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Abstract

Simulation of wireless systems has become a key issue in analyzing, optimizing and
designing wireless systems. In this thesis, modeling RF front end devices in
Simulink® is investigated. The capabilities of Simulink® and RF Blockset are tested.
Their different behavioral models for nonlinearity, noise, phase noise and mismatch
are analyzed. A model for the power amplifier that takes into account memory effects
is implemented in Simulink to extend the RF Blockset to model wideband
applications such as WCDMA. This model for the power amplifier implements a
memory-polynomial model. Memory-polynomials prove to be both accurate and easy
to implement.

Keywords: RF front end modeling, behavioral modeling, power amplifier modeling,
memory-polynomial, Simulink, RF Blockset.
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Chapter 1 Introduction

1 Introduction

The main goal of modern wireless communication systems is to provide a
variety of communication services to anybody, anywhere, any time. These
services for the next generation of communications include high speed data,
video and multimedia traffic as well as voice communication. To provide
these services communication systems have to overcome different types of
impairments in the transmitter, the receiver and the channel. Including these
impairments in a system level simulator will facilitate both design and
analysis of wireless systems. This thesis work is done within the Charmant
research center at the Signals and Systems department of Chalmers University
of technology. It is a part of a project on simulating an end to end MIMO
system for WCDMA applications. This work is an extension to a previous
master thesis on MIMO channel modeling. In this thesis a model for the RF

front end is implemented.

1.1  RF front end systems

An RF front end system refers to the analog front end of the wireless
communication system. The digital base-band signals cannot be transmitted
directly through wireless channels due to properties of the electromagnetic
waves. Therefore, these signals must be converted to analog, up converted to
higher frequencies, and transmitted through the channel. The received signals
are down converted to the base-band frequency then converted to digital
again. An overall wireless communication system is shown in Fig. 1.1.
Processes done to the analog signal in the RF front end includes filtering,
amplification, and mixing. These processes are imperfect and add various
impairments to the received signal, in this thesis the modeling of major
impairments added by each RF component is investigated, and an overall

model for the receiver and the transmitter are implemented in Simulink® .
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Fig. 1.1 A schematic of an overall wireless system structure. Antennas are sometimes
included with RF frond end.

1.1.1 RF Transmitters

Fig.1.2. Shows a block diagram for a typical RF transmitter, only the power
amplifier and the mixer are included in the modeling, because these
components add the most serious impairments to the transmitter. Other
components that do not add serious impairments, like filters, are ignored in
this thesis. The mixer introduces phase noise, spurious frequencies and
nonlinearity. The power amplifier introduces nonlinearity. The models for

these blocks are illustrated in subsequent chapters.

R—{ >

QY

Fig. 1.2 A Schematic of an RF transmitter. Only components that introduce effective
impairments are included.



Chapter 1 Introduction
1.1.2 RF Receivers

Fig.1.3. shows a block diagram for an RF receiver. Only the low noise
amplifier (LNA) and the mixer are included in the model. The LNA

introduces noise and nonlinearity. The mixer introduces phase noise and

5>

Fig. 1.3 A schematic of an RF receiver. Only blocks that introduce effective
impairments are included.

nonlinearity.

1.2 Types of modeling

Modeling is the process of representing real-world objects or phenomena as
sets of mathematical equations. Modeling can be divided into two types,

Physical modeling and behavioral or mathematical modeling.
1.2.1 Physical modeling

A physical model requires knowledge of the elements that comprise the real
system, their constitutive relations, and the theoretical rules describing their
interactions. These types of modeling are appropriate for circuit level

simulation and can be very accurate [17].
1.2.2 Behavioral modeling

A behavioral model, also called black box model, does not require prior
knowledge of the physical systems. Its internal structure relies only on input
and out measurements. The parameters of behavioral models are indentified
from input and output measurement data. Therefore measurement techniques
and the quality of data affect the accuracy of these models [17]. All the models

presented in this thesis are behavioral.
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1.3  Base-band and Pass-band modeling

A pass-band signal can be represented by the following equation [4]:

xpp(n) = r(n) cos(w.n + @(n)) (1.1)
where
w, is the center carrier frequency
r(n) is the amplitude of the signal
@ (n) is the modulated phase

This pass-band signal can be re-written as
xpp(n) = I(n) cos(w.n) — Q(n) sin(w.n) (1.2)

where I(n) = r(n)cos [¢(n)] and Q(n) = r(n)sin[¢(n)] are the in phase and

quadrature components respectively. Equation (1.2) can be re-written as

xpgp(n) = r(n)cos [p(n)] cos(w.n) — r(n)sin[p(n)] sin (w.n) (1.3a)
— Re[r(n)eﬂp(n)ejwc-n] (13b)
= Re[x(n)e/e"| (1.3¢)

where
x(n) is the complex base-band signal, which can be represented by
x(n) = r(n)e/*™ (1.4a)
=1(n) +jQ(m) (1.4b)

Simulations can be done either in pass-band or complex base-band. Pass-band
simulations are simpler and more accurate. However, they consume more

resources and simulation time. To show this, assume a signal of center
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Chapter 1 Introduction

frequency f, and an operational bandwidth B. To simulate one second of real
time for this signal in Pass-band, f.+ B/2 simulation cycles are needed. In
contrast, base-band simulations require B cycles only. Therefore, the reduced
accuracy by using base-band simulations is usually a reasonable trade for the

improved simulation time.

The main effect, that complex base-band simulations do not consider while
pass-band simulations do, is the fluctuations in the carrier frequency, these
fluctuation can also be referred to as phase noise. Therefore, if these
fluctuations are to be modeled, either use an extra base-band model for these

fluctuations or Pass-band simulations should be used.

1.4 Harmonics and intermodulation products in
nonlinear devices

All electronic devices are inherently non-linear. Nonlinearity is desirable in
some devices for example mixers, and not desirable for other devices like
power amplifiers. The effect of nonlinearity of electronic devices can be
characterized by applying single tone and multi tone signals to their inputs

and observe the outputs at each case.

If a single tone signal with frequency f is applied to a nonlinear device the
output will include signals of frequencies of the form nf, where n is an integer

greater than one. These frequencies are called harmonics.

If a two tone signal with frequencies fzr and f;, is applied to a nonlinear
device the output will include frequencies of the form mfzr + nf owhere m
and n are two integers greater than zero. Theses frequencies are called
intermodulation products. The order of a given intermodulation product is
defined as |m| + |n|. The most serious intermodulation product in electronic
devices is the 3¢ order intermodulation product, because it is usually close to

the desired frequency and cannot be completely filtered out. This product is



usually characterized by the third order intercept point refereeing either to

the input or the output (IIP; or OIP;). This is best defined by looking at Fig.

3.2. It can be shown that the slope of the linear gain for input and output

powers in dBs is unity, likewise the slope of the third gain of the third order

intermodulation component is 3 [7], the point where the third order line

intersects with the linear gain line is the third order intercept point.
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Fig. 3.2. An illustration of the first and third order intercepts points.

Another figure of merit to characterize nonlinearity is the 1dB compression

point. For a nonlinear device, the 1dB compression point is defined as the

point where the difference between the device’s output and the linear output

is exactly 1 dB. The 1 dB compression point is typically 12 to 15 dB less than

the 3 order intercept point assuming they are referenced at the same point.



