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The prediction of impact forces caused by wheel flats requires the application of time-domain models
that are generally more computationally demanding than are frequency-domain models. In this paper,
a fast time-domain model is presented to simulate the dynamic interaction between wheel and rail,
taking into account the non-linear processes in the contact zone. Track and wheel are described as linear
systems using impulse-response functions that can be precalculated. The contact zone is modelled by
non-linear contact springs, allowing for loss of contact. This general model enables the calculation of the
vertical contact forces generated by the small-scale roughness of rail and wheel, by parametric excitation
on a discretely supported rail and by discrete irregularities of rail and wheel. Here, the model is applied
to study the excitation caused by wheel flats by introducing a flat on a rotating wheel whose profile in
the contact zone is updated in every time step. To demonstrate the functioning of the model, simulation
results are compared to field measurements of impact forces and a brief parameter study is presented.

1 Introduction

A wheel flat is a defect of the running surface of a rail-
way wheel, giving rise to noise and safety problems. This
type of wheel damage occurs when the wheel locks and
slides along the rail because of malfunction in the brakes
or lack of wheel/rail adhesion due to e.g. snow or leaves
on the rail. The sliding causes severe wear, leading to
the wheel being flattened on one side. Subsequently, this
out-of-round wheel generates large impact forces when
it rotates. As a consequence, large vibration amplitudes
of wheel and rail occur, resulting in high noise radiation.
Furthermore, these impact forces may cause significant
damage to the track or the wheel, causing for example
the initiation and propagation of fatigue cracks [1].

The prediction of the dynamic interaction of railway
wheel and track in response to discrete irregularities of
the running surface such as wheel flats requires the ap-
plication of time-domain models. In contrast to frequency-
domain models, time-domain models are able to include
a non-linear contact model. Non-linearities in the wheel/rail
interaction cannot be neglected in the case of excita-
tion by wheel flats because of the resulting large con-
tact forces and the occurrence of loss of contact for train
speeds above the critical speed [2, 3].

During the last 30 years, several time-domain models
predicting the impact forces due to wheel flats have been
published, e.g. [4–7]. In general, such time-domain mod-
els are computationally highly demanding. One possi-
bility to reduce computational effort is to model wheel
and rail using impulse-response functions (Green’s func-
tions) that can be precalculated and, by this means,
to separate wheel, rail and contact calculations. This
idea has already been successfully applied in the related
area of tyre/road contact, see e.g. [8]. In the area of
wheel/rail contact, the utilisation of Green’s functions
goes back to Heckl’s proposal for a railway-simulation
program [9]. Subsequently, this approach has been used
by Nordborg [10] and recently by Mazilu [11].

The aim of this paper is to present a computationally
efficient, but comprehensive time-domain model for dy-
namic wheel/rail interaction, which is able to simulate
impact forces caused by wheel flats. For this purpose,
the fast time-domain model earlier presented by Pieringer
et al. in [12] is further developed and adapted to the ex-
citation by wheel flats. Wheel and track are treated as
linear and represented by Green’s functions and moving
Green’s functions, respectively. The contact model is
non-linear, comprising a bedding of independent springs

(a Winkler bedding). This is an important difference
compared to the above-mentioned models for wheel/rail
interaction, which all - except [7] and [9] - include a
single non-linear Hertzian contact spring between wheel
and rail. Baeza et al. [7] compared the Hertzian model
with a non-Hertzian model and concluded that the Hertzian
model tends to overestimate the peak impact forces.

2 Modelling of wheel flats

Two kinds of wheel flat geometries are considered in this
paper: the newly formed wheel flat with sharp edges as
occurring right after formation and the rounded wheel
flat, which rapidly develops from the newly formed flat
as a result of wheel tread wear and plastic deformation.

The idealised newly formed wheel flat can be modelled
as a chord of the wheel circumference, see Fig.1. Its
length, l0, its depth, d, and its centre angle, Φ0, are
related by
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with R being the wheel radius.
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Figure 1: Geometry of newly formed and rounded
wheel flat.

In the case of the newly formed flat, the wheel contour
as function of the angle ψ is described by
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Figure 2: Newly formed wheel flat in angular position
ϕ > 0.
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The rounded flat is assumed to have the same depth, d,
as the newly formed flat, but a length l > l0. The centre
angle, Φ, is obtained as before from the length
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)
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Similar to the approach in [7], it is assumed that the
contour r(ψ) of the wheel with a rounded flat can be
modelled by the function
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The contact algorithm requires the wheel profile ex-
pressed in Cartesian coordinates in the wheel-following
coordinate system (x′, z′). The orientation of the wheel
in the wheel-following coordinate system (x′, z′) is de-
scribed by the angle ϕ, 0 ≤ ϕ < 2π, see Fig.2. For
each ϕ, one obtains the profile zW(ϕ, x′) in the interval
[−a ′, a ′ ] as(
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and
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The interval [−a′, a′] has to be chosen as long enough to
include all potential points of contact between wheel and
rail (see section 3). The wheel profile as a function of
the translational position, x, of the wheel centre writes
as

zW(x, x′) = zW(ϕ(x), x′) = zW

( x
R
− 2πNr, x

′

)
, (15)

where Nr is the number of accomplished wheel revo-
lutions and the initial angular position of the wheel is
assumed to be ϕ(0) = 0 for simplicity.

