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Abstract  The accuracy of ocean tide loading (OTL) displacement values has long been 20 

assumed to be dominated by errors in the ocean tide models used, with errors due to the 21 

convolution scheme used considered very small (2-5%).  However, this paper shows that much 22 

larger convolution errors can arise at sites within approximately 150 km of the coastline, 23 

depending on the method used to refine the discrete regularly spaced grid cells of the ocean tide 24 

model to better fit the coastline closest to the site of interest.  If the local water mass 25 

redistribution approach is implemented, as used in the OLFG/OLMPP software recommended in 26 

the IERS 2003 conventions, OTL height displacement errors of up to around 20% can arise, 27 

depending on the ocean tide model used.  Bilinear interpolation only, as used in the SPOTL and 28 

CARGA softwares for example, is shown from extensive global and regional comparisons of 29 

OTL displacement values derived from the different methods and softwares to be more 30 

appropriate.  This is verified using GPS observations.  The coastal refinement approach used in 31 

the OLFG/OLMPP software was therefore changed in August 2007 to use bilinear interpolation 32 

only.  It is shown that with this change, OTL displacement values computed using 33 

OLFG/OLMPP, SPOTL and CARGA invariably agree to the millimetre level for coastal sites, 34 

and better than 0.2 mm for sites more than about 150 km inland. 35 

 36 
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1  Introduction 39 

 40 

The periodic distribution of water due to the ocean tides loads the Earth, such that in some areas 41 

such as south-west England the surface moves through a (predominantly) vertical range of over 42 

100 mm in around 6 hours.  The measurement of this ocean tide loading (OTL) displacement 43 

with GPS and VLBI has seen much progress in recent years, with studies by Allinson et al. 44 

(2004), King et al. (2005), Thomas et al. (2007) and Petrov and Ma (2003) demonstrating an 45 

attainable measurement quality of around 1 mm at discrete sites where many years of 46 

GPS/VLBI data are available.  Ideally the OTL displacement should also be predicted 47 

(modelled) to this accuracy or better, in order to remove the phenomenon adequately from 48 

geodetic measurements so as not to bias the resulting coordinate and baseline time series. 49 

 50 

OTL displacements can be modelled by convolving a global ocean tide model with a Green's 51 

function that depends on the elasticity of the Earth.  Errors in the different available ocean tide 52 

models have long been considered to dominate the errors in the OTL values (Scherneck 1993; 53 

Bos and Baker 2005).  The numerical errors in the convolution scheme have been studied by 54 

Agnew (1997) by comparing the output of different OTL programs with the same input.  He 55 

found that the differences (at an unspecified number and distribution of sites) were usually less 56 

than 5% and often less than 2%.  Bos and Baker (2005) undertook a similar investigation with 57 

newer loading programs that included SPOTL v3.1 (Agnew 1997), GOTIC2 (Matsumoto et al. 58 

2001), OLFG/OLMPP (Scherneck 1991) and CONMODB (the program used at the Proudman 59 

Oceanographic Laboratory), and selected from each program the best methods to construct a 60 

new program called CARGA.  On considering 10 globally distributed superconducting 61 

gravimeter sites all at least, but invariably much more than  62 

50 km inland, they demonstrated a 2-5% (better than 1% for inland European sites) numerical 63 
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error for the OTL convolution procedure.  Although the accuracy of the ocean tide models has 64 

improved dramatically during the 1990s (Shum et al. 1997), they are still considered to cause 65 

most of the uncertainty in OTL values. 66 

 67 

Modern global ocean tide models are provided on evenly distributed grids (0.125°, 0.25° or 0.5º 68 

spacing typically) and therefore the grid cells do not fit the coastline perfectly.  This results in a 69 

misrepresentation of the tidal water mass that is causing the OTL.  To improve the accuracy of 70 

the OTL computation it is therefore necessary to refine the ocean tide model grid locally, i.e. by 71 

interpolating the model to a finer grid.  The tidal values in the refined grid are mostly 72 

determined with bilinear interpolation.  Scherneck (1991) describes a further requirement 73 

whereby local water mass redistribution (MRD) is undertaken in order that the water mass 74 

within the area of refinement remains constant.  This MRD approach was used in the ‘OTL web 75 

provider’ (http://www.oso.chalmers.se/~loading/) from its inception in 2001 until August 2007, 76 

when it switched to using bilinear interpolation only, as a result of the findings described in this 77 

paper.  The methods used in the OTL web provider are important since it facilitated the wide 78 

and easy access to modelling OTL displacement by the space geodetic community, and is the 79 

approach recommended in the IERS 2003 conventions (McCarthy and Petit 2004).  Therefore 80 

many GPS, DORIS, SLR and VLBI-based research projects have used such values, including 81 

both global (Urschl et al. 2005; Thomas et al. 2007) and local (Melachroinos et al. 2007) 82 

comparisons of predicted OTL displacement values with GPS observations.  What has never 83 

been tested however, is whether MRD should be carried out when using modern global ocean 84 

tide models or if bilinear interpolation alone is sufficient, and what the influence of this choice is 85 

for both coastal and inland sites when millimetre or better accuracy is desired.  This is 86 

investigated in this paper.  Also detailed are global and regional comparisons of OTL 87 

displacements computed from different software packages that use different refinement methods 88 
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for ocean tide model grid cells that overlap land.  The sensitivity of the choice of model 89 

refinement method to the particular ocean tide model input is illustrated, and an indication 90 

provided of the quality of the different ocean tide models, for both coastal and inland sites. 91 

 92 
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2  Ocean tide loading computation and softwares 93 

 94 

2.1 Ocean tide loading computation 95 

 96 

For each tidal frequency (the M2 constituent with period 12.42 h usually dominates) the OTL 97 

displacement u  at the discrete site at r  can be computed with the following convolution 98 

integral (Longman 1962, 1963): 99 

 100 

( ) ( ) ( )u r G r r Z r dρ
Ω

′ ′= − Ω∫         (1) 101 

 102 

In Eq. (1), ρ  represents the density of sea water and Z  is the tide at r′ , whilst G  is a Green's 103 

function that depends only on the distance between r  and r′ .  The integral is taken globally 104 

over all water areas Ω , thus requiring the use of a global ocean tide model. 105 

 106 

A focus of this paper is the influence of the near ocean tides on the computed OTL values.  To 107 

illustrate the effect of the tides near the site of interest, consider an example in which the 108 

coastline is straight, the site is exactly on this coastline and that only the loading due to the tides 109 

within a radius of r  around the site (which thus forms a half circle) is taken into account.  Using 110 

the equation for a point load on an homogeneous half-space (Farrell 1972), the amplitude of the 111 

OTL height displacement u  at the site is given by: 112 

 113 

73
1.1 10 ( ) 10km

4 E

u h Zr Zr m for r
a

ρ
ρ

−
∞= ≈ − × <      (2) 114 

 115 
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where Eρ  is the mean density of the solid Earth, a  is the mean radius of the Earth (assumed 116 

spherical), Z  is the amplitude of the ocean tide and h∞  is the Love number for a homogeneous 117 

half-space (Farrell 1972).  The units of Z  and r  are m.  Similarly, the horizontal displacement 118 

v , perpendicular to the straight coastline, due to a half circle, is given by: 119 

