1	
2	Assessing the accuracy of predicted ocean tide loading displacement values
3	
4	N.T. Penna ¹ · M.S. Bos ² · T.F. Baker ³ · HG. Scherneck ⁴
5	
6	¹ School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne,
7	NE1 7RU, UK
8	E-mail: nigel.penna@ncl.ac.uk
9	
10	² Astronomical Observatory, University of Porto, Monte da Virgem 4430-146, Vila Nova de
11	Gaia, Portugal
12	
13	³ Proudman Oceanographic Laboratory, 6 Brownlow Street, Liverpool, L3 5DA, UK
14	
15	⁴ Onsala Space Observatory, Chalmers University of Technology, Sweden
16	
17	
18	
19	

20 Abstract The accuracy of ocean tide loading (OTL) displacement values has long been 21 assumed to be dominated by errors in the ocean tide models used, with errors due to the 22 convolution scheme used considered very small (2-5%). However, this paper shows that much 23 larger convolution errors can arise at sites within approximately 150 km of the coastline, 24 depending on the method used to refine the discrete regularly spaced grid cells of the ocean tide 25 model to better fit the coastline closest to the site of interest. If the local water mass redistribution approach is implemented, as used in the OLFG/OLMPP software recommended in 26 27 the IERS 2003 conventions, OTL height displacement errors of up to around 20% can arise, 28 depending on the ocean tide model used. Bilinear interpolation only, as used in the SPOTL and 29 CARGA softwares for example, is shown from extensive global and regional comparisons of 30 OTL displacement values derived from the different methods and softwares to be more 31 appropriate. This is verified using GPS observations. The coastal refinement approach used in 32 the OLFG/OLMPP software was therefore changed in August 2007 to use bilinear interpolation 33 only. It is shown that with this change, OTL displacement values computed using 34 OLFG/OLMPP, SPOTL and CARGA invariably agree to the millimetre level for coastal sites, 35 and better than 0.2 mm for sites more than about 150 km inland.

36

37 Keywords Ocean tide loading (OTL) · Displacement · Ocean tide models

39 **1 Introduction**

40

41 The periodic distribution of water due to the ocean tides loads the Earth, such that in some areas 42 such as south-west England the surface moves through a (predominantly) vertical range of over 43 100 mm in around 6 hours. The measurement of this ocean tide loading (OTL) displacement 44 with GPS and VLBI has seen much progress in recent years, with studies by Allinson et al. (2004), King et al. (2005), Thomas et al. (2007) and Petrov and Ma (2003) demonstrating an 45 attainable measurement quality of around 1 mm at discrete sites where many years of 46 47 GPS/VLBI data are available. Ideally the OTL displacement should also be predicted 48 (modelled) to this accuracy or better, in order to remove the phenomenon adequately from 49 geodetic measurements so as not to bias the resulting coordinate and baseline time series.

50

51 OTL displacements can be modelled by convolving a global ocean tide model with a Green's 52 function that depends on the elasticity of the Earth. Errors in the different available ocean tide 53 models have long been considered to dominate the errors in the OTL values (Scherneck 1993; 54 Bos and Baker 2005). The numerical errors in the convolution scheme have been studied by Agnew (1997) by comparing the output of different OTL programs with the same input. He 55 56 found that the differences (at an unspecified number and distribution of sites) were usually less than 5% and often less than 2%. Bos and Baker (2005) undertook a similar investigation with 57 58 newer loading programs that included SPOTL v3.1 (Agnew 1997), GOTIC2 (Matsumoto et al. 59 2001), OLFG/OLMPP (Scherneck 1991) and CONMODB (the program used at the Proudman Oceanographic Laboratory), and selected from each program the best methods to construct a 60 On considering 10 globally distributed superconducting 61 new program called CARGA. 62 gravimeter all invariably sites at least, but much more than 50 km inland, they demonstrated a 2-5% (better than 1% for inland European sites) numerical 63

error for the OTL convolution procedure. Although the accuracy of the ocean tide models has
improved dramatically during the 1990s (Shum et al. 1997), they are still considered to cause
most of the uncertainty in OTL values.

67

Modern global ocean tide models are provided on evenly distributed grids (0.125°, 0.25° or 0.5° 68 69 spacing typically) and therefore the grid cells do not fit the coastline perfectly. This results in a 70 misrepresentation of the tidal water mass that is causing the OTL. To improve the accuracy of 71 the OTL computation it is therefore necessary to refine the ocean tide model grid locally, i.e. by 72 interpolating the model to a finer grid. The tidal values in the refined grid are mostly 73 determined with bilinear interpolation. Scherneck (1991) describes a further requirement 74 whereby local water mass redistribution (MRD) is undertaken in order that the water mass 75 within the area of refinement remains constant. This MRD approach was used in the 'OTL web 76 provider' (http://www.oso.chalmers.se/~loading/) from its inception in 2001 until August 2007, 77 when it switched to using bilinear interpolation only, as a result of the findings described in this 78 paper. The methods used in the OTL web provider are important since it facilitated the wide 79 and easy access to modelling OTL displacement by the space geodetic community, and is the 80 approach recommended in the IERS 2003 conventions (McCarthy and Petit 2004). Therefore 81 many GPS, DORIS, SLR and VLBI-based research projects have used such values, including 82 both global (Urschl et al. 2005; Thomas et al. 2007) and local (Melachroinos et al. 2007) 83 comparisons of predicted OTL displacement values with GPS observations. What has never 84 been tested however, is whether MRD should be carried out when using modern global ocean 85 tide models or if bilinear interpolation alone is sufficient, and what the influence of this choice is 86 for both coastal and inland sites when millimetre or better accuracy is desired. This is 87 investigated in this paper. Also detailed are global and regional comparisons of OTL 88 displacements computed from different software packages that use different refinement methods

for ocean tide model grid cells that overlap land. The sensitivity of the choice of model
refinement method to the particular ocean tide model input is illustrated, and an indication
provided of the quality of the different ocean tide models, for both coastal and inland sites.

2 Ocean tide loading computation and softwares

2.1 Ocean tide loading computation

96

95

For each tidal frequency (the M2 constituent with period 12.42 h usually dominates) the OTL displacement u at the discrete site at r can be computed with the following convolution integral (Longman 1962, 1963):

100

101
$$u(r) = \int_{\Omega} \rho G(|r - r'|) Z(r') d\Omega$$
(1)

102

103 In Eq. (1), ρ represents the density of sea water and Z is the tide at r', whilst G is a Green's 104 function that depends only on the distance between r and r'. The integral is taken globally 105 over all water areas Ω , thus requiring the use of a global ocean tide model.

106

107 A focus of this paper is the influence of the near ocean tides on the computed OTL values. To 108 illustrate the effect of the tides near the site of interest, consider an example in which the 109 coastline is straight, the site is exactly on this coastline and that only the loading due to the tides 110 within a radius of r around the site (which thus forms a half circle) is taken into account. Using 111 the equation for a point load on an homogeneous half-space (Farrell 1972), the amplitude of the 112 OTL height displacement u at the site is given by:

113

114
$$u = \frac{3\rho}{4\rho_E a} h_{\infty} Zr \approx -1.1 \times 10^{-7} Zr \quad (m) \text{ for } r < 10 \text{ km}$$
 (2)

116 where ρ_E is the mean density of the solid Earth, *a* is the mean radius of the Earth (assumed 117 spherical), *Z* is the amplitude of the ocean tide and h_{∞} is the Love number for a homogeneous 118 half-space (Farrell 1972). The units of *Z* and *r* are m. Similarly, the horizontal displacement 119 *v*, perpendicular to the straight coastline, due to a half circle, is given by:

120

121
$$v = \frac{3\rho}{2\pi\rho_E a} l_{\infty} Zr \approx 0.24 \times 10^{-7} Zr \ (m) \ for \ r < 10 \, \text{km}$$
 (3)

where $l_{\infty} = 1.673$. Thus the height displacement is about 4.7 times larger than the horizontal displacement.

