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MODELLING OF THIN PIEZOELECTRIC LAYERS ON PLATES

K. MAURITSSON, A. BOSTRÖM, P.D. FOLKOW

Abstract. The derivation of plate equations for a plate consisting of two layers, one
anisotropic elastic and one piezoelectric, is considered. Power series expansions in the
thickness coordinate for the displacement components and the electric potential lead to
recursion relations among the expansion functions. Using these in the boundary and
interface conditions, a set of equations is obtained for some of the lowest-order expansion
functions. This set is reduced to six equations corresponding to the symmetric (in-plane)
and antisymmetric (bending) motions of the elastic layer. These equations are given to
linear (for the symmetric equations) or quadratic (for the antisymmetric equations) order
in the thickness. It is noted that it is, in principle, possible to go to any order, and that it
is believed that the corresponding equations are asymptotically correct. A few numerical
results for guided waves along the plate and a 1D actuator case illustrate the accuracy.

1. Introduction

The use of piezoelectric patches or layers for applications in ’smart’ structures has been
considered in recent years. In these cases the thickness of the piezoelectric layer is usually
thin (in comparison to relevant wavelengths) as is the structure to which it is attached.
It is therefore natural to develop beam, plate and shell equations for layered structures
including piezoelectric layers. The review articles by Gopinathan et al. [1] and Wang and
Yang [2] give many references to work prior to 2000. In recent years many investigations
concern the derivation of plate and shell equations, but only a few references are given here
[3, 4, 5, 6, 7].

In this paper, the attention is on the derivation of plate equations for a layered plate includ-
ing also piezoelectric layers. This is accomplished by expanding all field quantities in the
layers in power series in the thickness coordinate, to arbitrary order in principle. Insertion
into the equations of motion gives recursion relations among the series coefficients that
can be used to eliminate all but some of the lowest-order coefficients. The boundary and
interface conditions then give a set of equations for these coefficients, where various elimi-
nations and truncations can be performed. All lengthy analytical calculations involved are
performed with Mathematica. This approach has previously been adopted for an isotropic
plate, see Boström et al. [8], and for deriving equivalent boundary conditions for a thin
piezoelectric layer, see Johansson and Niklasson [9], Zhang et al. [10], and Boström and
Zhang [11].

To be specific, a plate with two layers is chosen according to Fig. 1. The upper piezoelectric
layer has thickness hp and the lower elastic one has thickness he. The piezoelectric layer
is assumed to be of class 2mm poled in the normal direction and the elastic layer is
orthotropic. This covers many material combinations of practical interest, in particular
polyvinylidene fluoride (PVDF) and piezocheramics (PZT) (of subclass 6mm). It will
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Figure 1. The geometry with a two-layered plate and two coordinate systems.

prove convenient to use two vertical axes z and z′ as shown in Fig. 1, one with origin in
the middle of the elastic layer and one with origin at the interface. The focus is on deriving
plate equations using series expansions in the thickness direction and thus only an infinite
plate without boundary conditions along any edges of the plate is treated. It is noted that
there are good reasons to believe that the present approach leads to asymptotically correct
equations, in principle to any order [8].

2. Basic equations

In this section the basic equations in a linear piezoelectric material are briefly reviewed.
The material is assumed to be of class 2mm and elastically it is thus orthotropic. As is
common the quasistatic approximation is made and thus no magnetic fields are involved.
It is noted that this approximation makes the theory nonhyperbolic. The notation follows
that of Auld [12]. Thus, standard tensor notation is used. The mechanical fields in the
piezoelectric layer are given an upper index ’p’ to distinguish them from the corresponding
quantities in the elastic layer. The basic equations governing the motion in a piezoelectric
continuum are

T p

ij,i = ρpü
p

j , (2.1)

Di,i = 0. (2.2)

Here T p

ij is the stress tensor, up

i is the displacement vector, Di is the electric displacement
vector, and ρp is the density. The constitutive equations in a linear piezoelectric material
are

T p

ij = kijklS
p

kl − ekijEk, (2.3)

Di = eiklS
p

kl + ǫikEk, (2.4)

where Sp

ij is the strain tensor, Ei is the electric field vector, kijkl is the elastic stiffness tensor,
ǫij is the dielectric tensor, and eijk is the piezoelectric coupling tensor. The nonstandard
notation for the stiffness tensor is used to avoid an awkward upper index ’p’ in the lengthy
expression that will later involve the stiffness constants. The standard notation cijkl is used
for the stiffness tensor in the elastic layer.

The strain is given in terms of the displacement

Sp

ij =
1

2
(up

i,j + up

j,i). (2.5)
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In the quasistatic approximation the electric field is given by the gradient of the electric
potential

Ei = −Φ,i. (2.6)

Equations (2.1)–(2.6) can of course be combined to obtain the governing equations for the
displacement up

i and the electric potential Φ

kijklu
p

k,li + ekijΦ,ki = ρpü
p
j , (2.7)

eiklu
p

k,li − ǫikΦ,ki = 0. (2.8)

Here it is clearly seen that the piezoelectric coupling tensor eijk gives the coupling between
the mechanical and electric fields.

As the piezoelectric layer is of class 2mm it is orthotropic with nine independent stiffness
constants (using abbreviated subscripts, see Auld [12])

(kIJ) =















k11 k12 k13 0 0 0
k12 k22 k23 0 0 0
k13 k23 k33 0 0 0
0 0 0 k44 0 0
0 0 0 0 k55 0
0 0 0 0 0 k66















. (2.9)

There are five independent piezoelectric coupling constants

(eiJ) =





0 0 0 0 ex5 0
0 0 0 ey4 0 0

ez1 ez2 ez3 0 0 0



 , (2.10)

and three independent dielectric constants

(ǫij) =





ǫxx 0 0
0 ǫyy 0
0 0 ǫzz



 . (2.11)

Note that the ordinary vector indices are denoted i = x, y, z, whereas the abbreviated
indices are I = 1, 2, 3, 4, 5, 6.

