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ABSTRACT 

 
Carbon capture and storage have been receiving increasing interest lately, mainly as an 

option to reduce CO2 emissions from the power sector. The concept could be adapted for 
production of H2 as well, which would provide a carbon free energy carrier that could be used 
for example as transportation fuel. In this doctoral thesis, the option to use chemical-looping 
technologies to produce H2 from fossil fuels with CO2 capture is explored. 

In chemical-looping combustion, direct contact between fuel and combustion air is 
avoided. Instead, a solid oxygen carrier performs the task of bringing oxygen from the air to 
the fuel. Thus, the resulting CO2 and H2O are not diluted with N2, and pure CO2 can easily be 
recovered by cooling and condensation. The heat of reaction is the same as for ordinary 
combustion. Chemical-looping reforming uses the same basic principles as chemical-looping 
combustion, but operates at understoichiometric conditions. Therefore chemical-looping 
reforming can be said to be a process for partial oxidation of hydrocarbon fuel into H2 and 
CO, where chemical looping is used as a source of undiluted oxygen. 

In the theoretical part of this work, the technical feasibility to use chemical-looping 
technologies for production of H2 with CO2 capture has been examined. Two main ideas have 
been explored. Steam reforming integrated with chemical-looping combustion means that 
chemical-looping combustion is used for CO2 capture and as heat source for generation of H2 
via the endothermic steam reforming reaction. Chemical-looping autothermal reforming 
utilizes understoichiometric conditions and the possibility to add some H2O to the fuel, in 
order to have both partial oxidation and steam reforming reactions occurring in the same 
reactor vessel. This way, a thermo neutral process is obtained. It is found that both options 
have potential to provide substantial advantages compared to conventional technologies. 
Thermodynamic modelling shows that reformer efficiencies of 80% or higher, including CO2 
capture and CO2 compression, seem to be obtainable with both processes. 

In the experimental part, chemical-looping reforming and chemical-looping combustion 
has been demonstrated in two different circulating-fluidized bed reactors. In total, over 200 
hours of experiments have been recorded. Natural gas was used as fuel, and four different 
NiO-based materials have been used as oxygen carrier. Process conditions have varied from 
almost complete combustion into CO2 and H2O, to almost stoichiometric partial oxidation into 
CO and H2. The reactor temperature has been between 800 and 950ºC. The experiments 
worked very well, but occasionally limited formation of solid carbon could occur in the 
reactor. Adding 25-30% H2O or CO2 to the natural gas reduced this tendency significantly. 

In addition to this, a few unconventional materials that could be used as oxygen carrier in 
chemical-looping applications have been examined by reduction with CH4 in a fixed-bed 
reactor at 900ºC. Some potentially useful materials were identified, such as Lax Sr1-xFeO3─δ 
perovskites and mixtures of Fe2O3 and NiO supported on MgAl2O4. 
 
Keywords: Chemical-looping reforming, chemical-looping combustion, steam reforming, 
partial oxidation, hydrogen, synthesis gas, carbon capture and storage 
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1 
INTRODUCTION 

 

1.1 The greenhouse effect and global warming 

In 1827 the French mathematician Joseph Fourier wrote an essay concerning the 

temperature of the earth [1]. In this essay he introduced the idea that certain gases in the 

atmosphere exerts a thermal blanketing that keeps the planets surface warmer than it 

otherwise would be. The heating effect that these gases have on our planet has become known 

as the greenhouse effect and the gases as greenhouse gases. The greenhouse effect can be 

visualized by a simplified energy balance of the earth’s surface, see Figure 1. 

 

 
 

Figure 1. The energy balance of the earth. About half of the incoming solar radiation passes 

through the clouds and the atmosphere and is absorbed by the surface. Parts of the resulting 

heat is reemitted back as thermal infrared radiation, which in turn is absorbed and reradiated 

by greenhouse gases in the atmosphere and causes the greenhouse effect. IPCC [2, 3]. 

 

Science has come far the past 180 years. Today we know that the greenhouse effect is vital 

to the earth’s climate system. At present, it boosts the temperature of our planet about 33ºC. 
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Without it our world would have been much colder, perhaps even incapable to harbour 

advanced life forms such as ourselves. It is easily realized that if the concentration of 

greenhouse gases in the atmosphere is altered, so is the greenhouse effect. If the changes are 

large enough, this should eventually have impact on the climate of our planet as well. 

There are several greenhouse gases present in the atmosphere. The two most important are 

water vapour and CO2. This has been known since 1861, when the British philosopher James 

Tyndall presented experiments that demonstrated the absorbing properties of these gases [4].  

Human activities are not believed to influence the concentration of water vapour in the 

atmosphere directly, but that is not the case for CO2. It is well established that our way of 

living is increasing the concentration of CO2 in the atmosphere rapidly. Since 1958, direct 

measurements of CO2 in the atmosphere are done on regular basis. In addition to this, the 

historic CO2 concentrations for the past 700 000 years or so have been reconstructed with 

high accuracy by measuring the CO2 concentration in air trapped in glacier ice cores. Thanks 

to these efforts, we know for certain that the CO2 concentration in the atmosphere has 

increased more than 30% since the beginning of the industrial revolution, see Figure 2. 

 

 
Figure 2. Atmospheric CO2 concentration for the past 420 000 years estimated by 

measurements in ice core samples from the Vostok research station in Antarctica, combined 

with current measurements and a projection for year 2100. Adapted from IPCC [2]. 
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In order to understand why this is happening, and where we eventually may end up, it can 

be useful to look back even farther than the mentioned 700 000 years. It is possible to make 

rough estimations of atmospheric CO2 concentrations that go back hundreds of millions of 

years, for example by measuring boron to carbon ratio in ancient sediments. Such estimations 

show that there are several occasions in prehistoric times when the CO2 concentration in the 

atmosphere have been much higher than today. The latest such occasion was the Jurassic 

period 145-200 million years ago, the pinnacle of the era of the dinosaurs. By then, the 

atmospheric CO2 concentration was several times as high as today, and there is plenty of 

fossil evidence that even the arctic areas of our planet were covered with lush jungles. Since 

those sweaty days, vast amounts of CO2 have been removed from the atmosphere. The carbon 

has not just disappeared though. Instead, it can be found solved in the oceans, bound in 

minerals and in other so called carbon reservoirs. Transportation of CO2 from the atmosphere 

to other carbon reservoirs is naturally occurring, but very slow.  

The most intriguing carbon reservoir that was built up during these prehistoric times is the 

so called fossil fuels, which include oil, coal and natural gas. It is generally believed that 

fossil fuels are dead organisms that have been transformed into various carbon compounds by 

the combined forces of age, heat and pressure. When fossil fuels are burnt, these ancient 

carbon resources that has been build up during millions of years is released to the atmosphere 

as CO2.  

From a geological point of view, large-scale extraction and combustion of fossil fuels is an 

incredibly rapid process. It has only been going on for a little more than hundred years and if 

nothing is done this once gargantuan stockpile of prehistoric carbon could be depleted in a not 

so distant future. Oil and natural gas resources are already strained in many parts of the world. 

By contrast, the time scale for transportation of CO2 from the atmosphere into other carbon 

reservoirs is at least several thousand, or in the case of fossil fuels even millions of years. 

Therefore, combustion of fossil fuels inevitably results in increased concentration of CO2 in 

the atmosphere. 

It took until 1896 before combustion of fossil fuels was linked to Fourier’s idea about the 

greenhouse effect, via Tyndall observations of the absorptive properties of CO2. This year the 

Swedish chemist Svante Arrhenius published his famous article On the influence of carbonic 

acid in the air upon the temperature of the ground [5], in which he argues that the 

concentration of CO2 in the atmosphere has a strong influence on the climate of the earth. His 

theory was immediately questioned, but Arrhenius defended his work and eventually his ideas 

were accepted by the scientific community.  
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It is interesting to notice that Arrhenius was by no means an alarmist. On the contrary, he 

was an optimist. He even argued in favour of increased CO2 emissions. In his book Worlds in 

the making from 1908 he suggested that human emission of CO2 could prevent the world from 

entering a new ice age, and that a warmer planet would be necessary to feed the rapidly 

increasing world population. Arrhenius was not the only one who pondered about this topic. It 

is said that highly respected scientists such as Walther Nernst, the Nobel Prize receiver, the 

developer of the Nernst equation and the third law of themodynamics, the inventor of the 

electronic piano etc, even fantasized about setting fire to whole coal seams in order to release 

CO2 for a rapid warming of the earth. Such ideas may seem completely out of place today, but 

Arrhenius and Nernst were working in a very different scientific and intellectual setting. They 

also failed to predict the immense growth of industrial activities that occurred in the 20th 

century. Arrhenius thought that a doubling of the atmospheric CO2 should take 3000 years. At 

present, it seems like it could happen within this century. 

While some of the early predictions about the influence of human activities on the climate 

of the earth were somewhat off the mark, others were not. Today we know not only that the 

atmospheric concentration of CO2 is increasing, but that the temperature of the earth is rising 

as well. Temperatures and precipitation have been carefully monitored for centuries. The first 

meteorological network was formed in Italy as early as in 1653, while the international 

meteorological organization was formed in 1873 [3]. Therefore we know for sure that the 

average global surface temperature of our planet has increased at least a half degree 

centigrade since the beginning of the industrial era, see Figure 3 below. A half degree may not 

sound like a big deal but the temperature of the earth is actually believed to be warmer today 

than it has been for several thousands of years. 

Temperature can be estimated by measuring the occurrence of various temperature 

dependent isotopes naturally present in the air. Hence ice core samples that contain trapped air 

provide information not only about past atmospheric CO2 concentrations, but some 

information about the climate history of the earth as well. Therefore it is known that there is 

indeed a strong correlation between the CO2 concentrations in the atmosphere and the climate, 

see Figure 4 below. 
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Figure 3. Annual anomalies of global land-

surface air temperature, average for the 

northern and southern hemispheres with the 

period between 1961 and 1990 used as 

reference. IPCC [2]. 

Figure 4. Atmospheric concentrations of CO2 

(upper curve) and the temperature dependent 

isotope deuterium (lower curve) plotted against 

age, expressed as thousands of years before 

present. From Barnola et al [6]. 

 

At the first glance, Figures 2-4 may appear to be rather solid proof that CO2 emitted into 

the atmosphere by humans increase the CO2 concentration in the atmosphere and that this 

results in a warmer climate. In truth, the correlations are much more complicated. There are 

other factors than combustion of fossil fuels that contributes to the amount of greenhouse 

gases present in the atmosphere, and there are also other factors than the atmospheric 

concentration of greenhouse gases that affects the climate of the earth. In fact, the complexity 

of the earth’s climate system is a considerable scientific challenge. It is also practically 

impossible to perform controlled experiments on the planet as a whole, and then observe the 

results. This is an important consideration, since only such planet-scale experiments, 

incorporating all interacting processes and feedbacks could truly verify or falsify hypotheses 

about global warming. 

Because of this, any theory that involves the earth’s climate will be vulnerable to critique, 

unless it is based on very robust science. Typically, modern climate science relies on clearly 

verifiable hypotheses, which can be incorporated into increasingly sophisticated computer 

models. During later years, countless empirical tests and immense modelling has built up a 

massive body of knowledge about the climate system of the earth. These activities have 

refined the understanding of many aspects of the climate system, and while there still are 

areas that are not fully explored or understood, the general consensus among climatologists is 
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that increased CO2 concentration in the atmosphere has an actual and considerable heating 

effect on our planet. 

In later years, concerns about this so called global warming have been growing steadily. 

This is hardly surprising. If we define risk as the probability of an event multiplied with 

consequence if the event occurs, we realize that global warming is an immense risk to both 

people and the environment in many countries. According to the Intergovernmental Panel on 

Climate Change “evidence is now unequivocal that humans are causing global warming” [3]. 

The consequences of a sudden increase in the global average temperature with a few degrees 

would likely include sea level rise due to polar melting and thermal expansion of the sea, as 

well as considerable changes in precipitation patterns. This in turn would have huge impact on 

land, food and water resources, and could also result in collapse of whole ecosystems and 

catastrophic losses in biodiversity. In summary, the probability that human activities are 

causing global warming is very high and the expected economical and environmental 

consequences are extremely grave. Hence there can be no doubts that anthropogenic climate 

change is one of the greatest risks threatening our society today. 

To mitigate the impact of this unsettling development, global CO2 emissions would need to 

be reduced greatly in the near future. This is a challenging task, to say the least. Almost all 

activities associated with our modern societies are dependent on fossil fuels. They are used for 

production of vehicle fuels, for generation of electricity, as raw material in industrial 

processes, for household heating, for production of fertilizers to the agriculture sector and for 

many other applications. At present, well over 80% of the primary energy consumption of the 

world comes from combustion of oil, coal and natural gas.  

 

1.2 Ways to reduce anthropogenic CO2 emissions 

There are several options available to decrease global CO2 emissions. In order to identify 

these options, it can be helpful to consider the major factors influencing CO2 emissions and 

relate them to energy consumption. This can be done with the simple but useful Kaya identity 

[7], see expression (1).  

 

F = P × (G/P) × (E/G) × (F/E)                   (1) 

 

In the Kaya identity, F represents global CO2 emissions from human sources, P is global 

population, G is world gross domestic product, E is global primary energy consumption, 
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(G/P) is global per-capita gross domestic product, (E/G) is the global energy intensity, and 

(F/E) is the global carbon intensity of energy.  

Most scenarios predicting the future development of the world suggests that the world 

population (P) and the global per-capita gross domestic product (G/P) will continue to 

increase in the near future. It can be argued, with some merit, that changing these trends is 

undesirable or even impossible. Global population will likely continue to rise for some 

decades to come, and economic growth can help to improve the life situation for people in 

impoverished and underdeveloped parts of the world. Therefore, it can be said that the Kaya 

identity implies that achieving deep reductions in CO2 emissions will require either major 

reductions of global energy intensity (E/G), or a steep reduction of carbon emissions from 

energy technology (F/E).  

There are several options available to achieve these goals. A comprehensive review can be 

found in the IPPC report, especially the part about mitigation [2, 3]. The most frequently 

discussed options to reduce greenhouse gas emissions are summarized below: 

 

• Reduce global energy intensity 

If the energy sector’s share of the world economy is reduced, so is (E/G) in expression 

(1). This could be achieved either by more efficient energy use in production and 

consumption of goods and services, or by a change in consumption patterns away 

from particularly energy-demanding products. Reducing global energy intensity 

should be a technically sound and economically rational way to start limiting global 

CO2 emissions, but it is not likely that it would be enough to mitigate global warming. 

 

• Increase the use of renewable energy sources 

Renewable energy sources produce no direct CO2 emissions, so increased use would 

reduce the (F/E) factor in expression (1). Unfortunately, replacing fossil fuels with 

renewable energy is a gigantic task. Most rivers suitable for hydro power are already 

developed. Wind power and solar power are promising and have large potential, but 

still have some way to go until they become major players on the global energy 

market. Production of various kinds of biofuels is technically possible, but limited by 

lack of fertile land and fresh water resources. There are also concerns that large-scale 

use of biofuels would compete with food production, which could increase the 

problems with food scarcity in poor countries. 
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• Increase the use of nuclear power 

Nuclear power produces no direct CO2 emissions, so increased use would reduce the 

(F/E) factor in expression (1). Very few nuclear power plants have been constructed 

the last 25 years though. The private sector, which dominates the power sector in most 

developed countries nowadays, has shown only modest interest in nuclear power. This 

can likely be contributed to high investment costs and complex juridical setting. In 

addition to this, nuclear power also involves political considerations such as the risk 

for weapon proliferation, the problematic waste disposal and a lack of public 

acceptance in many countries. It shall also be noted that nuclear power is not a 

renewable energy source, and that deposits of uranium suitable for extraction with 

present technology are limited. However, uranium is fairly abundant and exists in very 

low concentrations both in the oceans and in the earth’s crust. Therefore it seems 

reasonable to believe that improved extraction methods and higher price would 

increase the commercially viable deposits considerably. It is also possible to improve 

fuel utilization by nuclear breeding, or by improved processing of depleted fuel. Both 

these options are highly controversial though. It could also be possible to construct 

nuclear reactors that use thorium as fuel, which would broaden the resource base 

further. 

 

• Switch to less carbon intensive fuels 

If coal is replaced by oil or natural gas, the emission of CO2 per unit energy produced 

decreases. This is because coal contains more carbon per unit of energy than oil and 

natural gas. Hence fuel switch away from coal to other fuels could be used to reduce 

CO2 emissions by reducing the (F/E) factor in expression (1). This concept has two 

obvious shortcomings. Firstly, oil and natural gas are fossil fuels that emit CO2 to the 

atmosphere when utilized. Secondly, the known deposits of oil and natural gas are 

limited and strained, while there are immense amounts of coal available at relatively 

low cost. So in medium or long term, fuel switch from coal to fossil fuels with less 

carbon intensity does not seem like a viable strategy. 

 

• Enhance CO2 uptake in biomass 

Growing plants consume atmospheric CO2 through photosynthesis. The CO2 is 

converted to various carbon containing compounds building up biomass. So if the total 

amount of biomass on the earth were increased, considerable amounts of CO2 could be 
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drained from the atmosphere. This could be achieved for example by growing forests 

in deserts and arid lands. At present, the opposite is happening. In many parts of the 

world old forests are cut down for wood and farmland. Such large-scale deforestation 

contributes to increased CO2 concentration in the atmosphere instead.  