124

125 Eq. 2 illustrates that the contribution of a 1 m tide to the OTL height displacement within a 10 126 km radius of the site is around 1 mm, showing that the near tides can have a significant 127 contribution to the loading value. For a larger radius of 100 km one should take roughly half the 128 value of h_{∞} , to take into account the fact that the Earth is not homogeneous but consists of 129 different elastic layers, which results in a 5 mm displacement for a 1 m tide. Consequently, 130 within this radius the amplitude of the tides must be known to better than 131 20 cm to reach a 1 mm accuracy threshold. These examples demonstrate that both near and far 132 tides must be considered when computing OTL values, with the near tides being the most 133 important.

- 134
- 135

136 2.2 OTL softwares

137

The different OTL software packages all compute Eq. (1). Since near tides have the biggest contribution to the loading at a site yet the global ocean tide models are only provided as discrete values on regularly spaced grids, an important feature of each package is how the grid is refined and interpolated to a finer resolution in the cells nearest the site considered, to better fit the coastline. A finer grid near the site of interest also helps assure that the approximation of the continuous loading by point masses best represents reality. The effect of coastal grid refinement on OTL values decreases for more inland sites.

145

Three different software packages are considered in this paper (OLFG/OLMPP, SPOTL and CARGA), chosen since they are widely used and freely distributed or use different approaches to ocean tide model refinement at the coast. Key features of each package are now précised, particularly regarding their methods of coastal model refinement. Further details on each package are provided in Bos and Baker (2005).

151

OLFG/OLMPP was selected since it is used by the popular OTL web provider recommended in 152 the IERS 2003 conventions. The area of coastal model refinement comprises a 3°×3° box 153 154 around the site considered, and within this box interpolation and extrapolation is performed by 155 considering all tides within a $5^{\circ} \times 5^{\circ}$ box surrounding the site. The box boundaries are not 156 defined from exact centering about the site however, but instead are chosen to fit the nearest grid 157 lines of the ocean tide model. A further (unique) feature is the use of MRD across the $3^{\circ} \times 3^{\circ}$ box, i.e. to avoid creating or destroying water within the box, the excess tidal water mass is 158 159 redistributed equally over all water surfaces. Thus, if the water area is larger after refinement of 160 the grid, then the tidal amplitude will locally be reduced and vice versa. Outside the $3^{\circ} \times 3^{\circ}$ box

161 the model is not refined, meaning that for sites far enough (more than ~150 km) inland, no 162 attempt is made to compensate for model cells imperfectly fitting the coastline. The value for 163 the density of sea water used is 1030 kg/m^3 .

164

165 SPOTL is a freely distributed package that uses concentric rings around the site considered to 166 represent the integration mesh. The width of the rings and number of subdivisions is dependent 167 on the distance from the site, but within a 10° radius bilinear interpolation is used to refine the 168 mesh to better fit the coastline, whilst outside the tide value for a given location simply takes the 169 value of the model grid cell that covers that location. This means that for sites far enough inland 170 (defined as a 10° radius, i.e. approximately 1000 km), no model coastal refinement takes place. 171 The value for the density of sea water used is 1025 kg/m^3 .

172

173 CARGA uses bilinear interpolation to refine the model for every cell across the globe that 174 imperfectly fits the coastline, rather than only refining the model locally. Bilinear interpolation 175 is also used to compute the tide in the open ocean, rather than the SPOTL approach of using the 176 value of the nearest grid cell. The OTL displacement value output from CARGA is a mean of 18 runs, in which three mesh layouts, two different coastlines and three coastal interpolation 177 178 techniques are varied. The value for the density of sea water is kept fixed to 1030 kg/m³. 179 Global tidal water mass is conserved (to ensure that no water mass is created or destroyed 180 during the tidal cycle) by removing a small uniform layer, whose thickness is different for each 181 ocean tide model and constituent considered (Bos and Baker 2005).

182

183 This section has considered OTL displacement. The effects of gravity OTL at (near) coastal 184 sites are more complicated since the direct gravitational attraction of the tidal water mass 185 dominates the OTL value. A very high resolution coastline is necessary together with a very accurate value of the ocean tides in front of the site (Bos et al. 2002). The gravity OTL
computation cannot yet be accurately automated for (near) coastal sites and therefore is not
considered in this paper.

190 **3 Ocean tide models**

191

192 The global ocean tide models ('maps') input to OTL softwares are mostly computed with the 193 use of the Laplace tidal equations which are depth integrated (Hendershott and Munk 1970). 194 For each tidal constituent, a global map of tidal amplitudes and phase-lags relative to the tidal 195 gravitational potential at the Greenwich meridian is obtained. These hydrodynamic solutions do 196 not represent the true tides perfectly and for that reason the solutions are adjusted to fit tidal 197 observations. The Schwiderski (1980) tide model was one of the first successful examples of 198 using tide gauge data to improve the model. The most recent models assimilate tide gauge and 199 (usually TOPEX/POSEIDON) satellite altimetry data to improve the accuracy of their tide 200 model, and a short description of the most used ones is given below. Each of the models 201 described is distributed to the community as a set of amplitude and phase values on discrete, 202 regularly spaced global grids.

203

NAO.99b (Matsumoto et al. 2000) is based on the same hydrodynamics as the Schwiderski
model but includes the assimilation of TOPEX/POSEIDON data. It is provided (and directly
computed) on a 0.5° grid and hence the misfit with the coast can be as large as 25 km. The Ross
Sea is not modelled.

208

FES94.1 (Le Provost et al. 1994) is a pure hydrodynamic tide model tuned to fit tide gauges globally. It has been calculated on a finite element grid with very fine resolution near the coast but has been transformed on to a regular 0.5° grid for its distribution. It is no longer used because it has been superseded by FES99 (Lefévre et al. 2002) which includes the assimilation of tide gauge and TOPEX/POSEIDON data. FES99 is transformed to a 0.25° grid for distribution, and although its resolution is better than FES94.1, it has too many grid cells over land. FES99 does not have any tidal information in the Baltic Sea, the Black Sea, the Persian
Gulf or the Red Sea. The most recent FES version is FES2004 (Lyard et al. 2006) which has a
very good fit to the coastline (although the ice shelf in the Ross Sea is modelled ~100 km inland
of the grounding zone) and is provided on a 0.125° grid.

219

GOT00.2 (Ray 1999) was developed by adjusting the hydrodynamic model FES94.1 using TOPEX/POSEIDON and ERS 1/2 satellite altimetry observations. It is provided on a 0.5° grid and incorporates local models of the tides in the Gulf of Maine, the Gulf of St Lawrence, the Persian Gulf, the Mediterranean Sea and the Red Sea.

224

TPXO.6.2 (Egbert and Erofeeva 2002) is a model into which tide gauge (from the Arctic Ocean and around Antarctica) and TOPEX/POSEIDON data have been assimilated using the procedure described by Egbert et al. (1994). It is provided (and directly computed) on a 0.25° grid and does not contain the Black Sea.

229

A further model is CSR3.0 (Eanes and Bettadpur 1996) which applies long wavelength corrections to FES94.1 via 2.4 years of TOPEX/POSEIDON data, whilst CSR4.0 is an update using a longer data span. It is provided on a 0.5° grid. Outside the ±66° TOPEX/POSEIDON coverage limits, the model defaults to FES94.1.