3 Wheel/rail interaction model

The wheel/rail interaction model presented schemati-
cally in Fig.3 is a moving vehicle model with constant
train speed v.
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Figure 3: Wheel/rail interaction model.

3.1 Wheel and track model

The wheel model is a two-degree-of-freedom system (see
Fig.3) with the parameters MW = 592.5 kg, mW=3kg,
kS = 1.12 MN/m, cS = 13.2 kNs/m, kW = 2.4 GN/m
and cW = 155 kNs/m. This type of wheel model has
shown good performance in previous studies [6, 13]. The
wheel with radius R = 0.45 m is represented in the
time domain by its Green’s function g̃W(t), see Fig.4(a).
The vehicle system above the primary suspension of the
wheel is simplified to a static preload, P .

The track model is a linear finite element model ac-
counting for discrete supports [5]. The UIC60 rail is
modelled by undamped Rayleigh-Timoshenko beam el-
ements with bending stiffness EI = 6.4 MNm2, shear
stiffness kGA = 250 MN and mass per unit beam length
m′ = 60 kg/m. The length of the track model is 70
sleeper bays with sleeper spacing LS = 0.65 m. The dis-
crete supports consist of railpads and sleepers on ballast
(Fig.3) with pad stiffness kP = 120 MN/m and damp-
ing cP = 16 kNs/m, (half) sleeper mass mSL = 125 kg
and ballast stiffness kB = 140 MN/m and damping cB =



165 kNs/m. In the wheel/rail interaction model, the dis-
cretely supported rail is represented by moving Green’s
functions, g̃x0

R,v(t) [12]. For excitation of the rail (index
R) at the position x0 at time t0 = 0, the function g̃x0

R,v(t)
describes the displacement response of the rail at a point
moving at train speed v away from the excitation, thus
at the nominal contact point between wheel and rail.
Three examples of moving Green’s functions are shown
in Fig.4(b).
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Figure 4: Green’s function of the wheel (a). Moving
Green’s functions of the track for excitation at

midspan between two sleeper positions (b) : ———
v = 50 km/h,−−− v = 100 km/h, −·− v = 150 km/h.

3.2 Normal contact model

For the calculation of the normal contact force, Fn, a
Winkler bedding is introduced between wheel and rail
(see Fig.5). The springs in the bedding are indepen-
dent and allow for loss of contact. The complete contact
model is described by the following set of equations [12]

ξS = ξS(P ) (16)

ξW(t) = −

∫ t
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ξR(t) =
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Δζ(x, x ′) = ξW(x)− ξR(x) + r(x + x ′)

−zW(x, x ′) (19)
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k(x, x ′) =

{ 1
2

E
(1−ν2) if Δζ(x, x ′) ≥ 0

0 if Δζ(x, x ′) < 0
(21)

x = vt , (22)

where ξS is the vertical position of the primary suspen-
sion and ξW and ξR denote the vertical position of the
nominal contact point (at x′ = 0) on wheel and rail,
respectively. Furthermore, Δζ is the contact-spring de-
flection, k the contact-spring stiffness, E the Young’s

modulus and ν the Poisson’s ratio of wheel and rail (as-
sumed equal for wheel and rail) and r is the combined
roughness of rail and wheel being positive for an asper-
ity on the rail.

In order to achieve that the bedding correctly models
Hertz contact for smooth surfaces it is necessary to re-
duce the wheel radius to R∗ = 0.5R [14]. This implies
that it is not possible to map the wheel flat geometri-
cally correct on the reduced wheel. Theoretically, dif-
ferent modelling alternatives are possible. A previous
experimental study of rounded wheel flats summarised
by Johansson and Nielsen in [15] showed that the wheel-
flat depth considerably influences the peak impact-force
while the influence of the wheel-flat length is low. For
this reason, it is chosen to keep the correct depth d∗ = d
of the wheel flat on the reduced wheel and allow a length
l∗ < l.
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Figure 5: Bedding model for the wheel/rail contact.

4 Simulation results

4.1 Comparison to field measurements

To demonstrate the functioning of the modelling ap-
proach, simulation results are compared with field mea-
surements from reference [15] in terms of the maximum
impact load, see Fig.6.
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Figure 6: Measured maximum impact forces (�, black)
due to a 0.9 mm deep rounded wheel flat in comparison
to calculated maximum and minimum impact forces (◦,
dark grey). Shown are also a third-degree polynomial

fitted to the measured data (———) and calculated
results for a 0.9 mm deep new wheel flat (�, light grey).