 

• Decrease non-CO2 greenhouse-gas emissions  

Although CO2 is considered as the most important contributor to anthropogenic 

climate change, there are other contributors as well. Greenhouse gases released by 

human activities include CH4, as well as various nitrogen oxides and halocarbons. 

Naturally, reducing emissions of such gases would not reduce global CO2 emissions, 

but it could reduce the impact of anthropogenic climate change somewhat. 

 

• CO2 capture and storage 

This thesis deals with technologies that can be used for CO2 capture and storage, a 

way to reduce the (F/E) factor in expression (1) that is presented in section 1.3 below.  

 

1.3 An introduction to CO2 capture and storage 

If CO2 is captured in flue gases from a combustion process and prevented from reaching 

the atmosphere it will not contribute to the greenhouse effect. In this way, fossil fuels can be 

used without impact on the climate of the earth. The idea is usually referred to as carbon 

capture and storage or carbon sequestration, and has received much interest in later years. 

Carbon capture and storage is not restricted to direct combustion of fossil fuel, but could also 

be used in other major CO2-emitting industries such as steel, cement, synthetic fuel and 

ammonia plants, biomass combustion, refineries, natural gas processing facilities etc. The 

most inclusive source for information about carbon sequestration is IPCC:s special report on 

CO2 capture and storage [8]. Many governments, international organisations and major 

corporations have also produced technical summaries and technological roadmaps about the 

topic, including the U.S. Department of Energy [9]. Reviews in academic press include for 

example those by Yamasaki [10], Anderson and Newell [11], and Benson and Surles [12]. 

One positive characteristic of carbon capture and storage is that it does not necessarily 

require new and unproven technologies. Most of the required process components are already 

known and commercially available. Hence carbon capture and storage has potential to have 

real impact on the global CO2 emissions even in a relatively near future, see Figure 5. 
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Figure 5. World primary energy production as function of time, for two different scenarios 

(B2-550-MiniCAM2, B2-550-MESSAGE2) suggested by IPCC [8]. In both cases carbon 

capture and storage ends up playing a major role in prohibiting emissions. 

 

The relative maturity and simplicity of carbon capture and storage is also reflected in 

policy statements from various organisations. For example, in its sustainable power 

generation communication in 2007 [13], the European Commission stated that it intends to 

work to:  

 

• “Design a mechanism to stimulate the construction and operation by 2015 of up to 12 

large-scale demonstrations of sustainable fossil fuels technologies in commercial 

power generation in the EU.” 

 

• “Provide a clear perspective when coal- and gas-fired plants will need to install CO2 

capture and storage. On the basis of existing information, the Commission believes 

that by 2020 all new coal-fired plants should to be fitted with CO2 capture and storage 

and existing plants should then progressively follow the same approach...” 

 

So there are many factors that indicate that carbon capture and storage will have an 

important role to play in the efforts to reduce global CO2 emissions. This will require 

technologies for CO2 capture, CO2 transportation and CO2 storage. The current state of 

knowledge is briefly presented below. 
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1.3.1 CO2 capture 

The aim with CO2 capture is to obtain sufficiently pure CO2. High purity means that less 

energy and space is needed for compression, transportation and storage of the captured CO2. 

Certain impurities, for example H2O, may also make transport and storage technically more 

complicated due to corrosion. Other impurities, for example sulphur compounds, may add 

juridical complications because of existing international treaties. 

Industrial scale CO2 capture has been practiced for more than 80 years. The aim has 

usually been purification of natural gas or synthesis gas. The most used method has been 

physical or chemical absorption, which involves scrubbing of the CO2 containing gas with a 

liquid solvent. Physical absorption means that CO2 is solved in the absorbing liquid at high 

pressure. Chemical absorption means that CO2 reacts actively with the solvent and forms a 

weak chemical bond. In both cases, the resulting CO2 rich solvent can be regenerated either 

by reduced pressure or by increased temperature, and high purity CO2 is released. This type of 

technology could very well be used to capture CO2 in flue gases from combustion. The 

concept is usually referred to as post combustion CO2 capture.  

Another option is to produce H2 by reforming of fossil fuels and capture CO2 within the 

process. Combustion of H2 produces only H2O, so H2 from such a process could be used for 

energy production without CO2 emissions, see section 1.4 below. This concept is usually 

called pre-combustion CO2 capture. Chemical-looping autothermal reforming CLR(a) and 

steam reforming integrated with chemical-looping combustion, which are described in section 

3 below, are process concepts that could be used for pre-combustion CO2 capture. 

A third option is to replace the combustion air in a power generating process with pure O2 

mixed with recirculated flue gases. In this way, the resulting flue gases will not be diluted 

with N2 from the air. Instead, a flue gas consisting of only CO2 and H2O is obtained, and 

cooling and condensation is sufficient to obtain almost pure CO2. This concept is usually 

referred to as oxyfuel combustion. Chemical-looping combustion, which is described in 

section 2.4 below, resembles oxyfuel combustion in the aspect that it produces a flue gas 

consisting of only CO2 and H2O. Chemical-looping combustion does not need pure O2 to 

operate though, but utilizes a solid oxygen carrier instead. 

It is also possible to capture CO2 within various industrial processes. A reason to do so 

could be that CO2 is present at high partial pressure, which simplifies CO2 capture by 

absorption. This is the case for some widely used industrial processes, for example ammonia 

production. A summary of available concepts for large scale CO2 capture can be found in 

Figure 6. 
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Figure 6: Possible routes for large scale CO2 capture. IPCC [8]. 

 

1.3.2 CO2 transportation 

Large-scale transportation of CO2 is nothing new. In western United States there is over 

2500 km pipeline that transports over 40 million tons of CO2 annually. This is done to provide 

CO2 for enhanced oil recovery (EOR), see section 1.3.3 below. Dry CO2 is not corrosive to 

pipelines, even if it contains contaminants, and most of these pipelines have been operated for 

decades without any major obstacles [8].  

Pipeline transport could be complemented by sea transport. At present there is limited 

experience with ships for CO2 transportation, due to lack of demand. The technology should 

be quite similar to shipping of liquefied petroleum gas however, and there are no known 

technical barriers. Road and rail tankers also are technically feasible options, but should be 

uneconomical compared to pipelines and ships. 

 

1.3.3 CO2 storage 

There are several options available for CO2 storage. At present, geological storage seems 

to be the preferred choice. Geological storage means that carbon is returned to where it came 

from, that is back into the earth’s crust. Such technology has been practiced at industrial scale 

for decades. Huge amounts of CO2 have been pumped into nearly depleted oil fields in order 
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to boost oil production in a procedure known as enhanced oil recovery. Similar technology 

could be used to store CO2 in other geological formations, such as saline aquifers, depleted 

gas field or deep coal beds. These storage options take advantage of various physical and 

geochemical trapping mechanisms that would prevent CO2 from migrating to the surface. 

Geological formations feasible for CO2 storage are quite abundant and drilling technology, 

injection technology, computer simulation of storage reservoir performance and monitoring 

methods would likely be comparable to methods used for enhanced oil recovery. 

Alternatives to geological storage include ocean storage, mineral carbonation and 

industrial use of CO2. Ocean storage means that CO2 is dissolved in ocean water, or stored as 

homogenous lakes of liquid CO2 at the sea floor more than 3000 meters below the surface. At 

present, there are serious concerns about how ocean storage would affect the marine 

environment and whether the CO2 stored would actually stay for a sufficiently long time in 

the ocean, so the concept needs further study. Mineral carbonation means that CO2 is allowed 

to react with rocks containing for example magnesium oxides, and in some way mimics the 

natural weathering process. Under most circumstances such reactions are very slow and the 

logistics would involve huge amounts of minerals, but if these problems could be solved 

mineral carbonation would be a way to bind CO2 in a harmless form that is guaranteed to last 

for millenniums to come. Industrial use of captured CO2 as feedstock in chemical processes to 

produce carbon-containing products is also a possibility, but the expected scale of operations 

for such processes is too small to be able to contribute significantly to reductions of global 

CO2 emissions. 

 

1.3.4 Example of large scale CO2 capture and storage projects 

There are several carbon sequestration projects throughout the world that provides valuable 

knowledge and experience for future developments. Most of them are at modest scale, but 

there are some notable exceptions such as the Sleipner CO2 storage project, see Figure 7, and 

the In Shala gas project, se Figure 8. 
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Figure 7. The Sleipner CO2 storage project. At the Sleipner gas field in the North Sea, 1 

million tons of CO2 per year is removed from natural gas by absorption. The CO2 is injected 

into the Utsira formation, which is a deep saline aquifer located 800-1000 meters below the 

sea floor. The development has been carefully monitored since the start 1996 [8]. 

 

 
 

Figure 8. The In Shala gas project. At the Krechba gas field in Algeria, 1.2 million tons of 

CO2 annually is captured from natural gas and injected into water-filled parts of the gas 

reservoir. Injection started 2004 [8]. 
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Another large scale carbon capture and storage operation is the Weyburn project, in which 

1.5 million ton CO2/year is captured from a coal gasification plant in North Dakota and used 

for enhanced oil recovery in an oil field 330 km away, in Weyburn, Canada [8]. 

It should also be mentioned that well over 30 million tons of CO2 is injected into oil wells 

for enhanced oil recovery each year, only in the United States. Much of this CO2 is extracted 

from naturally occurring CO2 reservoirs, but about 6.5 million ton CO2/year is captured 

during upgrading of natural gas [8]. 

 

1.3.5 Cost of CO2 capture and storage 

Most evaluators agree that the principal cost for CO2 capture and storage is associated with 

the capture step. Transport and storage is generally expected to be much less costly.  

Among methods for CO2 capture, absorption is generally considered to be the most mature. 

Absorption could be used both for pre combustion CO2 capture and for post combustion CO2 

capture. If the desired application is a power plant, this would require that a separate 

absorption facility was constructed, which would increase the investment cost for the power 

plant considerably. Regeneration of absorbing solvents such as amines also requires 

considerable amounts of energy, typically in the form of heat. This internal energy demand 

would reduce the efficiency of the power plant, which means that it would become necessary 

to burn more fuel in order to produce the same amount of power as in a similar plant without 

CO2 capture. 

IPCC estimates that carbon capture and storage using commercially available technology 

would increase the cost of produced electricity with 37-85% in a natural gas fired power 

plant, and with 43-91% in a pulverized coal fired power plant. The cost to avoid one ton of 

CO2 emissions is estimated to $38-91 for natural gas, and $30-71 for coal [8]. It should also 

be noted that the fraction of CO2 captured in an absorption process will probably not exceed 

90%, for practical reasons. 

In order to make the CO2 capture and storage concept more attractive, technologies that 

reduce the cost for the capture operation and increase the share of CO2 that is captured would 

be very helpful. Oxyfuel combustion could reach near 100% CO2 capture, but requires pure 

O2 to operate, which is both capital intensive and power demanding to produce. Chemical-

looping combustion, which is described in detail in section 2.4 below, could also provide near 

100% CO2 capture, and could prove to be cheaper and more efficient since there are no major 

limitations such as cost for production of pure O2 or heat demand for regeneration of 

absorbing solvents. 
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1.4 The use of H2 as carbon free energy carrier 

Carbon sequestration has potential to reduce CO2 emissions from large point sources such 

as power plants and industries greatly. However, for some applications this kind of 

technology will probably not be feasible. It is difficult to imagine CO2 capture applications for 

small mobile emission sources such as cars, trucks and airplanes. This is noteworthy since the 

transportation sector is responsible for a substantial and increasing share of the global CO2 

emissions.  

There is an interesting opportunity to address this dilemma that could prove to be positive 

for other sectors of the society as well. Fossil fuels can be converted into H2, which is an 

energy carrier that does not contain carbon. Combustion of H2 produces only H2O as waste 

product. If fossil fuels are converted to H2, and the resulting CO2 is sequestrated, an energy 

carrier that can be utilized without greenhouse gas emissions is obtained.  

H2 is a versatile energy carrier. It can be transported and stored in many ways. It can be 

utilized as it is or in mixture with other gaseous fuels. It should be possible to use H2 as fuel 

both in gas turbines and combustion engines. H2 is also the ideal fuel in most types of fuel 

cells, which are applications that promises much higher efficiencies than conventional 

engines. In recent years several prototype vehicles, using H2 in fuels cells as propellant, have 

been taking on the streets of European, Japanese and North American cities, see for example 

Alvfors et al [14] and Larkins et al [15].  

The idea to use H2 as the main energy carrier in a society is sometimes referred to as the 

hydrogen economy. The idea is not new. For example, the well known science fiction writer 

Jules Verne envisioned a world powered by H2 in his novel The Mysterious Island as early as 

in 1874.  

The concept of a hydrogen economy has some very appealing characteristics. Fuel cell 

vehicles would improve the air quality in cities tremendously since they produce no harmful 

emissions such as soot, particles, hydrocarbons or NOX. H2 could also be useful to improve 

energy security since it can be produced from a wide range of energy sources. H2 can be 

produced for example by gasification of biomass, by reforming of fossil fuels, or by 

electrolysis of H2O with electricity from wind, solar, hydro or nuclear power. Iceland, a 

highly developed nation with about 300 000 inhabitants and 180 000 vehicles, has made the 

move from petroleum-based fuels to H2 its official policy, see Maack et al [16]. While an 

appealing vision, it shall be pointed out that a hydrogen economy could be quite expensive to 

implement. Existing H2 technologies such as fuel cells for vehicles, membranes for separation 

and metal hydrides for storage often utilize rare and expensive materials. H2 would also 
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require its own distribution infrastructure. Of the many available publications about the 

possibilities and limitations of H2 as energy carrier, the review by Ogden [17] is one of the 

more inclusive. 

H2 production from fossil fuels may appear less attractive than production from truly 

sustainable energy sources, but it has two advantages. Firstly, H2 production from fossil fuels 

is proven technology that has been practiced for decades. Secondly, H2 from fossil fuels will 

likely be less costly than H2 from renewable energy sources, at least in short to medium term. 

These two factors could be important to obtain public, political and corporate acceptance for 

H2 as energy carrier. 

 

1.5 The aim of this work  

The research presented in this thesis explores the possibility to produce H2 from fossil fuel, 

while taking advantage of chemical-looping technologies to capture CO2 and increase process 

efficiency. Both theoretical and experimental studies have been conducted. The findings could 

be relevant for other applications as well, for example for generation of synthesis gas or for 

power generation with CO2 capture. 
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2 

TECHNICAL BACKGROUND 

 

2.1 Synthesis gas generation 

The gaseous mixture of H2 and CO is usually referred to as synthesis gas, or sometimes 

simply as syngas. It is an important product that has many uses, for example as feedstock for 

production of ammonia, methanol, synthetic liquid fuels and H2. 

Synthesis gas has a prominent place in the industrial history of Europe and North America. 

Already in the middle of the 19th century, many major cities had advanced systems for 

delivering so called town gas to households and industries. Typically, town gas was produced 

by coal gasification and consisted of H2, CO and CH4. It was used for purposes such as 

lighting, cooking and heating. During the Second World War, the German air force and parts 

of the German army had to rely on synthetic fuels produced with the so called Fisher-Tropsch 

process, which used synthesis gas produced by coal gasification.  

In the 1950’s, coal gasification and its related technologies were largely abandoned, 

outrivaled by cheap oil and advances in the field of petrochemical processing. There is a 

notably exception though. The Fisher-Tropsch process was used extensively in South Africa 

during the apartheid years, when the country was placed under international trade sanctions. 

Fisher-Tropsch synthesis remains the dominant source for diesel fuels in South Africa today. 

As of lately, there has been a recurred interest in the classic technologies from the era of 

coal gasification. The obvious reasons are the recent increase in the price of crude oil and 

worries about diminishing oil and natural gas reserves, as well as increased concerns about 

energy security in many countries. It has also been suggested that H2 or synthetic fuels 

produced from synthesis gas could be useful for reducing CO2 emissions and help mitigate 

climate change. This would require that biomass was used as feedstock, or that CO2 capture 

and storage was applied, see section 2.3 below. 

Synthesis gas can be produced from all kinds of hydrocarbon fuels. Steam reforming, 

reaction (2), is suitable for reforming of light fuels such as natural gas. Partial oxidation, 

reaction (3), can be used for heavier fuels such as oil, coal and biomass. CO2 reforming, 

reaction (4), can be used if synthesis gas with high CO content is wanted. Partial oxidation is 

slightly exothermic, while steam reforming and CO2 reforming are highly endothermic.  
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CnHm + n H2O → n CO + (n+½m) H2                (2) 

CnHm + ½n O2 → n CO + ½m H2                 (3) 

CnHm + n CO2 → 2n CO + ½m H2                 (4) 

 

At present, the most important method for synthesis gas generation is catalytic steam 

reforming of natural gas. Here reforming takes place in reactor tubes packed with a Ni-based 

catalyst. Typically, the temperature of reforming is 700-950ºC and the pressure is 15-40 bar. 

The tubes are placed inside a furnace and energy for the strongly endothermic reaction (2) is 

provided by direct firing. 

As mentioned above partial oxidation is suitable for coal gasification. Other possible 

usages include catalytic partial oxidation of light fuels such as natural gas, and biomass 

gasification. An obvious drawback with partial oxidation compared to steam reforming is that 

pure O2 is required, or else produced synthesis gas will be diluted with N2, which is undesired 

in most applications. Production of pure O2 from air is expensive and also consumes 

significant amounts of energy. 