Chapter 2: Power Amplifier

2 Power Amplifiers (PA)

21 Introduction

An amplifier is a device designed to increase signal power levels. There are
mainly two types of amplifiers in RF front end circuits; these are power
amplifiers (PA), and low noise amplifiers (LNA). Power amplifiers are mainly
present in the transmitters, and are designed to raise the power level of the signal
before passing it to the antenna. This power boost is crucial to achieve the
desired signal to noise ratio at the receiver, and without which received signals

would not be detectable.

For the power amplifier it is necessary to have as high gain as possible, while
adding as little distortion to the signal as possible i.e. be as linear as possible. For
small and mobile transmitters there is usually another factor not less important;
that is power efficiency since these devices are usually battery driven.
Unfortunately, from a circuit design point of view, increasing the power
efficiency would mean driving the device more and more into nonlinearity
region which means that the amount of distortion will increase. The problem of
nonlinearity is not so serious for applications where information is put in the
carrier signal’s phase. However, with the recent jam in the frequency bandwidth,
new regulations have made strict bands that modulation schemes can work in,
while at the same time higher data rates need to be achieved, therefore, it is
logical to move to modulation schemes that carry information in both amplitude
and phase. If the amplitude carries information then irreversible envelope
distortions will affect the received signal quality and in turn increase the bit error

rate of the received signal. Therefore, in modeling a power amplifier for wide



band applications the most important aspect to model is the device nonlinearity

that the amplifier introduces to the system.

The target application for this work is WCDMA. An important characteristic of
this scheme is the large band width. Large bandwidth generally leads to higher
frequency of the signal envelop, this feature will bring another important
phenomena to the surface that is memory effect. Almost every device has a
memory temporal dynamics or response delay, these effects are due to the
biasing of the circuit and the capacitance or inductance built in the device. For
wide band applications, memory effects cannot be ignored. Therefore, a model
that takes into account memory effects must be used to accurately model the

power amplifier’s distortion.

In Section 2.2 an overview of the most commonly considered models for power
amplifiers are presented, a comparison between these models is also discussed to
select the most suitable model. In Section 2.3 the implementation of the selected

model in Simulink® is explained in detail.

2.2 Power amplifier modeling

The power amplifier’s nonlinearity broadens the input signal’s bandwidth. This
is known as Spectral re-growth and is undesired. Spectral re-growth causes
interference with adjacent channels and increases the probability of violations of
the out-of-band emission requirements mandated by regulatory bodies. It also
causes distortions within the signal bandwidth, which affects the bit error rate at
the receiver. Most recent transmission schemes, such as Wideband Code Division
multiple access (WCDMA) or Orthogonal Frequency Division Multiplexing
(OFDM), are especially vulnerable to the nonlinear distortions due to high

fluctuations in their power levels.



Chapter 2: Power Amplifier

To analyze a power amplifier (PA) system for future communication system it is
important to model the behavior of PA nonlinearity and memory effect accurately.
Nonlinear amplifier behavioral models can be divided into three types; memory-
less (static), quasi memory-less and models with memory. In the following

subsections some popular behavioral models are presented and compared.

221 AM-AM and AM-PM Modeling

The AM-AM conversion for a nonlinear system is the relation between the
amplitude of the system’s output and the amplitude of the system’s input. The
AM-PM conversion for a nonlinear system is the relation between the phase
change of the system’s input and output, and the amplitude of the input signal.

This is shown in Fig. 2.1.
Assuming the pass-band input signal (1.1), the output of the AM-AM and AM-PM

model ypg(n) can be written as

Vg = g(r(m)) cos (won + @) + f(r(n))) (2.1)

where
g(n) is the amplitude nonlinearity or AM-AM conversions

f(n) is the phase nonlinearity or AM-PM conversions

R(n) >
I
\
= Y(n)
A=

AM/PM o=

—
aé
+

Fig.2.1. Amplitude-phase nonlinear model structure for a complex base band input and output
signals.



In the following Sections different models for power amplifiers are presented.

2.2.2 Memory-less and quasi memory-less nonlinear models

In memory-less (static) power amplifier models the output signal is a nonlinear
function of the current input signal only and previous values of the signal have
no effect on the output of the model. Memory-less models only consider AM-AM
conversions, and assume no phase change. On the other hand Quasi-memory-
less models take into account both amplitude and phase distortions. Therefore,
they are represented by the amplifier AM/AM as well as AM/PM transfer

functions.

Static models give reasonable accuracy for applications with a narrow-band
frequency spectrum or when memory effects are not important. Quasi-
memoryless models have better accuracy for narrowband applications. In the
following subsections some memory-less and quasi-memoryless models are

discussed. Most of these are already implemented in Matlab Simulink® .

2.2.2.1 Polynomial model

The polynomial memory-less power amplifier model can be represented in base-

band by the following equation

K
y) = Y byx(m)lx(m)l! (22)
k=1

where
x(n) is the input complex base-band signal.
y(n) is output complex base-band signal.

b, are real-valued coefficients.

10



Chapter 2: Power Amplifier

Making the coefficients b, complex in equation (2.2) will result in a quasi

memory-less polynomial model for the power amplifier [2].

2.2.2.2 The Rapp Model

The Rapp model uses three parameters, and models amplitude distortion but no

phase distortion. The general expression of the AM-AM conversions is as follows

r(n)
[1 + (@)ZT/B (2.3)

g(rm) =
Osat

where

Osq: 1s @ parameter that sets the output saturation level.

s is a parameter that sets the smoothness of the transition from linear to
saturation states, the smaller S the smoother the transition.

The technique of this model is quite simple. It assumes linear performance until

the saturation point is approached. When the saturation point is approached, a

transition towards a constant saturated output is applied [18].

2.2.2.3 The Saleh model

The Saleh model is a quasi-memoryless model. It uses four parameters to fit the
model to measurement data. Its AM-AM and AM-PM conversion functions are

described by the following equations

a? (1)

g(T‘(Tl)) = #:zn)z (2.4&1)
a,r(n)?

Frm) = 75— +(pﬁ(pr(n)2 (2.4b)

where

[, o B, B cp] are the model’s parameters, [13].

11



2.2.2.4 The Ghorbani model

The Ghorbani model uses eight parameters to fit the model to measurement
data, this model is quasi- memoryless, and its AM-AM and AM-PM conversions

functions are described by the following equations

X2
glr(n)) = %+ x47(N) (2.5a)
fr(n)) = nr” + y,r(n) (2.5b)

1+ ysr(n)Y?

where
X1,X2,X3,X4,Y1,Y2, Y3, Vs are the model’s parameters, which are calculated from

measurement data by means of curve fitting [12].

2.2.2.5 The Hyperbolic tangent model

The Hyperbolic tangent model is quasi-memoryless. It has five parameters these
are, IIP3, linear gain G, upper power limit Py, lower power limit P, and the linear
phase gain Gpy. One characteristic of this model is that its parameters are
related to physical attributes like IIP3. Its AM-AM conversion function is

described by the following equation

g(r(n)) = tanh [% r(n)] G (2.6a)

where

IIP3 is the third order intercept point referred to the input.

G  isthe linear gain.

