1-5. 
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Figure 1-5: Decimation by two with an ideal lowpass filter which results in no aliasing.  
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1.2  Pulse shaping 
Inter Symbol Interference (ISI) is present in both wired and wireless communication systems, 
as shown in Figure 1-6. Very shortly it can be described as when some of the energy in one 
symbol leaks into others which may destroy the signal. 
 
  

( )tx ( )tw
( )ty

 
Figure 1-6: Transmission system. 
 
Consider a signal, as illustrated in Figure 1-7, with the sequence which is generated by nearly 
ideal square-waves due the rise- and fall time in the hardware. 
    
  

t

( )tx

1

2

3 4

5

x x x

x  
Figure 1-7: A data sequence }0,1,1,0,1{  described by the dashed line is sent. 
 
The transmission medium will create tails of all symbols as shown in Figure 1-8. The size of 
tails depends on the medium. 
 

1

2

3 4

5

t

( )tw

 
Figure 1-8 : The energy in the signal is spread in time. 
 
At each sample the receiver will take the sum of the present and the former samples. The 
received signal is not what was sent, as illustrated in Figure 1-9. 
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t

( )ty

 
Figure 1-9: The received signal 
 
Hence, the signal in the receiver may contain errors. Symbols which are represented by 
square-waves in the time-domain or equivalently sinc-waves in the frequency domain have 
large bandwidth and much ISI. To reduce that unwanted effects, the most straightforward way 
is to slow down the transmission. But slowing down the transmission is not an option these 
days where speed is a key to success. The solution is to pulse-shape the signal which means to 
find a waveform that has a small bandwidth per symbol with minimal ISI. 
 
The optimal solution would be to sinc-shape the signal in time-domain which results in a 
brick-wall in the frequency-domain, with bandwidth of Hz21 per symbol and no ISI. But 
sinc-shaping a signal is impossible, due the infinite length of the filter. 
 
Instead, Nyquist introduced realizable shapes that had the same desirable properties as the 
sinc-shape. One of these are the Raised Cosine (RC) filters which have zero crossings where 
the adjacent symbols are suppose to occur, which also is known as the Nyquist pulse criterion 
for zero ISI  [5]. 
 
Instead of using a single RC-filter on either the transmitter or the receiver side, the common 
way is to take the square root of the frequency response of the RC-filter and put the 
corresponding filter, simply named as Raising Root Cosine (RRC) filter on each side as 
shown in Figure 1-10.  
 

 
 
Figure 1-10: Common solution of pulse-shaping using RRC-filters. 
 
 
The most straightforward way to design a RRC-filter is to either design in the time domain by 
any of the known formulas, or in frequency domain by using the definition of the RRC 
response and then use the inverse Discrete Fourier Transform (DFT) to obtain the coefficients.  
 
The general RRC-filter impulse response can be defined according [7]. 
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where t  is the time index, T  is how many times faster the filter is operating than the chip-rate 
andα is the ratio of excess bandwidth past the 3dB point of the total bandwidth of the RC-
filter. The frequency response for an 20  order RRC-filter and its corresponding RC-filter are 
shown in Figure 1-11, where 2=T  and 20.0=α . 
 

 
Figure 1-11: Frequency response for a RRC- and its corresponding RC-filter. 
 
When designing the RRC-filters it is necessary to make the roll-off factor α as small as 
possible, due the often limited bandwidth resource. Furthermore, a high order results in a less 
ripple in passband and more rejection in stopband. It may also be valuable to apply a window, 
such as a Kaiser- or Blackman type. 
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1.3 The Cascaded Integrator Comb filter 
The CIC-filter is a multiplier free filter and use limited storage which is very good in an 
economical perspective. It was introduced by Eugene B. Hogenauer for over two decades ago 
and is used for interpolation and decimation. Furthermore, the filter do not require any storage 
for the filter coefficients, can be designed with only two basic building blocks and it is 
possible to use the same design for different rate changes. Unfortunately, the filter has an 
undesired passband droop due to the boxcar characteristic which often leads to use of a 
conventional FIR filter for compensation. Furthermore, the designer has only three design 
parameters resulting in a limited desirable frequency response.   
 

1.3.1 The relationship to the Boxcar filter 
A moving average filter is a filter whose task is to reduce unwanted random white noise. It 
calculates the average sum of M previous samples and has difference equation according to 
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This filter is optimal to reduce noise (smoothing) but is poor to separate different bands in the 
frequency domain (i.e. lowpass filtering). Great performance in the time domain results in bad 
performance in the frequency domain. If the average part is removed then the equation can be 
written as 
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Equation (1-19) describes a Boxcar filter, which are a filter where all coefficients are unity, i.e. 
1.0. These kinds of filters do not involve any multipliers and is therefore very computable 
efficient filters. The frequency response of the filter, which is shown for various lengths in 
Figure 1-12, and is given by 
 

( ) ( )
( )2sin

2sin
ω
ωω MeH j =  (1-20)
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Figure 1-12: Frequency response for Boxcar filters with different lengths. 
 
As just mention, the Boxcar filter is not a really good lowpass filter due the poor stopband 
rejection and its slow roll-off. However, the filter does not require any multipliers and that is a 
really desirable property among ASIC- and FPGA designers. Hence, it is of big interest to see 
if the Boxcar filter can be modified to work in a lowpass process with a more definite 
specification. 
 

1.3.2  The recursive form 
When considering the difference equation for the Boxcar filter the process can be stated as: A 
new sample, [ ]nx  arrive and the old samples [ ] [ ]11 +−→− Mnxnx  in the register is shifted to 
make room for the new one, which discarding the sample [ ]Mnx − . Then the output [ ]ny  is 
the sum of the data in the register. This process is repeated each time a new sample arrive to 
the input of the filter. However, for every output there are 1−M  required additions, which 
may be a big cost if M is large. It turns out that the filtering process can be made recursive 
according to 
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11
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Each output sample is now requiring only two additions compared with 1−M  in the standard 
form, which are a pretty good improvement. This form is also known as the CIC filter, the 
first “C” stands for cascaded and the integrator is the “I” and the comb is the second “C”. 
Block diagrams of the CIC is shown in Figure 1-13 and its Boxcar equivalence as well. 
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Figure 1-13: The original Boxcar structure and the two corresponding CIC structures.  
 
The comb and integrator blocks are LTI systems and hence they commute. 
 
The z -transform of the last term in equation (1-21) gives the transfer function according to 
equation (1-22) which can further be expressed to better describe the pole- and zero 
placements. 
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The last term shows that the pole at the positive real axis is cancelled by the zero at the same 
location which also is illustrated in Figure 1-14 for a fixed M . 
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Figure 1-14: Pole and zero locations for a CIC filter where the zeros are located on the unit circle and the 
poles in the origin.  
 
It may be interesting to study the cancellation and the impact when it is not applied. The first 
term in equation (1-22), which is the transfer function of the CIC filter, does not involve any 
cancellation at all. That will result in an internal state, denoted [ ]nw  in Figure 1-15, which is 
not present in the original Boxcar filter. Consider the case for a step response in the Boxcar 
filter and for a CIC filter. Both will have identically responses, also when the comb and the 
integrator is reordered. It looks like the CIC filter is stable but unfortunately it is not. The 
integrator in the latter case is on the way to infinity causing overflow. 
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Figure 1-15: Step response for the Boxcar filter and the CIC filter with reordering of comb and integrator.  
 
 
An impulse response will give similar result, the original impulse circulates in the integrator 
but the summation in the comb stage results in zero at the output. Hence, the CIC filter is 
stable from the overall perspective but not internally. Fortunately, the overflows will not 
cause any problem, which will be handled in section 1.3.5. 
 