 120 

73
0.24 10 ( ) 10km

2 E

v l Zr Zr m for r
a

ρ
πρ

−
∞= ≈ × <      (3) 121 

where 1.673l∞ = .  Thus the height displacement is about 4.7 times larger than the horizontal 122 

displacement. 123 

 124 

Eq. 2 illustrates that the contribution of a 1 m tide to the OTL height displacement within a 10 125 

km radius of the site is around 1 mm, showing that the near tides can have a significant 126 

contribution to the loading value.  For a larger radius of 100 km one should take roughly half the 127 

value of h∞ , to take into account the fact that the Earth is not homogeneous but consists of 128 

different elastic layers, which results in a 5 mm displacement for a 1 m tide.  Consequently, 129 

within this radius the amplitude of the tides must be known to better than  130 

20 cm to reach a 1 mm accuracy threshold.  These examples demonstrate that both near and far 131 

tides must be considered when computing OTL values, with the near tides being the most 132 

important. 133 

 134 

 135 



 8 

2.2  OTL softwares 136 

 137 

The different OTL software packages all compute Eq. (1).  Since near tides have the biggest 138 

contribution to the loading at a site yet the global ocean tide models are only provided as 139 

discrete values on regularly spaced grids, an important feature of each package is how the grid is 140 

refined and interpolated to a finer resolution in the cells nearest the site considered, to better fit 141 

the coastline.  A finer grid near the site of interest also helps assure that the approximation of the 142 

continuous loading by point masses best represents reality.  The effect of coastal grid refinement 143 

on OTL values decreases for more inland sites. 144 

 145 

Three different software packages are considered in this paper (OLFG/OLMPP, SPOTL and 146 

CARGA), chosen since they are widely used and freely distributed or use different approaches 147 

to ocean tide model refinement at the coast.  Key features of each package are now précised, 148 

particularly regarding their methods of coastal model refinement.  Further details on each 149 

package are provided in Bos and Baker (2005). 150 

 151 

OLFG/OLMPP was selected since it is used by the popular OTL web provider recommended in 152 

the IERS 2003 conventions.  The area of coastal model refinement comprises a 3º×3º box 153 

around the site considered, and within this box interpolation and extrapolation is performed by 154 

considering all tides within a 5º×5º box surrounding the site.  The box boundaries are not 155 

defined from exact centering about the site however, but instead are chosen to fit the nearest grid 156 

lines of the ocean tide model.  A further (unique) feature is the use of MRD across the 3º×3º 157 

box, i.e. to avoid creating or destroying water within the box, the excess tidal water mass is 158 

redistributed equally over all water surfaces.  Thus, if the water area is larger after refinement of 159 

the grid, then the tidal amplitude will locally be reduced and vice versa.  Outside the 3º×3º box 160 
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the model is not refined, meaning that for sites far enough (more than ~150 km) inland, no 161 

attempt is made to compensate for model cells imperfectly fitting the coastline.  The value for 162 

the density of sea water used is 1030 kg/m3. 163 

 164 

SPOTL is a freely distributed package that uses concentric rings around the site considered to 165 

represent the integration mesh.  The width of the rings and number of subdivisions is dependent 166 

on the distance from the site, but within a 10° radius bilinear interpolation is used to refine the 167 

mesh to better fit the coastline, whilst outside the tide value for a given location simply takes the 168 

value of the model grid cell that covers that location.  This means that for sites far enough inland 169 

(defined as a 10° radius, i.e. approximately 1000 km), no model coastal refinement takes place.  170 

The value for the density of sea water used is 1025 kg/m3. 171 

 172 

CARGA uses bilinear interpolation to refine the model for every cell across the globe that 173 

imperfectly fits the coastline, rather than only refining the model locally.  Bilinear interpolation 174 

is also used to compute the tide in the open ocean, rather than the SPOTL approach of using the 175 

value of the nearest grid cell.  The OTL displacement value output from CARGA is a mean of 176 

18 runs, in which three mesh layouts, two different coastlines and three coastal interpolation 177 

techniques are varied.  The value for the density of sea water is kept fixed to 1030 kg/m3.  178 

Global tidal water mass is conserved (to ensure that no water mass is created or destroyed 179 

during the tidal cycle) by removing a small uniform layer, whose thickness is different for each 180 

ocean tide model and constituent considered (Bos and Baker 2005). 181 

 182 

This section has considered OTL displacement.  The effects of gravity OTL at (near) coastal 183 

sites are more complicated since the direct gravitational attraction of the tidal water mass 184 

dominates the OTL value.  A very high resolution coastline is necessary together with a very 185 
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accurate value of the ocean tides in front of the site (Bos et al. 2002).  The gravity OTL 186 

computation cannot yet be accurately automated for (near) coastal sites and therefore is not 187 

considered in this paper. 188 

 189 
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3  Ocean tide models 190 

 191 

The global ocean tide models (‘maps’) input to OTL softwares are mostly computed with the 192 

use of the Laplace tidal equations which are depth integrated (Hendershott and Munk 1970).  193 

For each tidal constituent, a global map of tidal amplitudes and phase-lags relative to the tidal 194 

gravitational potential at the Greenwich meridian is obtained.  These hydrodynamic solutions do 195 

not represent the true tides perfectly and for that reason the solutions are adjusted to fit tidal 196 

observations.  The Schwiderski (1980) tide model was one of the first successful examples of 197 

using tide gauge data to improve the model.  The most recent models assimilate tide gauge and 198 

(usually TOPEX/POSEIDON) satellite altimetry data to improve the accuracy of their tide 199 

model, and a short description of the most used ones is given below.  Each of the models 200 

described is distributed to the community as a set of amplitude and phase values on discrete, 201 

regularly spaced global grids. 202 

 203 

NAO.99b (Matsumoto et al. 2000) is based on the same hydrodynamics as the Schwiderski 204 

model but includes the assimilation of TOPEX/POSEIDON data.  It is provided (and directly 205 

computed) on a 0.5º grid and hence the misfit with the coast can be as large as 25 km.  The Ross 206 

Sea is not modelled. 207 

 208 

FES94.1 (Le Provost et al. 1994) is a pure hydrodynamic tide model tuned to fit tide gauges 209 

globally.  It has been calculated on a finite element grid with very fine resolution near the coast 210 

but has been transformed on to a regular 0.5° grid for its distribution.  It is no longer used 211 

because it has been superseded by FES99 (Lefévre et al. 2002) which includes the assimilation 212 

of tide gauge and TOPEX/POSEIDON data.  FES99 is transformed to a 0.25° grid for 213 

distribution, and although its resolution is better than FES94.1, it has too many grid cells over 214 
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land.  FES99 does not have any tidal information in the Baltic Sea, the Black Sea, the Persian 215 

Gulf or the Red Sea.  The most recent FES version is FES2004 (Lyard et al. 2006) which has a 216 

very good fit to the coastline (although the ice shelf in the Ross Sea is modelled ~100 km inland 217 

of the grounding zone) and is provided on a 0.125° grid. 218 

 219 

GOT00.2 (Ray 1999) was developed by adjusting the hydrodynamic model FES94.1 using 220 

TOPEX/POSEIDON and ERS 1/2 satellite altimetry observations.  It is provided on a 0.5° grid 221 

and incorporates local models of the tides in the Gulf of Maine, the Gulf of St Lawrence, the 222 