The governing equations in the elastic layer can be obtained as a special case of the above
with the piezoelectric coupling tensor put to zero and no electric fields present. As noted
above the stiffness tensor in the elastic layer is denoted cijkl and the density is ρe.

3. Series expansions

To derive plate equations for the layered plate the displacement components and the electric
potential are now expanded in series in the thickness coordinate. This easily gives recursion
relations among the expansion coefficients so that all but those two of lowest order can
be eliminated. Insertion into the boundary and interface conditions then gives a set of
equations for the remaining expansion coefficients. These can be further processed in
different ways.

When performing the series expansions the origin for the expansions can be put at different
points and various choices have their merits. Putting the origin at the interface between
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the two layers leads to great simplifications in the interface conditions. For the present
case with a piezoelectric layer on top of an elastic one, it will often be the case that the
piezoelectric layer is in the form of a smaller patch that only covers a part of an elastic
plate, and outside the piezoelectric patch it is then natural to use a plate equation with
the origin in the middle (in the thickness direction). It is also better to put the origin
in the middle because this leads to an approximate decoupling into symmetric (in-plane)
and antisymmetric (bending) motion and, furthermore, a plate equation gives a better
approximation with the origin in the middle. For these reasons the origin for the elastic
layer is chosen in the middle of the layer, see Fig. 1 for the coordinate systems. The origin
for the piezoelectric layer is chosen at the interface because this leads to great simplifications
in the interface conditions. In the piezoelectric layer the expansions are thus

up(x, y, z′, t) =
∞

∑

j=0

up

j (x, y, t)(z′)j, (3.1)

vp(x, y, z′, t) =

∞
∑

j=0

vp
j (x, y, t)(z′)j, (3.2)

wp(x, y, z′, t) =
∞

∑

j=0

wp

j (x, y, t)(z′)j, (3.3)

Φ(x, y, z′, t) =
∞

∑

j=0

Φj(x, y, t)(z′)j, (3.4)

where the z′ axis is thus chosen so that z′ = 0 at the interface. To avoid double indices, a
change in notation is made to up, vp, wp, for the three displacement components. In the
elastic layer the displacement components are similarly expanded with expansion functions
uj, vj , wj, but as stressed above the origin for these expansions are chosen in the middle
of the elastic layer at z = 0.

The power series expansions Eqs. (3.1)–(3.4) are now inserted into the governing equations
(2.7) and (2.8) and as the resulting equations are valid for all z′ the coefficients of each
power in the series can be put equal to zero individually. It is then straightforward to
obtain the following recursion relations among the coefficients:

up

j+2 =
1

(j + 1)(j + 2)k55

[ρp∂
2
t u

p

j − k11∂
2
xu

p

j − k66∂
2
yu

p

j − k126∂x∂yv
p

j

− (j + 1)k135∂xw
p
j+1 − (j + 1)e51∂xΦj+1], (3.5)

vp

j+2 =
1

(j + 1)(j + 2)k44

[ρp∂
2
t v

p

j − k22∂
2
yv

p

j − k66∂
2
xv

p

j − k126∂x∂yu
p

j

− (j + 1)k234∂yw
p

j+1 − (j + 1)e42∂yΦj+1], (3.6)

wp

j+2 =
1

(j + 1)(j + 2)h33

[ǫzzρp∂
2
t w

p

j − h55∂
2
xw

p

j − h44∂
2
yw

p

j

− (j + 1)h135∂xu
p

j+1 − (j + 1)h234∂yv
p

j+1 − f53∂
2
xΦj − f43∂

2
yΦj ], (3.7)
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Φj+2 =
1

(j + 1)(j + 2)h33

[ez3ρp∂
2
t w

p
j − g53∂

2
xw

p
j − g43∂

2
yw

p
j

− (j + 1)g135∂xu
p

j+1 − (j + 1)g234∂yv
p

j+1 − h35∂
2
xΦj − h34∂

2
yΦj ], (3.8)

where the new material constants that are introduced are combinations of the original
ones, see below. The last two equations are obtained as the solution of a system of two
equations. It is noted that Eqs. (3.5)–(3.8) can be used to express all the up

j , vp

j , wp

j , Φj ,
for j = 2, 3, . . . , in terms of the eight lowest order ones for j = 0, 1. The new constants in
Eqs. (3.5)–(3.8) are

k126 = k12 + k66, k135 = k13 + k55, k234 = k23 + k44,

e51 = ex5 + ez1, e42 = ey4 + ez2,

h33 = k33ǫzz + e2
z3, h44 = k44ǫzz + ey4ez3, h55 = k55ǫzz + ex5ez3,

h34 = k33ǫyy + ey4ez3, h35 = k33ǫxx + ex5ez3,

h135 = k135ǫzz + e51ez3, h234 = k234ǫzz + e42ez3, (3.9)

f43 = ey4ǫzz − ez3ǫyy, f53 = ex5ǫzz − ez3ǫxx,

g43 = k44ez3 − k33ey4, g53 = k55ez3 − k33ex5,

g135 = k135ez3 − k33e51, g234 = k234ez3 − k33e42.

The notation partly reflects the nature of the constants; thus all constants with the same
letter but different indices have the same dimension and the indices more or less reflect the
indices of the underlying material constants.

For the elastic layer the series expansions and recursion relations are of course very similar;
it is just to drop Φ and put all piezoelectric coupling constants equal to zero.