1.3.3 Interpolation and decimation with the CIC filter 
As stated before, interpolation means upsampling followed by lowpass filtering. Decimation 
means lowpass filtering followed by downsampling. Ignoring the fact that the CIC filter is not 
a good lowpass filter, insert an R upsampler for interpolation before the CIC filter and put an 
R downsampler after the CIC filter for decimation, as shown in Figure 1-16. 
 
It is allowed to reorder the comb and the resampler due the noble identity [5]. It yields two 
major benefits by performing that operation:  
 
- The comb new delay is decreased to RM , which will reduce storage requirements. 
- The comb is now running at the low clock rate which will reduce power consumption. 
 
Hence, when ordering this way the comb is always running at the low clock rate and the 
integrator always running at the high clock rate. That is valid both for interpolation and 
decimation.   
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Figure 1-16: Interpolation- and decimation with the CIC filter, and its equivalence 
 

1.3.4 Frequency characteristic and improve of stopband rejection 
The frequency response of the filter is determined by evaluating its transfer function on the 
unit-circle at the z-plane.  
 
The transfer function is given as 
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By setting ωjez = , yields 
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Eulers identity is defined as 
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Substitute equation (1-25) into (1-24), yields  
 

( ) ( )
( )

( ) ( )
( )2sin

2sin
2sin2
2sin2 21

2

2

ω
ω

ω
ω ω

ω

ω
ω Me

j
Mj

e
eeH Mj

j

Mj
j −−

−

−

== (1-26)

 
The amplitude function of the frequency response can now be expressed as  
 

( ) ( )
( )2sin

2sin
ω
ωω MeH j =  (1-27)

whereω  is relative to the high sample-rate. 
It is not a coincidence that the frequency response of the CIC filter is exactly the same as for 
the Boxcar filter. Again, the CIC is just a recursive form of the Boxcar. It is of a great interest 
to see if it is possible to improve the stopband rejection. That can be accomplished by 
cascading a number of CIC filters, as showed in Figure 1-17. 
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Figure 1-17: A two stage interpolator CIC filter 
 
 
The frequency response for a multiple stage is then given by 
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where N is number of stages and the frequencyω  is relative to the high sample-rate. 
 
 
 

 
Figure 1-18: CIC with different stages and corresponding rejection of spectral components. 
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The imaging or aliasing occur in the regions around the nulls. More rejection in stopband 
results in smaller spectral images or aliasing. Furthermore, if the number of stages, N is 
increased it will result in an undesired increase of passband “droop” and an undesired increase 
of net gain which also are dependent of the delay in combs, M . Now, let RDM = where R is 
rate change and a differential delay, D . The differential delay can be used to set the null 
placements but are in practice usually held to 1=D or 2  [6]. 
 
 

 
Figure 1-19:The differential delay set the placements of nulls. 
 
An increase of differential delay will cause an even faster passband “droop” but results in a 
moderate increase of the stopband rejection which may not payoff. One important thing is that 
the relative bandwidth of the signal determines when it is profitable to use the CIC filter. 
Clearly, if the bandwidth is small it will result in a relative flat passband, high rejection of 
imaging or aliasing components. In [6], values of passband attenuation and rejection of 
imaging or aliasing components is determined, according Table 1-1 and 1-2. 
 
Table 1-1: Passband attenuation for large rate change factors 

Passband Attenuation at cf (dB) as a function of 
Number of stages, N  

Relative bandwidth-Differential delay 
product ( cDf ) 

1 2 3 4 5 6 
1/128 0.00 0.00 0.00 0.00 0.00 0.01 
1/64 0.00 0.01 0.01 0.01 0.02 0.02 
1/32 0.01 0.03 0.04 0.06 0.07 0.08 
1/16 0.06 0.11 0.17 0.22 0.28 0.34 
1/8 0.22 0.45 0.67 0.90 1.12 1.35 
1/4 0.91 1.82 2.74 3.65 4.56 5.47 
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Table 1-2: Imaging or aliasing attenuation for large rate change factors 
Imaging or aliasing attenuation at clowIA fff ±=  as a function of 
number of stages, N  

Differential 
delay ( D ) 

Relative 
bandwidth 
( cf ) 1 2 3 4 5 6 

1 1/128 42.1 84.2 126.2 168.3 210.4 252.5 
1 1/64 36.0 72.0 108.0 144.0 180.0 215.9 
1 1/32 29.8 59.7 89.5 119.4 149.2 179.0 
1 1/16 23.6 47.2 70.2 94.3 117.9 141.5 
1 1/8 17.1 34.3 51.4 68.5 85.6 102.8 
1 1/4 10.5 20.9 31.4 41.8 52.3 62.7 
2 1/256 48.1 96.3 144.4 192.5 240.7 288.8 
2 1/128 42.1 84.2 126.2 168.3 210.4 252.5 
2 1/64 36.0 72.0 108.0 144.0 180.0 216.0 
2 1/32 29.9 59.8 89.6 119.5 149.4 179.3 
2 1/16 23.7 47.5 71.2 95.0 118.7 142.5 
2 1/8 17.8 35.6 53.4 71.3 89.1 106.9 
 
Table 1-1 and 1-2 is derived from an approximation of the frequency response and are equal 
for large rate change factors, i.e. 10≥RD . It may still be used for an indication of impact of 
the design parameters and the relative bandwidth of the signal. For example, by using Table 
1-1 and 1-2 an interpolation by 10  of a signal with relative bandwidth 4/1=cf with a 
minimum attenuation in stopband of dB60  needs a six stages CIC filter, 6=N . Furthermore, 
droop in passband is then dB47.5 . To summarize, the transfer function for a CIC filter gives 
by  
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and its frequency response is 
 

( ) ( )
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N
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ω
ωω =  (1-30)

 
Hence, it is three design parameters in the CIC filter, the rate change factor, R , the differential 
delay, D and number of stages, N .  
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1.3.5 Overflow and bit-growth 
A block diagram of the CIC interpolation- or decimation filter with arbitrary stages is shown 
in Figure 1-20.  
 

 
 
Figure 1-20: CIC interpolation- and decimation filter with arbitrary stages 
 
 
The integrator in a CIC decimation filter has a unity feedback coefficient and will results in a 
register overflow in all integrator stages in the filter. However, it will not be a problem if two 
conditions are met [6]. 
 

1. The filter is implemented with a number system which allows “wrap-around”. 
2. The maximum output value from the composite filter is less or equal than the range of 

the number system. 
 
Integrators in interpolators will not be affected by overflow, due the data are preconditioned 
by the comb stages and resampler [6]. The maximum gain in a comb or an integrator is 
depending of its input sequence. For an interpolator, the gain with respect to a sequence which 
generate maximum gain at each filter stage is 
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which gives the required data width at the i:th stage according to 
 

( )[ ]iini GBW 2log+=  (1-32)
 
where inB is the input data width. 
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Hence, when designing an interpolation filter, the minimum data width at each register gives 
by equation (1-32). If differential delay is one, then the data width of the last comb is larger 
than the first integrator. A special condition for the last comb can be stated as [6]. 
 

[ ] 1=+= DifNBW inN  (1-33)
 
The data width in the output stage is according 
 

( ) ( )[ ]RRDNBB inout 22 loglog −+=  (1-34)
 
Rounding can not be applied in interpolation CIC filters, except in the last integrator, due the 
small errors grows without bound in the integrator stages, which result in an unstable filter [6]. 
For a decimation filter, the output gain is 
 

( )NRDG =  (1-35)
 
and the output data width is 
 

( )[ ]RDNBB inout 2log+=  (1-36)
 
To prevent data loss it is required that each integrator and comb has a bit-width of outB . 
However, by using a pruning technique, described in [6][5], it is possible to reduce the bit-
width at specific stages that will lead to a more efficient implementation. 
 

