


Abstract

This thesis addressed the problem of recognising and predicting lateral
driving manoeuvres in real-time based on measurements of vehicle move-
ment and position in lane. An approach for modelling the driver-vehicle sys-
tem was developed that uses a hierarchical driver model consisting of a tac-
tical and an operational level. The tactical level of the model represented the
manoeuvre intented by the driver whereas the operational level represented a
set of control behaviours used to perform different manoeuvres. The model
was applied to solve the problem of predicting driving manoeuvers based on
early signs of lane change control behaviour.

A simulator study took place in order to collect data and evaluate the pro-
posed prediction algorithm. It was shown that the algorithm on average was
able to predict lane changes before any wheels crossed the line. The predic-
tion performance was comparable to that of previous studies in the area. The
algorithm needed no individual adaptation and was computationally efficient
enough for real-time purposes.

This study took place at Volvo Technology Corporation at the department
Humans, Systems and Structures.
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Glossary and abbreviations

Table 1: Explanation of terms and abbreviations.
Term Abbreviation Explanation
Adaptive Cruise Control ACC An extension of a cruise control

system that adapts to slower traf-
fic and is able to keep a constant
time gap to slower vehicles in
front.

Forward Collision Warning FCW A driving support system able
alert the driver in situations with
imminent risk of a collision.

Automatic Emergency Brake AEB A driving support system able to
identify siutations where a colli-
sion is unavoidable and if so au-
tomatically apply the brakes.

Lane Change Support LCS A driving support system alert-
ing the driver if initiating a
lane change when other vehi-
cles are present in the blind spot
or quickly approaching from be-
hind.

Lane Departure Warning LDW A system intervening or alerting
the driver if leaving the lane un-
intentionally.

Time to Line Crossing TLC Time until the first wheel crosses
the lane marker given the current
position and movement relative
to the lane.

Electronic horizon e-horizon Database information used to-
gether with vehicle positioning
in order to extract information
about e.g. geography and infras-
tructure in a vicinity of the vehi-
cle.

4



1 Introduction

Imagine that you are situated in a helicopter right above a car driving on a road.
You have the ability to measure the speed of the vehicle accurately and you have a
perfect view of the road and traffic in the surroundings. During such circumstances,
would you be able to predict manoeuvres like changing lane, passing another car
turning etc. based on the observed behaviour?

The problem would be different if you were located inside the vehicle together
with the driver, being able to observe gestures and visual behaviour of the driver.

This report describes a method for classification and prediction of driving ma-
noeuvers in a fixed base simulator. A system is presented that, by processing signals
of vehicle data like lateral offset from the middle of the lane and speed recognizes
and predicts lateral manoeuvres such as lane changes or takeovers. Longitudinal
behaviour is discussed but not analyzed in this study.

The word prediction refers to recognizing in an early enough state of a ma-
noeuvre so that the vehicle state in terms of lane position or change rate of lane
position has not yet significally changed from that of driving without performing a
lateral manoeuvre.

The development presented in this report is based on a driving simulator en-
vironment. However, it is kept in mind that the result should be transferrable to
a real vehicle with real sensors in real traffic. Hence, no data is used that is not
possible to measure in a real vehicle and the resulting algorithm must not be too
computationally demanding to be executed on a vehicle ECU.

The report is organised as follows:

1. A background section explains the need for this investigation and the possi-
ble areas of application.

2. An approach for modelling a human–vehicle system is explained and dis-
cussed.

3. A simulator study aimed to test the approach is described.

4. Results are reported with comparison to another similar study (Pentlan and
Liu [11]).

5. Discussion and recommended future work.

6. An Annex containing some additional information about the experiment.

2 Background

In the aim towards driving support systems, safer vehicles and safer traffic, a gen-
eral desire is to be able to classify the state of the driver in different sences.

For example, in driving awareness research one would like to classify whether
the driver is tired, awake, distracted or impaired for any other reason. For example
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Pilutti and Ulsoy [12] made an experiment where the prediction error of a driver
model based on an alert driver was compared to the actual output, a large differ-
ence between model predictions and measurements were taken as evidence that the
driver was impaired. Piluttis approach is very similar to the one described in this
report. Boer [2] used steering entropy as a measure for steering performance used
as indicator of impairment. Other metrics such as mean square error of lane devi-
ation [17], standard deviation of lane position [13], number of lane exits [17] and
many others have been suggested as measures of vehicle handling performance.