A third design concept is to combine endothermic steam reforming, reaction (2), and 

exothermic partial oxidation, reaction (3). Depending on the fuel, process design and amounts 

of O2 and H2O added, this can result in an endothermic, an exothermic or a thermo-neutral 

process. Reforming of natural gas in a thermo-neutral process is usually referred to as 

autothermal reforming, and has attracted increased attention in later years. Advantages 

include less need for heat transfer operations and lower investment cost compared to steam 

reforming. 

It is also possible to use CO2 reforming, reaction (4), in combination with or as substitute 

for H2O in steam reforming or autothermal reforming. In this way, it is possible to produce 

synthesis gas with comparably high CO/H2 ratio from a fuel with low C/H ratio, such as 

natural gas. High CO/H2 ratio can be desirable for Fisher-Tropsch synthesis and some other 

petrochemical processes. 

The literature dealing with synthesis gas generation is large. Comprehensive reviews 

include those by Rostrup-Nielsen et al [18, 19], Dybkjær [20] and Ritter et al [21], as well as 

the sections dedicated to the subject in technical and industrial dictionaries such as Kirk-

Othmer’s [22] and Ullman’s [23]. 
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2.2 Production of H2 from synthesis gas 

As mentioned above, synthesis gas can be used as feedstock for production of H2. The first 

step in doing so is to convert CO and H2O to CO2 and H2 via water-gas shift, reaction (5).  

 

CO + H2O → CO2 + H2                     (5) 

 

Water-gas shift is slightly exothermic and takes place in a separate reactor vessel. 

Typically, a reactor temperature in the order of 350-500ºC and an iron/chrome catalyst is 

used. If the steam content in the synthesis gas is low, additional steam can be added to 

improve the conversion of CO. Shifted synthesis gas typically has a CO content of 2-4% on 

dry basis. The water-gas shift reaction is favoured by low temperature. If a very low CO 

concentration is desired, the first shift reactor is followed by a second and possibly by a third 

unit operating at lower temperatures and using a more reactive catalyst. In this way it is 

possible to reduce the CO content to a few tenths of a percentage. Water-gas shift is a classic 

technology that has been utilized for decades, so the literature dealing with the subject is 

large. Reviews can be found in the same sources as was mentioned for synthesis gas 

production [18, 19, 20, 22, 23]. 

After the water-gas shift, water is removed by cooling and condensation, and a gas mixture 

consisting mainly of H2 and CO2 is obtained. In a steam reforming process there may be 

substantial amounts of unreformed CH4 present as well. In order to obtain H2 of high purity, 

CO2, CH4 and other impurities must be removed. 

At present, the most common method for H2 purification is pressure swing adsorption 

(PSA). This technology utilizes two basic physical principles. Firstly, volatile compounds 

with low polarity such as H2 are more or less nonadsorbable on conventional adsorbents. 

Secondly, the same adsorbents are capable of adsorbing more CH4, CO2, CO and other 

impurities at a high gas-phase partial pressure than at a lower. In a pressure swing adsorption 

process, impurities are adsorbed in a bed of solid adsorbent at elevated pressure while H2 just 

passes straight through. Although packed beds are used, the pressure drop for H2 is usually 

less than 1 bar. When the bed is saturated with impurities it is disconnected from the process 

and the pressure is decreased, whereby most of the impurities are released. The impurities are 

usually referred to as offgas, waste gas or purge gas and consist of CO2, small amounts of CO, 

unreformed CH4, and some H2 that is needed for purging and regeneration of the bed. If the 

offgas has a substantial heating value it can be used as fuel, for example in a steam reformer 

furnace. Pressure swing adsorption is a batch process, but by using multiple adsorbers it is 
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possible to provide constant flows. Pressure swing adsorption takes place at about room 

temperature and requires no compression or other technical work. The only energy penalty is 

that the offgas needs to be released at atmospheric pressure or lower. The H2 recovery is 

limited to about 90% due to the need for H2 for purging and regenerating the beds. The purity 

of H2 produced is very high, most often 99.99% or higher. A useful overview of H2 

purification by pressure swing adsorption can be found in the report by Stöcker et al [24], 

which is available via UOP, a process design company that has long experience of pressure 

swing adsorption, while the book by Ruthven et al [25] and the review paper by Ritter et al 

[21] are comprehensive sources for detailed information.  

It is also possible to separate H2 and impurities by absorption. Here the synthesis gas is 

scrubbed with a solvent that interacts physically or chemically with impurities but not with 

H2. Amine solvents such as MEA and MDEA are well-suited for separation of H2 and CO2. 

The resulting CO2 rich solvent is pumped to a separate stripper column where it is regenerated 

and CO2 is released. Solvent regeneration consumes considerable amounts of heat and 

typically takes place at low pressure and temperatures in the order of 100-140ºC. Only CO2 is 

captured, so additional purification steps are needed if high purity H2 is required. The IPCC 

special report on carbon dioxide capture and storage [8] provides an overview about the 

subject, while the paper by Veawab et al [26] is a good source for detailed information about 

solvent regeneration. 

 

2.3 H2 from natural gas with CO2 capture 

It would be relatively easy to capture CO2 in H2 plants that utilize absorption for H2 

purification. In such facilities, the cost and energy penalty for CO2 capture would be small 

since almost pure CO2 is obtained when the absorbing solvent is regenerated. In a steam 

reforming plant the capture efficiency would be limited though, since only CO2 present in the 

process gas is captured and additional fuel must be burnt to provide heat for the endothermic 

reforming reactions.  

Most modern facilities for production of high purity H2 utilize steam reforming in 

combination with pressure swing adsorption. Here no CO2 is provided in separate process 

streams, so additional gas separation, for example by absorption, would be needed for CO2 

capture. Process studies describing H2 production by reforming of natural gas with CO2 

capture by amine absorption have been presented by Audus et al [27], Kaarstad et al [28], 

Feng et al [29], and Consonni et al [30], who also have reviewed some industrial reports about 

the topic. Reforming of natural gas with CO2 capture could also be used for power generation 
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with pre-combustion CO2 capture. There is a wide range of process studies about this topic 

available. The IPCC special report on carbon dioxide capture and storage [8] provides an 

overview. 

 

2.4 Chemical-looping combustion 

Chemical-looping combustion is an innovative combustion technology that can be used for 

CO2 capture in combustion processes. The basic idea can be traced back to the middle of the 

past century, and there is a patent from 1954 by Lewis and Gilliland [31], which describes a 

process concept similar to chemical-looping combustion. The stated purpose was production 

of high purity CO2, and the process was not commercialized. Early work includes a study 

from 1983 by Richter and Knoche [32], who suggested a fuel oxidation reaction scheme 

involving two intermediate reactions with a metal oxide as oxygen carrier. Other pioneers 

include Ishida et al [33], who in 1987 presented a novel combustion concept they called 

chemical-looping combustion, which was similar to the idea put forth by Richter and Knoche 

a few years earlier. Occasionally the concept has been referred to as unmixed combustion, for 

example by Lyon et al [34].  

Chemical-looping combustion requires two separate reactors, one for air and one for fuel. 

A solid oxygen carrier that performs the task of transporting oxygen between the reactors is 

also required. Direct contact between fuel and air is avoided and the combustion products are 

not diluted with N2, see Figure 9. 

Typically, the abbreviation MeO is used to describe the oxygen carrier in its oxidized form, 

while Me is used for the reduced form. This is because many potential oxygen-carrier 

materials are metal oxides, for example NiO, Fe2O3, Mn3O4 and CuO.  

The oxygen carrier circulates between the reactors. In the fuel reactor, it is reduced by the 

fuel, which in turn is oxidized to CO2 and H2O according to reaction (6). In the air reactor, it 

is oxidized to its initial state with O2 from the combustion air according to reaction (7).  

 

CnHm + (2n+½m) MeO → n CO2 + (½m) H2O + (2n+½m) Me       (6) 

Me + ½ O2 → MeO                      (7) 
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Figure 9. Schematic description of chemical-looping combustion. 

 

The amount of energy released or required in each reactor vessel depends on the nature of 

the oxygen carrier and the fuel. Reaction (7) is always strongly exothermic. For most oxygen-

carrier materials, reaction (6) is endothermic if the fuel is a hydrocarbon. If CO or H2 is used 

as fuel or if CuO is used as oxygen carrier, reaction (6) is slightly exothermic. If reaction (6) 

is endothermic the flow of solid oxygen carrier can be used to transport sensible heat from the 

air reactor to the fuel reactor. The net energy released in the reactor system is the same as for 

ordinary combustion. This is apparent since combining reaction (6) and reaction (7) yields 

reaction (8), which is complete combustion of the fuel with O2. 

 

 CnHm + (n+¼m) O2 → n CO2 + ½m H2O                (8) 

 

In principle, all kinds of fuels can be oxidized with chemical-looping combustion. A 

process using gaseous fuels such as natural gas, refinery gas or synthesis gas would be the 

easiest to realize, but there is considerable interest in chemical-looping combustion of solid 

fuels, such as coal, as well. 

Compared to conventional combustion, chemical-looping combustion has several potential 

benefits. The exhaust gas from the air reactor is harmless, consisting mainly of N2 and 

possibly some O2. There should be no formation of thermal NOX since regeneration of the 

oxygen carrier takes place without flame and at moderate temperatures. The gas from the fuel 
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reactor consists of CO2 and H2O, so cooling in a condenser is all that is needed to obtain 

almost pure CO2. This is a major advantage with chemical-looping combustion. About three 

quarters of the energy required for CO2 capture and storage with conventional methods, such 

as amine scrubbing of flue gases, is associated with the separation of CO2 and N2. With 

chemical-looping combustion, fuel and air are not mixed, and therefore there is no energy 

penalty for separation of CO2 and N2. 

Possible side reactions include formation of solid carbon in the fuel reactor. This is not 

desired since solid carbon could follow the oxygen-carrier particles to the air reactor and burn 

there, which would reduce the degree of CO2 capture. Solid carbon could be formed either 

through the Boudouard reaction, reaction (9), or through hydrocarbon decomposition, reaction 

(10). Formation of solid carbon is well documented from various chemical processes, and it is 

known that reactions (9-10) can be catalysed by metallic surfaces.  

 

2 CO → C + CO2                       (9) 

CnHm → n C + ½m H2                     (10) 

 

In practice, a chemical-looping combustion process could be designed in different ways, 

but circulating fluidized beds with oxygen-carrier particles used as bed material are likely to 

have an advantage over other alternatives since this design is straightforward, provides good 

contact between gas and solids and allows a smooth flow of oxygen carrier between the 

reactors. Circulating fluidized beds are conventional technology that is used for a wide range 

of purposes, for example regenerative catalytic processes and combustion of solid fuels.  

In later years, when carbon sequestration has become a widely discussed issue, the interest 

for chemical-looping combustion has grown. The research has focused on experimental and 

theoretical investigations of possible oxygen-carriers and on process studies examining how 

chemical-looping combustion could be used for power generation. A feasible oxygen-carrier 

material for chemical-looping combustion should: 

 

• Have high reactivity with fuel and oxygen. 

• Be thermodynamically capable to convert a large share of the fuel to CO2 and H2O. 

• Have a sufficiently high oxygen ratio, e.g. the mass fraction of the material that is 

oxygen which can react according to reaction (6) should be high.  
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• Have low tendency towards fragmentation, attrition, agglomeration and other kinds 

of mechanical or thermal degeneration. 

• Not promote extensive formation of solid carbon in the fuel reactor. 

• Preferably be cheap and environmentally sound. 

 

At present, metal oxides such as NiO, Fe2O3, Mn3O4 and CuO supported on inert carrier 

material such as Al2O3 or ZrO2 seem like the most likely candidates to meet those criteria. An 

overview of the research treating these kinds of oxygen-carriers can be found in the works of 

Cho [35], Johansson [36] and Adánez et al [37]. Information about additional potential 

oxygen-carrier materials can be found in the work of Jerndal et al [38], which includes a 

theoretical examination of 27 different oxide systems.  

Continuous chemical-looping combustion of gaseous fuels in circulating fluidized beds has 

been demonstrated by Lyngfelt et al [39], Ryu et al [40], Johansson et al [41, 42], Abad et al 

[43, 44], Adánez et al [45], Linderholm et al [46], de Diego et al [47], and Kim et al [48]. 

Continuous chemical-looping combustion of solid fuels in circulating fluidized beds has been 

demonstrated by Berguerand et al [49, 50]. Reaction kinetics for various oxygen carriers have 

been examined by Abad et al [51, 52] and Zafar et al [53, 54]. Carbon formation on oxygen-

carrier particles for chemical-looping combustion has been specifically examined by Cho et al 

[55]. The effects of pressure on the properties of various oxygen-carrier materials have been 

examined by García-Labiano et al [56]. An overview of various subjects regarding chemical-

looping combustion, such as design of experimental reactors, power production with CO2 

capture and more about oxygen carriers can be found in the doctoral theses by Brandvoll [57], 

Johansson [58], Wolf [59], Kronberger [60] and Naqvi [61]. 

 

2.5 Chemical-looping reforming 

Chemical-looping reforming, as described in this thesis, was proposed in 2001 by 

Mattisson and Lyngfelt [62]. The idea is older though. In fact, Conrad Arnold representing the 

Standard Oil Development Company was granted a patent of a process similar to chemical-

looping reforming as early as in 1950 [63]. 

Chemical-looping reforming utilizes the same basic principles as chemical-looping 

combustion. The difference is that the products desired are not heat but synthesis gas, a mix of 

H2 and CO. Therefore, the air to fuel ratio is kept low to prevent the fuel from becoming fully 

oxidized to CO2 and H2O. Chemical-looping reforming in its most basic form could be 

described as a process for partial oxidation of hydrocarbon fuels where a solid oxygen carrier 
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is used as a source of undiluted oxygen. This is favourable since it would eliminate the need 

for expensive and power demanding air separation. The basic principles of chemical-looping 

reforming are illustrated in Figure 10. 

 

 
 

Figure 10. Schematic description of chemical-looping reforming. 

 

In the air reactor, reaction (7) will occur, just as in chemical-looping combustion. In the 

fuel reactor, some fuel may become completely oxidized to CO2 and H2O via reaction (6), but 

a large share should react according to reaction (11), partial oxidation using oxygen from the 

oxygen carrier. 

 

CnHm + n MeO → n CO + ½m H2 + n Me               (11) 

 

Steam or CO2 could be added to the fuel to enhance the relative importance of steam 

reforming, reaction (2), or CO2 reforming, reaction (4), respectively. This could be useful if 

synthesis gas with a H2/CO ratio that does not correspond to the H/C ratio of the fuel is 

desired. 

The overall reaction energy of the reactor system varies as the relative importance between 

the different possible reactions is altered. When the fuel and oxygen carrier reacts according 

to reactions (6) and (7), heat corresponding to the lower heating value of the fuel is released. 

When the fuel reacts according to reactions (11) and (7), heat is released corresponding to the 
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reaction energy for partial oxidation of the fuel. Reaction (2) and reaction (4) are strongly 

endothermic and do not provide any reduced oxygen carrier to be reoxidized with the 

exothermic reaction (7). Therefore steam reforming and CO2 reforming can not be allowed to 

dominate the process, since this would make the sum of reactions endothermic. External 

heating at relevant temperatures would likely be unfavourable from a technical point of view, 

and should be avoided. 

The outlet from the fuel reactor consists of H2, H2O, CO and CO2, and could be used as 

feedstock for chemical processes or for production of H2, just as synthesis gas from other 

reforming or partial oxidation processes. Due to reaction kinetics and thermodynamics it is 

possible that there will be some unreformed CH4 in the reformer gas if the reactor temperature 

is not sufficiently high. If thermodynamic equilibrium is assumed, a fuel reactor temperature 

in the order of 800ºC should be sufficient to achieve at least 99% conversion of CH4 at 

atmospheric pressure. At elevated pressure, somewhat higher temperature may be necessary 

due to less favourable thermodynamics. 

Oxygen-carrier materials for chemical-looping reforming would need to have about the 

same properties as those for chemical-looping combustion. The main difference is that they 

must be capable to convert the fuel to CO and H2 when the air to fuel ratio is reduced, rather 

than produce CO2, H2O and unreformed fuel. Furthermore, the oxygen carrier should be 

resistant towards carbon formation since decomposition of the fuel, reaction (10), could be 

expected to be a bigger issue for chemical-looping reforming than for chemical-looping 

combustion. 

Oxygen carriers for chemical-looping reforming have been examined by Zafar et al [64], 

who performed tests in a fluidized-bed reactor with oxygen-carrier particles as fluidizing 

agent, by Johansson et al [65], who performed pulse experiments in a fluidized-bed reactor 

with oxygen-carrier particles as fluidizing agent, and by Mattisson et al [66]. These studies 

indicate high reaction rate and good selectivity towards H2 and CO for oxygen carriers with 

NiO as active phase, while oxygen carriers based on Fe2O3, Mn3O4 and CuO suffered from 

poor selectivity and produced mostly CO2, H2O and unreformed CH4. Continuously operating 

chemical-looping reforming in circulating-fluidized bed reactor systems has been 

demonstrated in Paper III and Paper IV. 