To continue, the boundary and interface conditions must now be applied. At the free
surface of the elastic layer at z = −he/2 the stress vector vanishes. Inserting the series
expansions this gives

Tzz =

∞
∑

j=0

[c13∂xuj + c23∂yvj + (j + 1)c33wj+1] (−he/2)j = 0, (3.10)

Txz =
∞

∑

j=0

c55[(j + 1)uj+1 + ∂xwj] (−he/2)j = 0, (3.11)

Tyz =

∞
∑

j=0

c44[(j + 1)vj+1 + ∂ywj] (−he/2)j = 0, (3.12)

where for better clarity the derivatives are denoted ∂x and ∂y instead of with a comma.
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The stress free boundary condition at the top of the piezoelectric layer at z′ = hp similarly
gives

T p
zz =

∞
∑

j=0

[k13∂xu
p

j + k23∂yv
p

j + (j + 1)k33w
p

j+1 + (j + 1)ez3Φj+1] h
j
p = 0, (3.13)

T p
xz =

∞
∑

j=0

[(j + 1)k55u
p

j+1 + k55∂xw
p

j + ex5∂xΦj ] h
j
p = 0, (3.14)

T p
yz =

∞
∑

j=0

[(j + 1)k44v
p

j+1 + k44∂yw
p

j + ey4∂yΦj ] h
j
p = 0. (3.15)

The interface conditions involve the continuity of displacement and stress. The displace-
ment condition at the interface (z = he/2, z′ = 0) gives

up
0 =

∞
∑

j=0

uj (he/2)j, (3.16)

vp
0 =

∞
∑

j=0

vj (he/2)j, (3.17)

wp
0 =

∞
∑

j=0

wj (he/2)j, (3.18)

and the stress condition gives (for the z, x and y components, respectively)

k13∂xu
p
0 + k23∂yv

p
0 + k33w

p
1 + ez3Φ1

=

∞
∑

j=0

[c13∂xuj + c23∂yvj + (j + 1)c33wj+1] (he/2)j, (3.19)

k55u
p
1 + k55∂xw

p
0 + ex5∂xΦ0 =

∞
∑

j=0

c55[(j + 1)uj+1 + ∂xwj] (he/2)j, (3.20)

k44v
p
1 + k44∂yw

p
0 + ey4∂yΦ0 =

∞
∑

j=0

c44[(j + 1)vj+1 + ∂ywj] (he/2)j. (3.21)

There remains to specify the electric boundary conditions. These depend on whether the
piezoelectric layer is used as an actuator or sensor. For the actuator case the electric
potential is specified at the electrodes at the bottom and top of the layer

Φ0 = V0, (3.22)
∞

∑

j=0

Φj(hp)
j = V1. (3.23)

Here the applied potential V0 at the interface and V1 at the top of the piezoelectric layer may
be functions of time but not of the space coordinates. If the electrodes are short-circuited
V0 = V1.
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4. Plate equations

As noted above the recursion relations can be used to eliminate all expansion functions with
index j = 2, 3, . . .. In this way Eqs. (3.10)–(3.23) constitute 14 differential equations in 14
unknown functions, namely those with index j = 0 and j = 1 in the two layers (including
the electric potential in the piezoelectric layer). Due to the location of the origin for the
expansion in the piezoelectric layer, Eqs. (3.16)–(3.22) can easily be solved for up

0, up
1, vp

0 ,
vp
1 , wp

0 , wp
1 , and Φ0. There then remain seven equations in the displacement functions in the

elastic layer u0, u1, v0, v1, w0 and w1 and the electric potential expansion function Φ1. It
is noted that the manipulations leading to these seven equations only involve substitutions
that can, in principle, be carried out to any order. Thus, no truncations or approximations
have been performed so far.

In the seven equations it is very natural to eliminate Φ1 as this is the only expansion
function referring to the piezoelectric layer. It should, however, be noted that a reduction to
six or less equations has the drawback that it is no longer simple to obtain the displacement
and other fields in the piezoelectric layer. In many cases these fields are of no direct interest,
so a reduction to six equations are performed here (but an exception is made below when
the fields in the piezoelectric layer are computed for guided waves).

There then remain six equations and there are of course ways to reduce the number of
equations further, but this results in extremely lengthy equations, so only a reduction
to six equations is performed here. By using the recursion relations all the expansion
functions can then be obtained and thus also the stresses, but this is not possible in a
straightforward way if fewer equations are employed. Furthermore, it resembles common
practice for higher-order equations when no mirror symmetry is present in the plate and
thus no division into symmetric and antisymmetric parts is possible. However, if the
piezoelectric layer is thin compared to the elastic one, an approximate division into these
two parts is possible. When Φ1 is eliminated with the help of Eq. (3.23) the remaining
six equations are added and subtracted pairwise to obtain equations that decouple into
symmetric and antisymmetric groups in the limit when the thickness of the piezoelectric
layer vanishes.