Persian Gulf, the Mediterranean Sea and the Red Sea. 223 

 224 

TPXO.6.2 (Egbert and Erofeeva 2002) is a model into which tide gauge (from the Arctic Ocean 225 

and around Antarctica) and TOPEX/POSEIDON data have been assimilated using the procedure 226 

described by Egbert et al. (1994).  It is provided (and directly computed) on a 0.25º grid and 227 

does not contain the Black Sea. 228 

 229 

A further model is CSR3.0 (Eanes and Bettadpur 1996) which applies long wavelength 230 

corrections to FES94.1 via 2.4 years of TOPEX/POSEIDON data, whilst CSR4.0 is an update 231 

using a longer data span.  It is provided on a 0.5° grid.  Outside the ±66º TOPEX/POSEIDON 232 

coverage limits, the model defaults to FES94.1. 233 

 234 

 235 

 236 
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4  Global comparison of OTL softwares 237 

 238 

To investigate the effects of the ocean tide model coastal refinement method used and the 239 

sensitivity of both coastal and inland sites to it, all 387 sites (as of August 2007) of the IGS 240 

(Dow et al. 2005) network were selected.  This provided a global distribution of sites often 241 

analysed by the space geodetic community.  M2 OTL height, east and north displacements were 242 

computed using the OLFG/OLMPP (applying MRD), SPOTL v3.2 and CARGA softwares.  For 243 

each software, the computed OTL values represent displacements of the Earth’s surface relative 244 

to the centre of mass of the undeformed solid Earth without atmosphere and oceans (this 245 

convention was used throughout this paper).  Firstly the FES99 model was input since it is one 246 

of two (the other being GOT00.2) recommended in the IERS 2003 conventions for the 247 

computation of OTL.  Then the more recent FES2004 model was input, that has a very good fit 248 

to the coastline and a finer grid resolution of 0.125° than the 0.25º resolution FES99 model.  The 249 

agreements between the OTL displacements computed per software for each model were 250 

assessed by computing, per component per site, the vector difference: 251 

 252 

2 2
1 1 2 2 1 1 2 2( cos cos ) ( sin sin )d A A A Aϕ ϕ ϕ ϕ= − + −      (4) 253 

 254 

where d  is the vector difference and iA , iϕ  respectively represent, per software, the OTL 255 

displacement amplitude and Greenwich phase lag. 256 

 257 

For the height component, vector differences were computed between the OLFG/OLMPP 258 

(MRD) and CARGA values, and between the SPOTL and CARGA values, which are plotted in 259 

Fig. 1.  It is immediately apparent that the SPOTL and CARGA values invariably agree at the 260 

sub-mm level for both the FES99 and FES2004 models.  In fact, as can be seen from Table 1, 261 
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the agreement between CARGA and SPOTL is better than 0.2 mm at 298 sites when using 262 

FES99, and at 318 sites when using FES2004.  At only five and six sites is the agreement worse 263 

than 1 mm for FES99 and FES2004 respectively.  For FES99 the maximum difference is 2.43 264 

mm at VESL (lon. 357.1583, lat. -71.6738) in Antarctica, followed by 1.53 and 1.36 mm at 265 

NANO (lon. 235.9135, lat. 49.2948) and ALBH (lon. 236.5126, lat. 48.3898) respectively, 266 

which are both on Vancouver Island.  For FES2004 the maximum difference of 2.23 mm also 267 

occurs at VESL, followed by 1.57 mm at EPRT (lon. 293.0079, lat. 44.9087) on the Bay of 268 

Fundy.  The difference at VESL is due to a newer coastline in SPOTL (v3.2) than CARGA 269 

(which uses the SPOTL v3.1 coastline), whilst around Vancouver Island the large FES99 270 

differences are likely to be caused by a large gap between the model grid and land, resulting in 271 

much extrapolation by CARGA. 272 

 273 

The differences shown in Fig. 1 between the OLFG/OLMPP (MRD) and CARGA height values 274 

are strikingly much greater for the FES99 model than the equivalent SPOTL minus CARGA 275 

differences.  Table 1 details that 34 of these differences are greater than 1 mm, which all arise at 276 

coastal sites.  Meanwhile, only 199 (compared with 298 for SPOTL-CARGA) of the differences 277 

are less than 0.2 mm.  However, when using FES2004, at only four sites are the differences 278 

greater than 1 mm, and at 350 sites the differences are less than 0.2 mm.  This clearly suggests 279 

that the model refinement method employed by OLFG/OLMPP (MRD) is not equivalent to 280 

those of SPOTL and CARGA for coastal grid cells when using the FES99 model, although all 281 

three methods work equivalently for the FES2004 model.  The striking FES99 OLFG/OLMPP 282 

(MRD) discrepancies arise since many of the FES99 grid cells overlap the land (due to an 283 

inaccurate transformation from the irregular grid in the computed version to the regular global 284 

grid in the distributed version), and the MRD approach requires this excess to be redistributed 285 

evenly across the 3º×3º refinement box.  This can change the model’s tidal amplitude for cells 286 
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within about 150 km of the site by up to about 20% and hence the near tide loading effect 287 

changes.  The FES99 model tendency for the grid cells to overlap the land is not exhibited in 288 

FES2004.  Thus little excess water mass arises and applying MRD has little effect on the 289 

loading values compared with those computed using bilinear interpolation of the model’s grid 290 

cells alone.  In addition, the finer 0.125º grid of FES2004 also diminishes the difference of using 291 

the nearest grid cell (SPOTL) instead of bilinear interpolation (CARGA and OLFG/OLMPP) to 292 

determine the tidal amplitude in the open ocean.  293 

 294 

To confirm that the large discrepancies between OLFG/OLMPP (MRD) and CARGA (and 295 

implicitly also SPOTL) height values when inputting the FES99 model arise from employing 296 

MRD, the OLFG/OLMPP values were recomputed but without employing MRD when refining 297 

the land overlapping model cells in the 3º×3º box around the site.  Thus only bilinear 298 

interpolation was carried out.  These solutions are referred to as OLFG/OLMPP (NoMRD).  The 299 

OLFG/OLMPP (NoMRD) minus CARGA differences when using both the FES99 and 300 

FES2004 models are also shown in Fig. 1.  The discrepancies between the OLFG/OLMPP and 301 

CARGA FES99 values are clearly now much smaller and, as detailed in Table 1, 286 sites have 302 

differences less than 0.2 mm, and only five sites have differences greater than 1 mm.  As with 303 

the SPOTL minus CARGA comparisons, the biggest differences arise at NANO (due to much 304 

CARGA extrapolation) and VESL.  The VESL differences arise since OLFG/OLMPP uses the 305 

GMT (Wessel and Smith, 1998) coastline which, in Antarctica, follows the ice shelves instead 306 

of the land-sea interface followed by the CARGA (SPOTL v3.1) coastline.  For the FES2004 307 

model, the OLFG/OLMPP (NoMRD) values are practically identical to the OLFG/OLMPP 308 

(MRD) values, as can be gleaned by comparing the similarity in the CARGA comparison 309 

statistics listed in Table 1.  In the FES2004 distribution the grid fits the coast much better, 310 

without the tendency to always overlap the coast. 311 
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 312 

The equivalent horizontal displacement vector differences are shown in Tables 2 and 3 for the 313 

east and north components respectively.  It is clearly apparent that the four approaches are in 314 

much closer agreement (as judged by the absolute values of the vector differences) for the 315 

horizontal components than the height, and the effect of MRD is less pronounced.  For both the 316 