In later years, other process concepts sharing attributes with chemical-looping reforming 

have also been proposed. Stobbe et al [67] have suggested a process involving oxidation and 

reduction of manganese oxide. Fathi et al [68], Gavalas et al [69] and Jalibert et al [70] have 

suggested and examined partial oxidation of CH4 by oxidation and reduction of CeO2 
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promoted with various catalysts. Shen et al [71, 72], Zeng et al [73], Li et al [74] and Bjørgum 

[75] have studied the possibility to generate synthesis gas by cyclic oxidation and reduction of 

perovskite materials such as LaxSr1─xFeyCo1─yO3─δ, in similar fashion as is done in chemical-

looping reforming. Perovskite materials have been examined in Paper V. 
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3 

THEORETICAL WORK 

 

3.1 Introduction 

When the work presented in this thesis was initiated, chemical-looping combustion was an 

untested process concept for combustion with inherent CO2 capture. A few projects had been 

initiated to examine basic properties of various oxygen-carrier materials. The method of 

choice for such experiments was reduction and oxidation in batch reactor, typically with CH4 

as fuel. A few process studies had also been conducted, usually describing generation of 

electricity by using chemical-looping combustion of natural gas as heat source for various 

power cycles. The option to use chemical-looping technologies for production of synthesis 

gas and H2 from natural gas had been suggested by Mattisson et al [62]. The general concept 

of chemical-looping autothermal reforming had been laid out in a master thesis by Johansson 

[76]. The option to use chemical-looping combustion as a heat source for steam reforming had 

not been considered. 

Because of the limited knowledge about the subject, the initial focus of the work presented 

in this thesis was to explore the possibilities of the chemical-looping concept, in order to 

determine how it could be utilized for production of H2. This was done in theoretical studies 

which can be found in Paper I and Paper II, as well as in other studies that at present has not 

been published in peer reviewed publications.  

 

3.2 Developing process schemes for H2 production 

In order to examine the possibility to use chemical-looping technologies for H2 production, 

a comprehensive study was made to investigate possible process concepts, in order to 

examine if they would be practically feasible and technically beneficial. For each identified 

possibility, a general assessment of the technical viability was conducted. If the result of this 

assessment was considered promising, a more detailed investigation of the concept and a 

thermal analysis were carried out. 

In this line of work, thermal analysis is very helpful. It is straightforward and provides a 

general idea about the potential efficiency of the process concept examined. The results are 

quantifiable, which makes a comparison between different alternatives comparably simple. 
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The assumption that needs to be made is that the thermodynamic efficiency of an industrial 

process should be correlated to its resource consumption, economy and general attractiveness. 

In most cases, this assumption should be true. 

Some of the basic analyses were done with the computer tool HSC Chemistry 5. In order to 

answer more complex questions, a few program routines describing the expected performance 

of relevant process operations were written in MATLAB, which is a mathematic 

programming tool. These programs used thermodynamic data from Barin [77] and Yaws [78]. 

Typically, the various process operations were assumed to proceed to thermodynamical 

equilibrium, unless more accurate data from real-world industries were available, see Paper I, 

Paper II and section 3.6 for details about assumptions used. The program routines could then 

be connected to simulate various process concepts. A routine for pinch analysis was used to 

optimize the efficiency of each setup. Pinch analysis is a common and useful method for 

optimization of heat-transfer operations in industrial processes. 

Two main options for H2 production with CO2 capture were identified and examined in 

some detail. Chemical-looping autothermal reforming, CLR(a), utilizes chemical-looping 

reforming to perform a partial oxidation of a fuel. H2O or CO2 is added to the fuel to provide 

a thermo-neutral reactor system, to suppress formation of solid carbon and to enhance the 

yield of H2 or CO respectively. CLR(a) is a flexible process concept that could operate at 

atmospheric or elevated pressure. The second concept, steam reforming integrated with 

chemical-looping combustion (SR/CLC), utilizes conventional tubular steam reforming at 

elevated pressure for synthesis gas generation, and chemical-looping combustion at 

atmospheric pressure for CO2 capture and generation of heat for the endothermic reforming 

reactions.  

It shall be pointed out that the naming of these two process concepts has undergone some 

evolution throughout the work. Chemical-looping autothermal reforming was initially referred 

to only as chemical-looping reforming (CLR). Steam reforming integrated with chemical-

looping combustion is referred to as chemical-looping steam reforming, CLR(s), within the 

ongoing EU-project CACHET.  

Chemical-looping autothermal reforming was examined in Paper I, while steam reforming 

integrated with chemical-looping combustion was introduced and examined in Paper II. An 

updated process study can be found in section 3.6 of this thesis, where different options for H2 

production with CO2 capture are compared to each other using similar base assumptions. An 

updated study is motivated by improvements in the understanding of the chemical-looping 

autothermal process since Paper I was written, which allows the use of more relevant 



 31

assumptions and process parameters. The same models have been used as in Paper I and 

Paper II, with some minor modifications. 

 The economical potential of these process concepts have not been directly addressed in this 

work. However, both have been selected for closer examination within the CACHET project, 

which is contract 019972 under the 6th framework programme funded by the European 

Commission. In this project they will be further investigated, and a detailed cost analysis will 

be conducted. 

 

3.3 Chemical-looping autothermal reforming at atmospheric pressure 

A schematic description of the suggested process layout for a chemical-looping 

autothermal reforming process that operates at atmospheric pressure is shown in Figure 11. 

 

 
 

Figure 11. Schematic description of chemical-looping autothermal reforming with 

synthesis gas compression prior to CO2 capture. Heat exchangers and possible integration 

with external steam cycle are not shown. 

 

Prior to entering the fuel reactor (FR), the fuel is mixed with steam in order to prevent 

decomposition of the fuel into solid carbon. This is not necessary from a thermodynamical 

point of view, but will likely be needed because Ni-based oxygen carriers catalyze 
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decomposition of the fuel according to reaction (10). The experiments presented in section 4 

indicate that 25-30% steam should be sufficient. 

Prior to the high-temperature shift (HTS), the gas outlet from the fuel reactor (FR) is 

cooled to 300-400ºC. If low outlet concentration of CO is desired, some additional steam 

must be added in order to improve the equilibrium for the shift reaction. Cooling is also 

needed between the high-temperature shift and the low-temperature shift (LTS), in order to 

reach the desired temperature of 200-250ºC. After the shift reactors, the gas mix consists of 

H2, H2O, CO2 and minor amounts of CH4 and CO. H2O is removed by cooling in a condenser 

(COND), while CO2 is captured by absorption with MDEA solvent (MDEA). CO2 for 

sequestration is obtained by regenerating the MDEA solvent in a stripper column.  

An atmospheric chemical-looping reforming process would be relatively easy to build and 

operate, and the reactors would probably not need to work with temperatures above 900ºC 

since conversion of the fuel is favoured by low pressure. Heat obtained by cooling of the 

various process streams can be used for preheating of air, fuel and steam. Integration with an 

external steam cycle should be considered, since there will be excess heat available in the hot 

gas stream after the air reactor. 

The atmospheric process has one obvious drawback. H2 of atmospheric pressure can not be 

stored, transported or used in any practical or economical way. So in order to be a valuable 

product, H2 must always be compressed to a certain pressure. The power required for 

compression of a gas is approximately proportional to its volume. Reforming involves an 

increase in gas volumes by several times, see expressions (2-4). Because of this, any 

reforming process that operates at atmospheric pressure will have a large inherent efficiency 

penalty because of the increase in power consumption for compression of H2 produced. 

In Figure 11, a synthesis gas compressor (COMP) has been positioned prior to the amine 

absorption unit. The compressor pressurizes produced H2, but also CO2 that is present in the 

shifted gas. CO2 for sequestration is then captured by amine absorption, and since 

regeneration of the amine solvent needs to take place at close to atmospheric pressure this 

means that CO2 for sequestration will have to be compressed twice. While this procedure is 

power demanding, it is likely the most feasible configuration for chemical-looping 

autothermal reforming at atmospheric pressure with CO2 capture. High partial pressure of 

CO2 in the gas to the absorption unit means that a comparably weak absorbing solvent such as 

MDEA can be used, which reduces energy consumption for solvent regeneration greatly. 

Other process configurations are possible. It should be feasible to capture CO2 at 

atmospheric pressure using a stronger amine solvent such as MEA. This would reduce the 
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power demand for compression since the CO2 for sequestration only needs to be compressed 

once. On the other hand, a stronger amine solvent would result in a much larger heat demand 

for solvent regeneration. If there is excess heat of sufficient temperature available, for 

example from a nearby industrial process, this could be an appealing option.  

Another possible drawback with an atmospheric process configured as in Figure 11 is that 

the water-gas shift reactors would become quite large, since the gas volumes that need to be 

treated increase radically as the pressure is reduced. This could be addressed by cooling the 

produced synthesis gas directly after the fuel reactor, remove H2O in a condenser and 

compress the dry gas prior to the water-gas shift. This would increase the need for heat 

exchange within the process and there would also be a considerable efficiency penalty, since 

extra H2O would need to be produced and added directly to the shift reactor, in order to 

compensate for the H2O that was removed in the condenser. 

The reformer efficiency for the process configuration proposed in Figure 11, calculated 

according to the definition in expression (12) below and using the parameters from section 3.6 

below is 73.5%, with 93.9% CO2 capture. In Paper I, the corresponding efficiencies were 

calculated to 69.6-75.9%, depending on chosen process parameters. In Paper I, slightly 

different process configuration and fairly optimistic assumptions for the amine absorption 

were used. 

 

3.4 Chemical-looping autothermal reforming at elevated pressure 

A schematic description of the suggested process layout for a chemical-looping 

autothermal reforming process operate at elevated pressure is shown in Figure 12. 

The flow sheet presented in Figure 12 is similar to the atmospheric process proposed in 

Figure 11. The main difference is that the process air is compressed (AC) before entering the 

air reactor (AR). This makes integration with a gas turbine (GT) logical. Thus the hot 

pressurized N2 from the air reactor can be used to generate power, in order to compensate for 

the power needed for air compression. 

Steam is added to the fuel in order to suppress formation of solid carbon. As was 

mentioned above, 25-30 % steam should be sufficient for a process operating at atmospheric 

pressure. However, since reactions (9-10) involve a decrease in gas volumes they should be 

favored at high pressure, according to Le Chatelier’s principle. Therefore, carbon formation 

could possibly be a larger obstacle in a pressurized process. This remains to be examined 

experimentally. 
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Figure 12. Schematic description of cogeneration of H2 and power by chemical-looping 

autothermal reforming at elevated pressure, as proposed in Paper I. Heat exchangers and 

possible integration with external steam cycle are not shown. 

 

Water-gas shift, water removal by condensation and CO2 capture by amine absorption are 

the same as for to the atmospheric process. If desired, some of the H2 produced could be burnt 

in a separate combustor (COMB) to increase the power output of the gas turbine.  

The heat obtained by cooling of the various process streams is used for preheating of air, 

fuel and steam. Because of the gas turbine, there is a better match between preheating and 

process cooling compared to the atmospheric process. Hence no external steam cycle should 

be needed to obtain good heat utilization. 

In order to achieve high conversion of the fuel, a pressurized process would require 

comparably high fuel reactor temperature. This is because reforming reactions involve a large 

volumetric increase, see reactions (2-4), which is not favoured by elevated pressure. Therefore 

a fuel reactor temperature in the order of 1000ºC would be necessary to achieve 99% 

conversion of CH4 at a pressure 10 bar, if thermodynamic equilibrium is considered. High air 

reactor temperature is also desired in order to maximize the output of the gas turbine. 

Chemical-looping autothermal reforming at elevated pressure involves a few technical 

obstacles, which would need to be addressed in order to make the process practically feasible. 
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Pressurized circulating fluidized beds are not commonly used technology, at least not for the 

pressures and temperatures needed for CLR(a). Therefore it is not clear if or when the 

necessary reactor system could be technically and economically available. Additionally, dust 

or elutriated particles from the oxygen carrier could possibly be harmful to the gas turbine. 

While hardly unsolvable, these difficulties need to be carefully considered. 

The reformer efficiency for the process configuration proposed in Figure 12, calculated 

according to the definition in expression (12) below and using the parameters from section 3.6 

below is 81.1%, with 92.6% CO2 capture. In Paper I, the efficiencies were calculated to 79.0-

81.1%, depending on chosen process parameters. 

 

3.5 Steam reforming integrated with chemical-looping combustion 

In Paper II, a process concept that utilizes tubular steam reforming at elevated pressure for 

synthesis gas generation and chemical-looping combustion at atmospheric pressure for CO2 

capture and heat generation, was proposed an examined. To avoid confusion, this process 

concept is referred to as steam reforming integrated with chemical-looping combustion, 

(SR/CLC), in this thesis. In upcoming work within the CACHET-project, the same process 

will be referred to as chemical-looping steam reforming, CLR(s).  

Steam reforming integrated with chemical-looping combustion resembles steam reforming 

with H2 purification by pressure swing adsorption, which at present is the dominating 

technology for H2 production. In a conventional steam reforming plant, the energy needed for 

the highly endothermic steam reforming, reaction (2), is provided by combustion of pressure 

swing adsorption offgas and natural gas in a furnace. The reformer tubes are located inside the 

furnace and heat transfer is due to radiation. In the proposed process, the furnace is replaced 

by chemical-looping combustion in a circulating fluidized-bed reactor. The reformer tubes 

can be located either inside the fuel reactor or in a separate fluidized bed heat exchanger 

connected to the air reactor.  

In Paper II, it was assumed that the tubes would be located inside the fuel reactor. A 

schematic description of the reactor system proposed in Paper II is found in Figure 13.  
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Figure 13. Reactor system for steam reforming of natural gas with CO2 capture by 

chemical-looping combustion. (1) is the air reactor, (2) is the fuel reactor which also contains 

the reformer tubes, (3) is a cyclone for particle separation, (4) and (5) are loop seals that 

prevent leakage between the reactors. The loop seals are fluidized with small amounts of 

steam. 

 

Steam reforming integrated with chemical-looping combustion would provide three 

advantages compared to conventional steam reforming. Firstly, it would provide close to 

100% CO2 capture. Secondly, it would eliminate the problem with formation of thermal NOX 

in the reformer furnace, since chemical-looping combustion operates without flame and at 

temperatures below 1000ºC. Thirdly, it would make it possible to reduce the flue gas 

temperature compared to conventional steam reforming without increasing the length of the 

reformer tubes. This would be possible since fluidized-bed heat transfer results in very high 

convective heat transfer coefficient on the outside of the reformer tubes. This could be a 
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significant advantage. In a conventional steam reforming furnace, the heat transfer from the 

flue gas to the reformer tube surface is mostly due to radiation. Hence very high furnace 

temperature is needed and most often more heat is bound in the flue gases than what can be 

utilized within the process for preheating of fuel and steam. Typically, this spare heat is used 

for production of export steam, which is a much less desirable product than H2. Reduced flue 

gas temperature would mean that H2 production could be increased at the expense of reduced 

steam export.  

The possibility that the fluidized bed could cause erosion on the reformer tubes would need 

to be examined. Such tubes are large and expensive devices made from comparably exclusive 

materials, which must be capable of withstanding large temperature gradients and extreme 

thermal stress. Fluidized-bed heat exchangers are rather conventional technology though, so it 

seems reasonable to believe that these difficulties could be contained. 

An integrated process that utilizes pressure swing adsorption for H2 purification is the 

logical choice. This would provide H2 with very high purity to a comparably low separation 

cost. The offgas from the pressure swing adsorption unit could be used as fuel in the 

chemical-looping combustor. A schematic description of the process proposed in Paper II can 

be found in Figure 14. 

 

 
 

Figure 14. Schematic description of the H2 plant proposed in Paper II.  

Heat exchangers, fans and compressors are not shown. 
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The air reactor (AR) and fuel reactor (FR) are operating at atmospheric pressure. Steam 

reforming (SR) takes place at elevated pressure in reformer tubes packed with catalyst. In 

Figure 14, the tubes are located inside the fuel reactor, but they could as well be placed in a 

separate fluidized-bed heat exchanger. A single water-gas shift reactor operating at moderate 

temperatures (HTS), is sufficient. There is no point in reducing the CO concentration to very 

low values, since CO can be used to produce process heat, which is needed for the 

endothermic steam reforming reaction. Water is removed from the shifted gas by cooling in a 

condenser (COND) before it enters the pressure swing adsorption unit (PSA). H2 is delivered 

at elevated pressure, but a fraction of it is needed for purging and regenerating the adsorbers. 

The resulting pressure swing adsorption offgas consists of CO2, H2 used for purging and 

regenerating the adsorbers, unconverted CH4 and minor amounts of CO. The offgas is 

delivered slightly above atmospheric pressure and is used as fuel and fluidizing gas in the 

chemical-looping fuel reactor. High purity CO2 for sequestration is obtained by chemical-

looping combustion.  

In Paper II, a model that describes H2 production with CO2 capture by chemical-looping 

combustion and H2 purification by pressure swing adsorption according to Figure 14 was 

made. The model calculated key parameters such as temperatures, gas compositions, gas 

flows, heating and cooling throughout the process. In addition to the thermodynamical model, 

a second model describing the properties of one single reformer tube surrounded by a hot 

fluidized bed was also made. The two models were combined and used to make a tentative 

design of a reactor system and a heat-exchanger network for a plant with a H2 production of 

1000 mol/s, which corresponds to a fuel flow of roughly 300 MW. It was found that the 

reactor dimensions, particle flows, gas flows, pressure drops and temperature levels seemed 

reasonable. The offgas produced would be sufficient for fluidization of the fuel reactor. 