- 234
- 235
- 236

4 Global comparison of OTL softwares

238

239 To investigate the effects of the ocean tide model coastal refinement method used and the 240 sensitivity of both coastal and inland sites to it, all 387 sites (as of August 2007) of the IGS 241 (Dow et al. 2005) network were selected. This provided a global distribution of sites often 242 analysed by the space geodetic community. M2 OTL height, east and north displacements were 243 computed using the OLFG/OLMPP (applying MRD), SPOTL v3.2 and CARGA softwares. For 244 each software, the computed OTL values represent displacements of the Earth's surface relative 245 to the centre of mass of the undeformed solid Earth without atmosphere and oceans (this 246 convention was used throughout this paper). Firstly the FES99 model was input since it is one 247 of two (the other being GOT00.2) recommended in the IERS 2003 conventions for the 248 computation of OTL. Then the more recent FES2004 model was input, that has a very good fit 249 to the coastline and a finer grid resolution of 0.125° than the 0.25° resolution FES99 model. The 250 agreements between the OTL displacements computed per software for each model were 251 assessed by computing, per component per site, the vector difference:

252

253
$$d = \sqrt{(A_1 \cos \varphi_1 - A_2 \cos \varphi_2)^2 + (A_1 \sin \varphi_1 - A_2 \sin \varphi_2)^2}$$
(4)

254

where d is the vector difference and A_i , φ_i respectively represent, per software, the OTL 255 256 displacement amplitude and Greenwich phase lag.

257

258 For the height component, vector differences were computed between the OLFG/OLMPP 259 (MRD) and CARGA values, and between the SPOTL and CARGA values, which are plotted in 260 Fig. 1. It is immediately apparent that the SPOTL and CARGA values invariably agree at the 261 sub-mm level for both the FES99 and FES2004 models. In fact, as can be seen from Table 1,

262 the agreement between CARGA and SPOTL is better than 0.2 mm at 298 sites when using 263 FES99, and at 318 sites when using FES2004. At only five and six sites is the agreement worse than 1 mm for FES99 and FES2004 respectively. For FES99 the maximum difference is 2.43 264 265 mm at VESL (lon. 357.1583, lat. -71.6738) in Antarctica, followed by 1.53 and 1.36 mm at 266 NANO (lon. 235.9135, lat. 49.2948) and ALBH (lon. 236.5126, lat. 48.3898) respectively, 267 which are both on Vancouver Island. For FES2004 the maximum difference of 2.23 mm also occurs at VESL, followed by 1.57 mm at EPRT (lon. 293.0079, lat. 44.9087) on the Bay of 268 269 Fundy. The difference at VESL is due to a newer coastline in SPOTL (v3.2) than CARGA 270 (which uses the SPOTL v3.1 coastline), whilst around Vancouver Island the large FES99 271 differences are likely to be caused by a large gap between the model grid and land, resulting in 272 much extrapolation by CARGA.

273

274 The differences shown in Fig. 1 between the OLFG/OLMPP (MRD) and CARGA height values are strikingly much greater for the FES99 model than the equivalent SPOTL minus CARGA 275 276 differences. Table 1 details that 34 of these differences are greater than 1 mm, which all arise at 277 coastal sites. Meanwhile, only 199 (compared with 298 for SPOTL-CARGA) of the differences 278 are less than 0.2 mm. However, when using FES2004, at only four sites are the differences 279 greater than 1 mm, and at 350 sites the differences are less than 0.2 mm. This clearly suggests 280 that the model refinement method employed by OLFG/OLMPP (MRD) is not equivalent to 281 those of SPOTL and CARGA for coastal grid cells when using the FES99 model, although all 282 three methods work equivalently for the FES2004 model. The striking FES99 OLFG/OLMPP 283 (MRD) discrepancies arise since many of the FES99 grid cells overlap the land (due to an 284 inaccurate transformation from the irregular grid in the computed version to the regular global 285 grid in the distributed version), and the MRD approach requires this excess to be redistributed evenly across the $3^{\circ} \times 3^{\circ}$ refinement box. This can change the model's tidal amplitude for cells 286

within about 150 km of the site by up to about 20% and hence the near tide loading effect changes. The FES99 model tendency for the grid cells to overlap the land is not exhibited in FES2004. Thus little excess water mass arises and applying MRD has little effect on the loading values compared with those computed using bilinear interpolation of the model's grid cells alone. In addition, the finer 0.125° grid of FES2004 also diminishes the difference of using the nearest grid cell (SPOTL) instead of bilinear interpolation (CARGA and OLFG/OLMPP) to determine the tidal amplitude in the open ocean.

294

295 To confirm that the large discrepancies between OLFG/OLMPP (MRD) and CARGA (and 296 implicitly also SPOTL) height values when inputting the FES99 model arise from employing 297 MRD, the OLFG/OLMPP values were recomputed but without employing MRD when refining the land overlapping model cells in the $3^{\circ} \times 3^{\circ}$ box around the site. 298 Thus only bilinear 299 interpolation was carried out. These solutions are referred to as OLFG/OLMPP (NoMRD). The OLFG/OLMPP (NoMRD) minus CARGA differences when using both the FES99 and 300 FES2004 models are also shown in Fig. 1. The discrepancies between the OLFG/OLMPP and 301 302 CARGA FES99 values are clearly now much smaller and, as detailed in Table 1, 286 sites have 303 differences less than 0.2 mm, and only five sites have differences greater than 1 mm. As with 304 the SPOTL minus CARGA comparisons, the biggest differences arise at NANO (due to much 305 CARGA extrapolation) and VESL. The VESL differences arise since OLFG/OLMPP uses the 306 GMT (Wessel and Smith, 1998) coastline which, in Antarctica, follows the ice shelves instead 307 of the land-sea interface followed by the CARGA (SPOTL v3.1) coastline. For the FES2004 308 model, the OLFG/OLMPP (NoMRD) values are practically identical to the OLFG/OLMPP 309 (MRD) values, as can be gleaned by comparing the similarity in the CARGA comparison 310 statistics listed in Table 1. In the FES2004 distribution the grid fits the coast much better, 311 without the tendency to always overlap the coast.

313 The equivalent horizontal displacement vector differences are shown in Tables 2 and 3 for the 314 east and north components respectively. It is clearly apparent that the four approaches are in 315 much closer agreement (as judged by the absolute values of the vector differences) for the 316 horizontal components than the height, and the effect of MRD is less pronounced. For both the 317 FES99 and FES2004 models, none of the OLFG/OLMPP (MRD) minus CARGA, SPOTL 318 minus CARGA or OLFG/OLMPP (NoMRD) minus CARGA differences exceed 1 mm, all but 319 3-4 are less than 0.5 mm, and for at least 90% of sites the differences are less than 0.2 mm 320 (invariably substantially so). For the north component, the biggest differences arise for the 321 Antarctic sites OHI2 (lon. 302.0987, lat. -63.3211), RIO2 (lon. 292.2489, -lat. 53.7855) and 322 VESL, which is attributed to the different OLFG/OLMPP and CARGA coastlines. Meanwhile, 323 the largest differences (0.7 mm) between the OLFG/OLMPP (MRD) and CARGA east 324 component values arise for the southern England sites HERS (lon. 0.3362, lat. 50.8673), HERT 325 (lon. 0.3344, lat. 50.8675) and NPLD (lon. 359.6604, lat. 51.4210) with the FES99 model. This 326 is attributed to firstly, the fact that the east component OTL values are large at these locations 327 (around 6 mm); secondly, the MRD effect causes a difference of 0.2-0.3 mm; and thirdly, the 328 3°x3° box is too small to remove all FES99 grid cells overlapping the land in the region which at 329 these locations have large tidal amplitudes. The last effect is around 0.3-0.4 mm. Invariably the 330 effect of MRD on the horizontal displacements is smaller than for the height in a relative sense 331 also. In almost all cases, only tiny changes of <5% arise, usually much less so.