FES99 and FES2004 models, none of the OLFG/OLMPP (MRD) minus CARGA, SPOTL 317 

minus CARGA or OLFG/OLMPP (NoMRD) minus CARGA differences exceed 1 mm, all but 318 

3-4 are less than 0.5 mm, and for at least 90% of sites the differences are less than 0.2 mm 319 

(invariably substantially so).  For the north component, the biggest differences arise for the 320 

Antarctic sites OHI2 (lon. 302.0987, lat. -63.3211), RIO2 (lon. 292.2489, -lat. 53.7855) and 321 

VESL, which is attributed to the different OLFG/OLMPP and CARGA coastlines.  Meanwhile, 322 

the largest differences (0.7 mm) between the OLFG/OLMPP (MRD) and CARGA east 323 

component values arise for the southern England sites HERS (lon. 0.3362, lat. 50.8673), HERT 324 

(lon. 0.3344, lat. 50.8675) and NPLD (lon. 359.6604, lat. 51.4210) with the FES99 model.  This 325 

is attributed to firstly, the fact that the east component OTL values are large at these locations 326 

(around 6 mm); secondly, the MRD effect causes a difference of 0.2-0.3 mm; and thirdly, the 327 

3ºx3º box is too small to remove all FES99 grid cells overlapping the land in the region which at 328 

these locations have large tidal amplitudes.  The last effect is around 0.3-0.4 mm.  Invariably the 329 

effect of MRD on the horizontal displacements is smaller than for the height in a relative sense 330 

also.  In almost all cases, only tiny changes of <5% arise, usually much less so. 331 

 332 

The global discrete IGS site comparisons have shown that OTL displacements are sensitive to 333 

the grid cell refinement method adopted to make the ocean tide model better fit the coastline, 334 

which in turn is model dependent.  The largest differences between the CARGA and the 335 

respective OLFG/OLMPP (MRD), OLFG/OLMPP (NoMRD) and SPOTL values all arose at 336 
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coastal sites.  This is to be expected since the near tides have the biggest contribution to the 337 

loading at a site, and no model fits the coastline perfectly.  However, only a few of the discrete 338 

sites of the IGS network are located on complicated coastlines and therefore do not necessarily 339 

provide an indication of the biggest discrepancies that can arise, or the spatial scales over which 340 

the discrepancies can change.  This is considered in the next section, which focuses on the 341 

height component, since it exhibits much bigger differences than the horizontal components. 342 

 343 

 344 
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5  Regional comparison of OTL softwares 345 

 346 

To further test the methods of coastal ocean tide model refinement, M2 OTL height 347 

displacements were computed per point of a 0.125º grid across north-west Europe, extending 348 

from 10ºW to 10ºE and 45°N to 60°N.  The region was selected since it encompasses 349 

complicated coastlines (which the model grid cells do not perfectly fit) around Great Britain and 350 

Brittany, which are surrounded by shallow seas where the modelling of ocean tides is 351 

challenging.  The region extends several hundred kilometres inland to substantial portions of 352 

eastern France, Germany and Switzerland, enabling the effect of coastal model refinement 353 

methods on inland sites to be determined also.  Furthermore, the region encompasses a very 354 

wide range of M2 OTL height displacement values, from over 5 cm off south-west England to 355 

near zero in Norway.  This is illustrated in the M2 OTL height displacement map shown in Fig. 356 

2, computed for the FES2004 model using the CARGA software.  As for the IGS site 357 

comparisons, vector differences were formed, namely OLFG/OLMPP (MRD) minus CARGA, 358 

SPOTL minus CARGA and OLFG/OLMPP (NoMRD) minus CARGA, which are shown in 359 

Figs. 3, 4 and 5 respectively.  In addition to the FES99 and FES2004 models used for the IGS 360 

sites, displacements were also computed for the GOT00.2 and NAO.99b models.  These were 361 

chosen since they are both distributed on a 0.5º grid, i.e. a coarser spacing than FES99, and 362 

GOT00.2 is also recommended in the IERS 2003 conventions. 363 

 364 

It is clear from Fig. 3 that the vector differences between the displacements computed by 365 

OLFG/OLMPP (MRD) and CARGA are substantial around Great Britain when the FES99, 366 

GOT00.2 and NAO.99b models are input.  FES99 results in the biggest differences, greater than 367 

5 mm across all of south-west England and across much of Wales, reaching about 8 mm in and 368 

around the Bristol Channel.  Expressed as a proportion of the displacement amplitude, these 369 
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differences are approximately 10-20%, much greater than the <5% differences previously 370 

reported by Agnew (1997) and Bos and Baker (2005).  These differences are even larger than 371 

occurred at the global IGS sites, which is attributed to many of the FES99 model grid cells 372 

overlapping the complicated Great Britain coastline which causes a large MRD effect.  With the 373 

exception of East Anglia and parts of Scotland around the Caledonian Canal, the vector 374 

differences everywhere in Great Britain are about 1-3 mm, even 100 km and more inland.  375 

Similarly, at least 1-3 mm vector differences arise throughout Brittany and parts of Normandy, 376 

peaking at about 7 mm.  The differences arising using NAO.99b are almost as large as with 377 

FES99, reaching 7-8 mm in northern Brittany (about 20%) although somewhat smaller in south-378 

west England and Wales (2-3 mm), but reach around 4 mm in western Scotland.  The 379 

differences are greater than 1 mm throughout all of inland Brittany, Normandy, the Netherlands 380 

and southern England.  Whilst the vector differences arising using the GOT00.2 model are not 381 

as large as when using FES99 or NAO.99b, they are still greater than 1 mm throughout Brittany, 382 

Normandy and Scotland.  Maximum differences reach around 4 mm near to Glasgow and on the 383 

Normandy coast.  There is a pronounced gridded pattern to the differences, which is attributed to 384 

the OLFG/OLMPP 3º×3º refinement box incrementing in steps equal to the grid spacing of the 385 

tide model, rather than being exactly centred around the site.  Thus since the resolution of the 386 

GOT00.2 and NAO.99b models is 0.5º and the displacement differences have been computed at 387 

a 0.125º resolution, a gridded pattern results.  It is notable that, despite the coarser grid of 388 

GOT00.2 compared with FES99, the OLFG/OLMPP (MRD) minus CARGA differences are not 389 

as pronounced.  This shows that the model’s grid resolution itself is not the sole contributor to 390 

how much MRD must take place, but more important is how many grid cells, on average, 391 

overlap the land.  As GOT00.2 and NAO.99b have the same 0.5º grid resolution, the smaller 392 

differences arising with GOT00.2 suggest that on average, it has fewer grid cells overlapping the 393 

land.  As for the IGS sites, the differences obtained when using FES2004 are very small across 394 
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all of north-west Europe, peaking at only about 1 mm around the Channel Islands.  This 395 

suggests that FES2004 has, on average, a very good fit to the coastline.  With the exception of 396 

the FES2004 model, the differences generally only reduce to the sub-0.5 mm level seen for the 397 

majority of IGS sites when further than ~150 km inland. 398 

 399 

From Fig. 4, it can be seen that the vector differences between the SPOTL and CARGA 400 

estimates are much smaller than the OLFG/OLMPP (MRD) minus CARGA differences, for 401 

each of the four models considered.  The differences between the SPOTL and CARGA values 402 

are invariably less than 0.5 mm for all four models for all but sites right on the coastline, at 403 

which the differences are usually no more than about 1 mm.  These larger coastline differences 404 

are attributed to CARGA taking the average of three extrapolation schemes near the coast, 405 

whilst SPOTL uses only one; the differences are smaller over the open ocean since CARGA and 406 