Futhermore, in the development of driving support systems such as Adaptive
Cruise Control (ACC), Forward Collision Warning (FCW) or Automatic Emer-
gency Braking (AEB) it is essential to understand the driving situation in order to
avoid erroneous system behaviour such as nuisance or missed interventions. An
ACC systems requires the knowledge of which of the vehicles in front are in the
intended path of the subject vehicle and could benefit from early knowledge about
the intention of the driver.

FCW and AEB systems optimally requires knowledge about the intention of
the driver since these systems should only activate if the upcoming situation is
unintended. It is essential to have an as good as possible path prediction of the ego
vehicle in order to understand which of several forward obstacles are in the path
intended by the driver.

In Lane Change Support (LCS) systems, the driver is alerted if tending to
change lanes while there are other vehicles present in the blind spot or quickly
approaching from behind in the target lane. Today, such systems only know the in-
tention of the driver to change lane by the turn indicator which is not always used
or by the lane position or lateral velocity which are not necessarily evidence of an
intention to move into the adjecent lane.

In Lane Departure Warning (LDW) systems it is of interest to know whether a
lane departure is intentional or not, since nuisance alarms in such systems other-
wise may become very frequent in certain driving environments.

The manoeuvre recognition system, if performing well enough, has potential
of being applicable in path prediction and help providing earlier driver feedback in
dangerous lane change situations. If it is able to separate intentional lane changes
from unintentional ones, it would also be of use in lane departure warning systems.

3 Aim of this study

The goal with this study was to learn about driver modelling and driving maneou-
vre prediction by trying to reproduce the results of previous research in the area
such as the studies performed by Alex Pentland and Andrew Liu [11] and Nuria
Oliver [10]. Furthermore, the aim was to develop an algorithm able to predict lat-
eral manoeuvres with sufficiently good performance and a sufficiently low false
rate to be able to improve the driving support functions mentioned in the previous
chapter.
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4 Modelling the Driver–vehicle system

The approach used for the prediction algorithm used in this study is to compare
measurements of the vehicle state with predictions made by a set of driver models.
The set of driver models, will each give input to a vehicle model in order obtain
predictions of the vehicle state. The driver model that best predicts the next mea-
surement at each time step will be used to conclude which manoeuvre is taking
place at the moment.

Thus, as a first step, a model of the driver-vehicle system is needed. The driver
model will general, with the oportunity to assign different behaviours to it, whereas
the vehicle model will be static. The present chapter describes the overall driver-
vehicle system. The following two sections describe the driver and vehicle models
respectively.

4.1 System model

Figure 1 shows a block diagram over the system to be modelled. In the figure,
F represents the driver and G represents the vehicle. The driver model is divided
into two subsystems F1 and F2 where F2 represents a control behaviour and F1
represents a reference value fed into the rest of the system.

1F F2 G+ +

+
-

u

w

y

Figure 1: A model describing a driver–vehicle system. F1 represents the drivers intention
and gives a reference value to F2 which represents the driver at an operational
level. G is the vehicle dynamics.

A classical model such as the one illustrated in Figure 1 may be too simple to
describe human behaviour. Pentland and Liu [11] suggested a hierarchical model
where the driver is believed to use a set of different control behaviours depending
on which the intended manoeuvre is. The set of control behaviours may contain
different behaviours both with respect to F1 and F2. For example, in longitudinal
control, two control behaviours may be car following and speed keeping. In the
former case the driver is following a car at a suitable distance. In the latter case
the driver has no other vehicle in front and is rather trying to keep a suitable speed
considering the road characteristics. Even though both are control behaviours for
longitudinal control they can be expected to have different characteristics not only
in F1 but also in F2.
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Figure 2: The driver is assumed to use different control behaviours F1 and F2, jointly
denoted FO, depending on what the intended manoeuvre FT is.