Setting up a suitable heat exchanger network was found to be straightforward. The amount of 

oxygen-carrier particles required was quite high, 345 kg for each mol/s processed CH4 for the 

base case. This should be more than enough to obtain complete conversion of the fuel with 

many types of oxygen carriers. If desired, the necessary amount could be reduced by 

decreasing the distance between the reformer tubes in the fuel reactor, or changing the 

geometry of the fuel reactor. 

The reformer efficiency for the process configuration proposed in Figure 14, calculated 

according to the definition in expression (12) below and using the parameters from section 3.6 

below is 80-82%, with 100% CO2 capture. In Paper II, the corresponding efficiencies were 

calculated to 76.7-84.6%, excluding power for CO2 compression which amounts to an 
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efficiency penalty of approximately 2%-points. The efficiency was found to be strongly 

correlated to the outlet temperature of the reformer tubes. High temperature here improves the 

conversion of CH4, so that less H2O needs to be produced and added to the CH4 to obtain 

desired product composition. 

 

3.6 Comparative process study of H2 production with CO2 capture 

In order to make a comparison between chemical-looping autothermal reforming and 

steam reforming integrated with chemical-looping combustion, an updated process study 

examining the different concepts has been made. The same programs and models were used 

here as in Paper I and Paper II, with some minor modifications. 

The purpose is to show how the efficiency of different process concepts can be compared 

to each other, how the thermodynamical studies have been conducted, and to highlight 

important characteristics of each process alternative. The study is similar to the one 

previously presented in the licentiate thesis by Rydén [79]. The following process alternatives 

have been included in the study: 

 

1. Chemical-looping autothermal reforming at atmospheric pressure integrated with a 

steam cycle, where synthesis gas is compressed prior to CO2 capture by absorption 

with MDEA solvent, as in Figure 11. 

2. Chemical-looping autothermal reforming at elevated pressure integrated with a gas 

turbine, with CO2 capture by absorption with MDEA solvent, as in Figure 12. 

3. Steam reforming integrated with chemical-looping combustion, as in Figure 14. 

 

The processes have been considered as stand-alone plants optimized for H2 production. 

Aside from the chemical-looping reactors, all other components are conventional technology 

operating at conservative process parameters. The following assumptions have been used:  

 

• The fuel is CH4, which is delivered to the plant at a suitable pressure and a 

temperature of 20ºC.  

• For chemical-looping autothermal reforming, the fuel is mixed with one third 

steam, which is assumed to prevent carbon formation in the fuel reactor. 

• The desired product is H2 at a pressure of 20 bar. If amine absorption is used for 

CO2 capture the produced H2 will also contain impurities such as CH4, CO and 
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CO2, so further purification would be needed for some applications. This has not 

been considered. 

• The gases from the reforming step and the water-gas shift reactors are assumed to 

be at thermodynamic equilibrium. 

• Complete conversion of the fuel to CO2 and H2O is assumed for the chemical-

looping combustion part of the chemical-looping steam reforming process. 

• No heat losses have been considered. Therefore a real-world H2 plant would have 

slightly different process parameters and efficiency. Steam reforming plants 

generally have very high thermal efficiency, 95% or higher [18], so the difference 

should be small. 

• Preheating of fuel, steam and air proceeds to a fixed temperature, for each 

examined case. 

• The power demand in pumps for feed-water and amine solvent, which is very 

small compared to the power consumption for gas compression, has been 

neglected. 

• Amine absorption captures 95% of the CO2 available in the process stream. 

Regeneration of the amine solvent takes place in a stripper column at 130ºC and 

atmospheric pressure. Heat demand for the regeneration of MDEA is set to 60 

kJ/mol CO2. Reported heat demand for amine regeneration varies much between 

different sources. The number used has been selected after consulting the work of 

Veawab et al [26] and IPCC:s special report on carbon dioxide capture and storage 

[8]. 

• Pressure swing adsorption produces pure H2 and the recovery rate is limited to 

90%. The offgas is released at atmospheric pressure. 

• 10% excess air is used for combustion and chemical-looping combustion. 

• CO2 for sequestration is compressed to 100 bar. Transport and storage of CO2 has 

not been considered. 

• Multi-stage compression with intercooling is assumed. CO2 compression takes 

place in three steps while air, H2 and synthesis gas is compressed in two steps. 

• The oxygen-carrier particles consist of 50% NiO and 50% Al2O3. The mass flow 

of oxygen carrier is set to a value so that the temperature difference between the 

fuel reactor and air reactor becomes 50 K. 
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• The isentropic efficiency of fans, pumps, compressors and turbines has been set to 

85%, while the mechanical efficiency has been set to 99%. 

• Ambient temperature is 20ºC. 

• Ambient pressure is 1 bar. 

• The minimum temperature difference for heat exchange is 20 K. 

• The pressure drops has been set to 1.0 bar for reformer tubes, 0.5 bar for water-gas 

shift, absorption and pressure swing adsorption and 0.1 bar for fluidized-bed 

reactors. 

 

Process data for the base cases in the comparative study are summarized in Table 1 below. 

The efficiency of a reforming process can be defined in numerous ways. In this thesis, the 

reformer efficiency, ηref, has been calculated with expression (12). ηref expresses the 

efficiency of conversion of CH4 into H2, and adjusts the result for net power demand, which 

includes compression of H2 to 20 bar. 
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(nH2, out/nCH4, in)   = Moles H2 produced per mole CH4 in the feedstock 

Enet       = Power surplus/demand (J/mol CH4) 

HiCH4      = Lower heating value for CH4 (802 300 J/mol) 

HiH2     = Lower heating value for H2 (241 800 J/mol) 

ηel  = Reference efficiency for power generation with H2, set to 0.58 

 

The other abbreviations and notations used in Table 1 are explained in section 7 below. 
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CLR(a) 

(SC) 

CLR(a) 

(GT) 

SR/CLC 

(base) 

SR/CLC 

(improved) 

preforming (bar) 1.0 10.0 21.0 21.0 

Tair reactor (°C) 950 1050 960 990 

Tfuel reactor (°C) 900 1000 910 940 

Treformer, out (°C) - - 810 840 

Treformer furnace (°C) - - - - 

CH4 conversion (%) 99.9 99.0 79.0 81.3 

Tpreheating (°C) 500 600 600 670 

(H2O/CH4) in fuel mix 0.50 0.50 3.50 3.00 

(O2/CH4) for CLR 0.60 0.60 - - 

(H2O/CO) in HTS 2.3 2.5 - - 

THTS (°C) 310 380 400 380 

TLTS (°C) 200 230 - - 

H2 recovery in PSA (%) - - 90.0 90.0 

pCO2, ABS (bar) 5.35 2.47 - - 

HREG, ABS / HiCH4, in (%) -7.02 -6.93 - - 

E(GT/SC) / HiCH4, in (%) +2.95 +4.60 - - 

ECOMP, air / HiCH4, in (%) -0.10 -2.87 -0.11 -0.11 

ECOMP, syngas / HiCH4, in (%) -7.14 - - - 

ECOMP, H2 / HiCH4, in (%) - -0.87 - - 

ECOMP, CO2 / HiCH4, in (%) -1.81 -1.78 -1.93 -1.93 

Enet / HiCH4, in (%) -6.10 -0.93 -2.04 -2.04 

nH2, out / nCH4, in 2.79 2.74 2.77 2.84 

pH2, out (bar) 20 20 20 20 

HiH2, out / HiCH4, in (%) 84.1 82.7 83.4 85.5 

Produced H2 purity (%) 97.9 97.4 100 100 

CO2 capture (%) 93.9 92.6 100 100 

ηref (%) 73.5 81.1 79.8 82.0 

 

Table 1. Process data for the base cases in the comparative process study. 

 

3.6.1 Conclusions about atmospheric CLR(a) 

The simplest possible chemical-looping autothermal reforming system for H2 production 

would be an atmospheric process, in accordance to the process proposed in Figure 11 above.  

In the case presented in Table 1 above, produced syntheses gas is compressed to slightly 

above 20 bar prior to the amine absorption unit. Integration with a single steam turbine 
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operating with a maximum temperature of 600ºC, a top pressure of 100 bar and a back 

pressure of 4.8 bar have been considered. The back pressure is chosen so that the heat from 

the condensers is delivered at a temperature suitable for regeneration of the MDEA solvent. 

Excess heat is used for preheating of fuel, steam and air.  

The reformer efficiency of the process configuration proposed in Table 1 is 73.5 %, with 

93.9% CO2 capture. This is lower than the other CLC process alternatives examined in this 

thesis, but compares well with conventional steam reforming with CO2 capture, see section 

3.6.4 below. It should be noted that there is a considerable external power demand, despite the 

steam cycle. This is due to the extensive need for gas compression. 

 

3.6.2 Conclusions about pressurized CLR(a) 

Pressurized chemical-looping reforming has potential to achieve much higher overall 

efficiency compared to the alternative operating at atmospheric pressure. The energy penalty 

for H2 compression is reduced dramatically, as is explained in sections 3.3-3.4 above. Further, 

CO2 is obtained at decently high partial pressure without the use of an extra synthesis gas 

compressor, so the need to compress CO2 for sequestration twice is eliminated.  

Integration with a gas turbine is important to achieve high overall process efficiency. As can 

be seen in the case presented in Table 1, there is a considerable efficiency penalty for air 

compression, but much of this is regained by expanding the depleted air in the gas turbine. 

There is a small external power demand. If 1-2% of produced H2 is burned in a separate 

combustor as is shown in Figure 12, the process would become self sufficient with electricity. 

The reformer efficiency for the base case is 81.1%, with 92.6% CO2 capture. Increasing the 

reactor temperatures could improve the efficiency slightly because of better conversion of 

CH4 and increased output from the gas turbine. This would require preheating to very high 

temperatures or integration with a steam cycle, otherwise the process would produce excess 

heat. Further improvements could involve increased pressure or use of an absorbing solvent 

that require less energy for regeneration.  

 

3.6.3 Conclusions about SR/CLC 

Steam reforming integrated with chemical-looping combustion, as described in Figure 14 

above, would provide some obvious advantages. CO2 is captured by chemical-looping 

combustion. Integration with pressure swing adsorption for production of H2 with very high 

purity would be straightforward, since the low-pressure offgas can be used as fuel in the 

chemical-looping combustor. There is no need for gas turbine, steam cycle, air compression, 
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amine absorption or low-temperature shift reactor. The reforming reactions take place at 

elevated pressure so there is no large energy penalty for H2 compression. Chemical-looping 

combustion would take place at atmospheric pressure, which would be comparably easy to 

realize and operate.  

For the base case presented in Table 1, the reformer efficiency is 79.8%, with 100% CO2 

capture. The efficiency could be improved further by increasing pressure, temperature and 

preheating, while reducing the H2O/CH4 ratio. Increasing the temperature of reforming by 

30ºC improves the efficiency to 82.0%, as can be seen in Table 1. This is mostly because less 

H2O needs to be added in order to obtain sufficient conversion of the fuel. Steam reforming at 

950 ºC and 40 bar with preheating of steam and fuel up to 670 ºC is commercially available, 

so even better efficiency could be possible. 

 

3.6.4 Comparison with conventional steam reforming 

The numbers in Table 1 could be compared to the expected efficiency for production of H2 

with CO2 capture using conventional methods. Process studies describing steam reforming 

with CO2 capture by amine absorption located after the water-gas shift reactors has been 

presented for example by Consonni et al [30] and Audus et al [27]. In both these studies an 

overall efficiency of about 73% with 85% CO2 capture are reported. Consonni et al [30] also 

cites a few industrial studies that report efficiencies in the range of 69-73%, with 85-87% CO2 

capture. In the licentiate thesis by Rydén [79], a reformer efficiency of 73.3% with 87.6% 

CO2 captured was reported for this option, while using similar assumptions as for the study 

presented in this thesis. It can be concluded that while all these studies use slightly different 

process setups and base assumptions, the results are pretty similar. The expected efficiency is 

in the order of 69-73%. The level of CO2 capture is limited to ≈85% because of the extra 

natural gas that needs to be burnt in the reformer furnace. 

If higher degree of CO2 capture is wanted, a different process configuration is needed. One 

option would be to capture CO2 by absorption in the flue gas from the reformer furnace. This 

would require a comparably strong amine solvent such as MEA, due to the low partial 

pressure of CO2. This option has been examined in the licentiate thesis by Rydén [79]. An 

efficiency of 70.7% with 95% CO2 capture was reported. 

Also in Paper I, brief calculations for a reference process consisting of steam reforming 

with CO2 capture were presented. However, in this study the temperature difference between 

the heating media and the reformer tubes had been set to a very low value, which resulted in a 

comparably high efficiency of 75%. While such a process could be realized by so called heat-
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exchange reforming, it is questionable whether this kind of technology is commercially 

attractive [18, 20, 80]. 

 

3.6.5 Comments on the comparative study 

The comparative study presented above should not be seen as an exercise in technological 

stretch with the aim to obtain as high theoretical efficiencies as possible, but as a tool to 

examine strengths and weaknesses of novel process concepts for H2 production with CO2 

capture. It is possible that the process parameters such as reactor temperature could have been 

improved slightly. Integration with several steam cycles operating at different pressure levels 

could have resulted in slightly better heat integration, which could reduce exergy losses.  

In Table 1, it can be seen that atmospheric chemical-looping autothermal reforming has 

about 7.5%-points lower ηref, compared to the alternatives that is operating at elevated 

pressure. This loss in efficiency can be almost entirely attributed to the penalty for H2 

compression and the need to compress CO2 twice. It shall be noticed that it was assumed that 

the fuel was CH4. If there would have been higher hydrocarbons present in the fuel, the 

energy penalty for H2 compression would have been even larger, because of the even larger 

volume increase. This highlights the importance of operating reforming processes at elevated 

pressure. 

Process alternatives involving pressure swing adsorption should be attractive if high purity 

H2 is the desired product. The option to use pressure swing adsorption has not been 

considered for chemical-looping autothermal reforming. For this to be feasible, a reactor 

system operating at elevated pressure or gas compression prior to the gas separation unit 

would be needed. More importantly, the pressure swing adsorption offgas would contain at 

least 10% of the H2 produced, and there is no obvious way to utilize it the within a chemical-

looping autothermal reforming process. 

In section 3.6.4, it is shown that most process studies describing H2 production with CO2 

capture using conventional technologies ends up with efficiencies in the range of 69-73%, 

with a CO2 capture rate below 90%. Steam reforming integrated with chemical-looping 

combustion and chemical-looping autothermal reforming at elevated pressure have potential 

to do better than this. Steam reforming integrated with chemical-looping combustion would 

also provide nearly 100% CO2 capture. 

 If the H2 produced is to be used directly for power generation in a combined cycle, high 

purity H2 would not be needed and CO2 capture by absorption would be appropriate. Process 

studies concerning power generation by reforming of natural gas to H2 with pre-combustion 
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CO2 capture by absorption have been presented by various authors, for example by Lozza and 

Chiesa [81, 82], Corradetti et al [83], Ertesvåg et al [84] and Undrum et al [85]. In these 

studies, the efficiency for power generation typically was found to be 45-49% with 88-90% 

CO2 capture. These numbers should not be compared directly with those presented in Table 1, 

since close integration between reforming and power generation has not been considered. But 

since pressurized chemical-looping autothermal reforming and steam reforming integrated 

with chemical-looping combustion show considerably better potential than steam reforming 

with CO2 capture by conventional means, it seems reasonable to believe that chemical-

looping technologies should be interesting not only for H2 production, but for power 

generation with pre-combustion CO2 capture as well. 
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4 
EXPERIMENTS IN CIRCULATING FLUIDIZED-BED REACTOR 

 

4.1 Introduction 

Once it was established that chemical looping could indeed be useful for H2 production 

with CO2 capture, the focus was shifted from theoretical work towards experiments. Paper III 

and Paper IV deals with chemical-looping reforming experiments conducted in small-scale 

circulating fluidized bed reactor. In Paper IV, the option to use the examined oxygen carriers 

for chemical-looping combustion has also been examined. Paper III and Paper IV used similar 

methodology, measurement methods and equipment. In both cases, desulphurized natural gas 

with high CH4 content was used as fuel. In addition to the different oxygen carriers, the main 

differences is that the overall procedure was more refined in Paper IV compared to Paper III, 

and that the important lower part of the reactor system, which is where the chemical reactions 

and circulation of solids take place, had been improved. 

 

4.2 Reactor system 

The reactor used in Paper III had previously been used for continuously operating 

chemical-looping combustion experiments by various authors [41, 42, 43, 44, 58]. The reactor 

was designed based on results obtained with a cold-flow model, see Johansson [58] and 

Kronberger [60] for details. A schematic description of the reactor can be found in Figure 15. 

The reactor used in Paper IV is basically an improved and slightly altered version of the 

reactor used in Paper III. It was designed and constructed specifically for the study conducted 

in Paper IV, and was based on a cold-flow model constructed and tested by at Vienna 

University of Technology. A schematic description can be found in Figure 16. 
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Figure 15. Schematic description of the lower reactor part  

used for the experiments presented in Paper III. 

 

 
Figure 16. Schematic description of the lower reactor part 

 used for the experiments presented in Paper IV. 

 



 49

Both reactors are designed for gaseous fuels. Suitable flows for chemical-looping 

combustion experiments are 0.15-0.75 Ln/min natural gas and 3-10 Ln/min air, which 

corresponds to 100-500 W thermal power. Chemical-looping reforming experiments can be 

performed by increasing the natural-gas flow to 0.6-1.5 Ln/min, while using a suitable air 

flow. 