In the field test, the impact load caused by a rounded
wheel flat with depth d = 0.9 mm and length l = 0.1 m
on a freight train with axle load 24 t (P = 117.7 kN)
was measured for train speeds between 30 km/h and
100 km/h. As the receptance of the loaded track in the



frequency range of interest could not be measured dur-
ing the field tests, Nielsen et al. determined rail pad
and ballast parameters through model calibration [16].
These model parameters (listed in section 3.1) are also
used in the present simulations. The small-scale rough-
ness, r, of rail and wheel is set to zero. As the calculated
impact force varies depending on where the wheel flat
hits the rail in relation to the sleeper location, simula-
tions with 40 different initial angular wheel positions,
ϕ(0), are run in order to cover the whole range of max-
imum impact-force magnitudes. Considering the uncer-
tainty in the track parameters, the level of agreement
between simulations and measurements seen in Fig.6 is
encouraging.

4.2 Parameter study

Since a calculation with the presented wheel/rail inter-
action model takes typically only about one minute (on
a PC with a Pentium 2.0 GHz processor), a parameter
study including many simulations can be readily per-
formed. The parameters investigated here are the train
speed, the wheel flat depth and the type of wheel flat
(new or rounded).

Fig.6 shows calculated maximum and minimum impact
forces for train speeds from 20 km/h to 200 km/h. Be-
side the 0.9 mm deep rounded wheel flat, also a 0.9 mm
deep new wheel flat is considered. In the case of the
rounded wheel flat, the curve showing the maximum im-
pact force has a local maximum at 50 km/h and a local
minimum at 130 km/h. Loss of contact occurs for the
first time at 145 km/h. The new wheel flat causes higher
maximum impact forces than the rounded wheel flat, ex-
cept in the speed range from 35 km/h to 85 km/h. The
curve showing the maximum impact force has a local
maximum at 40 km/h and a local minimum at 70 km/h.
Loss of contact occurs already at 75 km/h. As a general
tendency, it is observed that the variation in the maxi-
mum impact force due to different impact positions in-
creases with speed.

The wheel and rail displacement and the normal con-
tact force corresponding to two selected data points from
Fig.6 are presented in Fig.7 as function of the wheel cen-
tre position x. The position x = 0 coincidences with a
sleeper position. The two cases selected are the sim-
ulations at 50 km/h and at 150 km/h with the rounded
wheel flat where the angular wheel position ϕ = 0 occurs
at x = 0.2LS. When the wheel flat enters the contact
zone, the rail rises and the wheel falls which leads to
partial unloading at 50 km/h and to loss of contact at
150 km/h. After the wheel has passed the angular posi-
tion ϕ = 0, the wheel continues downwards and forces
the rail to move downwards, too. The contact force in-
creases rapidly and reaches the peak values of 207 kN
and 192 kN at 50 km/h and 150 km/h, respectively. At
the higher speed, the duration of the wheel flat passage
in the contact zone is shorter and the wheel having a rel-
atively large inertia does not fall as far as at the lower
speed. This explains the lower impact force at higher
speed.

Fig.8 further illustrates what happens in the contact
zone during the passage of the wheel flat. The force in

each contact spring (located at x′) is displayed as func-
tion of the wheel centre position x. It can be clearly seen
how the contact length varies and how the contact zone
migrates under the wheel centre located at x (respec-
tively x′ = 0). With the wheel flat entering the contact
zone, the contact zone moves behind the wheel centre.
When the wheel flat leaves the contact zone, the contact
zone is located ahead of the wheel centre.

Fig.9 shows the maximum and minimum impact forces
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Figure 8: Longitudinal force distribution in the contact
zone due to 0.9 mm rounded wheel flat as function of
the wheel centre position x: (a) train speed 50 km/h.
(b) train speed 150 km/h. The grey scale is the same

for (a) and (b). The vertical lines indicate the position
where ϕ = 0.
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Figure 9: Maximum and minimum impact forces due
to a rounded (◦, dark grey) and a new (�, light grey)
wheel flat at 100 km/h as function of the wheel flat

depth.

for rounded and new wheel flats at 100 km/h with vary-
ing depths. The rounded wheel flats are assumed with
the length l = 1.76 l0, l0 being the length of the new
wheel flat with the same depth. For both wheel-flat
types, the maximum impact force increases with the
depth. For small depths, the rounded wheel flat causes
lower impact forces than the new wheel flat. For depths
above 1.4 mm, the impact force due to the rounded wheel
flat exceeds the one caused by the new wheel flat (Fig.9).

5 Conclusion

A numerical model has been presented, which simulates
the wheel/rail interaction due to excitation by wheel
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Figure 7: Displacement of wheel ——— and rail −·− (upper) and normal contact force (lower) due to 0.9 mm rounded
wheel flat: (a) train speed 50 km/h. (b) train speed 150 km/h. The vertical lines indicate the position where ϕ = 0.

flats. As wheel and rail are represented by precalcu-
lated Green’s functions, the model is characterised by
a high computational efficiency. Another advantage is
that the model does not require to calculate an equiv-
alent relative displacement excitation to represent the
wheel flat. Instead, the actual wheel profile for each an-
gular wheel position is included. A minor disadvantage
of the model is however that length and depth of the
wheel flat cannot be both at the same time mapped ge-
ometrically correct onto the reduced wheel required by
the contact model. The encouraging level of agreement
between measured and calculated impact forces demon-
strates the functioning of the modelling approach.
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