332

The global discrete IGS site comparisons have shown that OTL displacements are sensitive to the grid cell refinement method adopted to make the ocean tide model better fit the coastline, which in turn is model dependent. The largest differences between the CARGA and the respective OLFG/OLMPP (MRD), OLFG/OLMPP (NoMRD) and SPOTL values all arose at

337	coastal sites. This is to be expected since the near tides have the biggest contribution to the
338	loading at a site, and no model fits the coastline perfectly. However, only a few of the discrete
339	sites of the IGS network are located on complicated coastlines and therefore do not necessarily
340	provide an indication of the biggest discrepancies that can arise, or the spatial scales over which
341	the discrepancies can change. This is considered in the next section, which focuses on the
342	height component, since it exhibits much bigger differences than the horizontal components.
343	

345 **5 Regional comparison of OTL softwares**

346

To further test the methods of coastal ocean tide model refinement, M2 OTL height 347 displacements were computed per point of a 0.125° grid across north-west Europe, extending 348 349 from 10°W to 10°E and 45°N to 60°N. The region was selected since it encompasses 350 complicated coastlines (which the model grid cells do not perfectly fit) around Great Britain and 351 Brittany, which are surrounded by shallow seas where the modelling of ocean tides is 352 challenging. The region extends several hundred kilometres inland to substantial portions of 353 eastern France, Germany and Switzerland, enabling the effect of coastal model refinement 354 methods on inland sites to be determined also. Furthermore, the region encompasses a very 355 wide range of M2 OTL height displacement values, from over 5 cm off south-west England to 356 near zero in Norway. This is illustrated in the M2 OTL height displacement map shown in Fig. 357 2, computed for the FES2004 model using the CARGA software. As for the IGS site comparisons, vector differences were formed, namely OLFG/OLMPP (MRD) minus CARGA, 358 SPOTL minus CARGA and OLFG/OLMPP (NoMRD) minus CARGA, which are shown in 359 360 Figs. 3, 4 and 5 respectively. In addition to the FES99 and FES2004 models used for the IGS sites, displacements were also computed for the GOT00.2 and NAO.99b models. These were 361 362 chosen since they are both distributed on a 0.5° grid, i.e. a coarser spacing than FES99, and 363 GOT00.2 is also recommended in the IERS 2003 conventions.

364

365 It is clear from Fig. 3 that the vector differences between the displacements computed by 366 OLFG/OLMPP (MRD) and CARGA are substantial around Great Britain when the FES99, 367 GOT00.2 and NAO.99b models are input. FES99 results in the biggest differences, greater than 368 5 mm across all of south-west England and across much of Wales, reaching about 8 mm in and 369 around the Bristol Channel. Expressed as a proportion of the displacement amplitude, these 370 differences are approximately 10-20%, much greater than the <5% differences previously 371 reported by Agnew (1997) and Bos and Baker (2005). These differences are even larger than 372 occurred at the global IGS sites, which is attributed to many of the FES99 model grid cells 373 overlapping the complicated Great Britain coastline which causes a large MRD effect. With the 374 exception of East Anglia and parts of Scotland around the Caledonian Canal, the vector 375 differences everywhere in Great Britain are about 1-3 mm, even 100 km and more inland. 376 Similarly, at least 1-3 mm vector differences arise throughout Brittany and parts of Normandy, 377 peaking at about 7 mm. The differences arising using NAO.99b are almost as large as with 378 FES99, reaching 7-8 mm in northern Brittany (about 20%) although somewhat smaller in south-379 west England and Wales (2-3 mm), but reach around 4 mm in western Scotland. The 380 differences are greater than 1 mm throughout all of inland Brittany, Normandy, the Netherlands 381 and southern England. Whilst the vector differences arising using the GOT00.2 model are not 382 as large as when using FES99 or NAO.99b, they are still greater than 1 mm throughout Brittany, 383 Normandy and Scotland. Maximum differences reach around 4 mm near to Glasgow and on the 384 Normandy coast. There is a pronounced gridded pattern to the differences, which is attributed to 385 the OLFG/OLMPP 3°×3° refinement box incrementing in steps equal to the grid spacing of the 386 tide model, rather than being exactly centred around the site. Thus since the resolution of the 387 GOT00.2 and NAO.99b models is 0.5° and the displacement differences have been computed at 388 a 0.125° resolution, a gridded pattern results. It is notable that, despite the coarser grid of 389 GOT00.2 compared with FES99, the OLFG/OLMPP (MRD) minus CARGA differences are not 390 as pronounced. This shows that the model's grid resolution itself is not the sole contributor to 391 how much MRD must take place, but more important is how many grid cells, on average, 392 overlap the land. As GOT00.2 and NAO.99b have the same 0.5° grid resolution, the smaller 393 differences arising with GOT00.2 suggest that on average, it has fewer grid cells overlapping the 394 land. As for the IGS sites, the differences obtained when using FES2004 are very small across

all of north-west Europe, peaking at only about 1 mm around the Channel Islands. This suggests that FES2004 has, on average, a very good fit to the coastline. With the exception of the FES2004 model, the differences generally only reduce to the sub-0.5 mm level seen for the majority of IGS sites when further than ~150 km inland.

399

400 From Fig. 4, it can be seen that the vector differences between the SPOTL and CARGA 401 estimates are much smaller than the OLFG/OLMPP (MRD) minus CARGA differences, for 402 each of the four models considered. The differences between the SPOTL and CARGA values 403 are invariably less than 0.5 mm for all four models for all but sites right on the coastline, at 404 which the differences are usually no more than about 1 mm. These larger coastline differences 405 are attributed to CARGA taking the average of three extrapolation schemes near the coast, 406 whilst SPOTL uses only one; the differences are smaller over the open ocean since CARGA and 407 SPOTL both use simple bilinear interpolation of the four surrounding tidal values. Besides sites 408 right on the coastline, differences greater than 0.5 mm only arise for the NAO.99b model in a 409 small (few tens of km) section of the Bristol Channel, reaching up to about 6 mm. This is again 410 attributed to having too many grid cells overlapping the land. The CARGA values are slightly 411 larger than those of SPOTL over water because the integral over the water only starts at 0.02° 412 from the site considered in SPOTL, while in CARGA this gap does not exists.

413

As found above for the IGS sites, it can be seen from inspection of Figs. 3 and 5 that the agreement between the OLFG/OLMPP and CARGA displacements dramatically improves for the NoMRD values than when applying MRD. The differences are approximately submillimetre for all four models everywhere except around the Channel Islands for the FES99, GOT00.2 and NAO.99b models, parts of southern England for FES99, and parts of north-west England for NAO.99b. For FES2004 the differences are less than 0.5 mm everywhere except

420 around the Ijsselmeer. Thus in general, the very close agreements between the OLFG/OLMPP 421 NoMRD and CARGA values (and hence also SPOTL values) suggest that for millimetre level 422 displacement quality, model refinement of local land overlapping cells only is adequate, rather 423 than refining all land-overlapping cells globally as is done in CARGA. This is the case for all 424 the models, whether provided on a 0.5°, 0.25° or 0.125° resolution grid. It should be noted 425 however that this is only the case for millimetre level displacement, with Bos and Baker (2005) 426 finding the more global refinement used by CARGA is necessary for high quality gravity sites.

428 It can be seen from Figs 3, 4 and 5 that the agreement between the OLFG/OLMPP (MRD), 429 OLFG/OLMPP (NoMRD), SPOTL and CARGA displacement values improves on moving 430 further inland. This is expected since the near tides have the biggest influence on a site's 431 loading value, and therefore the effect of errors due to model cells not perfectly fitting the 432 coastline, and inadequate model refinement, reduces. All four solutions agree at the sub-0.2 mm 433 level for each of the four models input when greater than about 100-200 km from the coast. 434 Indeed, at distances greater than approximately 150 km inland the OLFG/OLMPP MRD and 435 NoMRD solutions are identical and use the global ocean tide models in their distributed form, 436 since no model refinement is carried out as the $3^{\circ} \times 3^{\circ}$ degree box surrounding the site 437 encompasses no water. Such inland sites provide a pure indication of the numerical differences 438 between each of the three softwares.