When all these lengthy manipulations have been performed the three equations correspond-
ing to the symmetric (in the limit of vanishing piezoelectric layer) part become

−ρ∂2
t u0 + c66∂

2
yu0 + (c11 + αγ13c

⋆
13)∂

2
xu0

+(c126 + αγ13c
⋆
23)∂x∂yv0 + (c13 + αγ13c33)∂xw1

+1

2
αhe[γ̂55(−ρp∂

2
t u1 + k66∂

2
yu1) + (γ̂55k113 − (1 + α)γ13c55)∂

2
xu1

+(γ̂44(k126 − γ13k23) − (1 + α)γ13c44)∂x∂yv1

+(γ13ρ − αγ⋆
55ρp)∂x∂

2
t w0 + (αk113γ

⋆
55 − (1 + α)γ13c55)∂

3
xw0

+(αγ⋆
44(k126 − γ13k23) + αγ⋆

55k66 − (1 + α)γ13c44)∂x∂
2
yw0] = 0, (4.1)
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−ρ∂2
t v0 + c66∂

2
xv0 + (c22 + αγ23c

⋆
23)∂

2
yv0

+(c126 + αγ23c
⋆
13)∂x∂yu0 + (c23 + αγ23c33)∂yw1

+1

2
αhe[γ̂44(−ρp∂

2
t v1 + k66∂

2
xv1) + (γ̂44k223 − (1 + α)γ23c44)∂

2
yv1

+(γ̂55(k126 − γ23k13) − (1 + α)γ23c55)∂x∂yu1

+(γ23ρ − αγ⋆
44ρp)∂y∂

2
t w0 + (αk223γ

⋆
44 − (1 + α)γ23c44)∂

3
yw0

+(αγ⋆
55(k126 − γ23k13) + αγ⋆

44k66 − (1 + α)γ23c55)∂
2
x∂yw0] = 0, (4.2)

c13∂xu0 + c23∂yv0 + c33w1 + αhe

2
[ρp∂

2
t w0 − c55∂

2
xw0

−c44∂
2
yw0 − c55∂xu1 − c44∂yv1] = αheez3ρp

4k33
∂2

t ∆V. (4.3)

Here only terms linear in he are retained. ∆V = V1 − V0 is the applied electric potential
difference across the piezoelectric layer. The constant α = hp/he measures the relative
thickness of the piezoelectric layer compared to the elastic one. Some new constants are
introduced and as the expressions become rather lengthy these are defined in Appendix A.
It is worth mentioning that an overbar essentially indicates a mean through the whole plate
of the corresponding density or stiffness. A star indicates a difference and the constants γ
with indices denote dimensionless stiffnesses.

Equation (4.3) is a modified plane stress condition which contains also a source term from
the applied voltage. For a thin piezoelectric layer (small α) this term is expected to be
small. The other two equations are essentially describing the 2D in-plane motion modified
with the linear terms in he to account for the coupling to the bending motion.

The three equations corresponding to the antisymmetric (in the limit of vanishing piezo-
electric layer) part are

c55(u1 + ∂xw0) + αhe

2
[ρp∂

2
t u0 − k66∂

2
yu0 − (k11 + γ13c

⋆
13)∂

2
xu0

−(k126 + γ13c
⋆
23)∂x∂yv0 − γ13c33∂xw1] + h2

e

8
[A102∂x∂

2
t w0 + A120∂x∂

2
yw0

+A300∂
3
xw0 + A002∂

2
t u1 + A200∂

2
xu1 + A020∂

2
yu1 + A110∂x∂yv1] = 0, (4.4)

c44(v1 + ∂yw0) + αhe

2
[ρp∂

2
t v0 − k66∂

2
xv0 − (k22 + γ23c

⋆
23)∂

2
yv0

−(k126 + γ23c
⋆
13)∂x∂yu0 − γ23c33∂yw1] + h2

e

8
[B012∂y∂

2
t w0 + B210∂

2
x∂yw0

+B030∂
3
yw0 + B002∂

2
t v1 + B200∂

2
xv1 + B020∂

2
yv1 + B110∂x∂yu1] = 0, (4.5)

−ρ∂2
t w0 + (1 + α)[c55∂

2
xw0 + c44∂

2
yw0 + c55∂xu1 + c44∂yv1]

+αhe

2
[−ρpγ̂33∂

2
t w1 − (c13 + αγ13c33)∂

2
xw1 − (c23 + αγ23c33)∂

2
yw1

+(ρ − αγ⋆
13ρp)∂x∂

2
t u0 − (c12 + 2c66 + αγ23c

⋆
13)∂x∂

2
yu0 − (c11 + αγ13c

⋆
13)∂

3
xu0

+(ρ − αγ⋆
23ρp)∂y∂

2
t v0 − (c12 + 2c66 + αγ13c

⋆
23)∂

2
x∂yv0 − (c22 + αγ23c

⋆
23)∂

3
yv0]

−

h2
e

12
[C004∂

4
t w0 + C202∂

2
x∂

2
t w0 + C022∂

2
y∂

2
t w0 + C400∂

4
xw0 + C040∂

4
yw0

+C220∂
2
x∂

2
yw0 + C102∂x∂

2
t u1 + C120∂x∂

2
yu1 + C300∂

3
xu1 + C012∂y∂

2
t v1

+C210∂
2
x∂yv1 + C030∂

3
yv1] = −

αez3ρp

2k33
∂2

t ∆V −

α3h2
eǫzzez3ρ2

p

24k33h33
∂4

t ∆V. (4.6)
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Here terms quadratic in he are retained. The lengthy expressions for the constants Amnp,
Bmnp, and Cmnp are given in Appendix A. The indices on these constants correspond to
the order of the derivatives in x, y, and t, respectively.

These antisymmetric equations describe essentially bending motion of the plate and it is
therefore necessary to include quadratic terms in he to account for the bending stiffness
of the plate. The linear terms in he account for the coupling to the in-plane equations.
Below in the numerical results it is shown that these coupling terms are usually of minor
importance.

A few words about the orders of he used in the derivations are appropriate here. To obtain
second order as given here, it is necessary to include six terms in the original expansions of
displacements and electric potential, i.e. to terms O(h5

e). This gives stresses to order O(h4
e).

When eliminating from seven to six equations one cancelation gives that these equations are
of order O(h3

e), but when these six equations are added and subtracted pairwise there is an
additional cancelation so that the final equations are of order O(h2

e). The way the equations
are derived and earlier findings [8] strongly suggest that the equations are asymptotically
correct.