SPOTL both use simple bilinear interpolation of the four surrounding tidal values.  Besides sites 407 

right on the coastline, differences greater than 0.5 mm only arise for the NAO.99b model in a 408 

small (few tens of km) section of the Bristol Channel, reaching up to about 6 mm.  This is again 409 

attributed to having too many grid cells overlapping the land.  The CARGA values are slightly 410 

larger than those of SPOTL over water because the integral over the water only starts at 0.02º 411 

from the site considered in SPOTL, while in CARGA this gap does not exists. 412 

 413 

As found above for the IGS sites, it can be seen from inspection of Figs. 3 and 5 that the 414 

agreement between the OLFG/OLMPP and CARGA displacements dramatically improves for 415 

the NoMRD values than when applying MRD.  The differences are approximately sub-416 

millimetre for all four models everywhere except around the Channel Islands for the FES99, 417 

GOT00.2 and NAO.99b models, parts of southern England for FES99, and parts of north-west 418 

England for NAO.99b.  For FES2004 the differences are less than 0.5 mm everywhere except 419 
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around the Ijsselmeer.  Thus in general, the very close agreements between the OLFG/OLMPP 420 

NoMRD and CARGA values (and hence also SPOTL values) suggest that for millimetre level 421 

displacement quality, model refinement of local land overlapping cells only is adequate, rather 422 

than refining all land-overlapping cells globally as is done in CARGA.  This is the case for all 423 

the models, whether provided on a 0.5°, 0.25° or 0.125° resolution grid.  It should be noted 424 

however that this is only the case for millimetre level displacement, with Bos and Baker (2005) 425 

finding the more global refinement used by CARGA is necessary for high quality gravity sites. 426 

 427 

It can be seen from Figs 3, 4 and 5 that the agreement between the OLFG/OLMPP (MRD), 428 

OLFG/OLMPP (NoMRD), SPOTL and CARGA displacement values improves on moving 429 

further inland.  This is expected since the near tides have the biggest influence on a site’s 430 

loading value, and therefore the effect of errors due to model cells not perfectly fitting the 431 

coastline, and inadequate model refinement, reduces.  All four solutions agree at the sub-0.2 mm 432 

level for each of the four models input when greater than about 100-200 km from the coast.  433 

Indeed, at distances greater than approximately 150 km inland the OLFG/OLMPP MRD and 434 

NoMRD solutions are identical and use the global ocean tide models in their distributed form, 435 

since no model refinement is carried out as the 3°×3° degree box surrounding the site 436 

encompasses no water.  Such inland sites provide a pure indication of the numerical differences 437 

between each of the three softwares. 438 

 439 
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6  GPS testing of OTL softwares 440 

 441 

The OLFG/OLMPP (MRD) M2 OTL height displacements have been shown to be highly 442 

discrepant (up to about 8 mm) compared with the OLFG/OLMPP (NoMRD), SPOTL and 443 

CARGA values when either of the FES99, GOT00.2 or NAO.99b models are used.  To test 444 

whether the OLFG/OLMPP (MRD) discrepant values are erroneous, a GPS verification was 445 

carried out.  A GPS site was selected as close as possible to the part of north-west Europe where 446 

the maximum OLFG/OLMPP (MRD) minus CARGA disagreement arose for each model.  447 

Hence as illustrated in Fig. 3, GLAS was selected for GOT00.2, MALG for NAO.99b and 448 

APPL for FES99.  NEWC was arbitrarily selected to verify the FES2004 displacements, even 449 

though no large discrepancies arose.  All available data between 2005.00-2007.00 were obtained 450 

for the four sites from the NERC BIGF (http://www.bigf.ac.uk) GPS facility.  Location details 451 

for these sites are listed in Table 4, together with OTL displacement values computed using each 452 

different software package. 453 

 454 

The GPS data were processed using GIPSY/OASIS v4 software in a kinematic precise point 455 

positioning strategy outlined by King (2006) and refined by King et al. (2008).  This involved 456 

processing in 30 h batches with site coordinates, zenith wet delays and receiver clocks estimated 457 

every 5 minutes, whilst holding fixed final JPL fiducial orbits and Earth rotation parameters.  458 

Ambiguities were not fixed to integers and a 7º elevation cut-off angle was adopted.  The 30 h 459 

batches were centred on the UT day (3 h overlap either side), with the site coordinates whose 460 

time-tags matched the central UT day extracted to form continuous time series and to minimise 461 

day-to-day edge effects.  OTL displacements were firstly modelled using OLFG/OLMPP 462 

(MRD) values, and the processing then repeated applying the CARGA values.  The estimated 463 

site coordinates per solution were thinned to a spacing of 30 min, and linear trends and outliers 464 
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(defined as greater than 5 times the inter-quartile range) removed.  Amplitude spectra of the 465 

height time series were then computed according to the Press et al. (1992) implementation of 466 

Scargle (1982), which are shown in Fig. 6. 467 

 468 

The GPS height time series amplitude spectra shown in Fig. 6 clearly indicate that modelling 469 

M2 OTL displacements computed using CARGA reduces 12.42 h (M2) periodicities to the 470 

height time series noise level, whereas substantial energy remains when OLFG/OLMPP (MRD) 471 

is used.  This is obvious for the APPL, GLAS and MALG sites, located in areas where there are 472 

large differences between the OLFG/OLMPP (MRD) and CARGA displacements for the 473 

respective FES99, GOT00.2 and NAO.99b ocean tide models.  Given that the OLFG/OLMPP 474 

(NoMRD) displacements are in such close agreement with the CARGA values at these sites, it 475 

strongly suggests that MRD is inappropriate when the FES99, GOT00.2 and NAO.99b models 476 

are used.  However, when the FES2004 model that better fits the coastline is used, it can be seen 477 

from Fig. 6 that modelling M2 OTL displacement using OLFG/OLMPP (MRD) or CARGA 478 

reduces the energy at the 12.42 h M2 period to the noise level.  This suggests that when using 479 

the FES2004 model, MRD may be implemented in the OLFG/OLMPP solutions without loss of 480 

accuracy because the MRD effect is small. 481 

 482 
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7  OTL displacement sensitivity to different ocean tide models 483 

 484 

For the M2 constituent and height component, the three OTL softwares considered have been 485 

shown to output displacements with vector differences invariably no greater than 1-2 mm for 486 

sites adjacent to complicated coastlines and shallow seas (provided MRD is not used in 487 

OLFG/OLMPP), and often better than 0.2-0.5 mm when more than ~100 km inland or close to 488 

straighter coastlines and the deep oceans.  This can therefore be considered the noise level of the 489 

convolution procedure.  The horizontal displacement vector differences were considerably less.  490 

In this section an indication is provided of the magnitude of the commonly assumed biggest 491 

component of the OTL displacement error budget, namely ocean tide model quality. 492 

 493 

M2 OTL height displacements were computed for the 387 IGS sites considered in section 3 494 

using the CARGA software and inputting each of the six modern ocean tide models CSR4.0, 495 