1.3.6 Compensation filter 
In most applications it is required to have a flat passband, otherwise the original signal may 
be destroyed. Unfortunately, the CIC filter alone suffers with a passband droop, which in 
many cases, cannot be accepted. The big droop is due the sinc-like characteristic of the filter. 
Hence, it is of a great interest to get a flat passband using a compensation filter. 
 
The compensation filter will take the form of the inverse of the CIC filter frequency response 
in the passband, and attenuate as much as possible in the stopband. The last statement is 
optional, the compensation filter may be used for further interpolate or decimate, which may 
be good where the relative bandwidth are too wide. If the compensation filter is also used for 
interpolation or decimation, then the desired frequency response is given as  
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An example of the resulting frequency response is illustrated in Figure 1-21.    
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Figure 1-21: The compensation filter effectively compensates the undesired “droop” in the passband. 
 
When number of stages or a differential delay in the CIC is increased it will cause higher 
demands on the compensation filter, because more correction is needed. Likewise when 
increasing the passband as well. The demands have a direct impact on the length of the 
compensation filter, which will lead to undesirable multipliers, adders and memory. 



26 

1.4 Wave Digital Filters 
Infinite Impulse Response (IIR) filters are possible to implement both as analog and digital. 
However, it is very hard to design digital IIR filters because very few methods are available. 
On the other hand, for analog IIR filters, there exist a lot of design methods, techniques, 
approximations and software. Hence, when designing an IIR digital filter an analog 
counterpart is first designed (i.e. Chebyshev filter, Butterworth filter or Cauer filter). Then, a 
discretization technique is used such as the bilinear transformation or the impulse invariance 
to obtain the corresponding IIR digital filter.  
 
Moreover, a digital IIR filter require a less order for the same specification compared with a 
FIR filter and will result in a cheaper hardware cost. It seems that there is no need for FIR 
filters when design methods and transformations for IIR filters are available. Unfortunately, 
there are a lot of problems associated with IIR digital filters. In the digital domain, the 
coefficients and data is under finite precision arithmetic which may result in overflow of the 
number range, parasitic oscillations, round-off errors and coefficient errors or all in all, a 
possible unstable filter. 
 
However, a given transfer function can be realized in different structures. For infinite 
precision arithmetic all structures produces the same output for a given input. But under finite 
precision arithmetic different kinds of errors may occur, as mention earlier. The best structure 
is a trade-off between many different aspects such as stability, coefficient sensitivity and other 
quantization effects. Hence, the problem is how to find a good filter structure for the 
application.  
 
Here is an introduction of a different way of designing digital IIR filters. The theory was first 
introduced by Alfred Fettweis in the seventies but has not been very used in implementations 
from then on. The explanation is something that will be discussed later on in the chapter. 
These kinds of filters are called Wave Digital Filters (WDF). The literature seems to be very 
limited, but for the interested reader [3][18][11] may be valuable. 
 
The difference with the classical IIR filter design method is that instead of first making the 
bilinear transformation between the domains and thereafter trying to come up with a good 
filter structure, now make the structure in the analogue domain with lumped elements and 
then transforming the whole structure to the z-domain. By doing this it is possible to use 
known design methods, approximations and software that are used in analogue filter design. 
 
The theory is however quite hard to understand. To overcome this problem, having to 
understand the theory before actually using the filters, [4] can be used, where explicit 
formulas for designing lattice wave digital filters are explained. It is widely known that 
lossless filters inserted between resistive terminations have good properties. Some of these 
properties that are inherited from the analogue filters when using WDFs are [18]:  
  

• Guaranteed stability 
• Low sensitivity in passband 
• Regular and modular 

 
The work flow when designing a wave digital filter is different to the classical approach as 
seen in Figure 1-22. The main difference is that the structure is designed directly when 
dimensioning the analogue filter. When doing this the problem come up that one can not 
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directly use the bilinear transformation as in the classical filter dimension approach. Instead it 
is necessary must use transmission lines and then map the design to the digital domain.  
 
 

 
 

                 
Figure 1-22: Work flows of a classical IIR filter dimension and WDF filter dimension. 
 
A WDF is realized using a reference filter. The reference filter is typically a ladder or lattice 
network realized with transmission lines as shown in Figure 1-23. The transmission lines have 
the special property that the frequency is periodic, as with digital circuits.  
 
Next chapters will explain the theory behind the WDF and how the workflow from going to a 
frequency specification to a filter structure with the desired properties as a WDF has. The 
building blocks of a WDF will be derived using wave theory. The end result will be a 
recursive filter with adders, multipliers and delays as any digital filter. It is the structure that is 
of interest. How to come up with the structure and the filter coefficients is the somewhat 
tricky part. However, there are designed structures and formulas available [4].  
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Figure 1-23: A ladder filter realized as a transmission line filter and its digital correspondence 
 

1.4.1 Wave theory 
When simulating an analog circuit, one would first think of selecting the voltages and currents 
as the signal parameters and then using the bilinear transform to receive the digital 
correspondence.  
 
By applying the strategy of using voltages, currents and the bilinear transformation, it will in 
general results in unrealizable structures due delay-free loops [3], i.e. feedbacks with no delay.  
 
However, by transforming voltages and currents into voltage waves and then applying the 
bilinear transformation, the problem of delay-free loops will disappear.  
 
The steady-state voltage waves for the one-port network in Figure 1-24 are defined according 
to  
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where A  is the incident wave, B is the reflected wave and R is a positive real constant which 
has the dimension of resistance and is called port-resistance.  
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Figure 1-24: One-port network with incident- and reflected voltage waves.  
 
A one-port network can also be described by the reflectance function which is defined as 
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A
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==  (1-39)

  
The reflectance function can be rewritten by using the impedance IVZ =  in the wave 
equations which yields 
 

RZ
RZS

+
−

=  (1-40)

 

1.4.2 Transmission lines 
The lumped element model is a simplified model that makes the assumption that the wires 
connecting elements are perfect conductors. The operating wavelength needs too be much 
smaller than the circuit’s characteristic length for this model to work. Otherwise a more 
general model like the distributed element model needs to be considered. This model does not 
make the assumption that the wires are perfect conductors but has impedance. Lossless 
commensurate-length transmission lines are the most commonly used. 
 
Furthermore, the frequency response in a commensurate length transmission line is periodic 
with a period of τ1  and turns out to be a significant property. A lossless commensurate-
length transmission line is shown in Figure 1-25 and can be described by a two-port chain 
matrix according to equation (1-41) [18]. 
 

 
Figure 1-25: A commensurate-length lossless transmission line 
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where 0Z  is the characteristic impedance and 2τ  the electrical propagation time. The port-
resistance, as was shortly described in the former section, is set to be equal the characteristic 
impedance.      
 

1.4.3 Richards’ transformation 
A new complex frequency variable is introduced according to equation (1-42), which is called 
Richards’ variable [18]. 
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The mapping between the s -domain and the ψ -domain is illustrated in Figure 1-26 and has 
two interesting properties. First, because ( ) ( )2tanh2tanh τπτ sjs =−  make the ψ -plane to 
be mapped into infinite number of sections of τπ2 high in the s -plane. The second property 
is that the left half-plane (LHP) of the ψ -plane is mapped into LHP of the s -plane and 
likewise for right half-plane (RHP). 
 

 
Figure 1-26: The mapping between s-domain and ψ-domain. 
 
For ωjs = , equation (1-42) can be written as  
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where the last term describe the periodic frequency behavior in the s -domain along theω -axis 
as illustrated in Figure 1-1Figure 1-27. 
 

 
Figure 1-27: The frequency mapping between s-domain and ψ-domain  
 
Hence, a correspondence between the s -domain and ψ -domain is now established.  