Finally, it should be pointed out that there are problems with performing eliminations
in the system of differential equations. If Gaussian elimination is used in the elimination
procedure, new solutions are introduced when eliminating in more than one step, due
to multiplication with differential operators. A more systematic method which does not
introduce new solutions and performs the elimination in just one step can instead be
devised. However, if this method is used repeatedly, new solutions are still introduced.
This implies that if fewer than six equations are asked for, the original system of seven
equations should be used as the starting point, and not the six equations obtained after
one elimination. It must also be noted that the dispersion relation obtained from the six
equations and truncated to order O(h2

e) is different from the dispersion relation obtained
from the seven equations and truncated to order O(h2

e), although the system of six and
seven equations are both of order O(h2

e).

5. Numerical results

In this section numerical examples are given for guided waves along the plate and for a
simple 1D actuator case. The plate equations of the previous section are compared with the
exact solution with the main goal of investigating the accuracy of the plate equations.

The piezoelectric layer is taken to be PZT-2 (Lead Zirconate Titanate), which is of class
6mm, and the elastic layer is isotropic steel with density ρe = 7870 kg/m3, Young’s modulus
E = 210 GPa, and Poisson’s ratio ν = 0.3. PZT-2 is transversely isotropic with material
constants (Auld [12]) ρp = 7600 kg/m3, k11 = k22 = 135 GPa, k12 = 67.0 GPa, k13 =
k23 = 68.1 GPa, k33 = 113 GPa, k44 = k55 = 22.2 GPa, ex5 = ey4 = 9.8 C/m2, ez1 =
ez2 = −1.9 C/m2, ez3 = 9.0 C/m2, ǫxx = ǫyy = 504ǫ0, and ǫzz = 260ǫ0. Here ǫ0 =
8.854 · 10−12 C/Vm is the dielectric permittivity of free space. For a transversely isotropic
material k66 = 1

2
(k11 − k12).
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Only time harmonic conditions are considered with the time factor e−iωt. The dimensionless
variable Ω = ωh

√

ρe/c55 is used to measure the frequency. Here h = he + hp is the total
thickness of the plate.

Consider first the free propagating modes in the plate. The piezoelectric layer is taken to
be short-circuited ∆V = 0. This means that the piezoelectric effect has a rather small
influence, at least at low frequencies. As PZT-2 is transversely isotropic the direction of
propagation in the xy plane is immaterial. The wave number in the direction of propagation
is k. The dispersion relation is plotted as frequency Ω versus dimensionless wave number
kh. The results of the plate equations (given by full-drawn lines in the figures) are compared
with the exact solution (given by dashed lines).

Figure 2 shows the dispersion curves when the piezoelectric layer is one fourth of the total
thickness (α = 1/3). Three pairs of curves are seen. The almost straight line from the

0.5 1 1.5 2

1

2

3

4

kh

Ω

Figure 2. Dispersion curves for a thin piezoelectric layer (α = 1/3), com-
paring plate equation (full-drawn) and exact (dashed) solutions.

0.5 1 1.5 2

1

2

3

4

kh

Ω

Figure 3. Dispersion curves for a thin piezoelectric layer (α = 1/3) with
neglected coupling between in-plane and bending motions, comparing plate
equation (full-drawn) and exact (dashed) solutions.
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origin is the first (almost) in-plane mode which is dispersion-free at low frequencies. The
other two curves are (almost) bending modes, with the first one behaving as a parabola
at low frequencies. The second bending mode and its cut-off are not very accurately
predicted by the plate equations, but the two lowest modes are very well approximated at
low frequencies.

Figure 3 shows the same dispersion curves but with all coupling between the in-plane and
bending motions neglected, i.e. with the terms linear i he in Eqs. (4.1)–(4.6) suppressed.
Although it is seen that the solution is not as accurate, the difference between Figs. 2 and
3 is very minor at low frequencies and this shows that the coupling between the in-plane
and bending motion is small.

Figures 4 and 5 are similar to Figs. 2 and 3 but with a piezoelectric layer that has the
same thickness as the steel (α = 1). The results are almost as good as previously, although
the decoupling approximation is somewhat less accurate than in the previous case. It is

0.5 1 1.5 2

1

2

3

4

kh

Ω

Figure 4. Dispersion curves for a thick piezoelectric layer (α = 1), com-
paring plate equation (full-drawn) and exact (dashed) solutions.

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

kh

Ω

Figure 5. Dispersion curves for a thick piezoelectric layer (α = 1) with
neglected coupling between in-plane and bending motions, comparing plate
equation (full-drawn) and exact (dashed) solutions.
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seen that great errors are obtained in Fig. 4 as kh is around 2. The first (approximate)
bending wave has a complex branch on its dispersion curve when kh is a little greater than
2, and for the second bending wave this happens already for kh a little less than 2, but this
curve is not a very good approximation anyway. Another point worth noting is that one
of the bending curves is crossing the in-plane curve in Fig. 5; this is of course a behaviour
that is not allowed if coupling is taken into account.

To further investigate the accuracy of the plate equations, also the displacement compo-
nents and the electric potential in the modes are plotted. It must then be noted that it
is straightforward to obtain the displacement components in the elastic layer from the six
plate equations of the previous section, but the displacement components and the electric
potential in the piezoelectric layer is not easily obtained from the solution of these six equa-
tions, the problem being that there is no direct way to calculate the expansion function
Φ1. This problem can be circumvented by using the seven equations to calculate the fields

0.2 0.4 0.6 0.8 1

1.01

1.02

1.03

1.04

z/h

U

Figure 6. The horizontal displacement component U through the thickness
of the plate for the first in-plane mode for a thick piezoelectric layer (α = 1)
and the frequency Ω = 0.5, comparing plate equation (full-drawn) and exact
(dashed) solutions.