440 6 GPS testing of OTL softwares

441

442 The OLFG/OLMPP (MRD) M2 OTL height displacements have been shown to be highly 443 discrepant (up to about 8 mm) compared with the OLFG/OLMPP (NoMRD), SPOTL and 444 CARGA values when either of the FES99, GOT00.2 or NAO.99b models are used. To test 445 whether the OLFG/OLMPP (MRD) discrepant values are erroneous, a GPS verification was 446 carried out. A GPS site was selected as close as possible to the part of north-west Europe where 447 the maximum OLFG/OLMPP (MRD) minus CARGA disagreement arose for each model. 448 Hence as illustrated in Fig. 3, GLAS was selected for GOT00.2, MALG for NAO.99b and 449 APPL for FES99. NEWC was arbitrarily selected to verify the FES2004 displacements, even 450 though no large discrepancies arose. All available data between 2005.00-2007.00 were obtained 451 for the four sites from the NERC BIGF (http://www.bigf.ac.uk) GPS facility. Location details 452 for these sites are listed in Table 4, together with OTL displacement values computed using each 453 different software package.

454

455 The GPS data were processed using GIPSY/OASIS v4 software in a kinematic precise point 456 positioning strategy outlined by King (2006) and refined by King et al. (2008). This involved 457 processing in 30 h batches with site coordinates, zenith wet delays and receiver clocks estimated 458 every 5 minutes, whilst holding fixed final JPL fiducial orbits and Earth rotation parameters. Ambiguities were not fixed to integers and a 7° elevation cut-off angle was adopted. The 30 h 459 460 batches were centred on the UT day (3 h overlap either side), with the site coordinates whose 461 time-tags matched the central UT day extracted to form continuous time series and to minimise 462 day-to-day edge effects. OTL displacements were firstly modelled using OLFG/OLMPP 463 (MRD) values, and the processing then repeated applying the CARGA values. The estimated 464 site coordinates per solution were thinned to a spacing of 30 min, and linear trends and outliers

(defined as greater than 5 times the inter-quartile range) removed. Amplitude spectra of the
height time series were then computed according to the Press et al. (1992) implementation of
Scargle (1982), which are shown in Fig. 6.

468

469 The GPS height time series amplitude spectra shown in Fig. 6 clearly indicate that modelling 470 M2 OTL displacements computed using CARGA reduces 12.42 h (M2) periodicities to the 471 height time series noise level, whereas substantial energy remains when OLFG/OLMPP (MRD) 472 is used. This is obvious for the APPL, GLAS and MALG sites, located in areas where there are 473 large differences between the OLFG/OLMPP (MRD) and CARGA displacements for the 474 respective FES99, GOT00.2 and NAO.99b ocean tide models. Given that the OLFG/OLMPP 475 (NoMRD) displacements are in such close agreement with the CARGA values at these sites, it 476 strongly suggests that MRD is inappropriate when the FES99, GOT00.2 and NAO.99b models 477 are used. However, when the FES2004 model that better fits the coastline is used, it can be seen 478 from Fig. 6 that modelling M2 OTL displacement using OLFG/OLMPP (MRD) or CARGA 479 reduces the energy at the 12.42 h M2 period to the noise level. This suggests that when using 480 the FES2004 model, MRD may be implemented in the OLFG/OLMPP solutions without loss of 481 accuracy because the MRD effect is small.

483 **7 OTL displacement sensitivity to different ocean tide models**

484

485 For the M2 constituent and height component, the three OTL softwares considered have been 486 shown to output displacements with vector differences invariably no greater than 1-2 mm for 487 sites adjacent to complicated coastlines and shallow seas (provided MRD is not used in 488 OLFG/OLMPP), and often better than 0.2-0.5 mm when more than ~100 km inland or close to 489 straighter coastlines and the deep oceans. This can therefore be considered the noise level of the 490 convolution procedure. The horizontal displacement vector differences were considerably less. 491 In this section an indication is provided of the magnitude of the commonly assumed biggest 492 component of the OTL displacement error budget, namely ocean tide model quality.

493

494 M2 OTL height displacements were computed for the 387 IGS sites considered in section 3 495 using the CARGA software and inputting each of the six modern ocean tide models CSR4.0, 496 FES99, FES2004, GOT00.2, NAO.99b and TPXO.6.2. The CSR4.0 model used here is a 497 filtered version - CSR4.0 grid cells over land were eliminated using the grid of the GOT00.2 498 model. Vector differences between each model value and the six model mean value were 499 computed and the RMS of these differences (i.e. inter-model agreement) used to assess model 500 quality, which are plotted in Fig. 7. It can be seen that for a great many sites, particularly those 501 inland, the OTL displacement is insensitive (<0.4 mm) to the choice of model, although 502 discrepancies of nearly 3 mm arise for some coastal sites. Table 5 details the sites for which a 503 discrepancy of greater than 1 mm arises, including the M2 amplitudes and Greenwich phase lags 504 computed per model. It can be seen from Table 5 that for some sites such as TNML it is just 505 one particular model (FES99) causing the inter-model discrepancy, although the discrepant 506 model differs depending on global location. For example at PARC the discrepant model is 507 NAO.99b, at TOW2 it is GOT00.2 and at AUCK it is FES2004. At some sites such as ALBH,

508 BAIE and NTUS, no one model is discrepant and the large RMS agreement is simply due to a509 larger scatter of the amplitude and phase values across all the models.

510

511 It is clear from Fig. 7 and Table 5 that OTL displacement values are sensitive to the choice of 512 ocean tide model at the several millimetre level at some coastal sites. Furthermore, Penna et al. 513 (2007) showed that RMS agreements between M2 height amplitudes computed using the 514 SPOTL software with the CSR4.0, FES99, GOT00.2, NAO.99b and TPXO.6.1 models input can 515 be as high as 8 mm in some regions such as the Weddell and Ross Seas, where there are no IGS 516 sites. Which model is discrepant is location dependent, suggesting that it is not necessarily 517 appropriate to use just a single model in global analyses, as was also suggested by Baker and 518 Bos (2003). However, the IERS 2003 conventions do not stipulate any regional dependency in their recommendation to use either FES99 or GOT00.2. Meanwhile, the working version of 519 520 updates (unratified) conventions available to these at 521 http://tai.bipm.org/iers/convupdt/convupdt.html has changed the recommended model for global 522 use to either FES2004 or TPXO.6.2, whilst recognising that other models might be preferred for 523 internal consistency.

527 It has been clearly demonstrated that M2 OTL displacements (especially the height component) 528 are sensitive to the refinement method adopted when the near ocean tide model grid cells do not 529 perfectly fit the coast. If the local water mass redistribution approach of Scherneck (1991) is 530 implemented and if the site is adjacent to complicated coastlines and shallow seas, errors of 531 around 8 mm or 20% can arise for the height component, depending on the ocean tide model 532 used. Particularly large errors have been shown to arise if the FES99 (0.25° resolution) or 533 NAO.99b (0.5° resolution) models are used, attributed to their grids consistently overlapping the 534 coastline which means that when MRD is applied, a large change in loading arises. Meanwhile, 535 4-5 mm errors arise using the 0.5° resolution GOT00.2 model, which are less than when using 536 NAO.99b despite the models' equivalent grid spacing. Thus the effect of MRD is dependent not 537 just on the model's grid resolution, but on how much the grid overlaps the coastline. On 538 average the GOT00.2 grid cells overlap the land as much as they leave a gap between the grid 539 and the land, whereas the NAO.99b and FES99 grid cells overlap the land too much, resulting in 540 loading errors when applying MRD. These errors have been confirmed using GPS 541 measurements, since substantial energy remains at the M2 period in the GPS height time series 542 amplitude spectra when using MRD, yet the energy reduces to the noise level when using 543 CARGA (whose displacement values agree very closely with the OLFG/OLMPP NoMRD and 544 SPOTL values). However, the grid of FES2004 has on average as many grid cells overlapping 545 the coast as cells leaving a gap to the coast. This causes the MRD effect to be small for the 546 FES2004 model.