1.4.4 Unit elements 
Now by inserting Richards’ variable into the chain matrix for a commensurate-length 
transmission line defined in equation (1-41) gives the new chain matrix according to 
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Hence, the reference filter realized by lossless commensurate-length transmission lines in the 
ψ -domain can be designed by starting from a lumped filter in s -domain. 
 
In the next section it will be shown that an open-circuited lossless commensurate-length 
transmission line in the s -domain behaves like a capacitor in the ψ -domain, a short-circuited 
line behaves like an inductor and a resistance is not affected because it is frequency 
independent. 
 
 
The lossless commensurate transmission line is also called a unit element [18]. Consider a 
unit element with characteristic impedance 0Z  and terminated by the impedance 2Z , as 
illustrated in Figure 1-28. 
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Figure 1-28: A terminated unit element 
 
By using the chain-matrix according to equation (1-44), the input impedance can be written as  
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The input impedance for a unit element with characteristic impedance RZ =0  is depending on 
the load impedance. It can be short-circuited, open-ended or matched terminated. Hence, it is 
interesting to investigate the input impedance for these three cases. 
 
For a short-circuit unit element is 02 =Z . By using equation (1-45) gives 
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Hence, an inductor in the s -domain corresponds to an inductor in the ψ -domain with the 
value R .  
 
For an open-circuit unit element is ∞=2Z  and the input impedance is given by 
 

( )
ψψ

ψ
ψ RZ

ZZ
ZZ

Z
Z

in =
+
+

=
∞=2

0
20

02  (1-47)

 
A capacitor in the s -domain corresponds to a capacitor in theψ -domain with the value R1 .  
 
When the unit element is matched terminated, 02 ZZ = the input impedance is then given by 
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The reflectance function as defined in equation (1-40) is now used together with the Richards’ 
variable to obtain the digital element. The resistors are frequency independent and are not 
affected by the transformation. 
 
A short-circuit unit element where the input impedance is ( ) ψψ RZin =  and by using the 
reflectance function according to equation (1-40) then gives 
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Figure 1-29: A short-circuit unit element and its correspondence in the different domains 
 
An open-circuit unit element where the input impedance is ( ) ψψ RZin =  and using the 
reflectance function which yields 
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Figure 1-30: An open-circuit unit element and its correspondence in the different domains 
 
A matched-circuit unit element where the input impedance is ( ) RZin =ψ  and using the 
reflectance function yields 
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Figure 1-31: A matched-circuit unit element and its correspondence in the different domains 
 
 
Hence, by using voltage waves, commensurate-length transmission lines and the bilinear 
transform, relationships between different domains is obtained. As just shown, an open-circuit 
unit element in the s -domain is represented as a capacitor in the ψ -domain and as a delay in 
the z -domain.  
 
To summarize, to synthesize a lumped element filter to a wave digital filter first use a 
transmission filter and transform that into the ψ -domain and thereafter map this to the digital 
one.  
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1.4.5 Interconnection of elements 
When interconnecting two networks with different characteristic impedance an adaptor must 
be used. Using the definition of voltage waves gives a wave description of the two port 
adaptor. A connection of two ports is shown in Figure 1-32. 
 

 
Figure 1-32: Transmission and reflection described by a two-port adaptor in s-domain 
 
By using the definition for voltage waves, the waves at the two ports is given according to  
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where 2,1=k . 
 
Kirchoff´s voltages- and currents laws gives the relationships according to 
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Eliminating voltages and currents from equation (1-52), the relationship between the incident 
and reflected waves for the adaptor is 
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where 
21

21
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+
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=α . 

 
The wave-flow graph for equation (1-54) is shown in Figure 1-33 and Figure 1-34. 
For 21 RR =  corresponding to 0=α , which means no reflection. For 02 =R  corresponding 
to 1=α  and the incident wave at port 1 is reflected and is phase-shifted by Ο180  and ∞=2R  
corresponding to 1=α  which means incident wave is reflected by no phase-shift. The phase-
shift of Ο180  corresponds to a multiplication by -1. 
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Figure 1-33: Wave-flow chart for the symmetric two-port adaptor in z-domain 
 
 

 
 
Figure 1-34: Symmetric two-port adaptor 
 
Other adaptors are also available, but the symmetric two-port adaptor is common in the lattice 
structure, which is handled in this thesis.  

1.4.6 The lattice WDF 
An analog lattice filter illustrated in Figure 1-35 is not used in practice, other than 
measurements, because it has very high stopband sensitivity. However, the passband 
sensitivity is very low and if a digital implementation is performed, the high sensitivity in the 
stopband would not be a problem due the high resolution in digital circuits. For example, with 
10 bits the resolution is 0.0009765625. Accuracy like that is not possible to reach with 
standard analog components.  
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Figure 1-35: An analog lattice lossless network 
 
 
The incident and reflected wave on port two in Figure 1-35 is given by  
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A scattering matrix defined in equation (1-56) can be used to describe the lossless network.  
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By elimination of voltages and currents and some algebra gives 
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where  
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and 
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If 1Z  and 2Z  are pure reactances, then 1S  and 2S is two allpass-functions. 
 
If the second voltage source is short-circuit and using the first one as source it will results in 

02 =A  and the reflected waves is given by 
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The transfer function H and the corresponding complementary transfer function is then  
 

( )12122112 5.0 SSSSABH −====  (1-61)
 

( )12221111 5.0 SSSSABH c +====  (1-62)
 
By using Feldtkeller’s equation which states that input power is equal to output- and reflected 
power, the realization of the two transfer functions is given by 
  

122 =+ cHH  (1-63)
 
It can be shown that for a lowpass and highpass filter the order must be odd [18]. 
 
A wave flow graph over an analog lattice filter is illustrated in Figure 1-36. 
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Figure 1-36: Wave flow graph 
 
 
Hence, for a lowpass lattice filter, it is possible to use its complement to obtain a highpass 
filter. The allpass-functions 1S  and 2S can be realized by using Richards’ structures which are 
described in next section. 
 
 
 
 

1.4.7 Richards’ and circulator structures 
An arbitrary reactance function can be obtained by a cascade of a number of lossless 
commensurate-length transmission lines as illustrated in Figure 1-37. 
 
 

 
 
Figure 1-37: A reactive function realized in an N-order Richards’ structure 
 
It is possible to connect two or more Richards’ structures with circulators, as illustrated in 
Figure 1-38. A circulator reflecting back incident waves at one port to next port.  
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Figure 1-38: One- and two order Richards’ structures in a circulator structure 
 
A one- and two order Richards’ structure can be written as allpass functions according to 
  

( )
0

0 1
α

α
−

+−
=

z
z

zS  (1-64)

 
where 000 RRRR +−=α and 
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where ( ) ( )111 RRRR +−=α  and ( ) ( )21212 RRRR +−=α . 
 

1.4.8 Bireciprocal lattice WDF 
One of the most used filter is the Bireciprocal lattice Wave Digital Filter. It has the same 
properties as the Finitie Impulse Response halfband filter but with one disadvantage against 
these that it suffer of a non-linear phase, which is a problem with recursive filters. How to 
solve this will be explained later on. 
 
One form of the bireciprocal lattice filter is illustrated in Figure 1-39. The upper output is a 
lowpass filter and the lower the complementary output, which is a highpass filter. The total 
transfer function is received just by adding the two branches transfer functions, according to  
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where 0H and 1H  are allpass functions.  
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Figure 1-39: 11-order Bireciprocal Lattice Wave digital filter. 
 
The frequency response for the filter is shown in Figure 1-40, with complementary frequency 
response is included. 

 
 
     Figure 1-40: 11-order Bireciprocal Lattice Wave digital filter frequency response. 
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1.5 Hardware cost 
In general it is difficult to estimate the cost in the hardware for a design, without consideration 
of the design implementation. However, by using assumptions and try to simplify, to a certain 
degree, it is possible to give an understanding of how much resources the implementation will 
require. 
 