0.2 0.4 0.6 0.8 1

-0.125
-0.1

-0.075
-0.05
-0.025

0.025
0.05

z/h

W

Figure 7. The vertical displacement component W through the thickness
of the plate for the first in-plane mode for a thick piezoelectric layer (α = 1)
and the frequency Ω = 0.5, comparing plate equation (full-drawn) and exact
(dashed) solutions.
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0.2 0.4 0.6 0.8 1

-0.001

0.001

0.002

0.003

z/h

φ

Figure 8. The electric potential φ through the thickness of the plate for the
first in-plane mode for a thick piezoelectric layer (α = 1) and the frequency
Ω = 0.5, comparing plate equation (full-drawn) and exact (dashed) solutions.

in the piezoelectric layer as described in the previous section and this is thus done here.
However, the displacement components in the elastic layer are still computed from the six
equations. The reason for this is that the six equations are probably the most useful ones
and therefore the accuracy of these are of most interest. The difference between using six
or seven equations in the elastic layer is very minor though.

Only the case α = 1 is considered, i.e. the piezoelectric and elastic layers are of equal
thickness. The frequency is chosen to be Ω = 0.5 and it can not be much higher for
the existence of the first approximate bending mode, corresponding to the wave number
kh = 1.307 at this frequency, see Fig. 4. For the plots a z axis is chosen so that z = 0
corresponds to the lower surface and z = h to the upper. The first in-plane and bending
modes are plotted; the in-plane one is normalized so that the horizontal displacement
U = 1 in the middle of the elastic layer at z/h = 0.25 and the bending one is normalized so
that the vertical displacement W = 1 in the middle of the elastic layer. The dimensionless
electric potential is defined as φ = Φ ǫxx/(hex5).

Figures 6–8 show U , W , and φ for the in-plane mode. For the displacement components
it is seen that the approximate and exact solutions agree very well. As expected the
displacement is continuous but its derivative is discontinuous at the interface between the
piezoelectric and elastic layer at z/h = 0.5. For the electric potential the approximate and
exact solutions do not agree at all and it is also seen that the approximate solution does
not fulfill the boundary condition φ = 0 at the upper surface. As is seen from the scale,
however, the electric potential in this mode is very small so the error is still small, although
it is a little puzzling that not even the sign is correct.

Figures 9–11 similarly show the displacements and electric potential for the first bending
mode. Here the discrepancies between the exact and approximate solutions are a little
larger. But the scales should be observed; the errors relative the maximum are only a
few percent for the displacements. For this mode the potential is much larger (about a
factor 50) than for the in-plane mode, but both the absolute and relative errors between
the exact and approximate solutions are fairly large. It is also noted that displacements
are discontinuous at the interface for this case although the jumps are quite small.
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0.2 0.4 0.6 0.8 1

-0.4

-0.2

0.2

0.4

z/h

U

Figure 9. The horizontal displacement component U through the thickness
of the plate for the first bending mode for a thick piezoelectric layer (α = 1)
and the frequency Ω = 0.5, comparing plate equation (full-drawn) and exact
(dashed) solutions.

0.2 0.4 0.6 0.8 1

0.9

0.92

0.94

0.96

0.98

z/h

W

Figure 10. The vertical displacement component W through the thickness
of the plate for the first bending mode for a thick piezoelectric layer (α = 1)
and the frequency Ω = 0.5, comparing plate equation (full-drawn) and exact
(dashed) solutions.

As a final example, a simple actuator example is considered. As both layers are infinite this
becomes a 1D problem with a given jump in potential (with a fixed frequency as above)
leading to a vertical displacement. At zero frequency the exact solution for the amplitude
in the middle of the elastic layer is

w00 =
αρpez3∆V

2k33(ρe + αρp)
. (5.1)

This is also the solution that is obtained at zero frequency (or zero plate thickness) from
Eqs. (4.3) and (4.6), again showing the asymptotic correctness of the plate equations.
Keeping all orders in the thickness in Eqs. (4.3) and (4.6) leads to the result in Fig.
12, where the displacement is plotted as a function of frequency. The displacement is
normalized with the value at zero frequency as given by Eq. (5.1). The elastic and
piezoelectric layers are of the same thickness, i.e. α = 1. The exact solution is plotted
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0.2 0.4 0.6 0.8 1
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-0.05

0.05

z/h

φ

Figure 11. The electric potential φ through the thickness of the plate for
the first bending mode for a thick piezoelectric layer (α = 1) and the fre-
quency Ω = 0.5, comparing plate equation (full-drawn) and exact (dashed)
solutions.

0.5 1 1.5 2

1.05

1.1

1.15

1.2

1.25

Ω

w0/w00

Figure 12. The normalized vertical displacement as a function of frequency
for a 1D actuator case.

with a dashed line and the approximate one with a full-drawn line. It is seen that the
agreement is very good, in fact better than for the dispersion relations.

6. Concluding remarks

The derivation of plate equations for a two-layered plate with one elastic and one piezo-
electric layer is considered. The equations become very complicated, but there are good
reasons to believe that they are asymptotically correct. For sensor and actuator applica-
tions it may very well be possible to simplify the equations considerably, e.g. by dropping
terms that contribute bending rigidity due to the piezoelectric layer. If the piezoelectric
layer is thin compared to the elastic one it should be a good approximation to drop all
terms quadratic or higher in α.

Only an infinite plate is considered here, but there are of course good reasons to go further
and investigate finite piezoelectric patches on a larger plate. This can be done either
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by using the present equations or by using equivalent boundary conditions [9, 11] and
comparing with exact calculations for simple cases.