547

548 Provided the MRD option is not used by the OLFG/OLMPP software package, this package,
549 SPOTL and CARGA all compute M2 OTL height displacements that invariably agree at better

550 than the 1-2 mm level at coastal sites adjacent to complicated coastlines and shallow seas, and 551 invariably better than 0.2 mm for sites more than ~100 km inland for all four models considered. 552 When more than ~150 km inland, the OLFG/OLMPP MRD and NoMRD values are identical 553 because no local refinement is applied at all. Expressing the inland differences as a proportion 554 of the loading amplitude translates to ~2-5% (often less), which is in agreement with the 555 comparisons of Agnew (1997) and Bos and Baker (2005), but contradicts the statement of Boy et al. (2003) that convolution errors of 10% can arise at Strasbourg (lon. 7.6838, lat. 48.6218) in 556 557 north-east France. In order to model OTL displacement to an accuracy of around 1 mm, the three packages OLFG/OLMPP, SPOTL and CARGA can be considered practically 558 559 interchangeable. The different model refinement methods for coastal cells when computing the 560 OTL produce equivalent outputs, and suggest that for a displacement accuracy level of about 1 561 mm, it does not matter if bilinear interpolation or the nearest grid cell value is used to determine 562 the tidal amplitude at distances of more than 10° from the site. For the 387 IGS sites tested, the 563 sensitivity of the horizontal displacements to the refinement method used was less than for the 564 height component.

565

566 Aside from model refinement at the coast and interpolation of model grid cells in the open 567 ocean, contributions to the small differences between the OLFG/OLMPP, SPOTL and CARGA 568 displacements arise from the choice of Green's function and the value for the density of sea 569 water. To assess the effect of the Green's function used, the FES99 CARGA height values for 570 the 387 IGS sites were recomputed using the Green's function of a Gutenberg-Bullen A Earth 571 model (Farrell 1972), in addition to the default PREM Green's function of Francis and Mazzega (1990) which is used throughout the paper. For coastal sites, this changed the displacements by 572 573 ~0.25 mm, although by about 0.8 mm at RIO2, whilst the change at inland sites was very small 574 (< -0.1 mm). Regarding the effect of sea water density, the average water density value for a

575 column of water can change by 1%. For sites with very large OTL displacement values of 20 to
576 30 mm this corresponds to an error of 0.2-0.3 mm.

577

578 Whilst convolution errors have been shown, in general, to be not more than 1-2 mm, errors in 579 the available ocean tide models remain a bigger contributor to errors in OTL displacement 580 values. Height errors of up to around 3 mm RMS between the different modern models arise at IGS sites and up to around 8 mm in areas such as the Weddell Sea and Ross Ice Shelf where 581 582 there are no IGS sites. No one model can yet be considered to best represent the tides in all 583 regions of the world, with further research required to evaluate which model is most appropriate 584 in different parts of the world. The models themselves still need some improvement. Notably 585 some of the current global models lack any information on certain seas (e.g. NAO.99b omits the 586 Ross Sea, TPXO.6.2 omits the Black Sea), which will cause problems for nearby sites. A 587 possible solution is to develop regional tide models for these uncovered regions which is the 588 approach adopted by SPOTL.

589

590 The widely used OTL web provider recommended in the IERS 2003 conventions (and suggested 591 in the unratified updates) is driven by the OLFG/OLMPP software. MRD was implemented for 592 near coastal cells from 2001 until August 2007, when the option was switched off for the 593 reasons outlined in this paper and bilinear interpolation only is now used. Therefore, for any GPS, DORIS, SLR or VLBI analyses that have applied OTL web provider generated 594 595 displacement corrections computed during this window for sites within ~150 km of the coast, 596 biased parameters will result. The size of such biases will depend on the distance of the site 597 from the coast, the resolution of the model used, the shape of the nearby coastline, how much 598 land overlap arises for the model's grid cells, and whether the site is adjacent to shallow seas or 599 the deep oceans.

601 In this study, the OTL values represented displacements at the Earth's surface relative to the 602 centre of mass of the undeformed solid Earth without atmosphere and oceans. In the ocean 603 loading problem the distance between the solid Earth centre and the joint centre of mass of the 604 Earth system (i.e. solid Earth and oceans) undergo tidal translations that are generated by 605 hemispherical ocean mass exchange. In sensitive orbit calculations, this offset should be taken 606 into account. From the perspective of a user of orbital products, for example those provided by 607 the IGS in the case of GPS, it appears more practical if the translations are removed from the 608 orbital products disseminated by the analysis centres. Many applications, such as relative GPS 609 and VLBI, are insensitive to such translations anyway, and there is not yet clear evidence that 610 the translation parameters are crucial and that they can be verified by orbit analyses. Since these 611 parameters are somewhat uncertain in ocean tide modelling and also difficult to determine in 612 altimetry, most space geodetic analysis centres do not apply them at present. Thus the 613 assumption of the solid earth centre as a reference is consistent with the JPL fiducial orbit 614 products used in this study. Any error would have to be tracked to second-order dynamic effects 615 of the neglected offset to the joint mass centre. (Sensitive tests of orbit anomalies due to ocean 616 tide mass induced frame centre translation are encouraged).

617

A centre of figure frame, as discussed in Blewitt (2003), did not need to be considered here – the centre of figure frame concept relates to unknown deformations and fits an undeforming surface to the station positions. Included in the modelling of ocean loading are degree-one load Love numbers, which can be decomposed into a translation and a deformation part. However, this translation arises in the Earth's interior and does not displace the solid Earth's mass centre. From observations at the Earth's surface, this particular translation component cannot be distinguished from additional translations involving the mass centre.

This study only considered the (usually dominant) M2 constituent. Moreover, only a sample of globally distributed sites (the IGS network) was considered, along with a single more detailed test region (north-west Europe) that encompassed complicated coastlines and shallow seas, for which the (dominant) height component was considered only. High resolution intercomparisons of OTL softwares and ocean tide models should be undertaken for other coastal regions for height and horizontal displacements and various tidal constituents.

632

633

634 Acknowledgments The providers of the CSR4.0, FES99, FES2004, GOT00.2, NAO.99b and 635 TPXO.6.2 ocean tide models are gratefully acknowledged, together with Duncan Agnew for 636 making the SPOTL software freely available to the public. The UK NERC BIGF facility 637 (http://www.bigf.ac.uk) is thanked for GPS data provision, and JPL for the GIPSY software and 638 orbital products. Thanks to Matt King for his initial development of the GPS data processing 639 method. Many of the figures were produced using the GMT v4.2 software (Wessel and Smith 640 1998). Penna was funded by UK NERC grant NE/C003438/1 and Bos by Fundação para a 641 Ciência e a Tecnologia (FCT), through grant SFRH/BPD/26985/2006. Constructive reviews by 642 Duncan Agnew and Jean-Paul Boy are acknowledged.