FES99, FES2004, GOT00.2, NAO.99b and TPXO.6.2.  The CSR4.0 model used here is a 496 

filtered version – CSR4.0 grid cells over land were eliminated using the grid of the GOT00.2 497 

model.  Vector differences between each model value and the six model mean value were 498 

computed and the RMS of these differences (i.e. inter-model agreement) used to assess model 499 

quality, which are plotted in Fig. 7.  It can be seen that for a great many sites, particularly those 500 

inland, the OTL displacement is insensitive (<0.4 mm) to the choice of model, although 501 

discrepancies of nearly 3 mm arise for some coastal sites.  Table 5 details the sites for which a 502 

discrepancy of greater than 1 mm arises, including the M2 amplitudes and Greenwich phase lags 503 

computed per model.  It can be seen from Table 5 that for some sites such as TNML it is just 504 

one particular model (FES99) causing the inter-model discrepancy, although the discrepant 505 

model differs depending on global location.  For example at PARC the discrepant model is 506 

NAO.99b, at TOW2 it is GOT00.2 and at AUCK it is FES2004.  At some sites such as ALBH, 507 
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BAIE and NTUS, no one model is discrepant and the large RMS agreement is simply due to a 508 

larger scatter of the amplitude and phase values across all the models. 509 

 510 

It is clear from Fig. 7 and Table 5 that OTL displacement values are sensitive to the choice of 511 

ocean tide model at the several millimetre level at some coastal sites.  Furthermore, Penna et al. 512 

(2007) showed that RMS agreements between M2 height amplitudes computed using the 513 

SPOTL software with the CSR4.0, FES99, GOT00.2, NAO.99b and TPXO.6.1 models input can 514 

be as high as 8 mm in some regions such as the Weddell and Ross Seas, where there are no IGS 515 

sites.  Which model is discrepant is location dependent, suggesting that it is not necessarily 516 

appropriate to use just a single model in global analyses, as was also suggested by Baker and 517 

Bos (2003).  However, the IERS 2003 conventions do not stipulate any regional dependency in 518 

their recommendation to use either FES99 or GOT00.2.  Meanwhile, the working version of 519 

updates (unratified) to these conventions available at 520 

http://tai.bipm.org/iers/convupdt/convupdt.html has changed the recommended model for global 521 

use to either FES2004 or TPXO.6.2, whilst recognising that other models might be preferred for 522 

internal consistency. 523 

 524 
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8  Discussion and conclusions 525 

 526 

It has been clearly demonstrated that M2 OTL displacements (especially the height component) 527 

are sensitive to the refinement method adopted when the near ocean tide model grid cells do not 528 

perfectly fit the coast.  If the local water mass redistribution approach of Scherneck (1991) is 529 

implemented and if the site is adjacent to complicated coastlines and shallow seas, errors of 530 

around 8 mm or 20% can arise for the height component, depending on the ocean tide model 531 

used.  Particularly large errors have been shown to arise if the FES99 (0.25º resolution) or 532 

NAO.99b (0.5º resolution) models are used, attributed to their grids consistently overlapping the 533 

coastline which means that when MRD is applied, a large change in loading arises.  Meanwhile, 534 

4-5 mm errors arise using the 0.5º resolution GOT00.2 model, which are less than when using 535 

NAO.99b despite the models’ equivalent grid spacing.  Thus the effect of MRD is dependent not 536 

just on the model’s grid resolution, but on how much the grid overlaps the coastline.  On 537 

average the GOT00.2 grid cells overlap the land as much as they leave a gap between the grid 538 

and the land, whereas the NAO.99b and FES99 grid cells overlap the land too much, resulting in 539 

loading errors when applying MRD.  These errors have been confirmed using GPS 540 

measurements, since substantial energy remains at the M2 period in the GPS height time series 541 

amplitude spectra when using MRD, yet the energy reduces to the noise level when using 542 

CARGA (whose displacement values agree very closely with the OLFG/OLMPP NoMRD and 543 

SPOTL values).  However, the grid of FES2004 has on average as many grid cells overlapping 544 

the coast as cells leaving a gap to the coast.  This causes the MRD effect to be small for the 545 

FES2004 model. 546 

 547 

Provided the MRD option is not used by the OLFG/OLMPP software package, this package, 548 

SPOTL and CARGA all compute M2 OTL height displacements that invariably agree at better 549 
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than the 1-2 mm level at coastal sites adjacent to complicated coastlines and shallow seas, and 550 

invariably better than 0.2 mm for sites more than ~100 km inland for all four models considered.  551 

When more than ~150 km inland, the OLFG/OLMPP MRD and NoMRD values are identical 552 

because no local refinement is applied at all.  Expressing the inland differences as a proportion 553 

of the loading amplitude translates to ~2-5% (often less), which is in agreement with the 554 

comparisons of Agnew (1997) and Bos and Baker (2005), but contradicts the statement of Boy 555 

et al. (2003) that convolution errors of 10% can arise at Strasbourg (lon. 7.6838, lat. 48.6218) in 556 

north-east France.  In order to model OTL displacement to an accuracy of around 1 mm, the 557 

three packages OLFG/OLMPP, SPOTL and CARGA can be considered practically 558 

interchangeable.  The different model refinement methods for coastal cells when computing the 559 

OTL produce equivalent outputs, and suggest that for a displacement accuracy level of about 1 560 

mm, it does not matter if bilinear interpolation or the nearest grid cell value is used to determine 561 

the tidal amplitude at distances of more than 10º from the site.  For the 387 IGS sites tested, the 562 

sensitivity of the horizontal displacements to the refinement method used was less than for the 563 

height component. 564 

 565 

Aside from model refinement at the coast and interpolation of model grid cells in the open 566 

ocean, contributions to the small differences between the OLFG/OLMPP, SPOTL and CARGA 567 

displacements arise from the choice of Green’s function and the value for the density of sea 568 

water.  To assess the effect of the Green’s function used, the FES99 CARGA height values for 569 

the 387 IGS sites were recomputed using the Green’s function of a Gutenberg-Bullen A Earth 570 

model (Farrell 1972), in addition to the default PREM Green’s function of Francis and Mazzega 571 

(1990) which is used throughout the paper.  For coastal sites, this changed the displacements by 572 

~0.25 mm, although by about 0.8 mm at RIO2, whilst the change at inland sites was very small 573 

(< ~0.1 mm).  Regarding the effect of sea water density, the average water density value for a 574 
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column of water can change by 1%.  For sites with very large OTL displacement values of 20 to 575 

30 mm this corresponds to an error of 0.2-0.3 mm. 576 

 577 

Whilst convolution errors have been shown, in general, to be not more than 1-2 mm, errors in 578 

the available ocean tide models remain a bigger contributor to errors in OTL displacement 579 

values.  Height errors of up to around 3 mm RMS between the different modern models arise at 580 

IGS sites and up to around 8 mm in areas such as the Weddell Sea and Ross Ice Shelf where 581 

there are no IGS sites.  No one model can yet be considered to best represent the tides in all 582 

regions of the world, with further research required to evaluate which model is most appropriate 583 

in different parts of the world.  The models themselves still need some improvement.  Notably 584 

some of the current global models lack any information on certain seas (e.g. NAO.99b omits the 585 