The present approach is of course also applicable to purely elastic, layered plates, and
for this case the problems with the expansion function of electric potential Φ1 do not
arise. Instead it should be possible to recursively eliminate the expansion functions for one
layer at a time, starting at the two surfaces and ending with six equations for the middle
layer. For a symmetric plate this could be done for the symmetric and antisymmetric parts
separately.
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Appendix A

This Appendix lists all the constants introduced in the plate equations in Section 4. The
notation partly reflects the nature of the constants; thus all constants with the same letter
but different indices have the same dimension and the indices more or less reflect the
indices of the underlying material constants. In the elastic layer the first three constants
introduced for the piezoelectric layer in Eq. (3.9) have a counterpart:

c126 = c12 + c66,

c135 = c13 + c55,

c234 = c23 + c44.

In the symmetric plate equations (4.1)–(4.3) some further constants are introduced. Es-
sentially the mean through the thickness enters in some places and they are defined as
follows

ρ = ρe + αρp,

cij = cij + αkij,

cijk = cijk + αkijk.

Also the difference is sometimes used

c⋆
ij = cij − kij.

Two new stiffnesses are introduced

k113 = k11 − k2
13/k33,

k223 = k22 − k2
23/k33,
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and some dimensionless constants (no summation convention)

γij = kij/kjj,

γ⋆
ij = c⋆

ij/kjj,

γ̂ij = (kij + αcij)/kjj,

βij = cij/cjj,

κii = cii/kii.

Here the last two definitions are needed below.

In the antisymmetric plate equations (4.4)–(4.6) the coefficients in front of the terms qua-
dratic in he are given by quite lengthy expressions

A102 = −β13ρe − 2α(γ13ρe − αγ⋆
55ρp) +

2α2ρp

h33

[h55 − h135 − ez1ez3 + e2
z3(γ13 +

2c55

3k33

)],

A120 = − β13c44 + 2α[α(γ⋆
44k126 + γ⋆

55k66) − γ13c44] +
2α2

h33

[−k55(γ
⋆
44h234 + h44)

+ h135(k44 + γ⋆
44k234) − g135(γ

⋆
44ez2 + κ44ey4) + (g43 + γ⋆

44g234)(e51 − γ13ez3)]

+
4α2c55

3k44h33

[k44(h34 − g43ez3/k33) + g234(−e42 + ez3k234/k33)],

A300 = β13c55 + 2α[γ13c55 − αγ⋆
55k11] +

4α2

3h33

[c55(h35 − g53ez3/k33)

+ κ55g135(ez3k135/k33 − e51)] +
2α2

h33

[k55(h135 − h55)

+ γ⋆
55k13h135 + g53(e51 − γ13ez3) − g135(γ13γ

⋆
55ez3 + ex5)],

A002 = ρ + αρp(1 + 2ακ55) +
4α2c55e

2
z3ρp

3k33h33

,

A200 = − c11 + β13c135 + 2α[γ13(k13 + c55) − k11] +
2α2κ55

h33

(k13h135 − γ13g135ez3)

+
4α2c55

3h33

[h35 +
g135

k33k55

(k135ez3 − k33ez1) − g53ez3/k33] − 2α2κ55k11,

A020 = −c66 − 2αγ̂55k66 +
4α2c55h34

3h33

+
4α2c55

3k33k44h33

[g234(k234ez3 − k33e42)− k44g43ez3],
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A110 = − c126 + β13c234 − 2αγ̂44k126 − 2αγ13(c44 + k23)

+
2α2κ44

h33

[k234h135 − k55h234 − g135e42 + g234(e51 − γ13ez3)],

B012 = −β23ρe − 2α(γ23ρe − αγ⋆
44ρp) +

2α2ρp

h33

[h44 − h234 − ez2ez3 + e2
z3(γ23 +

2c44

3k33

)],

B210 = − β23c55 + 2α[α(γ⋆
55k126 + γ⋆

44k66) − γ23c55] +
2α2

h33

[−k44(γ
⋆
55h135 + h55)

+ h234(k55 + γ⋆
55k135) − g234(γ

⋆
55ez1 + κ55ex5) + (g53 + γ⋆

55g135)(e42 − γ23ez3)]

+
4α2c44

3k55h33

[k55(h35 − g53ez3/k33) + g135(−e51 + ez3k135/k33)],

B030 = β23c44 + 2α[γ23c44 − αγ⋆
44k22] +

4α2

3h33

[c44(h34 − g43ez3/k33)

+ κ44g234(ez3k234/k33 − e42)] +
2α2

h33

[k44(h234 − h44)

+ γ⋆
44k23h234 + g43(e42 − γ23ez3) − g234(γ23γ

⋆
44ez3 + ey4)],

B002 = ρ + αρp(1 + 2ακ44) +
4α2c44e

2
z3ρp

3k33h33

,

B020 = − c22 + β23c234 + 2α[γ23(k23 + c44) − k22] +
2α2κ44

h33

(k23h234 − γ23g234ez3)

+
4α2c44

3h33

[h34 +
g234

k33k44

(k234ez3 − k33ez2) − g43ez3/k33] − 2α2κ44k22,

B200 = −c66 − 2αγ̂44k66 +
4α2c44h35

3h33

+
4α2c44

3k33k55h33

[g135(k135ez3 − k33e51)− k55g53ez3],

B110 = − c126 + β23c135 − 2αγ̂55k126 − 2αγ23(c55 + k13)

+
2α2κ55

h33

[k135h234 − k44h135 − g234e51 + g135(e42 − γ23ez3)],

C004 =
ρe

2c33

[ρe + 3αρp(1 + 2ακ33)] +
α2ρp

k33h33

[2αk33ǫzzρp + e2
z3(2ρe − αρp)],
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C202 =
1