643

645 **References**

646

- 647 Agnew DC (1997) NLOADF: A program for computing ocean-tide loading. J Geophys Res
 648 102(B3):5109-5110
- Allinson CR, Clarke PJ, Edwards SJ, King MA, Baker TF, Cruddace PR (2004) Stability of
 direct GPS estimates of ocean tide loading. Geophys Res Lett 31(15). DOI
 10.1029/2004GL020588
- Baker TF, Bos MS (2003) Validating Earth and ocean tide models using tidal gravity
 measurements. Geophys J Int 152(2):468-485
- Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading
- of the solid Earth. J Geophys Res 108(B2): 2103. DOI:10.1029/2002JB002082
- Bos MS, Baker TF (2005) An estimate of the errors in gravity ocean tide loading computations.
 J Geod 79(1-3):50-63
- Bos MS, Baker TF, Røthing K, Plag H-P (2002) Testing ocean tide models in the Nordic seas
 with tidal gravity observations. Geophys J Int 150(3):687-694
- Boy J-P, Llubes M, Hinderer J, Florsch N (2003) A comparison of tidal ocean loading models
 using superconducting gravimeter data. J Geophys Res 108(B4):2193. DOI
- 662 10.1029/2002JB002050
- Dow JM, Neilan RE, Gendt G (2005) The International GPS Service: Celebrating the 10th
 anniversary and looking to the next decade. Advances in Space Research 36:320-326
- 665 Eanes RJ, Bettadpur S (1996) The CSR3.0 Global Ocean Tide Model: Diurnal and Semi-
- 666 Diurnal Ocean Tides from TOPEX/POSEIDON Altimetry. CSR-TM-96–05 The University
 667 of Texas Center for Space Research.
- 668 Egbert GD, Bennett AF, Foreman MGG (1994) TOPEX/POSEIDON tides estimated using a
- 669 global inverse model. J Geophys Res 99(C12):24,821-24852

- 670 Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atm
 671 Oceano Tech 19(2):183-204
- Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys Space Phys
 10(3):761-797
- 674 Francis O, Mazzega P (1990) Global charts of ocean tide loading effects. J Geophys Res
 675 95(C7):11411–11424
- 676 Hendershott MC and Munk W (1970) Tides. Ann Rev Fluid Mech 2:205-224
- King M (2006) Kinematic and static GPS techniques for estimating tidal displacements with
 application to Antarctica. J Geodyn 41(1-3):77-86
- King MA, Penna NT, Clarke PJ, King EC (2005) Validation of ocean tide models around
 Antarctica using onshore GPS and gravity data. J Geophys Res 110(B8): B08401. DOI
 10.1029/2004JB003390
- King MA, Watson CW, Penna NT, Clarke PJ (2008) Subdaily signals in GPS observations and
 their effect at semiannual and annual periods. Geophys Res Lett 35: L03302.
 DOI:10.1029/2007GL032252.
- Le Provost C, Genco ML, Lyard F, Vincent P, Canceil P (1994) Spectroscopy of the world
 ocean tides from a finite-element hydrodynamic model. J Geophys Res 99(C12):2477724797
- Lefévre F, Lyard FH, Le Provost C, Schrama EJO (2002) FES99: A global tide finite element
 solutions assimilating tide gauge and altimetric information. J Atmos Ocean Technol,
 19(9):1345-1356
- Longman IM (1962) A Green's function for determining the deformation of the Earth under
 surface mass loads, 1. Theory. J Geophys Res 67(2):845-850
- 693 Longman IM (1963) A Green's function for determining the deformation of the Earth under
- surface mass loads, 2. Computation and Numerical Results. J Geophys Res 68(2):485-496

- Lyard F, Lefévre F, Letellier T, Francis O (2006) Modelling the global ocean tides: Modern
 insights from FES2004. Ocean Dynam 56(5-6):394-415
- Matsumoto K, Takanezawa T, Ooe M (2000) Ocean tide models developed by assimilating
 TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a
 regional model around Japan. J. Oceanogr 56:567-581
- Matsumoto K, Sato T, Takanezawa T, Ooe M (2001) GOTIC2: A program for computation of
 oceanic tidal loading effect. J Geod Soc Japan 47:243-248
- 702 McCarthy DD, Petit G (2004) IERS Conventions 2003. IERS Technical Note 32.
- 703 Melachroinos SA, Biancale R, Llubes M, Perosanz F, Lyard F, Vergnolle M, Bouin M-N,
- 704 Masson F, Nicolas J, Morel L, Durand S (2007) Ocean tide loading (OTL) displacements
- from global and local grids: comparisons to GPS estimates over the shelf of Brittany, France.
- 706 J Geod DOI 10.1007/s00190-007-0185-6
- 707 Penna NT, King MA, Stewart MP (2007) GPS height time series: Short-period origins of
- spurious long-period signals. J Geophys Res 112(B02402). DOI 10.1029/2005JB004047
- 709 Petrov L, Ma CP (2003) Study of harmonic site position variations determined by very long
- baseline interferometry. J Geophys Res 108(B4): 2190. DOI 10.1029/2002JB001801
- 711 Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77:
- the art of scientific computing. 2nd edition Cambridge University Press
- 713 Ray RD (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2.
- 714 NASA Tech Memo TM-209478 58 pp
- Scargle JD (1982) Studies in astronomical time series analysis. II. Statistical aspects of spectral
 analysis of unevenly spaced data. Astrophysical Journal 263:835-853
- 717 Scherneck H-G (1991) A parametrized solid earth tide model and ocean tide loading effects for
- global geodetic base-line measurements. Geophys J Int 106(3):677-694

- Scherneck H-G (1993) Ocean tide loading: Propagation of errors from the ocean tide into
 loading coefficients. Manuscripta Geodaetica 18:677-694
- Schwiderski EW (1980) On charting global ocean tides. Rev Geophys Space Phys 18(1):243268
- 723 Shum CK, Woodworth PL, Andersen OB, Egbert GD, Francis O, King C, Klosko SM, Le
- 724 Provost C, Li X, Molines JM, Parke ME, Ray RD, Schlax ML, Stammer D, Tierney CC,
- Vincent P, Wunch CI (1997) Accuracy assessment of recent ocean tide models. J Geophys
 Res 102(C11):25173-25194
- 727 Thomas ID, King MA, Clarke PJ (2007) A comparison of GPS, VLBI and model ocean tide
- 728 loading displacements. J Geod 81:359-368. DOI 10.1007/s00190-006-0118-9
- 729 Urschl C, Dach R, Hugentobler U, Schaer S, Beutler G (2005) Validating ocean tide loading
 730 models using GPS. J Geod 78:616-625
- 731 Wessel P, Smith WHF (1998) New, improved versions of the Generic Mapping Tools released.
- 732 Eos Trans AGU 79(47): 579

734	FIGURE	CAPTIONS

Fig. 1 M2 OTL height displacement vector differences between the OLFG/OLMPP, SPOTL
and CARGA softwares for 387 IGS sites when using the FES99 and FES2004 ocean tide
models
Fig. 2 M2 OTL height displacement amplitudes and Greenwich phase lags for a 0.125° grid

across north-west Europe, computed using CARGA with the FES2004 ocean tide model

742

Fig. 3 OLFG/OLMPP (MRD) minus CARGA M2 OTL height displacement vector differences
for a 0.125° grid across north-west Europe when using the GOT00.2, FES99, NAO.99b and
FES2004 ocean tide models

746

Fig. 4 SPOTL minus CARGA M2 OTL height displacement vector differences for a 0.125° grid
across north-west Europe when using the GOT00.2, FES99, NAO.99b and FES2004 ocean tide
models

750

Fig. 5 OLFG/OLMPP (NoMRD) minus CARGA M2 OTL height displacement vector
differences for a 0.125° grid across north-west Europe when using the GOT00.2, FES99,
NAO.99b and FES2004 ocean tide models

754

Fig. 6 GPS height amplitude spectra for OLFG/OLMPP (MRD) and CARGA solutions for
ocean tide models FES99 at site APPL, GOT00.2 at GLAS, NAO.99b at MALG, and FES2004
at NEWC

758

- 759 Fig. 7 RMS vector differences of M2 OTL height displacements for 387 IGS sites, computed
- vising CARGA and the CSR4.0, FES99, FES2004, GOT00.2, NAO.99b and TPXO.6.2 ocean
- tide models
- 762
- 763

FES99 SPOTL - CARGA

FES99 OLFG/OLMPP (MRD) - CARGA

FES2004 SPOTL - CARGA

FES99 OLFG/OLMPP (NoMRD) - CARGA

FES2004 OLFG/OLMPP (NoMRD) - CARGA

Fig. 1 M2 OTL height displacement vector differences between the OLFG/OLMPP, SPOTL
and CARGA softwares for 387 IGS sites when using the FES99 and FES2004 ocean tide
models

for a 0.125° grid across north-west Europe when using the GOT00.2, FES99, NAO.99b and