Both reactors are 200 mm high. The base of the fuel reactor measures 25×25 mm. The air 

reactor is 25×40 mm in the bottom and 25×25 mm in the upper narrow part. The oxygen 

carrier consists of particles, typically with a diameter of 90-250 μm. The necessary amount of 

oxygen carrier depends on factors such as density, porosity, reactivity and oxygen transfer 

capacity. Fuel and air enter the system through separate wind boxes, located in the bottom of 

each part. Porous quartz plates act as gas distributors. In the air reactor section the gas 

velocity is sufficiently high for oxygen-carrier particles to be thrown upwards. A fraction of 

these particles falls into the downcomer, which is an open shaft for the reactor used in Paper 

III, and a J-type loop-seal for the reactor used in Paper IV. In both cases, the downcomer is 

fluidized with small amounts of inert gas such as N2 or Ar. The downcomer leads the oxygen-

carrier particles to the fuel reactor section, where they are reduced by the fuel. The reduced 

oxygen carrier is returned to the air reactor via a slot located in the bottom of each reactor, 

where it is reoxidized with air. Slightly different slot sections were used in the investigations 

presented in Paper III and Paper IV. The slot was fluidized with small amounts of inert gas, 

which was added via a horizontal pipe with three 1-mm holes directed downwards. 

The open downcomer used in the reactor configuration shown in Figure 15 results in some 

gas leakage between the air reactor and the fuel reactor. In the improved reactor, this has been 

addressed by including a J-type loop seal in the downcomer. There are also some other 

improvement, such as the possibilities to use lower bed height in the fuel reactor. 

Above the lower reactor part is a separate vessel for particle separation. Here the same part 

was used in all investigations, see Figure 17. 
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Figure 17. Schematic description of the reactor used in Paper III. 

 

 In the particle separation part, the reactor depth expands to decrease the gas velocity and 

allow particles to fall back into the reactor beds. It is 240 mm high, and in the first 180 mm 

the reactor depth expands from 25 mm to 105 mm. The last 60 mm has a constant cross-

section area. The particles falling down in the sloping section above the air reactor are led to 

the downcomer by a leaning wall.  

In order to make it possible to reach suitable temperature levels, the whole reactor is placed 

inside an electrically heated furnace. This means that the temperature balance of the reactor 

does not need to be fulfilled. The temperature of the furnace is controlled with thermocouples 

located inside the furnace, just outside the reactor.  

Downstream from the fuel reactor exit is a water seal that makes it possible to increase the 

pressure in the fuel reactor by altering the height of the water column. This is done in order to 

prevent dilution of the fuel reactor gas with air leaking from the air reactor. 
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4.3 Oxygen-carrier materials 

In Paper III, one oxygen carrier particle was examined. In Paper IV, three different oxygen 

carriers were examined. All four oxygen carriers had NiO as active phase, see Table 2. 

 
Paper Oxygen 

carrier 

Chemical 

composition 

Production  

method 

Size 

(μm) 

Solids 

inventory (g) 

III N6AM1400 60% NiO on MgAl2O4 Freeze granulation 90-212 350 

IV N2AM1400 20% NiO on MgAl2O4 Freeze granulation 90-212 250 

IV Ni18-αAl 18% NiO on α-Al2O3 Impregnation 90-212 180-250 

IV Ni21-γAl 21% NiO on γ-Al2O3 Impregnation 90-250 170 

 

Table 2. Basic properties of examined oxygen-carrier materials. 

 

N2AM1400 and N6AM1400 were produced by freeze granulation with MgAl2O4 as 

support material, and were sintered for 6 hours at 1400ºC. This resulted in spherical particles 

with rather high density. The particles Ni18-αAl and Ni21-γAl were prepared by CSIC in 

Zaragoza by dry impregnation of Ni(NO3)2×6H2O onto Al2O3, calcination at 550ºC for 30 

minutes and sintering at 950ºC for 60 minutes. This procedure resulted in more porous and 

somewhat less spherical particles than freeze granulation. Ni18-αAl and Ni21-γAl are patent 

pending. 

Due to the higher porosity of Ni18-αAl and Ni21-γAl, a lower bed mass was used 

compared to N2AM1400 for some of the experiments. Otherwise the volume of oxygen 

carrier would have become too large. For Ni18-αAl, experiments were done using two 

different bed masses. The reason for the comparably large solids inventory used for 

N6AM1400 is the differing design of the downcomer in the reactor used in Paper III, which 

required a certain particle level in the fuel reactor. In all cases, the solids inventory 

corresponds to unfluidized bed heights between 8.4 and 12.0 cm for fresh particles. 

 

4.4 Experimental procedure  

Prior to the experiment, the overpressure in the fuel reactor was set to 10-30 Pa by 

adjusting the level in the water seal. The furnace was heated to a temperature slightly above 

the desired fuel reactor temperature, which was 800-950°C. During this period both reactor 

sections were fluidized with air. When sufficiently high temperature was reached, the air to 

the fuel reactor was replaced by N2, and after a minute or two, by fuel. Steady-state conditions 
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were reached after a few minutes, depending on the fuel flow and the oxygen carrier. The 

experiments could be divided into one out of four subcategories: 

 

• CLC - Chemical-looping combustion 

The aim of a CLC experiment was to convert as large share of the fuel as possible to 

CO2 and H2O. This was achieved by using low or modest fuel flow (0.2-0.75 Ln/min) 

and high air flow (7-10 Ln/min). 

 

• CLR(ng) - Chemical-looping reforming 

The aim of a CLR(ng) experiments was to convert the fuel to CO and H2. This was 

achieved by using high fuel flow (0.6-1.5 Ln/min) and moderate to high air flow (3.8-

10 Ln/min).  

 

• CLR(H2O) - Chemical-looping reforming with steam 

A chemical-looping reforming experiment where 25-30% steam was added to the 

natural gas. Adding steam is believed to hamper formation of solid carbon in the fuel 

reactor, and also increase the production of H2 via reaction (2). Steam was added by 

bubbling natural gas through hot water with a temperature of 90-95°C. The gas 

mixture was then cooled in a cooling column and the resulting condensate was 

removed, until the desired gas composition was achieved. 

 

• CLR(CO2) - Chemical-looping reforming with CO2 

A chemical-looping reforming experiment where 30% CO2 was added to the natural 

gas. Adding CO2 is believed to reduce the formation of solid carbon, and would also 

increase the production of CO via reaction (4). This concept has been tested to 

improve the general understanding of chemical-looping reforming and could be useful 

for example to produce synthesis gas with high CO content.  

 

Experiments were conducted in different ways. Most often, the process parameters were 

held constant for 1-4 hours so that the process was operated at as stable conditions as possible. 

Experiments with variable process parameters have also been conducted, and while this 

procedure has its advantages, it makes evaluation and comparison of data less straightforward. 
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At the end of each experiment, the oxygen-carrier particles were reoxidized. This was done 

in two steps. Firstly, fuel and air were replaced with N2. Flows in the order of 1 Ln/min were 

used. This resulted in a gas velocity in the air reactor that was below the terminal velocity of 

the oxygen carrier, so the solids circulation stopped. After a few minutes N2 was replaced 

with air in both reactor sections. If there was solid carbon present in the fuel reactor, it 

showed up as CO2 during the reoxidation. The reoxidation also provided some information 

about the degree of reduction of the particles in each reactor section, as well as the magnitude 

of the solids circulation. 

In total, around 200 hours of continuously operating experiments with fuel have been 

recorded, distributed among the experiment types and oxygen carriers as is shown in Table 3. 

 
Oxygen Carrier Paper CLC (h) CLR(ng) (h) CLR(H2O) (h) CLR(CO2) (h) 

N6AM1400 III - 24 17 - 

N2AM1400 IV 10 7 35 7 

Ni18-αAl IV 21 4 27 5 

Ni21-γAl IV 5 11 24 2 

 

Table 3. Hours of operation with fuel for each type of experiment and oxygen carrier. 

 

Not included in Table 3 are experiments that lasted for less than 30 minutes. These short 

experiments amount to perhaps 10 hours totally. Another 100 hours or so of operation have 

been recorded with other oxygen-carrier materials, but since these results have not yet been 

published they are not included in this thesis. The total time each oxygen carrier has been 

fluidized at hot conditions is roughly 50% greater than the total time with fuel. 

 

4.5 Measurements 

Prior to analysis, the gas from the reactor halves passed through particle filters, coolers and 

water traps. Therefore, all measurements were made on dry gas. CO2, CO and CH4 were 

measured using infrared analyzers, while O2 was measured with paramagnetic sensors. The 

gas from the fuel reactor was also examined with a Varian Micro-Gas Chromatograph 

CP4900 equipped with Molsieve 5A and PoraPLOT Q columns, which primarily was used to 

measure H2 and high concentrations of CO, but also measured CO2, CH4, N2 and O2. H2O was 

not measured directly, but could be calculated by a species balance. Most often, the 
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composition of the fuel reactor gas was found to be reasonably close to thermodynamic 

equilibrium for the water-gas shift reaction. 

Along the reactor, there was a number of pressure measuring taps. By measuring pressure 

differences between these taps, it would have been possible to estimate the distribution of 

solids within the system, and to detect problems such as defluidization and agglomerations. In 

practice, this did not work out very well for most experiments. The pressure measuring taps 

located in the bottom of the fuel reactor had a tendency to fill with oxygen-carrier particles 

and possibly also with small amounts of solid carbon, hence proper measurements of the 

pressure was not possible. The pressure measurements still provided some information 

though, since measurements in the air reactor, downcomer and above the particle bed in the 

fuel reactor generally worked well. 

The temperature in each reactor section was measured with thermocouples located 70 mm 

above the distributor plates. In most cases, this should have been close to the centre of the 

particle bed. 

 

4.6 Results from chemical-looping combustion experiments 

For chemical-looping combustion, the desired reaction is conversion of as much as 

possible of the fuel to CO2 and H2O. The performance can be expressed with the CO2 yield, 

γCO2, which is defined in expression (13). 

 

γCO2 = xCO2,fr / ( xCH4,fr + xCO2,fr + xCO,fr )                (13) 

 

N6AM1400 was not examined specifically for chemical-looping combustion applications, 

since this has been done earlier by Johansson et al [41, 42, 58]. For the other three oxygen 

carriers, no CH4 was detected in the outlet from the fuel reactor, so the conversion of natural 

gas was very close to 100%. Unfortunately, the selectivity towards CO2 and H2O was not 

equally good, and significant amounts of CO and H2 were formed. Here it shall be pointed out 

that the examined oxygen-carrier materials were chosen for testing because they had shown 

promise for chemical-looping reforming applications in early screenings using batch-fluidized 

bed reactors. For chemical-looping reforming, CO and H2 are the desired products, so perhaps 

this was not that surprising. An example of the composition of the fuel-reactor gas for a CLC 

experiment is shown in Figure 18. 
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Figure 18. Wet-gas concentration for a 2-hour CLC experiment using 250 g N2AM1400 as 

oxygen carrier with Tfr=948ºC, γCO2 =84.8% and Fng=0.49 Ln/min. The N2 is fluidization gas 

for the slot and the downcomer. 

 

Two factors were found to be of importance to achieve high γCO2, namely fuel reactor 

temperature and oxygen-carrier loading, see Figures (19-20) below. The air to fuel ratio may 

have had some influence on the results as well. For Ni18-αAl, four hours of experiment were 

made where the air flow was changed stepwise between 5 Ln/min and 9 Ln/min, while the fuel 

flow was held constant at 0.53 Ln/min. Here γCO2 increased from about 86% to 88%. This 

could have been due to increased solids circulation and increased availability of oxygen in the 

fuel reactor, but the interpretation is uncertain. 

The oxygen carrier Ni18-αAl was used for 21 hours of CLC experiments. In Figures (19-

20), it can be seen that this was the oxygen carrier that provided the highest CO2 yield, among 

those tested in Paper IV. It also showed some unexpected drawbacks. Firstly, there was some 

formation of solid carbon in the fuel reactor, which was evident because small amounts of 

solid carbon accumulated here. Secondly, Ni18-αAl changed reactivity during and in between 

different experiments. Fresh particles provided remarkably high selectivity towards CO2. 

With fresh particles, γCO2 was over 99% with 0.45 Ln/min fuel at 900ºC, which roughly 

corresponds to the thermodynamic boundary for NiO at that temperature.  
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However, the gas yield declined rapidly. Some kind of steady-state condition was reached 

after a few hours, but at a considerably lower gas yield. The particles could be partially 

regenerated by performing CLR(H2O) experiment with high H2 and CO concentration, only to 

lose reactivity again after an hour or so of CLC experiments. The reason for this phenomenon 

is not known, but the deactivation and regeneration behaviour have been demonstrated in lab 

scale as well, using a batch fluidized-bed reactor. The numbers presented in Figures (19-20) 

are for steady-state operations, i.e. when the gas yield deviated considerably compared to the 

fresh particles for this particular carrier. 
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Figure 19. γCO2 as function of the fuel reactor 

temperature. Each dot represents average 

values for 30-120 minutes of experiments with 

stable process parameters and Fng≈0.5 

Ln/min. 

Figure 20. γCO2 as function of the ratio of 

oxygen-carrier to fuel. Each dot represents 

average values for 30-120 minutes of 

experiments with stable process parameters 

and Tfr≈950ºC. 

 

The oxygen carrier N2AM1400 was used for 10 hours of CLC experiments. N2AM1400 

provided predictable and stable results. No carbon accumulation was detected, so there was 

most likely no formation of solid carbon in the fuel reactor. γCO2 was low compared to Ni18-

αAl, and the results were also very sensitive to fuel reactor temperature, as can be seen in 

Figure 19. 

The oxygen carrier Ni21-γAl was used for 5 hours of CLC experiments. This oxygen 

carrier provided very low γCO2 and there was also carbon formation, approximately at the 

same extent as for Ni18-αAl. This oxygen carrier is clearly not suitable for chemical-looping 

combustion applications. 
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N6AM1400 has not been examined extensively for chemical-looping combustion within 

the work included in this thesis, but it is worth citing the work of Johansson et al [41, 42, 58], 

who examined chemical-looping combustion of natural gas with N6AM1400 as oxygen 

carrier using a similar experimental setup as the one used here. With 340 g particles, the 

resulting γCO2 was above 98.5% for most fuel flows and reactor temperatures that were 

examined. No formation of solid carbon in the fuel reactor was reported. This could be 

because the methodology and reactor setup used in these experiments made it hard to detect 

carbon formation though. 

 

4.7 Results from chemical-looping reforming experiments 

For chemical-looping reforming, the desired reaction is conversion of as much as possible 

of the fuel to a mix of CO, H2, CO2 and H2O. The performance can be expressed with the Ψ 

number, which describes the amount of oxygen that has been transferred to the fuel via the 

circulating solid particles. Ψ can be calculated via Expressions (14-17), using the measured 

oxygen to carbon ratio in the exit gas from the fuel-reactor, (O/C)fr, the oxygen to carbon ratio 

of the fuel mix, (O/C)fm, corrected for any added H2O and CO2, and the oxygen to carbon ratio 

for complete combustion of the fuel mix, (O/C)cc.  

In Expressions (16-17), 0.01 represents the amount of O in one unit of the natural gas that 

has been used as fuel, while 1.14 is the amount of C, and 4.41 is the O demand for complete 

combustion. For CH4 the corresponding numbers would be 0, 1 and 4. 
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A Ψ number of 1.0 means that sufficient oxygen has been added to the fuel mix via the 

solids circulation to oxidize the fuel completely into CO2 and H2O. For the natural gas used as 

fuel for the experiments presented in this thesis, a Ψ number of 0.26 represents partial 

oxidation to CO and H2. In Paper V, a corresponding Ψ(V) number is calculated, see expression 

(22). Here a different approach was used due to different experimental setup. In Paper III, the 

corresponding number was called the oxygen ratio, which also included oxygen added via 

steam. 

In order for Ψ calculated via Expressions (14-17) to be useful in evaluating the results of a 

chemical-looping reforming experiment, there should be very high conversion of natural gas 

and no or little formation of solid carbon, and the gas composition should be reasonably close 

to thermodynamic equilibrium. These criteria were fulfilled for most of the experiments 

presented in this thesis. 

The desired Ψ value for a chemical-looping reforming process depends on factors such as 

reactor temperature, desired product composition and amounts of H2O or CO2 added to the 

fuel. For chemical-looping autothermal reforming with the aim to produce as much H2 as 

possible operating at 950ºC and with 30% steam added to the fuel, a Ψ in the order of 0.30-

0.35 seems reasonable, see Paper I and section 3.6 above. Reducing the Ψ number further 

would increase H2 production but result in a process that would require extensive preheating 

or external heating. 

In general, the results for the chemical-looping reforming experiments were highly 

encouraging. The experiments presented in Paper IV ran smoothly and with some steam or 

CO2 added to the fuel it was possible to operate the reactor at very low Ψ values with no 

carbon accumulation, and seemingly no or very little carbon formation. It was even possible 

to use Ψ values below the stoichiometric ratio for partial oxidation by supplying excess 

oxygen with H2O or CO2. The conversion of natural gas into reagents was very high for all 

four materials. For low Ψ values and temperatures, minor amounts of CH4 were slipping 

through the reactor bed, but this could be expected due to thermodynamical constraints. The 

oxygen carrier N6AM1400, which was tested in Paper III, was not examined at as low Ψ 

numbers as the oxygen carriers examined in Paper IV. There are no indications that this 

would not have been possible, as the experiments at higher Ψ numbers worked fine. An 

example of the composition of the fuel-reactor gas for a typical CLR(H2O) experiment is shown 

in Figure 21. 
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Figure 21. Wet-gas concentration for a 2-hour CLR(H2O) experiment using 170 g Ni21-γAl 

as oxygen carrier with Tfr=951ºC, Ψ =28.8% and Fng=1.36 Ln/min. The N2 is fluidization gas 

for the slot and the downcomer. 