Ross Sea, TPXO.6.2 omits the Black Sea), which will cause problems for nearby sites.  A 586 

possible solution is to develop regional tide models for these uncovered regions which is the 587 

approach adopted by SPOTL. 588 

 589 

The widely used OTL web provider recommended in the IERS 2003 conventions (and suggested 590 

in the unratified updates) is driven by the OLFG/OLMPP software.  MRD was implemented for 591 

near coastal cells from 2001 until August 2007, when the option was switched off for the 592 

reasons outlined in this paper and bilinear interpolation only is now used.  Therefore, for any 593 

GPS, DORIS, SLR or VLBI analyses that have applied OTL web provider generated 594 

displacement corrections computed during this window for sites within ~150 km of the coast, 595 

biased parameters will result.  The size of such biases will depend on the distance of the site 596 

from the coast, the resolution of the model used, the shape of the nearby coastline, how much 597 

land overlap arises for the model’s grid cells, and whether the site is adjacent to shallow seas or 598 

the deep oceans. 599 
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 600 

In this study, the OTL values represented displacements at the Earth’s surface relative to the 601 

centre of mass of the undeformed solid Earth without atmosphere and oceans.  In the ocean 602 

loading problem the distance between the solid Earth centre and the joint centre of mass of the 603 

Earth system (i.e. solid Earth and oceans) undergo tidal translations that are generated by 604 

hemispherical ocean mass exchange.  In sensitive orbit calculations, this offset should be taken 605 

into account.  From the perspective of a user of orbital products, for example those provided by 606 

the IGS in the case of GPS, it appears more practical if the translations are removed from the 607 

orbital products disseminated by the analysis centres.  Many applications, such as relative GPS 608 

and VLBI, are insensitive to such translations anyway, and there is not yet clear evidence that 609 

the translation parameters are crucial and that they can be verified by orbit analyses.  Since these 610 

parameters are somewhat uncertain in ocean tide modelling and also difficult to determine in 611 

altimetry, most space geodetic analysis centres do not apply them at present.  Thus the 612 

assumption of the solid earth centre as a reference is consistent with the JPL fiducial orbit 613 

products used in this study.  Any error would have to be tracked to second-order dynamic effects 614 

of the neglected offset to the joint mass centre.  (Sensitive tests of orbit anomalies due to ocean 615 

tide mass induced frame centre translation are encouraged). 616 

 617 

A centre of figure frame, as discussed in Blewitt (2003), did not need to be considered here – the 618 

centre of figure frame concept relates to unknown deformations and fits an undeforming surface 619 

to the station positions.  Included in the modelling of ocean loading are degree-one load Love 620 

numbers, which can be decomposed into a translation and a deformation part.  However, this 621 

translation arises in the Earth’s interior and does not displace the solid Earth’s mass centre.  622 

From observations at the Earth's surface, this particular translation component cannot be 623 

distinguished from additional translations involving the mass centre. 624 
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 625 

This study only considered the (usually dominant) M2 constituent.  Moreover, only a sample of 626 

globally distributed sites (the IGS network) was considered, along with a single more detailed 627 

test region (north-west Europe) that encompassed complicated coastlines and shallow seas, for 628 

which the (dominant) height component was considered only.  High resolution intercomparisons 629 

of OTL softwares and ocean tide models should be undertaken for other coastal regions for 630 

height and horizontal displacements and various tidal constituents. 631 

 632 
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 35 

FIGURE CAPTIONS 734 

 735 

Fig. 1  M2 OTL height displacement vector differences between the OLFG/OLMPP, SPOTL 736 

and CARGA softwares for 387 IGS sites when using the FES99 and FES2004 ocean tide 737 

models 738 

 739 

Fig. 2  M2 OTL height displacement amplitudes and Greenwich phase lags for a 0.125º grid 740 

across north-west Europe, computed using CARGA with the FES2004 ocean tide model 741 

 742 

Fig. 3  OLFG/OLMPP (MRD) minus CARGA M2 OTL height displacement vector differences 743 

for a 0.125º grid across north-west Europe when using the GOT00.2, FES99, NAO.99b and 744 

FES2004 ocean tide models 745 

 746 

Fig. 4  SPOTL minus CARGA M2 OTL height displacement vector differences for a 0.125º grid 747 

across north-west Europe when using the GOT00.2, FES99, NAO.99b and FES2004 ocean tide 748 

models 749 

 750 

Fig. 5  OLFG/OLMPP (NoMRD) minus CARGA M2 OTL height displacement vector 751 

differences for a 0.125º grid across north-west Europe when using the GOT00.2, FES99, 752 

NAO.99b and FES2004 ocean tide models 753 

 754 

Fig. 6  GPS height amplitude spectra for OLFG/OLMPP (MRD) and CARGA solutions for 755 

ocean tide models FES99 at site APPL, GOT00.2 at GLAS, NAO.99b at MALG, and FES2004 756 

at NEWC 757 

 758 
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Fig. 7  RMS vector differences of M2 OTL height displacements for 387 IGS sites, computed 759 

using CARGA and the CSR4.0, FES99, FES2004, GOT00.2, NAO.99b and TPXO.6.2 ocean 760 

tide models 761 

 762 
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 764 

 765 
 766 
 767 
 768 
Fig. 1  M2 OTL height displacement vector differences between the OLFG/OLMPP, SPOTL 769 

and CARGA softwares for 387 IGS sites when using the FES99 and FES2004 ocean tide 770 

models 771 



 38 

 772 

 773 

 774 
 775 
 776 
Fig. 2  M2 OTL height displacement amplitudes and Greenwich phase lags for a 0.125º grid 777 

across north-west Europe, computed using CARGA with the FES2004 ocean tide model 778 
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 781 
 782 
 783 
 784 
Fig. 3  OLFG/OLMPP (MRD) minus CARGA M2 OTL height displacement vector differences 785 

for a 0.125º grid across north-west Europe when using the GOT00.2, FES99, NAO.99b and 786 

FES2004 ocean tide models 787 

 788 
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 790 
 791 
 792 
 793 
Fig. 4  SPOTL minus CARGA M2 OTL height displacement vector differences for a 0.125º grid 794 

across north-west Europe when using the GOT00.2, FES99, NAO.99b and FES2004 ocean tide 795 

models 796 
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 800 
 801 
 802 
Fig. 5  OLFG/OLMPP (NoMRD) minus CARGA M2 OTL height displacement vector 803 

differences for a 0.125º grid across north-west Europe when using the GOT00.2, FES99, 804 

NAO.99b and FES2004 ocean tide models 805 

 806 
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 807 

 808 
 809 
 810 
 811 
Fig. 6  GPS height amplitude spectra for OLFG/OLMPP (MRD) and CARGA solutions for 812 

ocean tide models FES99 at site APPL, GOT00.2 at GLAS, NAO.99b at MALG, and FES2004 813 

at NEWC 814 

 815 
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 817 
 818 
 819 
 820 
Fig. 7  RMS vector differences of M2 OTL height displacements for 387 IGS sites, computed 821 

using CARGA and the CSR4.0, FES99, FES2004, GOT00.2, NAO.99b and TPXO.6.2 ocean 822 

tide models 823 

 824 
 825 
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 826 

Table 1  Tally of M2 OTL height displacement vector differences between the different 827 
softwares for 387 IGS sites when using the FES99 and FES2004 models 828 
 829 
 FES99 FES2004 
Vector 
difference 
magnitude 

OLFG/OLMPP 
(MRD) 