The AM-PM conversion is linear and is specified by the slope of the AM-PM

conversion Gpy in degree/dB. This linearity is bounded by two parameters which

12



Chapter 2: Power Amplifier

are Py and P;. If the power magnitude of the input is less than P, then no phase
distortion is added, and if the power magnitude of the input is greater than Py
then a constant phase shift of Gpy(Py — P,) is applied. This can be represented

by the following equation

Gpu(Py —P) |rm)| > Py
frm) =1 IrMIGpy P, <|r(m)| <Py (2.6b)
0 [r(n)| < Py,

where
Gpy is the slope of the AM-PM linearity.

Py and P, are the upper and lower power limit parameters respectively.

2.2.3 Nonlinear models with memory

In reality the output of the power amplifier depends on previous inputs as well
as the current input of the amplifier. This phenomenon is called memory effect,
or simply temporal dynamics. These memory effects are due to thermal effects,
and long time constants in DC bias circuits. It can be observed as asymmetries in
lower and upper sidebands, and bandwidth dependent variations in the
magnitude of intermodulation products. For higher bandwidth applications, e.g.
WCDMA, the memory effects becomes severe, and cannot be ignored. Hence,
memory-less and quasi-memoryless models are not accurate enough. Therefore,

a model which considers memory effects should be used for such applications.

In the following Sections some of the most common models with memory are

presented.

13



2.2.3.1 Volterra series

The Volterra model can be used to describe any nonlinear stable system with
fading memory, with an arbitrary small error. However, its main disadvantages
are the dramatic increase in the number of parameters with respect to nonlinear
order and memory length, which causes drastic increase of complexity in the
identification of parameters. This is the reason why it is highly unpractical to use
volterra series for systems with high nonlinear orders and memory lengths. This

model can be expressed mathematically as follows [2]

k+1 2k+1
ORI 3y Savrcn g sen l ECE N [l EXCRDNCE)
k11 le+1 i=1 i=k+2

From the equation above it is clear that the number of coefficients of the Volterra
series increases exponentially as the memory length and the nonlinear order

increase.

2.2.3.2 Wiener and Hammerstein models

As mentioned above Volterra series is unpractical for modeling power amplifiers
in real time applications. This reason motivated researchers to investigate special
cases of Volterra series. The Wiener model, the Hammerstein model, and the
Wiener-Hammerstein model are included in the category of special cases of

Volterra series for modeling nonlinear power amplifiers.

The Wiener model consists of a linear time invariant (LTI) system followed by a

memory-less nonlinearity as illustrated in Fig. 2.2.

14



Chapter 2: Power Amplifier

N LTI

Fig. 2.2: Wiener Model

The model is given by the following mathematical formulas. The output of the

LTI system is given as

Q
u(n) = Z hyx(n—q) (2.8a)
q=0

The output of the static nonlinear (NL) block is given as
K
Y = ) by g u(m)u(m) 26D (28b)
=1

Inserting (2.8a) in to (2.8b) gives

Q K

Yy = ) hy ) bacalxm = P4 Dx(n - q) (280)
q=1 k=1

The Hammerstein model is a memory-less nonlinearity followed by an LTI,

which is clear from the Fig. 2.3

Y
X(n) U(n) LTI (n)

Fig. 2.3. Hammerstein model

15



The model is represented by the following equations.

K
um) = Y b x| (2.9)
k=1
y(m) = u(n) = h(q) (2.9b)
K Q
y(n) = Z Z by h(@)x(n — q)|x(n — q)|*1 (2.9¢)
k=1g=0

The Wiener-Hammerstein (W-H) model consists of an LTI system followed by a
memory-less nonlinearity, which is in turn followed by another LTI system. The

Wiener-Hammerstein model is shown in Fig. 2.4

Fig. 2.4: Wiener-Hammerstein Model

The output is modeled by [2]

Q1
un) = a,; x(n—ql), (2.10a)
q12=:0 !
K
2n) = ) by g umlu(m)P¢-D (2.10b)
k=1
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Chapter 2: Power Amplifier

Q1 K Q2 Q2
y(n) = Z hql z b2k—1 Z anx(n —q;— qz) Z anx(n —q;— qz) (2~10C)
ql=0 k=0 q2=0 q2=0

where

Q; and @, are parameters to specify memory depths of LTI

2.2.3.3 The Parallel-Hammerstein model

The Parallel-Hammerstein is an extension of the standard Hammerstein model.

The model is illustrated in Fig. 2.5. The system in this case is modeled by [2][3]

K
y) = ) Hae (@ x(m)P x() 211a)
k=1
Q K
= > ) aglxti— QPEVx(n - q) @.11b)
q=0k=1

where
x(n) is the input complex base-band signal.
y(n) is the output complex base-band signal.
H (q) is the transfer function of the filter for the k* polynomial contribution.
ayq are complex valued parameters.
Q is the memory depth.
K is the order of the polynomial.

The main difference between the Parallel-Hammerstein and the standard
Hammerstein models is that in the Parallel-Hammerstein model, different static

nonlinear orders are filtered with different LTI systems. For example, the first

17



term of the polynomial is filtered with H;(q) , and the 2" odd power term i.e.

x|x|? is filtered with H3(q) and so on.

X()

NL p—» LTh

—> NL — LTIz

° [ ]
: : 0
° : °
. .

NL E— LTla

Fig.2.5 Block diagram for the Parallel- Hammerstein

2.2.3.4 The Memory- Polynomial Model

The memory-polynomial model, [1] consists of several delay taps and nonlinear
static functions. This model is a truncation of the general Volterra series, which
consists of only the diagonal terms in the Volterra kernels. Thus, the number of
parameters is significantly reduced compared to general Volterra series. The

model is shown in Fig. 2.6

18
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T » Fo >
1/Z
» F4 >
A\ 4
1/Z I
[ > —
| |
| |
1/Z I
I » Fa >

Fig. 2.6. The memory-polynomial model.

A Memory-polynomial model considering memory effects and nonlinearity is

given by the following equation

Q K
) = > ay 1 lxm— QP Dx(n - q) (212)
q=0 k=1
where
x(n) is the input complex base-band signal.
y(n) is the output complex base-band signal.
ayq are complex valued parameters.
Q is the memory depth.

K is the order of the polynomial.

This model considers only odd-order nonlinear terms, because the even-order

terms are usually outside of the operational bandwidth of the signal and can be

19



easily filtered out. This model considers polynomials with orders up to 2k —1,

where K is a design parameter.

2.24 Comparisons between nonlinear models with memory

The Volterra series is the most general model and is the most accurate one.
However, for the Volterra series to be accurate enough, the number of
parameters needed increases dramatically. This motivates the use of subsets of
the Volterra series. The most popular subsets are the Memory-polynomial,

Hammerstein, Wiener, Parallel-Hammerstein and Parallel-Wiener models.

Comparing the memory-polynomial model (2.12) with the Hammerstein model
(2.9), it can be observed that the Hammerstein model is a special case of the
Memory-polynomial model when only the odd polynomial terms are considered

for the nonlinearity of the Hammerstein model and
Azk—1,4 = C1h(q) (2.13)

When comparing the memory-polynomial model (2.12) with the Parallel-
Hammerstein (2.11), it is observed that the Memory-polynomial is equivalent to
the Parallel Hammerstein model. It can also be shown that the Memory-

polynomial model is a special case of the Parallel-Wiener model [2].