 

The N2AM1400 particles were used for 35 hours of CLR(H2O), 7 hours of CLR(CO2) and 7 

hours of CLR(ng) experiments. The experiments worked well and with 30% H2O or CO2 added 

to the fuel, there was no or very little carbon accumulation in the fuel reactor. There were no 

problems operating at Ψ values of 0.30-0.35 or even lower, which was the aim of the 

experiments. The CH4 concentration was slightly above thermodynamic equilibrium at lower 

temperatures, but barely detectable above 900ºC. The H2 concentration often was 2-3%-points 

below equilibrium. One possible reason for the mismatch between calculated and measured 

H2 values for N2AM1400 could be that the water-gas shift reaction did not quite reach 

equilibrium. It could also have been some kind of measuring difficulty, perhaps related to 

temperature gradients in the fuel reactor. 

The Ni21-γAl particles were used for 24 hours of CLR(H2O), 2 hours of CLR(CO2) and 11 

hours of CLR(ng) experiments. In most aspects, the results were comparable to those obtained 

with N2AM1400. With 30% H2O or CO2 added to the fuel, there was no or very little carbon 

accumulation in the fuel reactor. There were no problems doing experiments at Ψ values of 

0.30-0.35 or lower. The CH4 concentration was slightly above thermodynamic equilibrium at 
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lower temperatures, but barely detectable above 900ºC. The H2 concentration was very close 

to thermodynamic equilibrium 

The oxygen carrier Ni18-αAl was used for 27 hours of CLR(H2O), 5 hours of CLR(CO2) and 

4 hours of CLR(ng) experiments. It was possible to use as low Ψ values as for any of the other 

examined oxygen carriers, and there was no accumulation of carbon in the reactor for any of 

the CLR(H2O) experiments where the fuel reactor temperature was 870ºC or above. For some 

reason the leakage of carbon to the air reactor varied greatly when this oxygen carrier was 

used though.  

N6AM1400 was used for 17 hours CLR(H2O) and 24 hours CLR(ng) experiments. These 

results were obtained using the reactor system with open downcomer, see Paper III. Complete 

conversion of natural gas was achieved and the selectivity towards H2 and CO was good. 

Formation of solid carbon was identified as a potential problem and was apparent for some of 

the experiments with dry natural gas. For most experiments with natural gas and 25 % steam 

there was no accumulation of carbon in the reactors, which indicates that there was no or very 

little carbon formation. The composition of the gas produced was close to thermodynamic 

equilibrium. 

 

4.8 Characterisation of oxygen carrier particles 

Of the tested oxygen-carrier materials, N2AM1400 was the one that provided most 

consistent results. There were no problems with agglomerations or defluidization, and it 

seems to have been very stable. The used particles were examined with microscope, scanning 

electron microscope and x-ray diffraction. No changes in the surface or the phase composition 

could be detected, compared to fresh particles. The density, porosity and size distribution of 

the particles did not change in any measurable way. 

Ni18-αAl also seems to have been stable. The used particles were intact but looked slightly 

less porous than the fresh, both in the scanning electron microscope and in conventional 

microscope. The apparent density of the particles had increased by 9%. According to the x-

ray diffraction analysis, no new phases were identified in the used particles. 

Ni21-γAl changed considerably during operation. The fresh particles were comparably 

large and porous, while the used ones were less so. The apparent density of the used particles 

had increased 40%. The particles remained highly reactive, so whatever happened to them did 

not deactivate them. It was not possible to verify any changes on the particles with x-ray 

diffraction analysis.  
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N6AM1400 also remained highly reactive, but formed lumps with a diameter of up to 20 

mm in the fuel reactor. The lumps were soft and only a small force was needed to break them 

apart. It seems reasonable to believe that these lumps would not have survived for long in a 

real-word system, where considerably higher gas velocities would have been used. Aside 

from the lumps, this oxygen carrier maintained its physical properties with respect to fresh 

material. 
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5 
BATCH EXPERIMENTS IN FIXED-BED REACTOR 

 

5.1 Introduction 

Paper V treats reduction and oxidation experiments conducted in a fixed-bed reactor. The 

aim of these experiments was to examine some novel options for oxygen-carrier materials, 

such as LaxSr1─xFeyCo1─yO3─δ perovskites and mixed-metal oxides, and compare them to 

some more well known metal-oxide materials. 

 

5.2 Oxygen-carrier materials 

LaxSr1─xFeyCo1─yO3─δ perovskites were synthesized with the glycine-nitrate combustion 

method and spray drying, ball-milled in ethanol, calcined and sieved to particles with a 

suitable size. LaxSr1─xFeyCo1─yO3─δ are ceramic materials of perovskite structure which are 

interesting for many applications, notably as oxygen permeable membranes, for 

manufacturing of various high temperature electrochemical devices, and as catalyst for 

oxidation reactions. They have very high thermal stability and decent mechanical properties. 

The doctoral theses by Fossdal [86] and Lea Lein [87] are good sources for general 

information about this kind of materials.  

The δ-factor in LaxSr1─xFeyCo1─yO3─δ perovskites describes the oxygen deficiency in the 

material, compared to an ideal perovskite structure. The δ-factor can be reduced or increased 

by altering factors in the surroundings such as temperature or O2 partial pressure. The 

environment in a chemical-looping air reactor is oxidative. Hence δar will be small. In the fuel 

reactor, the environment is reductive, so δfr will be large. The amount of O2 available for 

oxidation of fuel can be written as (δar - δfr), see expression (18).  

 

LaxSr1─xFeyCo1─yO3─δar → LaxSr1─xFeyCo1─yO3─δfr + (δar - δfr) × ½ O2       (18) 

 

Blom et al [88] have proposed and examined the possibility to use LaxSr1─xFeyCo1─yO3─δ 

perovskites as oxygen carriers for chemical-looping combustion. Shen et al [71, 72], Zeng et 

al [73], Li et al [74] and Bjørgum [75] has studied the possibility to generate synthesis gas by 

cyclic oxidation and reduction of perovskites such as LaxSr1─xFeyCo1─yO3─δ, in similar 
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fashion as is done in chemical-looping reforming. Data for examined perovskite materials can 

be found in Table 4. 

 
Sample Material Particle 

Size (μm) 

Calcination 

(T/time) 

1 La0.5Sr0.5Fe0.5Co0.5O3─δ 150-250 900ºC/24 hours 

2 LaFeO3─δ 150-250 900ºC/10 hours 

3 La0.8Sr0.2FeO3─δ 150-250 900ºC/10 hours 

4 La0.5Sr0.5FeO3─δ 150-250 900ºC/10 hours 

 

Table 4. Produced perovskite materials 

 

Metal-oxide particles were produced by freeze granulation, dried in a freeze-drier, sintered 

and sieved to a suitable size range. Data for produced metal-oxide materials can be found in 

Table 5. 

 
Sample Material Designation Particle 

Size (μm) 

Sintering 

(T/time) 

5 60% NiO on MgAl2O4 N6AM1400 90-150 1400ºC/6 hours 

6 40% Fe2O3 on MgAl2O4 F4AM1100 90-125 1100ºC/6 hours 

7 40% Mn3O4 on Mg-ZrO2 M4MZ1150 90-125 1150ºC/6 hours 

 

Table 5. Produced metal-oxide materials 

 

In addition to the pure samples, a few oxide mixtures were also examined. These were 

prepared simply by mixing particles of the oxygen-carriers in Table 5 in different proportions. 

Combining different oxygen-carrier materials may create positive synergy effects. During 

operation, NiO is reduced directly to metallic Ni. Metallic surfaces catalyze decomposition of 

CH4, so once some Ni is obtained the conversion of CH4 to other components is rapid. Fe2O3 

and Mn3O4 are reduced to new oxide phases rather than to metals, and are less reactive with 

CH4. But Fe2O3 and Mn3O4 have the advantage of being cheaper and more environmentally 

benign compared to NiO, and have also proven to be highly reactive with CO and H2. 

Therefore it seems reasonable to believe that if small amounts of metallic Ni could be 

sufficient to catalyze decomposition of CH4 into more reactive components such as CO and 

H2, the bulk of the oxygen could as well be provided with another material. 
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The option to use mixtures of NiO and Fe2O3 as oxygen-carrier for chemical-looping 

combustion has been demonstrated by Johansson et al [89], who found that small amounts of 

NiO increased the reaction rate of the Fe-based oxygen carrier considerably. Data for 

examined mixed-oxide samples can be found in Table 6. 

 
Sample Designation Composition 

8 Fe99Ni1 99% F4AM1100 and 1% N6AM1400 

9 Fe90Ni10 90% F4AM1100 and 10% N6AM1400 

10 Mn97Ni3 97% M4MZ1150 and 3% N6AM1400 

11 Mn90Ni10 90% M4MZ1150 and 10% N6AM1400 

 

Table 6. Examined mixed-oxide materials 

 

5.3 Experimental setup 

The experiments were carried out in a quartz reactor with a diameter of 15 mm and a 

height of 350 mm. The reactor was located inside a vertical electrically heated furnace. The 

temperature of the furnace was controlled with a thermocouple located inside the reactor. In 

the centre of the reactor there was a porous plate, on which a sample of particles could be 

located. The top of the reactor was connected to a gas feeding system, capable of handling 

CH4, air, Ar, CO2 and calibration gas. The bottom of the reactor was connected to an outlet 

pipe. The products were analyzed with a mass spectrometer. Between the reactor outlet and 

the mass spectrometer, the pipe was heated with an electric heating strip to prevent 

condensation of H2O prior to analysis. 

 

5.4 Experimental procedure 

A sample of 1.00 gram of the chosen material was added to the reactor. Then the reactor 

was heated to 900ºC. During this time Ar was used to provide the necessary gas flow through 

the reactor and the mass spectrometer. When 900ºC was reached, the sample was reduced 

with CH4. Ar was used as carrier gas so that the total gas flow into the reactor was 60 ml/min. 

This was done to provide reasonable response time for the lower CH4 flows.  

 Following the reduction of the sample was an inert period of about one minute, during 

which Ar was fed to the reactor. Then the sample was reoxidized with 60 ml/min air. The 

reoxidation was aborted when the measured signals of N2 and O2 in the reactor outlet were 

stable. Then there was another short inert period, lasting about 30 seconds. This was 
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necessary to prevent mixing of CH4 and air prior to the reactor. After this short period of time 

a new reduction cycle was initiated. 

The procedure described above was repeated for 10 cycles for each perovskite, in which 

the CH4 flow was varied between 9 ml/min and 33 ml/min. For metal oxide samples, 5 cycles 

with CH4 flows between 15 ml/min and 27 ml/min were used. 

The most interesting data is the outlet concentration of CH4, CO2, H2, H2O and CO from 

the reactor during reduction with CH4. The method of choice for gas analysis was mass 

spectroscopy. Compared to the alternatives, mass spectroscopy has the advantage of being 

capable to measure all relevant gas components continuously, including H2 and H2O. 

The mass spectrometer provided the actual gas concentrations including inert Ar, which 

was present as carrier gas. To make it easier to compare experiments with different flows of 

CH4 and Ar, the gas composition was converted to a product composition that excluded Ar, 

see expression (19). Here z is the calculated product composition excluding inert gas and y is 

the measured wet gas concentration of each component. 

 

zi = yi / ( yCO2 + yCO + yCH4 + yH2O + yH2 )               (19) 

 

Since all relevant gas components were measured during reduction and the hydrogen to 

carbon ratio for CH4, (H/C)CH4, is known, formation of solid carbon on the particles, c, could 

be calculated with a species balance, see expression (20). Here c is expressed as a fictitious 

gas concentration. 

 

czzz
zzzCH

CHCOCO

CHHOH
CH +++

×+×+×==
42

422
4

4224)/(               (20) 

 

The formation of solid carbon in the reactor can be expressed as a percentage of the total 

amount of carbon added with the CH4, c/ctot, see expression (21). 

 

c/ctot = c / ( zCO2 + zCO + zCH4 + c )                  (21) 

 

When evaluating the results of the fixed-bed experiments, parameters of importance 

include the conversion of CH4, γCH4, which is defined in expression (22), the CO2 yield, 

γCO2(V), which is defined in expression (23), the degree of oxidation of the gas products, Ψ(V), 
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which is defined in expression (24) and the amount of oxygen that has been removed from the 

sample, ∆ω, which is defined in expression (25).  

 

czzz
czz

COCOCH

COCO
CH +++

++=
24

2
4γ                     (22) 

 

γCO2(V) = zCO2 / ( zCH4 + zCO2 + zCO + c )                (23) 

 

Ψ(V) 4
12

2

22 ×
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COOHCO                   (24) 

 

∆ω = 1 - ω = ( mox - m ) / mox                   (25) 

 

Compared to the γCO2 in section 4, solid carbon is included in the definition of γCO2(V). This 

is because in these experiments solid carbon could easily be calculated with a species balance, 

see expression (20). Compared to the Ψ in section 4, zCH4 is not included in the definition of 

Ψ(V). Hence Ψ(V) can be said to describe the selectivity to partial oxidation reactions, 

independent of the conversion of CH4. 

 

5.5 Results of experiments with LaxSr1─xFeyCo1─yO3─δ perovskites 

La0.5Sr0.5Fe0.5Co0.5O3─δ was found to have properties that make it potentially well suited for 

chemical-looping combustion applications. There was high conversion of CH4 into H2O and 

CO2 in the beginning of each reduction period, see Figure 22. When ∆ω was in the order of 

2%, the conversion of CH4 decreased rapidly and the reduction produced H2O, CO2 and minor 

amounts of H2 and CO. When ∆ω reached about 6%, CH4 started to decompose into H2 and 

solid carbon. La0.5Sr0.5Fe0.5Co0.5O3─δ responded well to increased CH4 flow. The conversion 

of CH4 remained high and dω/dt for the chemical-looping combustion period was found to be 

approximately proportional to the CH4 flow for flows up to 21 ml/min. The tenth reduction 

cycle was about as good as the two first. Following the experiments, the sample was 

examined with XRD and it was found that it had maintained its perovskite structure. 
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Figure 22. Reduction of 

La0.5Sr0.5Fe0.5Co0.5O3─δ with 9 ml/min CH4, 

second cycle. 

Figure 23. Reduction of La0.8Sr0.2FeO3─δ with 

9 ml/min CH4, second cycle. 

 

For the perovskites that did not contain Co, the reduction could also be divided into three 

distinct periods. First there was a combustion period, where part of the CH4 was oxidized to 

H2O and CO2. For LaFeO3─δ this period was very short, while it was more pronounced for 

La0.8Sr0.2FeO3─δ, and even more so for La0.5Sr0.5FeO3─δ. Following this was a period of partial 

oxidation where CH4 was converted mostly into CO and H2. The CH4 conversion improved as 

more O2 was drained from the sample. Finally, CH4 started to decompose into H2 and solid 

carbon. After the experiments the used samples were examined with XRD, and it could be 

concluded that all materials had maintained a perovskite structure and that there was no sign 

of decomposition into metals or metal oxides. An example of a reduction curve for 

La0.8Sr0.2FeO3─δ can be found in Figure 23.  

In Figure 24, γCH4 has been plotted as a function of Ψ(V), and in Figure 25, γCO2(V) has been 

plotted as a function of ∆ω, for the examined perovskites. 
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Figure 24. γCH4 as a function of Ψ(V) for 

examined perovskites, for periods where no 

carbon was formed. The data is for the third 

reduction cycle and the symbols correspond 

to: ( ) La0.5Sr0.5Fe0.5Co0.5O3─δ, ( ) 

LaFeO3─δ, ( ) La0.8Sr0.2FeO3─δ, ( ) 

La0.5Sr0.5FeO3─δ. 

Figure 25. γCO2(V) as a function of ∆ω for 

examined perovskites, for periods where no 

carbon was formed. The data is for the third 

reduction cycle and the symbols correspond 

to: ( ) La0.5Sr0.5Fe0.5Co0.5O3─δ, ( ) 

LaFeO3─δ, ( ) La0.8Sr0.2FeO3─δ, ( ) 

La0.5Sr0.5FeO3─δ. 

 

In Figure 24 and Figure 25 it can be seen that none of the LaxSr1─xFeO3─δ perovskites 

provide high selectivity towards CO2 and H2O during reduction. What makes these materials 

interesting is the second period of the reduction where partial oxidation of the fuel with very 

high selectivity towards H2 and CO occurred. In Figure 24 it can be seen that all examined 

LaxSr1─xFeO3─δ perovskites reached Ψ(V) well below 0.35 with high conversion of CH4 and 

with no carbon formation, so these materials could be interesting for chemical-looping 

reforming applications.  