The most straightforward example may be a filter implementation in an FPGA. Multipliers 
are very expensive in FPGA architectures, due to the limited gates. Therefore, if one filter 
needs many multiplications, it does not mean that the filter implementation requires many 
multipliers. In many cases a multiplier can be a shared resource by utilizing a higher clock 
rate as illustrated in Figure 1-41 . That is true not only for multipliers but also for other 
operations. 
 

 
 
Figure 1-41: FIR filter with N-1 multipliers (upper). Same filter which utilize one multiplier running at 
high sample-rate. 
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Hence it is of greatest importance to take this into consideration when hardware costs of 
designs are compared. This section will explain how the hardware cost is estimated in the 
various filter designs, and introduce a model for a fair assessment between them. 
 

1.5.1 FIR halfband hardware cost 
There will be a need for multipliers, adders and memory for each FIR halfband filter. How 
many is decided by the length and placement in the chain. The closer to the highest sampling 
frequency the more multipliers and adders are needed. The basics are that one adder and one 
multiplier are required for every tap, which should make the necessary amount for instances 
equal to the filter length. But there are other things to take into considerations which will 
change this. 
 
1. The instance works with a speed of maxf  which makes it possible to use one instance 
per maxff in times in every sequence. 
 
2. Symmetry and a zero in every other tap in the filter reduce the number needed to one fourth, 
with reservation of the three center taps. 
 
3. The instance shall be shared between the real and imaginary parts. 
 
 The number of instances relative high clock-rate for one part is given as 
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Furthermore, a shift register bank is required to store the last L input values and allocating 
memory for the filter coefficients. Hence, the total memory for the halfband FIR filter is given 
according to 
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where inW  and coefW  is the input- and coefficient bit width. 
 

1.5.2 CIC hardware cost 
As implies of the equations in the CIC theory section, the register width may become large for 
large rate factors and many sections, due the gain. The impact will be a cost in form of more 
required memory, mainly caused by the last stages where the gain is most affected. 
 
To calculate the total memory required for the registers for a CIC filter, a summation of all 
register sizes is performed, according to 
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where N is number of stages and iW the register size of the present stage. 
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The adders that are running at the high clock rate are the main cost in a CIC filter. Number of 
required adders is given by  
 

)11( RNAdders +=  (1-70)
 
where N is number of sections and R  is the interpolation or decimation factor and with the 
condition that either the output or input sample rate is equal to maxf . 
 
For example, consider a CIC interpolation filter with design parameters according to 
 
Table 1-3: Design parameters 
Number of sections 6 

Interpolation rate 8 

Differential delay 1 
 
By first calculate the gain and required register size for each stage, and furthermore calculate 
the number of required adders, the resulting required memory is shown in Table 1-4. 

 
Table 1-4: Required memory and adders for a CIC interpolation filter. Note that the number of input bits 
is not included here. 

Stage number   
  1 2 3 4 5 6 7 8 9 10 11 12 

Gain 2 4 8 16 32 64 32 128 512 2048 8192 32768 

Size 1 2 3 4 5 5 5 7 9 11 13 15 

Adders required relative high clock frequency 6.75 
Required extra dedicated memory in bits due the 
gain 80 

Total memory with input bits 12*[Number of input bits]+80 

 

A compensation filter is often involved together with the CIC filter. In normal conditions, one 
usually uses the CIC filter for large rate factors. The compensation filter may be a symmetric 
FIR filter and the hardware cost is estimated as the same way as for the halfband FIR filter 
with reservation for the non zero taps. 

1.5.3 WDF hardware cost 
The lattice WDFs that are used in the solution are build up with modular blocks. Each block 
looks the same, which makes it easy to calculate the hardware cost based on which filter order 
used.  
 
For every block there will be a need of 1 multiplier, 3 adders and 1 delay. The number of 
coefficients can be done by using 
 

4
1+

=
MsMultiplier  (1-71)

 
where M is the filter order. Moreover, number of coefficient is equal to the number of 
adaptors used in the filter and the number of adders is 
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13+×= sMultiplierAdders  (1-72)
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2 Evaluation and results 
 

2.1  Evaluation 
To compare and evaluate the filters we will use EVM (Error Vector Magnitude) and ACLR 
(Adjacent Channel Leakage Ratio). This chapter will give a short explanation of the two 
different measurement methods. 
 

2.1.1 EVM 
EVM is used for measure vector modulated signal accuracy in a transmitter or receiver. A 
system that is using any vector modulation format would have all constellation points at ideal 
locations on the IQ plane. Unfortunately, due imperfectly filtering, noise and other error 
sources, there will be some deviation. 
 
The EVM can be performed at different stages in a communication system, it is not necessary 
to measure the whole system. The measurement helps the designer to troubleshoot and get an 
insight in the quality of the received signal. It is necessary that the input signal is long enough, 
otherwise the measure will not converge. The EVM is used to compare different filter 
implementations with each other. To evaluate the suitability for a specific solution, a BER 
(Bit Error Ratio) test must be performed [10]. 
 
EVM is the root-mean-square error between an ideal constellation point and the actual symbol 
in the IQ plane at an optimal clock transition. The EVM for a vector modulation can be 
expressed as [8] 
 

( ) ( )
( )

( )( ) ( )( )[ ] ( )( ) ( )( )[ ]
( )( ) ( )( )[ ]∑

∑

=

=

+
−−−

=

−
=

N

k

N

k
RMS

kRkR
kRkSkRkS

N

kR

kRkS
N

EVM

1
2

22

1
2

2

ImRe
ImImReRe1

1

(1-73)

where )(kR and )(kS are complex numbers, representing the ideal position and the actual 
position on the received signal at the sampling instant k , as shown in Figure 2-1. 
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Figure 2-1: EVM in one quadrant 
 
The definition above is just for measuring the vectors. However, other specifications of how 
to performing an EVM is provided from current standard authorities, for instance in [1] at 
3GPP (3rd Generation Partnership Project), which is present in this project.  

2.1.2 ACLR 
The Adjacent Channel Leakage Ratio (ACLR) determines how much of the transmitted power 
or interference is allowed to leak into adjacent channels. The measurement is made through 
the ratio of integrating the power over an ideal RRC filter convolved with the current channel 
and an ideal RRC filter convolved with the adjacent channel. This is fully described in [1].  
 

2.1.3 EVM and ACLR demands 
The demands, EVM and ACLR will be the same for every solution. 
 

⎩
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−≤
≤

dBACLR
EVM

90
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One important thing to point out is that in this evaluation, the RRC filters, that pulse shapes, 
are held fixed. 
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2.2 FIR halfband 
This section will present the result for a TX-chain consisting of an RRC-filter and 
interpolating FIR halfband filters. This may represent the most common way to do 
interpolation with lower interpolation or decimation factors.  
 
A straightforward way to design the chain is shown in Figure 2-2. The pulse-shaping RRC-
filter first followed by interpolating FIR halfband filters with decreasing passband width. 
 

 
 
Figure 2-2: TX-chain 
 
Table 2-1: Specification 
 Passband width, cω  [rad/s] Stopband attenuation, minA [dB] Resulting order 
HB1 0.33π  90 30 
HB2 0.17π  90 14 
HB3 0.08π  90 6 
HB4 0.05π  90 6 
 
It is important to consider the passband width when designing a halfband filter. A wide 
passband result in a high order, which will have significant impact on the hardware cost, at 
least for the latter filters in the TX-chain.  
 
The frequency response is shown in Figure 2-3 and Figure 2-4, where the fourth side-lobe is 
attenuated with approximately dB90 . The passband ripple present is small and that will lead 
to a small EVM.    
 
 

 
Figure 2-3: Frequency response for the TX-chain 
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Figure 2-4: Frequency response for the TX-chain 
 
The performance is shown in Table 2-2 and the hardware cost in Table 2-3. The hardware cost 
is calculated according description in section 11.5.1. 
 