– CARGA 

SPOTL 
– CARGA 

OLFG/OLMPP 
(No MRD) 
– CARGA 

OLFG/OLMPP 
(MRD) 

– CARGA 

SPOTL 
– CARGA 

OLFG/OLMPP 
(No MRD) 
– CARGA 

< 0.2 mm 199 298 286 350 318 358 
< 0.5 mm 305 369 364 378 373 381 
> 1.0 mm 34 5 5 4 6 3 
 830 
 831 
 832 
 833 
Table 2  Tally of M2 OTL east displacement vector differences between the different softwares 834 
for 387 IGS sites when using the FES99 and FES2004 models 835 
 836 
 FES99 FES2004 
Vector 
difference 
magnitude 

OLFG/OLMPP 
(MRD) 

– CARGA 

SPOTL 
– CARGA 

OLFG/OLMPP 
(No MRD) 
– CARGA 

OLFG/OLMPP 
(MRD) 

– CARGA 

SPOTL 
– CARGA 

OLFG/OLMPP 
(No MRD) 
– CARGA 

< 0.2 mm 366 383 374 383 383 383 
< 0.5 mm 383 387 385 387 387 387 
> 1.0 mm ---- ---- ---- ---- ---- ---- 
 837 
 838 
 839 
 840 
Table 3  Tally of M2 OTL north displacement vector differences between the different 841 
softwares for 387 IGS sites when using the FES99 and FES2004 models 842 
 843 
 FES99 FES2004 
Vector 
difference 
magnitude 

OLFG/OLMPP 
(MRD) 

– CARGA 

SPOTL 
– CARGA 

OLFG/OLMPP 
(No MRD) 
– CARGA 

OLFG/OLMPP 
(MRD) 

– CARGA 

SPOTL 
– CARGA 

OLFG/OLMPP 
(No MRD) 
– CARGA 

< 0.2 mm 355 383 371 383 384 383 
< 0.5 mm 384 384 385 385 384 385 
> 1.0 mm ---- ---- ---- ---- ---- ---- 
 844 
 845 
 846 
 847 
Table 4  North-west Europe site details and M2 OTL height displacement amplitudes (A) and 848 
Greenwich phase lags (Φ) for different softwares.  Latitudes and longitudes are positive in the 849 
north and east directions respectively. 850 
 851 
Site Lon. (º) Lat. (º) Model OLFG/OLMPP 

(MRD) 
CARGA  SPOTL  OLFG/OLMPP 

(NoMRD) 
    A (mm) Φ (º) A (mm) Φ (º) A (mm) Φ (º) A (mm) Φ (º) 
APPL 355.8003 51.0569 FES99 38.20 327.5 32.21 322.5 32.16 322.5 32.77 323.0 
GLAS 355.7035 55.8540 GOT00.2 12.39 312.1   9.76 309.2   9.69 309.4   9.67 309.4 
MALG 354.1716 57.0061 NAO.99b 23.96 341.8 19.94 337.9 19.40 337.9 19.77 338.8 
NEWC 358.3834 54.9791 FES2004 13.88 287.0 13.80 287.0 13.97 286.4 13.92 286.7 

 852 
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 853 

Table 5  Predicted M2 OTL height displacement amplitudes (A) and Greenwich phase lags (Φ) 854 
from six ocean tide models using the CARGA software for IGS sites for which the RMS of the 855 
vector differences (mm) from the six model mean was greater than 1 mm.  Latitudes and 856 
longitudes are positive in the north and east directions respectively. 857 
 858 
Site Lon (º) Lat (º) CSR4.0 FES99 FES2004 GOT00.2 NAO.99b TPXO.6.2 Vector 

   A 
(mm) 

Φ 
(º) 

A 
(mm) 

Φ 
(º) 

A 
(mm) 

Φ 
(º) 

A 
(mm) 

Φ 
(º) 

A 
(mm) 

Φ 
(º) 

A 
(mm) 

Φ (º) RMS 
Diffn. 

ALBH 236.5126 48.3898 17.0 72 20.8 68 16.1 78 17.0 72 15.5 73 19.8 69 2.2 
ALRT 297.6596 82.4943 0.6 111 0.9 261 0.9 220 0.4 111 3.7 88 1.0 236 1.6 
AUCK 174.8344 -36.6028 27.7 56 27.9 55 24.9 59 27.5 56 27.4 59 27.7 54 1.4 
BAHR 50.6081 26.2091 5.2 253 3.4 296 6.6 259 6.1 256 7.1 257 6.2 258 1.7 
BAIE 291.7367 49.1868 5.9 146 2.9 106 4.4 84 5.7 148 4.0 84 3.9 94 2.4 
BARH 291.7783 44.3950 9.5 211 13.4 227 13.4 236 13.9 235 13.8 235 12.4 231 2.3 
CHUR 265.9113 58.7591 6.4 198 5.6 182 10.8 181 9.4 182 10.3 187 9.1 177 2.1 
EPRT 293.0079 44.9087 9.5 205 13.8 222 16.0 242 16.3 238 15.9 234 13.3 229 3.6 
ESCU 295.2013 47.0734 6.3 154 6.7 116 5.9 154 6.6 157 6.3 142 6.2 145 1.6 
HLFX 296.3887 44.6835 13.7 169 13.5 169 13.2 180 14.0 176 12.7 180 13.5 1701 1.2 
KUUJ 282.2546 55.2784 7.3 168 4.9 165 9.9 158 9.1 157 8.7 157 8.3 153 1.8 
LROC 358.7807 46.1589 27.5 281 28.2 282 27.6 287 27.8 282 27.2 282 27.5 281 1.1 
MOBS 144.9753 -37.8294 6.8 172 3.7 153 6.2 164 7.1 170 7.1 172 6.5 172 1.3 
NANO 235.9135 49.2948 18.4 72 17.5 74 15.8 76 18.4 73 15.9 75 20.4 71 1.7 
NTUS 103.6799 1.3458 5.1 196 4.9 180 6.1 184 5.6 186 4.3 197 5.3 153 1.4 
PARC 289.1201 -53.1370 5.9 143 6.1 152 5.8 150 5.6 144 6.8 127 5.4 118 1.4 
PIMO 121.0777 14.6357 8.1 139 6.7 145 9.9 134 9.1 136 10.3 134 9.5 135 1.3 
QIKI 295.9663 67.5593 13.7 119 11.8 117 13.2 117 13.6 117 11.0 125 12.7 112 1.3 
RESO 265.1067 74.6908 7.6 35 4.5 35 5.3 26 7.5 35 5.1 41 6.0 32 1.3 
SHAO 121.2004 31.0996 7.0 193 4.1 212 6.7 202 8.4 210 7.8 211 7.8 199 1.6 
SHE2 295.4480 46.2207 7.9 164 7.5 155 7.2 192 8.3 178 7.1 175 7.6 163 1.6 
TCMS 120.9874 24.7980 10.2 209 7.4 235 12.2 209 11.8 208 12.0 207 11.7 201 2.4 
TNML 120.9873 24.7980 10.2 209 7.4 235 12.2 209 11.8 208 12.0 207 11.7 201 2.4 
TWTF 121.1645 24.9536 10.6 200 7.3 224 12.3 202 12.0 201 12.2 200 12.1 194 2.4 
UNBJ 293.3583 45.9502 7.3 172 6.9 179 6.8 199 7.5 194 6.8 197 6.8 183 1.3 
 859 
 860 

 861 