Of the perovskites, La0.5Sr0.5Fe0.5Co0.5O3─δ and La0.5Sr0.5FeO3─δ provided the most stable 

results. For these two materials, the tenth reduction cycle was similar to the first. For 

LaFeO3─δ and to a lesser extent La0.8Sr0.2FeO3─δ, the performance declined as a function of 

the number of reduction cycles and the CH4 flow. The period with good selectivity towards 

H2 and CO became shorter and carbon formation occurred earlier in the reduction period. The 

reason for this could have been due to deactivation of the material by solid carbon. It could 

also have been an effect of agglomerations. The perovskite particles stuck to each other and 

formed a cake following reduction and oxidation. This could be observed when the particle 
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sample was to be removed. When the reactor was turned upside-down the perovskites did not 

just fall out of the reactor, but some mechanical force was necessary. Typically the majority 

of the particles in the used sample were found in a cake of agglomerated particles. The cake 

was quite hard and did not break up when shaken in a glass jar, but it could easily be pierced 

with a spoon. The agglomeration could have resulted in reduced effective surface area of the 

particles, and perhaps in formation of channels through the sample bed that could reduce the 

amount of active oxygen-carrier material.  

 

5.6 Results of experiments with NiO- and Fe2O3-based samples 

The oxygen carrier N6AM1400 was found to be very reactive with CH4, but also 

propagated early formation of solid carbon. This is most likely an effect of the catalytic 

properties of metallic Ni in combination with lack of mixing in the fixed-bed reactor. Because 

of the severe carbon formation, the interpretation of the experiments conducted with only 

N6AM1400 as oxygen carrier is uncertain. In connection with this, it should be mentioned 

that in a comparison of the oxygen carrier N6AM1400 with N4AN1600, it was found that the 

former had lesser tendency of carbon formation [65] while the latter has been used 

successfully in operation in 10 kW CLC combustion without any detectable leakage of carbon 

from fuel to air reactor [39].  

Three different oxygen-carrier samples based on F4AM1100 were evaluated, pure 

F4AM1100 and the same material with 1% and 10% N6AM1400 respectively. Reduction of 

Fe2O3 takes place in 3 steps. Firstly, Fe2O3 is reduced to Fe3O4. This is the desired reaction for 

chemical-looping combustion applications. If the reduction proceeds further, FeO and finally 

metallic Fe are obtained. These reduction steps can not be used for chemical-looping 

combustion since there are thermodynamical constraints that limit the conversion of CH4 to 

CO2 and H2O. They may be useful for chemical-looping reforming applications though.  

F4AM1100 with or without added N6AM1400 was found to have properties that make it 

interesting both for chemical-looping combustion and chemical-looping reforming. Initially, 

when Fe2O3 was reduced to Fe3O4, there was high conversion of CH4 into CO2 and H2O. 

Later during the reduction there was a period with decent selectivity towards CO and H2, 

which possibly could be utilized for chemical-looping reforming. See Figure 26 for an 

example of a reduction curve for F4AM1100 with 1% N6AM1400, which describes a 

principal appearance of the other reduction curves involving F4AM1100 as well. In Figure 27, 

γCH4 has been plotted as a function of Ψ(V). In Figure 28, γCO2(V) has been plotted as a function 

of ∆ω.  
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Figure 26. Reduction of 0.99 g 

F4AM1100 and 0.01 g 

N6AM1400 with 15 ml/min 

CH4, first cycle. 

Figure 27. γCH4 as a function 

of Ψ(V), for periods with no 

carbon formation. The data is 

for the third reduction cycle 

and the symbols correspond 

to: ( ) Fe100, ( ) Fe99Ni1, 

( ) Fe90Ni10, ( ) Ni100. 

Figure 28. γCO2(V) as a function 

of ∆ω, for periods with no 

carbon formation. The data is 

for the third reduction cycle 

and the symbols correspond 

to: ( ) Fe100, ( ) Fe99Ni1, 

( ) Fe90Ni10, ( ) Ni100. 

 

In Figure 27, it can be seen that adding 1% NiO to the sample increased both reactivity and 

selectivity towards CO and H2 greatly in this period. Ψ(V) could be 0.35 or lower, and dω/dt 

was more than twice as high compared to the LaxSr1─xFeO3─δ perovskites. 

All samples that contained F4AM1100 changed properties following the first reduction 

cycle. The reactivity increased and the amount of available oxygen, ∆ω, seemingly decreased. 

The changes could be an effect of changes in the surface and pore structure of the materials, 

following the first redox cycle. Unlike some of the perovskite particles the iron based samples 

did not form any kind of hard agglomerations. 

 

5.7 Results of experiments with Mn3O4-based samples 

Three different oxygen-carrier samples based on M4MZ1150 were evaluated, pure 

M4MZ1150 and the same material mixed with 3% and 10% N6AM1400 respectively. During 

operation, Mn3O4 is reduced to MnO. Under the conditions used, further reduction to metallic 

Mn should not be possible from a thermodynamic point of view. While oxidation to Mn2O3 in 

the air reactor is thermodynamically possible, this reaction is not believed to happen to any 

larger extent.  

All experiments performed with Mn3O4, with or without added NiO, produced similar 

results. In the beginning of each reduction period, CH4 was converted to CO2 and H2O. When 
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∆ω was in the order of 2.5-3.0%, which corresponds reasonably well to the amount of 

available oxygen in the M4MZ1150, this reaction stopped abruptly. See Figure 29 for an 

example of a reduction curve, which describes a principal appearance of the other reduction 

curves as well. In Figure 30, γCH4 has been plotted as a function of Ψ(V). In Figure 31, γCO2(V) 

has been plotted as a function of ∆ω.  
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Figure 29. Reduction of 97% 

M4MZ1150 and 3% 

N6AM1400 with 15 ml/min 

CH4, first cycle. 

Figure 30. γCH4 as a function 

of Ψ(V), for periods with no 

carbon formation. The data is 

for the third reduction cycle 

and the symbols correspond 

to: ( ) Mn100, ( ) Mn97Ni3, 

( ) Mn90Ni10. 

Figure 31. γCO2(V) as a function 

of ∆ω, for periods with no 

carbon formation. The data is 

for the third reduction cycle 

and the symbols correspond 

to: ( ) Mn100, ( ) Mn97Ni3, 

( ) Mn90Ni10. 

 

For these oxygen carriers, formation of CO and H2 was always accompanied by formation 

of carbon. So there was no indication that M4MZ1150 could be suitable for chemical-looping 

reforming applications. It could not be verified that adding NiO to the sample created any 

positive effects. As can be seen in Figures (30-31), the reactivity is very similar for all 

samples for low values of ∆ω. At least as long as ∆ω was below 2%. After this period, there 

was severe carbon formation for the samples with NiO present, while the sample without NiO 

lost reactivity so that most of the CH4 just passed right through the reactor without any 

reaction. dω/dt was in the same order of magnitude as for F4AM1100. The reactivity also 

increased considerably after the first reduction cycle, just as for the samples based on 

F4AM1100. No agglomerations were formed. 
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6 

SUMMARY AND CONCLUSIONS 

 

6.1 Summary 

The work in this thesis deals mainly with production of hydrogen using chemical-looping 

technologies. At the start of the project, only limited work had been conducted in this area, 

and there was no experimental data from continuous operation. This thesis includes both 

theoretical and experimental investigations of chemical-looping technologies, and has taken 

the concept to a new level of development. Among the major achievements within the thesis 

is the presentation of a new, highly promising technology for hydrogen production, i.e. steam 

reforming integrated with chemical-looping combustion, in addition to providing proof-of 

concept of chemical-looping autothermal reforming. The main conclusions from the work will 

be presented below.   

 

6.2 Conclusions from theoretical work 

Two different process approaches for H2 production with CO2 capture utilizing chemical-

looping technologies have been developed and examined. Steam reforming integrated with 

chemical-looping combustion means that chemical-looping combustion is used for CO2 

capture and as heat source for generation of H2 via the endothermic steam reforming reaction. 

In chemical-looping autothermal reforming, a solid oxygen carrier is used as a source of 

oxygen undiluted with N2, in order to perform a partial oxidation of a fuel. The focus has been 

on thermodynamics, potential process efficiency and practical constraints, and it can be 

concluded that both approaches seem to be technically feasible and have potential to provide 

important advantages compared to conventional technologies. 

Chemical-looping autothermal reforming could be useful for production of H2, for 

production of synthesis gas or for cogeneration of H2 and power. H2O or CO2 can be added to 

the fuel in order to hamper formation of solid carbon in the fuel reactor, to obtain a thermo-

neutral process or to alter the proportions between H2 and CO in the synthesis gas produced. 

If CO2 capture is desired, a separate gas separation step, such as amine absorption, is required. 

For chemical-looping autothermal reforming at atmospheric pressure, integration with a 

steam cycle or other nearby industrial processes would be favourable. For such a process, the 
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reformer efficiency could be in the order of 73-74%, including CO2 capture, CO2 compression 

and H2 compression to 20 bar. 

Pressurized chemical-looping autothermal reforming has better potential. Here integration 

with a gas turbine would be beneficial, or there would be a considerable energy penalty for air 

compression. The reformer efficiency could be in the order of 81%, including CO2 capture 

and CO2 compression. The main reasons why pressurized chemical-looping reforming has 

higher overall efficiency than the alternative operating at atmospheric pressure is that it 

reduces the energy penalty for compression of H2. It would also reduce equipment size and 

make it convenient to use a weaker absorbing solvent for CO2 capture. The pressurized 

process involves more complex technology, however. A reactor temperature over 1000ºC is 

needed due to less favourable thermodynamics. Further, dust and elutriated particles from the 

oxygen carrier could possibly be harmful for the gas turbine. It shall also be noted that 

pressurized circulating fluidized beds are at present not widely used technology.  

Steam reforming integrated with chemical-looping combustion is a quite different process 

concept, which could be useful for production of H2 with high purity. The process scheme is 

similar to conventional steam reforming, but with a chemical-looping combustion reactor 

replacing the steam reformer furnace. A fluidized-bed heat exchanger is used to provide heat 

for the endothermic steam reforming reactions, and chemical-looping combustion provides 

inherent CO2 capture. Pressure-swing adsorption is used for H2 purification. Chemical-

looping steam reforming has some very attractive characteristics. Reactor dimensions, particle 

flows, gas flows, pressure drops, heat transfer operations and temperature levels all seem 

reasonable. Compared to conventional steam reforming, it would provide 100% CO2 capture, 

make it possible to increase H2 production at the expense of export steam and eliminate 

formation of thermal NOX in the reformer furnace. The reformer efficiency could be in the 

order of 80-82%, including CO2 capture and CO2 compression. The reforming reactions take 

place at elevated pressure, while the chemical-looping combustion takes place at atmospheric 

pressure. 

The expected efficiency for H2 production with 85% CO2 capture using conventional 

technology is in the order of 73% [27, 30, 79]. Pressurized chemical-looping autothermal 

reforming and chemical-looping steam reforming have potential to achieve considerably 

higher efficiency than this. Chemical-looping steam reforming also has potential to achieve 

nearly 100% CO2 capture. So while the examined process concepts involve some 

technological challenges, they definitely deserve to be studied further. 
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6.3 Conclusions from experiments in circulation fluidized-bed reactor 

The general conclusion from of the experiments in circulation fluidized-bed reactor is that 

chemical-looping reforming is practically feasible. Paper III and Paper IV include over 160 

hours of continuously operating chemical-looping reforming experiments in small circulating 

fluidized-bed reactors using 4 different nickel-based oxygen carrier materials. N2AM1400, 

Ni18-αAl and Ni21-γAl were examined in Paper IV, while N6AM1400 was examined in 

Paper III. The reactor has been operated at atmospheric pressure and at temperatures in the 

range of 800-950°C. Natural gas has been used as fuel. The conversion of CH4 into products 

was 96-100%, depending on temperature, oxygen carrier and experimental conditions. 

Typically, there was no measurable CH4 in the outlet gas if the fuel reactor temperature was 

930ºC or above. The gas composition after the fuel reactor was reasonably close to 

thermodynamical equilibrium. Operating the reactor at the desired process parameters of 

TFR=950ºC and Ψ=0.30-0.35 with 30% steam added to the natural gas was possible with all of 

the three oxygen-carrier materials that were tested in Paper IV. N6AM1400, which was 

examined in Paper III, also worked fine but was not tested at as low air factors. It was 

possible to substitute the steam for CO2 and still have a smooth running process with no or 

very small formation of solid carbon. This verifies that chemical-looping reforming is a 

feasible concept for production of synthesis gas and H2. Without addition of H2O or CO2 to 

the fuel, there was formation of solid carbon on all examined oxygen carriers. This was 

especially true for the impregnated particles Ni21-γAl and Ni18-αAl. 

About 40 hours of chemical-looping combustion have also been conducted. For chemical-

looping combustion experiments, there was no or barely measurable amounts of CH4 in the 

fuel reactor gas at any temperature in the examined span of 800-950ºC. Ni21-γAl provided 

poor selectivity towards CO2 and is probably not suitable for chemical-looping combustion. 

N2AM1400 was slightly better, but the results were highly sensitive to the temperature in the 

fuel reactor. Ni18-αAl initially provided excellent results, but after a few hours of operation 

the selectivity towards CO2 had declined significantly. Ni21-γAl and Ni18-αAl propagated 

carbon formation in the fuel reactor, unless some H2O or CO2 was added to the fuel. All three 

oxygen carriers that were examined in Paper IV provided low γCO2 compared to N6AM1400, 

which have been extensively examined for chemical-looping combustion by Johansson et al 

[41, 42, 58]. The NiO content of N6AM1400 is much higher compared to those oxygen 

carriers though.  

N2AM1400 and Ni18-αAl seem to have retained their physical structure well over the 

course of the experiments. Ni21-γAl displayed a large reduction in porosity, while 
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N6AM1400 formed soft lumps in the fuel reactor. Both these oxygen carriers remained highly 

reactive though. No changes in the chemical-structure could be verified for any of the oxygen 

carriers examined. 

 

6.4 Conclusions from experiments in fixed-bed batch reactor 

 It was shown that reduction of LaxSr1─xFeO3─δ perovskites can provide high selectivity 

towards CO and H2 without formation of solid carbon. It was possible to produce gas with 

Ψ(V) lower than 0.30 without carbon formation, which should be appropriate for most 

chemical-looping reforming applications. By contrast, La0.5Sr0.5Fe0.5Co0.5O3─δ had properties 

that make it feasible for chemical-looping combustion applications. It can be concluded that 

LaxSr1─xFeyCo1─yO3─δ perovskites has some interesting properties, and might be useful as 

oxygen-carrier materials. 

When used in a fixed-bed reactor, N6AM1400 was found to propagate early formation of 

solid carbon, likely due to the catalytic properties of metallic Ni. The particles composed of 

Fe2O3 and MgAl2O4, F4AM1100, was found to have properties that could be useful both for 

chemical-looping combustion and chemical-looping reforming either in pure form or 

combined with a nickel-based oxygen carrier. Initially there was high conversion of CH4 into 

CO2 and H2. This was most likely the reaction when Fe2O3 was reduced to Fe3O4. Later 

during the reduction there was a period with good selectivity towards CO and H2 that could be 

utilized for chemical-looping reforming. Here adding 1% N6AM1400 to the sample increased 

both reactivity and selectivity towards CO and H2 greatly. Ψ(V) could be 0.35 or lower. 

The oxygen carrier based on Mn3O4, i.e. M4MZ1150 was found to be suitable only for 

chemical-looping combustion applications, alone or as a mixed oxide with NiO. 
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7 
NOTATIONS 

 

7.1 Abbreviations, symbols and subscripts 

ABS         Absorption 

AC        Air compressor 

ar         Chemical-looping air reactor 

AR        Chemical-looping air reactor 

c         Solid carbon 

c/ctot        Degree of carbon formation 

cc         Complete combustion 

CLC        Chemical-looping combustion 

CLR        Chemical-looping reforming 

CLR(a)       Chemical-looping autothermal reforming 

CLR(s)       Chemical-looping steam reforming, here referred to as SR/CLC 

CnHm        Generic hydrocarbon fuel 

COMB       Combustor 

COMP        Compressor 

COND       Condenser 

CSIC  Consejo superior de investigaciones científias 

CSS        Carbon capture and storage 

dω/dt        Rate of mass conversion 

E          Power surplus/demand 

EOR        Enhanced Oil Recovery 

F         Flow 

fm         Fuel mix 

fr          Chemical-looping fuel reactor 

FR        Chemical-looping fuel reactor 

GT        Gas turbine 

H         Heat surplus/demand 

Hi         Lower heating value 
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(H/C)        Hydrogen to carbon ratio 

HTS        High temperature water-gas shift 

IPCC        Intergovernmental panel on climate change 

Ln         Normal litre 

LTS        Low temperature water-gas shift 

m         Mass 

MDEA   Methyldiethanolamine / absorption with MDEA solvent 

Me/MeO       Generic oxygen-carrier material, reduced/oxidezed 

MEA        Monoethanolamine / absorption with MEA solvent 

min        Minutes 

mox        Mass of completely oxidized oxygen carrier 

n          Number of moles 

ng         Natural gas 

(O/C)        Oxygen to carbon ratio 

p          Pressure/partial pressure 

PSA        Pressure swing adsorption 

REG        Regeneration of absorbing solvent 

SC        Steam cycle 

SR        Steam reforming 

SR/CLC       Steam reforming integrated with chemical-looping combustion 

T          Temperature 

syngas       Synthesis gas 

WGS        Water-gas shift 

x         Dry gas concentration 

XRD        X-ray diffraction 

y         Wet gas concentration 

z         Normalized gas concentration, excluding inert carrier gas 

ηel         Reference efficiency for power generation with H2 

ηref         Reformer efficiency 

γ         Yield 

Ψ         Oxygen ratio / degree of oxidation of gas products   

ω         Mass-based degree of reduction of an oxygen carrier   
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