Table 2-2: Performance 
EVM [%]* 0.13 
Maximum ACLR [dB]* -88.2 
*(with 16 bits data width) 
 
 
Table 2-3: Hardware cost 
Adders relative high sample-rate 3.25 
Multipliers relative high sample-rate 3.25 
Memory required* 1300 
*(with 16 bits data width) 
 
To minimize hardware cost, quantization of the coefficients are performed which have a 
negative effect on the performance. First, same quantization is applied on all filters, except the 
RRC-filter.  
 
Table 2-4: Quantization and its impact on performance 
Quantization [bits] EVM [%] Maximum ACLR [dB] 
17 0.13 -88.2 
15 0.14 -88.7 
13 0.14 -75.2 
11 0.19 -69.6 
9 0.46 -52.2 
7 1.57 -42.4 
5 3.47 -30.9 
 
Both EVM and ACLR are affected of quantization which is no surprise. However, the most 
interesting property is when FIR half-band filters are compared with low sensitive lattice 
WDF filters.  
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It can be stated that it is possible to perform harder quantization on the latter filters in the TX-
chain. A hard quantization on the first FIR halfband will destroy the signal while on the latter 
one does not have same impact on the performance.  
 
To summarize, the FIR halfband filter is simple to design, hardware cost effective and has 
moderate coefficient sensitivity. When optimizing a chain, the latter ones in the chain should 
be handled first, because they are most expensive due to the high sample-rate. 
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2.3  CIC 
This section will present various results for the CIC filter, in terms of hardware cost and 
performance, i.e. EVM and ACLR. A comparison between chains consisting of CIC versus 
halfband filters will also be presented and when it will advantageous to use the CIC filter for a 
WCDMA signal. 
 

2.3.1 Design of the TX-chain – first approach 
The TX-chain is supposed to pulse-shape and interpolate by 32. It is determined that the RRC 
filter is used for the pulse-shaping and also interpolates by 2. The first approach is to see the 
performance of the RRC followed by the CIC with interpolating factor by 16. 
 
The RRC filter is running at low sample rate and should be placed before the CIC filter to 
minimize the hardware cost, as shown in Figure 2-5. 
 
 

 
Figure 2-5: First approach of the TX-chain. 
 
A moderate length, 2≤N of the CIC filter is chosen to not destroy the signal due to much 
attenuation in passband according to Table 1-1, the resulting frequency response is shown in 
Figure 2-6 and Figure 2-7. 
 

 
Figure 2-6: Frequency response of the first approach of the TX-chain, consisting of a RRC- and a CIC filter. 
 
The frequency response shows that the attenuation of the images components is poor. The 
first component is only attenuated with approximately dB25 . This will not be accepted due 
poor ACLR values, it is obvious that more stages or decreasing of relative bandwidth are 
required to reach an acceptable attenuation of imaging components. 
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Figure 2-7: Attenuation in passband for the first approach of the TX-chain 
  
Although the number of stages of the CIC filter only was limited by two, evident 
shortcomings in the passband are present. To get a flat passband, a compensating filter must 
be included in the chain.  
 
These problems originate from the fact that the relative bandwidth of the signal is too wide. 
The bandwidth of the signal is MHzfc 52 ==β . After the pulse-shaping the relative 
bandwidth is 3168.75.2 ≈=relativef , which is too wide for an practical and economical use 
of the CIC filter. 
 
It may still be interesting to see the hardware cost and performance for this design.  
 
Table 2-5: Hardware cost for the first approach of TX-chain 
Adders relative high sample-rate 3.34 
Multipliers relative high sample-rate 1.22 
Memory required* 1965 
*(with 16 bits data width of input signal) 
 
Table 2-6: EVM and ACLR values for the first approach of TX-chain. 
EVM [%] %09.2  
Maximum ACLR [dB] dB16.30−  
 
The hardware cost is calculated according description in section 1.5.2.  
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2.3.2 Design of the TX-chain – second approach 
 
Design of the TX-chain – second approach 
In the theory of the CIC-filter it was established that a wide relative bandwidth results in a 
non-flat passband and poor stopband attenuation.  
 
Hence, at least three major improvements are possible: 
 

• Make the relative bandwidth relative narrow, by interpolate at least by 2 before the 
CIC-filter.   

• Increase number of stages of the CIC-filter to improve the rejection of imaging 
components. 

• Insert a compensation filter to compensate for the attenuation in passband. 
 
A second approach of a TX-chain result in a design is shown in Figure 2-8. By using a 
frequency sampling algorithm the compensation filter is designed to compensate for the 
passband attenuation in the CIC but also interpolates by two as well. A merger of that kind 
may be more cost efficient.  
 

 
Figure 2-8: Second approach of the TX-chain 
 
When the signal is being interpolated by 4, the relative bandwidth is 6136.155.2 ≈=cf  
which will result in a better rejection of imaging components but also less attenuation in 
passband. The resulting frequency response for the design can be seen in Figure 2-9 and 
Figure 2-10. 
 

 
Figure 2-9: Frequency response for TX-chain with six stages and a differential delay of one.  
 
The rejection of the first spectral component is approximately dB80 , but the ACLR value for 
that channel will become better, due the average effect over that interval. 
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Figure 2-10: The frequency response in passband. 
 
The compensation filter is designed as described in 1.3.6. The order of the compensation filter 
determines EVM and ACLR value for the first channel. A long order results in small ripple in 
passband and a high attenuation in stopband.  
 
The hardware cost and performance result for this TX-chain is summarized in Table 2-7 and 
Table 2-8. 
 
Table 2-7: Hardware cost 
Adders relative high clock rate 8.75 
Multipliers relative high clock rate 2.00 
Memory required* 1824 
*(with 16 bits data width of input signal) 
 
Table 2-8: Performance 
EVM [%]* 0.18 
Maximum ACLR [dB]* -87.0 
*(with 16 bits data width of input signal) 
 
The multipliers are a result of the long order compensation filter. As stated before, for 
wideband signals and for low resampling factors the CIC may not be the optimal choice. An 
analysis on that issue will be made in the next section.  
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2.3.3 The CIC filter versus FIR halfband filters for WCDMA signals 
It is interesting to see when it will be profitable to use a TX-chain consisting of a CIC-filter 
compared with others. As mentioned in the theory section, the relative bandwidth of the signal 
must be sufficient narrow, therefore a rule of thumb can be stated: Due the main lobe gain 
reduction usually limits the input signal bandwidth to be less than 25% of the main lobe width 
[5], which was also performed in section 2.3.1 and 2.3.2. 
 
Hence, the test starts with an oversampling by 8:1 to satisfy the rule of thumb, as illustrated in 
Figure 2-11 and the specification for all stages is defined according to Table 2-9. For each 
stage a comparison in hardware cost is performed.  
 
 

 
Figure 2-11: Two different TX-chains consisting of a CIC-filter and halfband-filters. 
 
 
 
 
  
 
Table 2-9: Specification 
EVM %5.0≤  
ACLR dB90−≤  
Relative bandwidth, relf  3168.75.2 ≈  
     
At this point it can be stated that halfband filters with high rejection in stopband lead to very 
small ripple in passband. Small ripple in passband combined with a linear phase results in a 
small EVM. Hence, with high rejection as dB90−≤ , the TX-chain consisting of halfband 
filters has an outstanding EVM. On the other hand, it is possible to archive a similar EVM for 
the TX-chain consisting of the CIC-filter also, but require a high order compensation filter. 
 
For the case of simplicity both compensation filter and the CIC filter has a fixed length where 
the latter of 6=N , which is allowed as long as satisfy the specification. The halfband filters 
are of decreasing length. The result of the hardware cost is illustrated in Figure 2-12. 
 