787 FES2004 ocean tide models

Fig. 4 SPOTL minus CARGA M2 OTL height displacement vector differences for a 0.125° grid
across north-west Europe when using the GOT00.2, FES99, NAO.99b and FES2004 ocean tide
models

805 NAO.99b and FES2004 ocean tide models

- 814 at NEWC

818 819 820 821 Fig. 7 RMS vector differences of M2 OTL height displacements for 387 IGS sites, computed using CARGA and the CSR4.0, FES99, FES2004, GOT00.2, NAO.99b and TPXO.6.2 ocean tide models

Table 1 Tally of M2 OTL height displacement vector differences between the different 829 softwares for 387 IGS sites when using the FES99 and FES2004 models

-		FES99			FES2004	
Vector	OLFG/OLMPP	SPOTL	OLFG/OLMPP	OLFG/OLMPP	SPOTL	OLFG/OLMPP
difference	(MRD)	– CARGA	(No MRD)	(MRD)	- CARGA	(No MRD)
magnitude	- CARGA		- CARGA	– CARGA		– CARGA
< 0.2 mm	199	298	286	350	318	358
< 0.5 mm	305	369	364	378	373	381
> 1.0 mm	34	5	5	4	6	3

 Table 2
 Tally of M2 OTL east displacement vector differences between the different softwares
 for 387 IGS sites when using the FES99 and FES2004 models

		FES99			FES2004	
Vector	OLFG/OLMPP	SPOTL	OLFG/OLMPP	OLFG/OLMPP	SPOTL	OLFG/OLMPP
difference	(MRD)	- CARGA	(No MRD)	(MRD)	– CARGA	(No MRD)
magnitude	- CARGA		- CARGA	– CARGA		- CARGA
< 0.2 mm	366	383	374	383	383	383
< 0.5 mm	383	387	385	387	387	387
> 1.0 mm						

838 839

Tally of M2 OTL north displacement vector differences between the different Table 3 843 softwares for 387 IGS sites when using the FES99 and FES2004 models

		FES99			FES2004	
Vector	OLFG/OLMPP	SPOTL	OLFG/OLMPP	OLFG/OLMPP	SPOTL	OLFG/OLMPP
difference	(MRD)	– CARGA	(No MRD)	(MRD)	- CARGA	(No MRD)
magnitude	– CARGA		- CARGA	– CARGA		– CARGA
< 0.2 mm	355	383	371	383	384	383
< 0.5 mm	384	384	385	385	384	385
> 1.0 mm						

845

847

Table 4 North-west Europe site details and M2 OTL height displacement amplitudes (A) and Greenwich phase lags (Φ) for different softwares. Latitudes and longitudes are positive in the north and east directions respectively.

Site	Lon. (°)	Lat. (°)	Model	OLFG/OI (MRD)	G/OLMPP CARGA		OLFG/OLMPP CARGA SPOTL (MRD)		OLFG/OLMPP (NoMRD)		
				A (mm)	Φ (°)	A (mm)	Φ (°)	A (mm)	Φ (°)	A (mm)	Φ (°)
APPL	355.8003	51.0569	FES99	38.20	327.5	32.21	322.5	32.16	322.5	32.77	323.0
GLAS	355.7035	55.8540	GOT00.2	12.39	312.1	9.76	309.2	9.69	309.4	9.67	309.4
MALG	354.1716	57.0061	NAO.99b	23.96	341.8	19.94	337.9	19.40	337.9	19.77	338.8
NEWC	358.3834	54.9791	FES2004	13.88	13.88 287.0		287.0	13.97	286.4	13.92	286.7

854	Table 5 Predicted M2 OTL height displacement amplitudes (A) and Greenwich phase lags (Φ)
855	from six ocean tide models using the CARGA software for IGS sites for which the RMS of the
856	vector differences (mm) from the six model mean was greater than 1 mm. Latitudes and
857 858	longitudes are positive in the north and east directions respectively.

Site	Lon (°)	Lat (°)	CSR	4.0	FES99		FES2	004	GOT	00.2	NAO.99b		TPXO.6.2		Vector
			А	Φ	А	Φ	А	Φ	А	Φ	А	Φ	А	Φ (°)	RMS
			(mm)	(°)	(mm)	(°)	(mm)	(°)	(mm)	(°)	(mm)	(°)	(mm)		Diffn.
ALBH	236.5126	48.3898	17.0	72	20.8	68	16.1	78	17.0	72	15.5	73	19.8	69	2.2
ALRT	297.6596	82.4943	0.6	111	0.9	261	0.9	220	0.4	111	3.7	88	1.0	236	1.6
AUCK	174.8344	-36.6028	27.7	56	27.9	55	24.9	59	27.5	56	27.4	59	27.7	54	1.4
BAHR	50.6081	26.2091	5.2	253	3.4	296	6.6	259	6.1	256	7.1	257	6.2	258	1.7
BAIE	291.7367	49.1868	5.9	146	2.9	106	4.4	84	5.7	148	4.0	84	3.9	94	2.4
BARH	291.7783	44.3950	9.5	211	13.4	227	13.4	236	13.9	235	13.8	235	12.4	231	2.3
CHUR	265.9113	58.7591	6.4	198	5.6	182	10.8	181	9.4	182	10.3	187	9.1	177	2.1
EPRT	293.0079	44.9087	9.5	205	13.8	222	16.0	242	16.3	238	15.9	234	13.3	229	3.6
ESCU	295.2013	47.0734	6.3	154	6.7	116	5.9	154	6.6	157	6.3	142	6.2	145	1.6
HLFX	296.3887	44.6835	13.7	169	13.5	169	13.2	180	14.0	176	12.7	180	13.5	1701	1.2
KUUJ	282.2546	55.2784	7.3	168	4.9	165	9.9	158	9.1	157	8.7	157	8.3	153	1.8
LROC	358.7807	46.1589	27.5	281	28.2	282	27.6	287	27.8	282	27.2	282	27.5	281	1.1
MOBS	144.9753	-37.8294	6.8	172	3.7	153	6.2	164	7.1	170	7.1	172	6.5	172	1.3
NANO	235.9135	49.2948	18.4	72	17.5	74	15.8	76	18.4	73	15.9	75	20.4	71	1.7
NTUS	103.6799	1.3458	5.1	196	4.9	180	6.1	184	5.6	186	4.3	197	5.3	153	1.4
PARC	289.1201	-53.1370	5.9	143	6.1	152	5.8	150	5.6	144	6.8	127	5.4	118	1.4
PIMO	121.0777	14.6357	8.1	139	6.7	145	9.9	134	9.1	136	10.3	134	9.5	135	1.3
QIKI	295.9663	67.5593	13.7	119	11.8	117	13.2	117	13.6	117	11.0	125	12.7	112	1.3
RESO	265.1067	74.6908	7.6	35	4.5	35	5.3	26	7.5	35	5.1	41	6.0	32	1.3
SHAO	121.2004	31.0996	7.0	193	4.1	212	6.7	202	8.4	210	7.8	211	7.8	199	1.6
SHE2	295.4480	46.2207	7.9	164	7.5	155	7.2	192	8.3	178	7.1	175	7.6	163	1.6
TCMS	120.9874	24.7980	10.2	209	7.4	235	12.2	209	11.8	208	12.0	207	11.7	201	2.4
TNML	120.9873	24.7980	10.2	209	7.4	235	12.2	209	11.8	208	12.0	207	11.7	201	2.4
TWTF	121.1645	24.9536	10.6	200	7.3	224	12.3	202	12.0	201	12.2	200	12.1	194	2.4
UNBJ	293.3583	45.9502	7.3	172	6.9	179	6.8	199	7.5	194	6.8	197	6.8	183	1.3