In summary, when considering polynomial type of nonlinearities, both the Parallel
-Wiener and the Parallel-Hammerstein models are special cases of the Volterra
series. In fact, it can be shown that the memory-polynomial model is equivalent to
the Parallel-Hammerstein model. It can be shown [2] that a memory- polynomial
model is special a case of the Parallel-Wiener model. Obviously, the Parallel-

Hammerstein model includes the Hammerstein model as a special case, and the

20



Chapter 2: Power Amplifier

Parallel- Wiener model includes the Wiener model as a special case. Hammerstein
and Wiener models are the most specialized with the least number of coefficients,
but are by no means the easiest to identify. The memory- polynomial model,
however, offers a good compromise between generality and ease of parameter

estimation and implementation [1] [2].

2.3 Memory-Polynomial Model

The memory-polynomial model discussed in the previous Section is
implemented in Simulink®. Simulink® is a platform for multi-domain
simulation and model-based design for dynamic systems. It provides an
interactive graphical environment and customizable set of block libraries, and
can be extended for specialized applications [6]. Simulink® was chosen because
it is easy for implementing system level models compared to Matlab. Systems
implemented in Simulink® can be easily modified and upgraded with minimum

coding. It provides a user friendly environment and interface.

2.3.1 Model’s implementation

As shown in Section 2.2.4 memory-polynomial provides a good tradeoff between
accuracy and complexity. A memory-polynomial system can be expressed as

follows

Q K
YD = DY s Ix(n = DIPEDx(n - @) @149

q=0 k=1

This equation can be rewritten as follows

21



Q
OEIWACET) (2.15)
q=0

=Fpm)+ Fin—-D+ F,(n—-2)+ ..+ F;(n—q)

+ ot Fon—0Q) (2.16)
where
K
Fom) = ) ay,glem 2D x(m) (217)
=1
which means that
Fo(n) = apex(n) + azglx(m)|?x(n) + asqlx(m)|*x(m) + ...
+ azp_1,4lxMPEDx(n) + ... (2.18)
+ agg—1,4lx(n)|2ED
A block diagram is shown in Fig. 2.7 and Fig. 2.8
X(n)
T » Fo
112
»  F1
\ 4
112 Y(n)
I
| » F2
[ ] [ ]
[ ] [ J ®
I . °
1/Z . °
L » Faq

Fig.2.7. Implementation of equation 2.19
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l Vg |
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aK,q

Fig. 2.8 Implementation of (2.17)

All of these bocks are available in Simulink® and the implementation is
straightforward.

2.3.2 Model’s Identification

Identification of the parameters of the memory-polynomial is very easy
compared to other models. The least square error (LSE) technique is used to find

the coefficients from measurement data. The process can be explained as follows
[1].

To identify the coefficients, Y and H matrices are first defined as follow
Y=[y(n) y(n+1) - yn+N-1)]" (2.19)

and

H=[Hy - H; - Hg] (2.20)
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where
y(n) is the output measured data elements. Baseband data is used.

N is the size of measured data set.

and
hy,q(n) h34(n) o hgegq(n)
Hq — hllq:(n + 1) hg'q(n + 1) . h2k—1,q:(n + 1) (221)
lhig(+N=1) hygn+N—1) - hy_14(n+N—1)]
SO
hak-1,4(M) = lx(n — Q1P* Vx(n — q) (2.22)
Let the complex coefficients be represented as follows:
a=[ag - g = @l (2.23)
where
a, =[%,q 43q " A2-14] (2.24)
Then the following matrix equation holds
Y = Ha (2.25)

If @ is the estimated parameter matrix then to have minimum RMS error between
the measured and simulated output @ can be calculated from the following

equations

Since
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(HH)H*H)' =1 (2.26)

where

H" is the conjugate transpose of H, also known as the Hermitian transpose or the

adjoint matrix.

Then (2.25) can be rewritten as

(HH)(H*H)"'Y=Ha (2.27)

Then a can be approximated according to the least square criterion by @ as

follows
a=HMH Y (2.28)
where
a=[a, - a, - aq (2.29)
and
HY =H*(H*H)™! (2.30)
where

H* is the pseudo inverse matrix of H defined above.
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then
a=H'Y (2.31)

The simulated output can be calculated from the input and estimated parameters
as follows:

Y=Ppn) yn+1) - yn+N-D] (2.32)
Q
=Ha= ) H,a (2.33)
; q%q

Then the error between measured and simulated data can be defined as

E=Y-Y=[e(n) en+1) - e(n+N—-D]T (2.34)

The least square estimate is constructed in such a way that ||E||? is minimized.
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3 Low Noise Amplifier

3.1 Introduction

Low Noise Amplifier (LNA) is the first amplifier in the RF receiver frontend;
typically it is the first or second component after the antenna. It is designed to
increase the power of the received signal which is usually very weak (could be as
weak as -200dBm). LNAs are designed to add as little noise as possible, such that
the signal to noise ratio (SNR) stays above the minimum required SNR of the
receiver. The SNR is defined as the ratio between the wanted signal and the noise
and is usually specified in dBs. Every receiver has a minimum SNR at its input, if
the SNR drops below this value, the error in the received signal will be high.
Another important performance figure for RF receivers is the noise factor F
which is defined as the SNR;,/SNR,,:. It is a measure of how much noise the
receiver will add. If F is measured in dBs instead of linear scale, it will be known
as the noise factor. The notation F is usually used for both noise figure and noise

factor. For more explanation of F see section 3.2.4.

Ideally, an LNA should introduce a linear gain and no noise to the received
signal. However, in reality electronics devices are inherently nonlinear and

rather noisy.

Device Device
2 3 I -
Gain G Guna Gz Gs
Noise Figure F Funa F2 F3

Fig. 3.1: Noise figure calculation for receiver front end
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From (3.1) and Fig. 3.1, it is clear that the noise figure of the overall network
depends mainly on the noise figure of the first component with high gain. This is
typically the LNA. This implies that an accurate modeling of the noise added by
the LNA is crucial for a good receiver model. Another important impairment
that should be included for the modeling of LNA is the nonlinearity introduced
by the solid state transistors. Mismatching effect is also an important impairment
which causes an increase in the bit error rate and needs to be considered for

accurate LNA modeling [7].

In the following Sections modeling of the above mentioned impairments in

Matlab RF block set is presented.

3.2 LNA’s Model in RF Blockset®

RF Blockset® extends Simulink® with a library of blocks for modeling RF
systems that include REF filters, transmission lines, amplifiers, and mixers. During
the simulation, all blocks are modeled using a time-domain, complex base-band
representation. Modeling in complex base-band results in a faster simulation. RF
Blockset® is developed mainly to provide an executable specification for RF
circuits and it provides an overall system specification for the hardware design
of RF components. It also enables the optimization of the overall wireless

communication systems at the system level [16].

RF Blockset® has two libraries; mathematical and physical. The mathematical
library is just like Simulink®, in fact it is completely compatible with other

Simulink® blocks. The main limitation for this mathematical library is that it
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does not model mismatching effects; it assumes that the characteristic impedance
is one ohm and there is no reflection due to mismatching. To overcome this
limitation the physical library is implemented. This library uses s-parameters to

model mismatching effects in the frequency domain.