54 

 
Figure 2-12: Hardware cost 
 
From the figure above it can be stated that interpolation by CIC-filter gives a great reduction 
of multipliers for larger interpolation rates and that the number of adders converges to the 
length of the CIC-filter.   
 
 
 



55 

2.4  WDF 
This section will present the results in terms of hardware cost and performance, i.e. EVM and 
ACLR, for filter chains consisting of bireciprocal lattice WDFs. The undesirable non-linear 
phase property inherited from the recursive structure, is solved with using an algorithm 
according to [9].  
Furthermore, a comparison in terms of coefficient sensitivity between FIR half-band and 
bireciprocal lattice WDF is performed. 

 

2.4.1 Design of the TX-chain – first approach  
The first approach for designing a TX-chain consisting of bireciprocal WDF is similar as for 
FIR halfband. This is shown in Figure 2-13. 
 
 

 
Figure 2-13: The first approach for the TX-chain consisting bireciprocal WDFs.  
 
As usual, the long order pulse-shaping filter is located first followed by the interpolating 
bireciprocal WDFs. It is not necessary that all filters have the same stopband attenuation, nor 
same passband width. The specifications for the interpolating filters are shown in Table 2-10 
and its respective order. The calculated coefficients are shown in Table 2-11.  
 
Table 2-10: Specifications 
 Passband width, cω  

[rad] 
Stopband 
attenuation, minA [dB] 

Resulting order 

WDF1 0.33π  70 9 
WDF2 0.17π  70 7 
WDF3 0.08π  70 5 
WDF4 0.03π  70 5 
 
As for FIR halfband, the passband ripple in a bireciprocal WDF is completely determined by 
the stopband attenuation, minA , due to the anti-symmetry in the bireciprocal filters. When 
required high attenuation in stopband it will result in an extremely small passband ripple, 
which is sometimes hard to compute even by double floating point precision. That is why a 
moderate attenuation, dB70≤  is chosen. Furthermore, a wide passband combined with high 
stopband attenuation results in a longer filter order. The cost for adders and multipliers 
relative high sample-rate will represent mostly by the latter filters, as before.   
 
Table 2-11: Adaptor coefficients 
 WDF1 WDF2 WDF3 WDF4 

1α  -0.079879760742188 -0.081527709960938 -0.124755859375000 -0.124755859375000 

3α  -0.283859252929688 -0.315917968750000 -0.562606811523438 -0.562606811523438 

5α  -0.545349121093750 -0.709976196289063   

7α  -0.834426879882813    
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It will result in a filter as shown in Figure 2-14. 
 

3α 4−Nα

5α 2−Nα1α

 
 
Figure 2-14: A Nth order bireciprocal lattice WDF in polyphase form 
 
The frequency response of the TX-chain is showed in Figure 2-15 and Figure 2-16. 
 

 
Figure 2-15: Frequency response for TX-chain with different specifications of the WDFs. 
 
The frequency response show pretty good attenuation of imaging components, a descent, but 
maybe not acceptable ACLR value should be expected. 
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Figure 2-16: An extremely small passband ripple. 
 
As predicted, a small passband ripple is present. By following the argument that a flat 
passband is optimal for a small EVM, this would be perfect in an EVM perspective. However, 
it turn out that it is not, due the non-linear phase delay. 
 
Table 2-12: Performance 
EVM [%] 1.86 
Minimum ACLR [dB] -142.5 
Maximum ACLR [dB] -78.0 
 
The non-linear phase delay results in a non-constant group delay, for different frequencies it 
will be different propagation time as shown in Figure 2-17.  
 

 
Figure 2-17: Groupdelay in passband 
  
The group-delay outside the passband are neglected, these frequencies are attenuated anyway 
and will have an insignificant affect of the EVM.  
 
The hardware cost is calculated, as described in the theory section, results are shown in Table 
2-13.  
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Table 2-13: Hardware cost 
Adders relative high sample-rate 6.38 
Multipliers relative high sample-rate 2.13 
Memory required* 363 
*(with 16 bits data width of input signal) 
 
The bireciprocal lattice WDF seems to be very efficient in a memory perspective. As mention 
in the theory, the WDF has very good sensitivity properties. That means that it is possible to 
quantize the coefficient and receive an even smaller memory cost. A quantization also brings 
smaller adders and multipliers and that is the strongest argument for using this kind of filters. 
 
To summarize, the bireciprocal lattice WDF is hard to design with high stopband- or low 
passband attenuation, at least with the standard approximation. Non-linear phase in passband 
results in a non constant group-delay which affect EVM. To reach an acceptable level on 
ACLR and EVM it is required to increase stopband attenuation and minimize the phase ripple 
in passband. 
 

2.4.2 Design of the TX-chain with nonlinear programming – second 
approach 

In the first approach it was established that it is necessary to improve the stopband attenuation 
and minimize the phase ripple. That is accomplished by using nonlinear programming (NLP) 
which is a general approach for designing IIR-filters [18]. 
 
Hence, NLP can be used to design filters with different requirements, such as magnitude 
response, phase response and step response. These requirements are handled simultaneously 
and may results in a satisfying design for all constraints. 
 
The NLP technique is outside this scoop and is not handled here. The interested readers may 
look in [18]. However, an algorithm [9] proposed by Johansson and Wanhammar is used to 
obtain the coefficients for an almost linear phase lattice WDF. 
 
In this algorithm, the filter order determines the stopband attenuation. Hence, try and error is 
performed until the required specification is reached. 
 
Table 2-14: Specification 
 Passband width, cω  

[rad/s] 
Stopband 
attenuation, minA [dB] 

Required order 

WDF 1 0.33 90 27 
WDF 2 0.17 90 11 
WDF 3 0.08 90 7 
WDF 4 0.03 90 3 
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Table 2-15: Adaptor coefficients 
 WDF 1 WDF 2 WDF 3 WDF 4 

1α  0.748489068901453 0.556328525667520 -0.467757822896096 -0.333969062723045 

2α  0.100883036880476 0.011038904457442 0.064322079791587  

3α  0.305588418522756 0.116696953037980   

4α  0.067976990119664    

5α  0.147277442201018    

6α  0.059104745970241    

7α  0.418966848295443    

 
 
 

 
Figure 2-18: An almost linear phase Nth order bireciprocal lattice WDF in polyphase form 
 
By numeric optimization the requirement of both magnitude and phase has been reached. The 
frequency response is shown in Figure 2-19. However, the most interesting result is the 
almost linear phase as shown in Figure 2-20. 
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Figure 2-19: Frequency response 
 

 
Figure 2-20: Group-delay 
 
It was established that a flat passband is optimal for a low EVM but is also affected by the 
phase. With an almost linear phase, or equivalent, a constant group-delay, it may be 
interesting to see how the performance of the TX-chain is affected by quantization. The 
quantization is not applied on the pulse-shaping filter. 
 
Table 2-16: Quantization and its impact on performance 
Quantization [Bits] EVM [%] Maximum ACLR [dB] 
17 0.15 -88.7 
15 0.14 -88.7 
13 0.14 -83.7 
11 0.12 -69.8 
9 0.20 -67.6 
7 1.70 -44.6 
5 2.04 -36.5 
 
The results of the quantization may confirm the low sensitive property in passband of the 
lattice WDF structure due the low EVM. In contrast of low EVM is a high ACLR present, 
which confirm the high sensitivity in stopband. 
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Table 2-17: Performance (WDF) 
EVM [%] 0.13 
Maximum ACLR [dB] -88.5 
 
Table 2-18: Hardware cost  (WDF) 
Adders relative high sample-rate 5.25 
Multipliers relative high sample-rate 1.75 
Memory required* 908 
 
To summarize, by using this algorithm an almost linear phase can be obtained at the same 
time as the magnitude constraint is satisfied, which is necessary to get a good performance.  
 