2c33

[c13ρe(1 + 3α) − c55(ρe + 3αρp)]

− 2α3κ55ρp + α2[3γ13ρe + ρp(2α − 3c55/k33)]

+
α2

h33

[2ρ(h35 + g135e51/k55) − ez3ρp(3α(g135/k33 + γ13ez3)

+
κ55

k33

(−3αg135 + 2k55ez3(1 + α))) −
g53ez3

k33

(2ρe − αρp)

+
2k135g135ez3ρ

k33k55

− αρp(2κ55h135 + 4(h55 − h135) − 3ez1ez3)],

C022 =
1

2c33

[c23ρe(1 + 3α) − c44(ρe + 3αρp)]

− 2α3κ44ρp + α2[3γ23ρe + ρp(2α − 3c44/k33)]

+
α2

h33

[2ρ(h34 + g234e42/k44) − ez3ρp(3α(g234/k33 + γ23ez3)

+
κ44

k33

(−3αg234 + 2k44ez3(1 + α))) −
g43ez3

k33

(2ρe − αρp)

+
2k234g234ez3ρ

k33k44

− αρp(2κ44h234 + 4(h44 − h234) − 3ez2ez3)],

C400 = −

1

2
β13c55(1 + 3α) − α2(3γ13c55 − 2αγ⋆

55k11) −
2α2(1 + α)c55h35

h33

+
α3

h33

[2k55h55 + 2h135(k13 − k55) + g53(3γ13ez3 − 3ez1 − 2ex5)

+ g135(2ex5 + ez1 − 3γ13ez3)] +
α2κ55ez3

k33h33

[2(1 + α)k55g53 + g135(3αk13

− 2(1 + α)k135)] +
α2κ55

h33

[g135(2(1 + α)e51 − αez1) − 2αk13h135],

C040 = −

1

2
β23c44(1 + 3α) − α2(3γ23c44 − 2αγ⋆

44k22) −
2α2(1 + α)c44h34

h33

+
α3

h33

[2k44h44 + 2h234(k23 − k44) + g43(3γ23ez3 − 3ez2 − 2ey4)

+ g234(2ey4 + ez2 − 3γ23ez3)] +
α2κ44ez3

k33h33

[2(1 + α)k44g43 + g234(3αk23

− 2(1 + α)k234)] +
α2κ44

h33

[g234(2(1 + α)e42 − αez2) − 2αk23h234],
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C220 = −

1

2
(1 + 3α)(β13c44 + β23c55)

+ 2α3(k12 + 2k66)(κ44 + κ55 − 2) − 3α2(γ13c44 + γ23c55)

+
α2(1 + α)

k33h33

[2ez3(c44g53 + c55g43) − 2k33(c44h35 + c55h34)

+
2c44g135

k55

(k33e51 − k135ez3) +
2c55g234

k44

(k33e42 − k234ez3)]

+
α3

h33

[κ44(k33e42ez1 + k234ez3(3γ13ez3 − ez1) − k13(ez3e42 + 2k234ǫzz))

+ κ55(k33e51ez2 + k135ez3(3γ23ez3 − ez2) − k23(ez3e51 + 2k135ǫzz))

+ 2(ez3(k23ez1 + k13ez2) − k33ez1ez2 − 3γ13k23e
2
z3 + 2k13k23ǫzz)],

C102 = −

c135

2c33

(ρe + 3αρp) − 2α3κ55ρp − 3α2ρp(1 + γ13 + c55/k33) −
1

2
ρe(1 + 3α)

+
α2κ55ρp

k33h33

(α(3g135ez3 − 2k33h135) − 2(1 + α)k55e
2
z3),

C120 =
1

2
(1 + 3α)(c12 + 2c66 − β23c135) + α2(2ακ55 + 3)(k12 + 2k66)

− 3α2γ23(c55 + k13) +
α2

h33

[ακ55(2k44h135 − 2k135h234 + 2g234e51

− 2g135ey4 − 3g135ez2 + 3γ23g135ez3) + 2(1 + α)c55(−h34 + g43ez3/k33

+
g234

k33k44

(k33e42 − k234ez3))],

C300 =
1

2
(1 + 3α)(c11 − β13c135) + α2[2ακ55k11 − 3(γ13(c55 − k13) − k11)]

−

α2κ55

h33

[2k55h35(1 + α) +
ez3

k33

(−2g53k55(1 + α) + g135(2k135(1 + α) − 3αk13))

+ 2αk13h135 + g135(αez1 − 2e51(1 + α))],

C012 = −

c234

2c33

(ρe + 3αρp) − 2α3κ44ρp − 3α2ρp(1 + γ23 + c44/k33) −
1

2
ρe(1 + 3α)

+
α2κ44ρp

k33h33

(α(3g234ez3 − 2k33h234) − 2(1 + α)k44e
2
z3),
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C210 =
1

2
(1 + 3α)(c12 + 2c66 − β13c234) + α2(2ακ44 + 3)(k12 + 2k66)

− 3α2γ13(c44 + k23) +
α2

h33

[ακ44(2k55h234 − 2k234h135 + 2g135e42

− 2g234ex5 − 3g234ez1 + 3γ13g234ez3) + 2(1 + α)c44(−h35 + g53ez3/k33

+
g135

k33k55

(k33e51 − k135ez3))],

C030 =
1

2
(1 + 3α)(c22 − β23c234) + α2[2ακ44k22 − 3(γ23(c44 − k23) − k22)]

−

α2κ44

h33

[2k44h34(1 + α) +
ez3

k33

(−2g43k44(1 + α) + g234(2k234(1 + α) − 3αk23))

+ 2αk23h234 + g234(αez2 − 2e42(1 + α))].
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