To connect blocks from physical library to mathematical library, two special
blocks are available in RF Blockset®. These are the input port and output port
blocks Fig. 3.2.

3.2.1 Input port and Output port Blocks

Input port and output port blocks provide connection between the physical and
mathematical environments. It can be noticed from Fig. 3.2 that the connection
between the physical blocks is bi-directional to highlight the fact of the incident
and reflected waves. They also provide an interface to enter a new set of
simulation parameters. Although the physical environment seems like it is
working in the frequency domain, RF Blockset® actually builds an equivalent
model in the complex base-band domain. This model is built dynamically, i.e. at
run time rather than design time. It then connects this system to Simulink® and

runs the simulation. This procedure is explained in the following paragraph.
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Fig. 3.2 Schematic illustration of the physical and mathematical environments in RF
Blockset®

The output port block produces the base-band equivalent time-domain response

of an input traveling though series of physical components. The output ports

block:

1. Partitions the RF physical components into linear and nonlinear

subsystems.

2. Extracts the complex impulse response of the linear subsystems for base-

band equivalent modeling of RF linear system.
3. Extracts the nonlinear AM/AM and AM/PM modeling of RF nonlinearity.

As shown in Fig. 3.3, a nonlinear subsystem is implemented by AM/AM and
AM/PM nonlinear models built from the nonlinear parameters specified in
the physical blocks between the input and output blocks. If a mixer block is
included with valid phase noise data then phase noise will be added as
shown in the figure. The nonlinear subsystem is further explained in Section

3.2.5.2, and the phase noise modeling is further explained in chapter 4.
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Fig. 3.3 base band complex modeling of physical block between input and output
ports

To simulate a model that contains physical blocks, RF Blockset® determines
the modeling frequencies of the physical system using parameters in the
Input Port block. The modeling frequencies are the frequencies at which the
information is taken from the blocks to construct the base-band equivalent
model. Then the RF Blockset® determines the block parameter values at those
frequencies and uses the information to create a base-band equivalent model
for time-domain simulation in Simulink. At the time of simulation output
port block uses Input port block parameters to determine the modeling
frequencies. These frequencies are in form of vector of N element, where N is
Finite impulse response filter length parameter in input port block. The
modeling frequencies are a function of the center frequency f. , Finite
impulse response filter length N and the sample time tg . This process is

illustrated in Fig 3.4. [6]



Passband Spectrum of a Modulated RF Carrier

N is the number of sub-bands

Input Port Block Parameters
Magnitude

— Parameter

Firite impulse rezponse filter lengths |W

Center frequency (Hz| IE-—
Sample time (5]

Source impedance (ohms)
V' Add noise

Iritial seed: \ f

——| fe—— 1/(t5*N)

Bandwidth = 1/tg

Frequency
max

-l
l

Fig. 3.4 Frequency bandwidth calculation in RF Blockset® [6]

The transfer function is calculated at Pass-band for the frequency calculated and

is given by the following equation

_Vi(H
HD=vp

(3.2)

Where Vs and V) are the source and load voltages, and f represents the

modeling frequencies. More specifically

S, (1+1D@A—Ty)

H) = 3@ =5, T =Tl

where
Zy—2Zy

I, =
YT+ Z,

(3.3)
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Zs_ZO

.=
S Z o+ 7,

i = S11 + (512521 %lzzrl)
and
e Z,is the source impedance
e 7, is the load impedance
e S, are the S-parameters of a two port network

After calculating the transfer function it is transferred to base-band as follows

Hpp(f) = Hp(f — f.) (3.4)

where
BB is for Base-Band
PB is for Pass-band

Then the base-band impulse response is calculated as follow

hgs = F ' {Hps ()} (3.5)

This impulse response is truncated to a length equal to the filter length N
specified in the input port. The base-band transfer function is shown in Fig 3.5
[16].

Magnitude

(entered ot zero

/ Frequency

1/ Hs ] 1/%s

]_."’1 3

Fig.3.5. Base-band equivalent spectrum
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3.2.2 Mismatch’s effects modeling in RF Blockset®

RF Blockset® models mismatch using the input s-parameter data, frequency data
and characteristic impedance of the amplifier. S-parameter data is first
interpolated and extrapolated to the simulation frequency and then used to
calculate the incident and reflected waves. This process is explained in the

following Section.

3.2.3 Scattering matrix

The scattering matrix (s-matrix) for a certain network describes how an incident
wave (or voltage signal) on one port of the network will scatter and be
distributed among other ports, Fig. 3.6. An s matrix can be constructed for
networks with any number of ports, but since two port networks are the only
ones considered in this thesis, only two port S matrices are addressed. Suppose a
two port network is assumed with incident and reflected voltage waves V," and
V,, respectively, where n is an integer referring to the port number. Then a 2-by-2

s-matrix for this network is written as follow

V= SuVi+ SpVi (3.7)
Or in matrix form

Vg] _ [511 Slz] [VI]

V2 S21 Sallvi (3.8)
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+ +
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Fig. 3.6 Illustration of S-matrix for a 2-port network

It can be shown that the S matrix is equivalent to other networking matrices such
as Z, Y and ABCD, in fact transformation formulas between these matrices do
exist [8]. Formulas also exist for combining one or more networks either in
cascade or in parallel [8]. The S-matrix is a linear characterization of networks. It
encapsulates the voltage/current characteristics of networks linearly (Ohm’s
law), S-matrices are very useful in RF circuits engineering because they describe
the way power flows in the system and enable to optimize for maximum power
transfers. The S-parameters are dependent on frequency because they represent
networks with frequency dependant components such as inductors and
capacitors. Therefore S-matrices are measured for a range of frequencies, and in
simulation time after determining the center frequency and bandwidth, the

correct set of S-parameters is used.

3.24 Modeling of Noise in RF Blockset®

There are three ways to model noise in RF physical blocks. The accuracy of
modeling depends on the availability of the noise data. These three different

ways are as follow

1. The simplest way is to specify noise figure, noise factor or noise temperature

which are equivalent as shown in the following equations

Noise factor (F) is defined as follows [7]
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SNR input

F=cpg— 3.9
SNR utpu )
Noise figure NF is the noise factor specified in dB
NF = 10log,, (F) (3.10)
Noise temperature T, can be related to noise figure as
T,=F-DT, (3.11)

where T is the standard room temperature in Kelvin (290 K)

2. A more accurate way is to specify the noise figure as a function of frequency
for the whole frequency range as noise depends upon the operational frequency

bandwidth.

3. The third way is to specify the noise data as the Minimum noise figure (NF,;;,),
equivalent noise resistance R, and optimal source admittanceY,,,. The RF

Blockset® will calculate the noise figure from the noise correlation matrix C4 as

follows [19]
NF,..—1
Rn % - RnYZpt
Cy = 2kT, NF 1 (3.12)
—mn_~_py R |y |2
2 nl opt n|! opt
where

K is the Boltzmann’s constant
T, is the noise temperature in Kelvin

The noise factor F is calculated from the correlation matrix as follows

Fe14 204 3.13
= 1 kT ReZ 3} (3-13)
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2= [ 1] (3.14)

where
Zs is the nominal impedance.
z" is the Herrmitian conjugation of z.