However, the non-linear programming is hard to understand and similar results may be 
reached with utilizing of a phase-equalizer i.e. an allpass-filter cascaded with the TX-chain, 
the interested reader may look in [21].    
 

2.4.3 Bireciprocal lattice WDF versus FIR half-band 
One of the most major reasons to use WDF is the low sensitive property in the passband for 
coefficient quantization, especially the lattice structure. As was established in the theory 
section and indicated in 2.3.1, the attenuation was clearly affected by quantization. That leads 
to a question of issue of overall characteristic compared with common half-band FIR filters. 
 
It must be straight out that it is hard to do a comparison of a bireciprocal filter and a FIR half-
band due the non-linear phase property and the different depending of the passband- and 
attenuation requirements. 
 
By using the algorithm as described in 2.3.1 and FIR halfband filter makes it possible to 
compare them for a determined specification. The first analysis is to compare filters with a 
fixed passband width, 45.0=cω  and see how the requirement of the attenuation affect 
hardware cost in form of adders and multipliers. 
 
The results are presented in Figure 2-21, which shows that a bireciprocal lattice WDF is more 
efficient in hardware cost than its corresponding FIR halfband. It may be hard to weight an 
adder and a multiplier, but the fact that multipliers actually consists of adders, it can be stated 
that a multiplier always is more expensive than an adder and in what degree is depending on 
its implementation.   
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Figure 2-21: Adders and multipliers for different stopband attenuation. 
 
A similar analysis is made but with different passband width for a fixed stopband attenuation 
of dBA 90min −= . The results is shown in Figure 2-22 and reflecting the former result. The 
bireciprocal lattice WDF is probably a better choice both for variation in passband width and 
for different stopband attenuation.      
  

 
Figure 2-22: Adders and multipliers for different passband width. 
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Another interesting property may be the low sensitive in lattice WDF. This is shown in Figure 
2-23 and Figure 2-24 for stopband and passband respectively.  
 

 
Figure 2-23: Quantization error 
 

 
Figure 2-24: Quantization error in passband 
 
Certain conclusions regarding bireciprocal lattice WDF can now be made 
 

• They suffer of non-linear phase which may be solved by NLP, which are hard to 
understand. Alternative a phase-equalizer could be used instead. 

 
• Good performance for less hardware cost. The bireciprocal lattice WDF may represent 

the properties for other kinds of filters, i.e. notch, bandpass, highpass.  
 

• Although the bireciprocal lattice structure is sensitive for coefficient quantization in 
stopband, they are still better than FIR halfband. 
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3 Discussion and future work 
 
The work progress has not been straightforward, mostly cause of the problem in dealing with 
what parameters to be considered and how to calculate and compare the hardware. The 
explanation for comparing chain versus chain, and not filter versus filter is due the fact that 
the CIC filter does not interpolate or decimate by factor two. Its compensation filter may also 
be used as RRC-filter. However, that is a future work. 
   
It is hard to find information about WDF in textbooks and even harder to find implementation 
examples. The theory is based on an article of Fettweis, which can seem a little hard to 
understand and not really necessary to do. Another author, Gazsi, presents a way of directly 
designing the filters using formulas instead of designing the analogue filters before the digital 
without the need of understanding more than the concept of WDFs. 
 
To get answers there have been contacts with people from LiTH and from TuDelft in the 
Netherlands. One of the main concerns regarding WDFs is why they are not more frequently 
used or not more mentioned in the literature, there have to be some bad side effects and not 
just positive ones. 
  
One answer from the contacts is that they are just very hard to understand. But one might 
think that even if so and if very good alternative to FIR filters, someone would have designed 
a toolbox in tutorial or commercial purpose. One thought regarding this from Lincklaen from 
TuDelft. “I can imagine that when WDFs were introduced they were much too computational 
intensive for the hardware that was available then. Circuit- and-Systems-Theory people and 
Signal-processing people also did talk different languages. Have you ever tried to implement 
a WDF on a dsp-chip? Since dsp-chip usually contains a MAC-circuit-implementing a FIR 
filter is a snap.”  
 
Further, Lincklaen have good future prospects for the WDFs “Lattice WDFs/all-pass 
implementations have been used more often, and maybe will (re)gain interest with FPGAs 
becoming more popular.” 
 
So there are some possible answers that to the question of why not WDFs are more commonly 
used, even if a good alternative to FIR filters. 
 

• Hard to understand 
• Not as modular as FIR filters 

 
When implementing the WDFs we had two possible solutions to use. One was to use the 
bireciprocal lattice WDF with an allpass filter to overcome the problem with the non-linear 
phase. The other was to use the algorithm and design the almost linear-phase bireciprocal 
LWDF. We decided to go with the latter one after some trying out. Something that had not 
really been considered then was the group delay which turned out to be quite large. Perhaps 
there is a different way to solve this problem that we have not thought of or there are better to 
use the first solution with the allpass filter which gives a much better group delay. 
 
It would be of great interest to implement these solutions and this is something that could be 
done in future work. Also having a closer look at the RRC filter to see what, if possible, can 
be done with this one. This filter is quite large but also is placed in the beginning of the chain. 
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To sum up everything, both CIC filters and WDFs is shown to be of interest as an alternative 
to FIR filter but must be considered from case to case, depending on what filter specifications 
one may have and where in the chain the filter is located. 
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4 Conclusions 
The objective of this work has been to compare two different recursive digital filters 
considering both hardware cost (i.e. multipliers, adders and memory) and performance (i.e. 
EVM and ACLR). The filters of interest were the CIC filter and the lattice WDF. Furthermore, 
also the FIR halfband has been examined, which may be seen as a reference in both hardware 
cost and performance. 
 
It has also been established what kind of operations these filters are best suited for. Both are 
lowpass filters, mainly used for interpolation, decimation or in combination, including the 
FIR halfband. Interpolation- and decimation has been handled in a mathematical way to show 
the importance of a good lowpass filter in multirate systems. Pulse-shaping and ISI has also 
been handled because it is of big importance in different kinds of transmission systems.  
 
The CIC filter has great properties such as no multipliers are required and variable 
interpolation- or decimation factor for the same compensation filter. It suffers of a droop in 
passband which may set demands on the required compensation filter. However, it turned out 
that the CIC filter is best suitable for narrowband signals with higher interpolation- or 
decimation factors, due the extra taps needed for the compensation filter. 
 
The theory behind WDF originates from the microwave theory where voltage-waves and 
chain- and scattering matrixes are used. This is due to the delay-free loops that will occur if 
currents and voltages are used as signal parameters instead. By realizing a lossless network, 
such as a ladder- or lattice structure the desirable properties can be retained. These properties 
are the low sensitivity for nominal component changes, the guaranteed stability and the usage 
of the classical design methods and approximations for recursive analog filters. 
 
To reach a fair comparison of the different filters, it was required to define the hardware cost 
and performance. It is hard to weight multipliers and adders due the fact that the number of 
adders inside a multiplier are depending on the bit-width and the adder structure, among 
others. Hence, a separation of adders and multipliers was required. To get a fair comparison, 
all instances are relative the highest sample-rate in the system. It was also interesting to see 
how much memory was required for each filter. For performance measurement, EVM and 
ACLR has been used which is strongly related to the passband- and group-delay ripple and 
the stopband rejection. 
 
Problems with non-linear phase has been discovered which is an inherited undesirable 
property at recursive filters. For that problem a non-linear programming algorithm has been 
used which decrease the group-delay ripple. However, this problem is related only for the 
WDF and it should be noted that CIC filter does not produce any non-linear phase at all.  
 
In addition to the tests related to the main task, different tests has been performed to archive 
knowledge when it payoff to use the proposed filters.  
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