Once the noise figure of each physical block is calculated for all simulation
frequencies using one of the above methods, the overall noise figure is calculated
from (3.1). The noise power for the whole system is calculated from the following

formula
Noise Power = kT .B (3.15)

where B is the simulation bandwidth

The noise is added to the system as shown in Fig. 3.3.

3.2.5 Modeling of Nonlinearity of LNA

Due to the nonlinearity of solid state transistors, LNA has nonlinear effects but
since the power level of the input signal is typically small, memory effects on the
output signal are not severe and can be safely ignored. Therefore the static
nonlinear model included in the RF Blockset® set is used for the modeling of

nonlinearity in LNA.

3.2.5.1 Modeling of nonlinearity in RF Blockset®
The amplifier block in RF Blockset®’s physical library models the nonlinearity of

the LNA as follows
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If AM-AM and AM-PM data exists (for example in .AMP file) then

AMAM/AMPM nonlinearities are extracted from this data, and the IP3

and theldB gain compression power are easily extracted from this data.

If no AM-AM and AM-PM data are included in the source file then the

nonlinearities are determined by specifying OIP3 (or IIP3) and the 1dB

gain compression point. If however the 1dB gain compression point is not

specified then nonlinearity will be computed as follow [16]

1.
2.
3.

Convert the specified value into IIP3 (if needed).

Convert the IIP3 value from decibels to linear units.

Compute a scaling factor, which is equal to 3 divided by the linear
IIP3 value.

Apply the scaling factor.

Limit the scaled input to a maximum value of 1 and apply an
AM/AM conversions to the magnitude of the scaled signal
according to the following function.

x
Famamx) = x — 3 (3.16)

where

x is the magnitude of the scaled signal.

If the 1dB compression point is specified, then the nonlinearity is

computed as follows

1.

The specified third-order intercept value is converted into OIP3 (if

needed)
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2. The gain, OIP3, and 1dB compression data are converted to linear,

unit less values, normalized to 1 volt and the reference impedance

Zo.
Go = 107048 (3.17)
OIP3, = 1018&%10-320 (3.18)
P, = 10%10—320 (3.19)
where

GAIN is the amplifier power gain, which is derived from the
network parameters.

OIP3 is the output third-order intercept point.
PCOMP is the output power at the 1 dB compression point.

3. Compute the coefficients of the polynomial Fgy/am(x) = ¢ix +
cslx|?x + cslx|*x
that determines the AM/AM conversions of the input signal x.

C1 = W/GO (320&)
3
!
= —__ 1 3.20b
©3= T2001P3,) (3.20b)
3 Py

0.1 —0.05
— 2
s = 157 o0z orp3, 0~ 10 (3.20¢)

4. The saturation input power is calculated from the following

formula
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5.

3.c5+ J9.c§ — 20.¢5.¢5
—10.C5

Asar =

The AM/AM conversions are applied to the input signal.

(3.21)
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4 Mixer modeling

41 Introduction

According to [7] a mixer can be defined as “a three port device that uses a
nonlinear or time —varying element to achieve frequency conversion.” Normally
in a wireless communication systems all signal processing is done in base-band
because it is easy to process low frequency signals. To be able to transmit
through the wireless channel however the signal has to be brought to a higher
frequency, which is done by modulation and up conversion in the transmitter,
this effect has to be undone in the receiver which corresponds to demodulation
and down conversion in the receiver. Up and down conversions are done with

mixers.

frF frrtfro

Fig 4.1 A Schematic of a down conversion Mixer.

There are many approaches to model mixers at the system level that depends on
which type of impairment the model addresses. Power levels of spurious
components are modeled using inter-modulation tables. Nonlinearity which is
an inherent phenomenon in mixers is modeled using IIP3 and 1dB compression
point as explained in Section 3.2.3. Noise is modeled in the same way as in

Section 3.2.2 .The main impairment related to mixers that highly effect the
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performance of the overall system is the phase noise. Phase noise is explained in

following Section together with the algorithm used in RF Blockset® to model it.

4.2 Modeling of Mixers in RF Blockset®

The RF Blockset® provides a complex base-band model for mixers that include
phase noise. The oscillator is also included in the mixer block, so the mixer has
only input and output ports. The physical mixer model is viewed as a transition
to the center frequency of the simulation. If the mixer is set to up convert it will
shift the simulation center frequency F. to F,+ F,, where F, and F;, are
specified by the user and if it is set to down converter its output frequency will
be F, — F;, . Other subsequent blocks will then use this new center frequency for

choosing the operational S-parameter vector, Fig.4.2
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Fig. 4.2 Mixer modeling in RF Blockset® ; up conversion (up) down conversion (down)
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4.3 Modeling of Phase Noise

For the mixing process to take place a constant frequency source is needed. The
signal of this source is mixed with the input signal to generate up or down
converted output signal. The device which produces constant frequency signal
for mixers is called oscillator. Ideally an oscillator should produce a pure
sinusoidal signal with the desired frequency however in practice pure sinusoidal
is not achievable so an actual oscillator signal will encounter both amplitude and
frequency fluctuation. The frequency fluctuation is a very serious limitation and
can cause severe degradation in performance of the system. This impairment is

characterized by “Phase Noise”.

Phase noise can be defined as “A short-term random fluctuation in the frequency
(Phase) of an oscillator signal” [7]. Phase noise can be modeled with a simple

feedback model like, Leeson’s Model [15].

In the RF Blockset® however a rather complicated model is used that depends on

1 / fa power law noise generation [10]. The implementation of which is explained

in following Section briefly.

4.3.1 Phase noise modeling in RF Blockset®
The mixer block available in RF Blockset® , adds phase noise in the following
order

1. An additive white noise (AWGN) ,which is correlated to the input signal is

generated

2. The generated noise is then filtered with a digital filter.

44



Chapter 4 Mixer modeling

3. The filtered noise is then added to the phase component of the complex base-
band input signal

4. This process is demonstrated in Fig. 4.3 [10][16].

A 4

>

Complex u
Gaussian Digital .

" Noise [ IR Filter [ EXPUIUD
Source

Fig.4.3 phase Noise Modeling in RF Blockset®
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5  Analysis of memory-polynomial model

5.1 Introduction

In this chapter the polynomial model explained in [1] and implemented in this
thesis is tested and the results are presented and commented. The overall
transmitter and receiver were also tested and the results of which are also

presented and commented in this chapter.

52  Model’s analysis

The parameters of the memory-polynomial were extracted from measurement

data for a typical WIMAX amplifierl.

521 AM/AM and AM/PM Plots

The AM/AM plots are generated by plotting output voltages (or powers) versus
input voltages (or powers). AM/PM plots on the other hand are generated by
plotting the phase differences between input and output data, versus input
voltages (or powers). Only voltage AM/AM and AM/AM are presented in this
chapter.

In Fig. 5.1. an AM/AM is plotted for a memory-polynomial model with memory
depth q = 3 and polynomial of the 5% degree. n = 3, on the background a plot for

the measured data is also plotted.

! This data was provided by the microwave electronic laboratory, in the department of Microtechnology and
Nanoscience (MC2), and the communication systems group in the department of signals and systems (S2), Chalmers
University of technology. It is for a GaN power amplifier with bandwidth of 3.84 MHz. the measurement was done at
2.1 GHz center frequency and up to 5 times the bandwidth of the amplifier stated above with a maximum power of
15dBm.
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Fig. 5.1. Voltage AM/AM for measured (blue), and modeled (Red) data for ¢ = 3,n = 3.

From the figure it is clear that the model fits the data very well at small signals
(signals below 2 volts) and it gets less accurate as the operating voltage, or
power, increases. That could be a serious limitation for a power amplifier model
because it is typically operated in high power levels and the distortion,
introduced to the signal, at these power levels are the most important. However,
2 volt is a typically high voltage especially for a mobile device with limited

power resources.

The model was investigated along it is two dimensions, which are memory depth
q and polynomial order (2n —1). Fig. 5.2. shows the measured AM/AM data
versus the modeled data while the memory depth was kept constant at ¢ = 0 and

the polynomial orders from the 3 to the eleventh, that is fromn = 2 to 6.
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Fig. 5.2. Voltage AM/AM of measured data (red) and modeled data for a memory depth
of zero and polynomial order of 3" (yellow), to eleventh (black).

The order of the polynomial does not affect the accuracy of the model very much
as it increased above three [1]. This can also be seen on Fig. 5.2. Therefore the

memory order was kept constant atn = 3.

The model then was designed with constant polynomial order of three and

tunable memory depths that can take any number between zero and six.

It can be concluded from Fig. 5.1 and Fig. 5.2. that the implemented model fits

(simulates) the measured amplifier very well if the quality of the data is good.

The memory effect can be observed by plotting the AM/AM for the modeled data
for a constant polynomial order of three, and memory depths of zero and six, this
is shown in Fig. 5.3. This memory effect can be better observed by applying

Gaussian noise data followed by a finite impulse response filter (FIR) and
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plotting the AM/AM and AM/PM of the model. This is shown in 5.2.1Fig. 5.4.
form this figure the spread of the plot is more wild around the memory-less
response, this is due to the high signal fluctuation (standard deviation) which

triggers memory more rapidly.

T T T T T T T T T
+  Memory depth (m) =6
G4+ -
+  Memory depth (mj=0 Py
6.2 -
6 -
58 -
z
35 56 -
=
=R J
=
=]
O sz 4
5 -
48 -
46 -
4445 ! ! ! ! ! ! ! L
1.5 2 22 24 26 28 3 32 3.4

Input (Volts)

Fig. 5.3. Voltage AM/AM for modeled data for polynomial order 3 and memory depth
zero (red) and 6 (blue).

Q

(a) (b)

Fig. 5.4 a) AM/PM response for a Gaussian Fig. 5.4 b) AM/AM response for a Gaussian
noise input. The red plots are for a memory- noise input. The red plots are for a memory-
less model and the blue ones are for a model less model and the blue ones are for a model

with memory. with memory.
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It is the nature of a polynomial of order n that it has n — 1 maxima and
minima and that it approaches infinity for large positive values, therefore the
model is enforced to saturation as shown in Fig. 5.5. The point of saturation
was picked after the identification of the model as the point when the slope of

the AM-AM curve becomes zero for the first time.

— With Saturation : : : : :
91 —— Without Saturation [~ 37777 R P SRR i Pt .

Input (volts)

Fig. 5.5. Model response for a ramp input (no memory effect appears).Red: without
saturation enforced. Blue: with saturation enforced at maxima.

5.2.2 Multi-tone test

A two tone signal is applied in the form of two pure sinusoidal signals, and
the frequency spectrum of the output of the model is plotted in Fig. 5.6. from
this figure it is clear that when a memory is introduced in the model an
asymmetry between the upper and lower sidebands of the output signal. This
asymmetry was claimed to be evidence and a characteristic of systems with

memory [3].
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Fig. 5.6. Frequency spectrum of polynomial model output when the input is a two-

tone signal and the model has; Red: memory depth six. Blue: memory depth zero.

5.2.3 Response to WCDMA signal
A WCDMA signal was applied to the amplifier and the frequency spectrum of

the output is plotted for memory and memory-less models, Fig. 5.7.

Memoryless Model
Madel with memory
Input Signal

+20

+10

+]

-20

Amplitude (dB)

) MWWV\WWWW )
Fig. 5.7. Frequency spectrum for input (red), output of memory-less model (blue) and
output of model with memory (black).
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Chapter 5 Analysis of memory-polynomial model

The frequency re-growth can be seen clearly in Fig. 5.7. the memory effect,
however is not clear but can better be seen by stepping through different
values of memory depths, and plot the frequency spectrum in each case Fig.

5.8.

It can be concluded from Fig. 5.8. that as the memory level increases,
interference with adjacent channels will become more probable. That

complies with theoretical analysis.

lhput Signal

Memary lrss Model
Model with Memory 2
Model wath Memory 4
Model wath Memory 6

Amplitude (dB)

‘ Frequency {Msz

Fig. 5.8. The power spectrum density of: the input signal to the memory-polynomial
model (red), and the output of the model, for different memory levels.
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Chapter 6 Conclusions and future work

6 Conclusions and future work

In this thesis a behavioral models for RF front end components in Simulink®
/RF Blockset® are investigated and the algorithms behind them are explained.
A Nonlinear model for the power amplifier that takes into account memory
effects is implemented in Simulink® /RF Blockset®. Simulink® models are
easier to understand and reuse between different applications. Design time in
Simulink® is shorter than in Matlab. However, the simulation time in
Simulink® is longer than in Matlab, especially for large RF Blockset® models.
Also, Simulink® models are less flexible than Matlab models, but very flexible

models can be built in Simulink® using S-functions and embedded functions.

The accuracy of the memory-polynomial model is good, however better

accuracy can be achieved by using a sparse delay model [1].

To extend the receiver further, a model for the analog to digital converter can
be added to the receiver, this will add the effect of quantization noise and
nonlinearity. The effect of the RF filters in the receiver and transmitter can

also be added.
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Appendix A description of implemented Simulink models

Appendix A

Description of implemented Simulink® Models

This is a model for an RF power amplifier. It is built for wideband
applications, e.g WCDMA. It models the nonlinearity as well as the memory

effects. This model is an implementation of the memory polynomial model.

Power Amplifier Model (P.A. with memory)

P.A with Memary

Complex base-band nonlinear model of Power amplifier with noise,

mismatching and memory
Library

RF Front End

Description

The power amplifier model block is a complex base-band implementation of
the memory-polynomial. It includes thermal noise and s-parameters to make

it compatible with RF Blockset’s physical models Fig. A.1 and Fig. A.2.

Niize

Figure — p————Jm
. 3 4B :\—h S-param out @—.@
@.—@ S-param in Hm Congtant [ .

i Switch

Fig. A.1 Model blocks with S-parameter presentation in Simulink®
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Fig: A.2 Schematic of the model after including S-parameter components.
Building blocks and Parameters identification:

The model is built with blocks from Simulink®, RF Blockset® and
communication Blockset®. The process of building the model from memory-
polynomial equations is explained in Section 2.3.1, and process of finding
coefficient parameter is explained theoretically in Sections 2.3.2, the practical

explanation is as follow:

e The input and output data of a typical power amplifier is measured
using e.g. load pull method

e This data is converted into IQ or complex base-band data

e MATLAB code given Appendix B is used to find the coefficients of the
memory-polynomial model.

e Plug these coefficients in the model as given in the P matrix in the

initialization field of the model’s mask.

Using model in system

e Make sure that the library “RF Frontend” is in your Matlab’s path.
e Open Simulink® browser, the “RF Frontend” library should be there,

drag and drop blocks from this library to your model.
Sampling time

In Simulink® blocks putting -1 in the sampling time fields means that the

block will inherit the sampling time of the preceding or subsequent blocks.
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Appendix A description of implemented Simulink models

But in the case of physical RF Blockset® blocks this will not work and a
sampling time must be given before running. Getting the sampling time of
complicated sources can be very hard in versions before R2007B, a test probe
can be used but doesn’t always work as this will be a rounded, and the exact

sampling time must be used.

problem can be dealt with as follows:

59

e Run the model, RF Blockset will gives sampling time error and will
state the correct sampling time of preceding block.

e Copy this sampling time to your model’s input port.

Dialog Box

5] Block Parameters: P.A. with Memory

Monlinear Power Amplifier model with memoy [mask] (link]

Monlinear Power amplifier described by memory palynomial function, and S-parameters provided by
eithier a data file (S2p. 52d or amp] or a workspace vector.

Usze the D ata source field to zpecify the type of S-parameters data. If the D ata file option iz
zelected the file should be in work space or the full path should be specified. alzo the file name
should include the extenzion. e.g. \Mull pathhdefault. amp [.=2p or =2d).

Uze the carrier frequency to specify the center carrier frequency in Hertz.

The zample time thould be the zame az the one used for the input park.

FParameters

Drata Source |5 2P file ~

D ata File
default. amp

Carrier frequency Hz

21e9

Gain [dE)

20

Reference Impedance [Ohm)
50

Sample time [seconds]
1/10e6

[ &dd Maoise

Moize Figure dB

3
Add Memory Effects
temary Depth |3 £

|

Fig. 2: Dialog box

In the new version of Matlab R2007b this




Data source

This field is used to feed network parameters (S-parameter data).The
choices are touchstone files (52P, S2D or AMP files) and s-parameters

vector. It is not tunable.
Data File

If Data source field is set to S2P file, use this field to specify the name of
the file that contains the amplifier data. The file name must include the
extension. If the file is not in your Matlab path, specify the full path to

the file. This field is not tunable.
S-parameters

If the Data source field is set to S-parameter vector, use this field to
give S-parameter in vector form; [S;;  Si2; S21 S22] . This field is

not tunable.
Frequency for S-parameters

In case if the Data source field is set to S-parameter vector option, this
field gives the value of the frequency corresponding to the network

parameters in S-parameter field. This field is not tunable.
Carrier Frequency Hz

This field is used to enter carrier frequency. This field is not tunable.
Gain (dB)

This is the small signal linear gain. This field is not tunable.
Reference impedance (Ohm)

It is the characteristic impedance of the physical block to which the

power amplifier is connected. Typical value is 50 ohm.
Sample time (seconds)
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Appendix A description of implemented Simulink models

This field is to set the time interval between consecutive samples of the

input signal. This field is not tunable.
Add Noise

If this field is checked then noise will be added.
Noise figure

When the field Add noise is enabled, then here you can put the scalar

value of noise figure in decibel. This field is not tunable.
Add memory effects

If checked this field will enable the addition of memory effects to the
model. If it is unchecked then the memory depth will be zero, i.e. memory less

polynomial. This field is not tunable.
Memory Effects

If the field “Add memory effects” is enabled here the depth of memory
can be selected between “1” and maximum of “6”. This field is not

tunable.
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Appendix B Matlab codes to calculate coefficients

Appendix B

Matlab Codes to calculate coefficients

Once the input and the output data for the power amplifier are available in IQ
format, the following code I is used to calculate coefficients for specified
values of memory depth “m” and odd polynomial order of “n”. Only odd

components of the polynomial are considered since even components can be

a“a__r

easily filtered out in the receiver. “n” in the code refers to the number of
polynomial terms and the order of the polynomial is “2n-1". Code II is for both

even and odd terms

Code I:
function a=analyzemodel_mp(x,y,n,m)

% [A,HI=FANALYZEMODEL_MP(X,Y,N,M)Identification of a memory polynomial from
% x and y. N is the order of the nonlinearity, and M the memory depth; if

% omitted, their default values are 6 and 4, respectively.

% Normal usage: A=ANALYZEMODEL_MP(X,Y) identifies the model into the matrix
% a. Each column is the coefficients for the nonlinearities (first col is

% the nonlinearity coeff for delay 0, then for delay 1 etc); each row is

% the filter of each term in the nonlinearity (row 1 is the filter of x,

% row 2 of X2 etc)

% note that the identified polynomial takes into account only odd

% polynomial terms.

% (c) 2007 Thomas Eriksson thomase@chalmers.se

if nargin<4
n=6; % order of nonlinearity
m=4; % order of memory
end
H=geth(x,n,m);
a=pinv(H)y;

a=reshape(a,n,m+1);
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function H=geth(x,n,m)

N=length(x);
H=[];
for g=0:m
Hg=zeros(N,n);
for k=1:n
for I=(q+1):N
Hq(lk)=abs(x(1-))"(2*k-2)*x(--q);
end
end
H=[H HqJ;

end

Code II:

function a = analyze_dpd(y, z, K.Q)

%[AHI=ANALYZE_DPD(X,Y,N,M) Identification of a memory polynomial from
% x and y. N is the order of the nonlinearity, and M the memory depth.

% Normal usage: A=ANALYZE_DPD(X,Y,N,M) identifies the model into the matrix
% a. Each column is the coefficients for the nonlinearities (first col is

% the nonlinearity coeff for delay 0, then for delay 1 etc); each row is

% the filter of each term in the nonlinearity (row 1 is the filter of x,

% row 2 of x"2 etc)

%note that the identified polynomial contains both even and odd parts.

%(c) 2008 Eyad ARABI

U = getU(y, K.Q)
a=U/z; % this gives the least square error %% pinv(U)*z can also be used

a = reshape(a, K,Q+1);

function U = getU(y, K, Q)
N = length(y);
U=[J;
for q=0:Q
Uq = zeros(N, K);
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Appendix B Matlab codes to calculate coefficients

for k=1:K
forl=(q+1):N
Uq(Lk) = abs(y(1-q))"(k-1)*y(l-q);
end
end
U=[U Ug];
end

end

Matlab code for Memory-polynomial model
The following code is an implementation of the memory-polynomial model.

This code is equivalent to the Simulink® model built in Section 2.3.1 of this
thesis. The Simulink® model and the Matlab code were verified against each

other. In this code “x” is the complex input vector to the model, “Y” is the
complex output vector, and “a” is the coefficient matrix calculated from above

code.

function y=runmodel_mp(x,a)

% (c) 2007 Thomas Eriksson thomase@chalmers.se

n=size(a,1); % order of nonlinearity
m=size(a,2)-1; % order of memory
a=reshape(a,prod(size(a)),1);
H=geth(x,n,m);

y=H*a;

function H=geth(x,n,m)
N=length(x);
H=[];
for g=0:m
Hg=zeros(N,n);
for k=1:n
for I=(q+1):N
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Hq(lk)=abs(x(-))2*k-2)*(1-q);
end
end
H-[H HqJ;
End
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