Figure 2 illustrates the concept of the driving behaviour as being a composi-
tion of several control modes, each having different characteristics. The control
behaviour is chosen by the topmost unit FT ’T’ meaning ’tactical’, representing
the intention of the driver. To fulfill a driving manoeuvre, the tactical level FT of
the driver chooses a series of control behaviours F1,i and F2,i (e.g. prepare, exe-
cute, conclude) that builds up the driving manoeuvre. The control strategies F1,i
and F2,i are hereforth denoted FO, ’o’ meaning ’operational’.

This terminology derives from the Michon model [9] which is a three-level
hierarchical model for driving behaviour. In the Michon model, the topmost level
is the strategic level such as route planning. The second level is the tactical level
including decisions such as speed-keeping, which lane to use, passing the vehicle in
front or not etc. The third level of the Michon model is referred to as the operational
level and includes the physical handling of the vehicle. In the model described in
this section FT can be seen as representing the tactical level and FO the operational
level of the Michon Model.

5 Vehicle dynamic model (G)

The Vehicle dynamics are meant to resemble those of the car simulator used in this
study. The simulator is fixed base with a Volvo S80 as car mockup. The dynamics
of the simulator were developed as a master thesis work and are closer described in
[1]. However, in the present study, simple models extracted from log data are used
as approximations which are good enough for the present purposes. Since only
lateral behaviour is studied, only a steering dynamic model is created. No model
representing the brakes or driveline is made.
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5.1 Variables and coordinate system

The set of parameters used to describe the vehicle state and driver output is shown
in Table 2. The choice of variables is influenced by the set of variables measurable
in the car simulator.

Figure 3: The coordinate system used in describing the vehicle is illustrated in the figure.
Table 2 below explains the variables in more detail.
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Table 2: System variables used to represent the vehicle state.
Parameter Description
x, y, z Vehicle based coordinate system [m]
v Vehicle velocity in x direction (i.e. dx/dt) [m/s]
L Lane position [m], distance from the centre of the

current lane in perpendicular direction to the cen-
ter of gravity of the vehicle. (Discontinous at lane
change since the reference point moves to the cen-
tre of the new lane.)

δ Angle of vehicle relative to the tangent of the
road. [rad]

Θ Steering wheel angle [rad]
ω Yaw rate i.e. angular speed around the z axis

[rad/s]
ˆ Denotes estimation of a parameter

5.2 Steering dynamics

The goal with the steering model is to create a model good enough for calculat-
ing the lane position L given the steering angle Θ. The exact steering dynamics
are rather complicated since they depend on chassi and tyre details. The model
presented here is a linear simplification that appears to be good enough for our
purposes.

5.2.1 Estimation of yaw rate

Theoretically, the angular velocity ω (yaw rate) around a vertical axes, is dependent
on the front wheel angle and the velocity. For our approximation we will assume
that manoeuvres are moderate enough so that chassi dependent nonlinearities such
as tire slip can be neglected.

We are thus searching a relation on the form

ω = f(v, Θ) (1)

If one would drive with constant steering wheel angle, a lap would be com-
pleted in twice the time at twice the speed, so the angular velocity is clearly lin-
early dependent on velocity. Assuming that also the relation between wheel angle
and steering wheel angle is linear we can guess that the relation we are looking for
can be written

ω = vg(Θ) (2)

where g is the function relating yaw rate to steering wheel angle. To reveal this
function we plot yaw rate divided by speed against steering wheel angle from a
simulator drive, see Figure 4. Shown in the plot there is also a least square lin-
ear curve fit. The figure indicates that the the function g(Θ) is linear but also that
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some other factor is present since the sample dots are a bit spread a little bit around
the line. The spread data points may either represent noise or a higher order de-
pendence. Since there is little noise in the simulator environment, the latter seems
more reasonable.
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Figure 4: Yaw rate divided by speed plotted against steering wheel angle (dots) together
with a linear curve fit (solid line). The relation between these variables seems
to be linear although some other factor is also involved. The dotted values are
measurements from a simulator test drive.

From Figure 4 we can conclude that the function

ω̂ = GvΘ + µ (3)

where G is a constant and µ is the residual, is a reasonable first approximation to
ω.

To investigate whether a second order depedence of steering wheel angle is
involved the residual µ = ω̂−GvΘ is plotted against the time derivative of steering
wheel angle in Figure 5.
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Figure 5: Difference between calculated and measured yaw rate as a function of the time
derivative of the steering wheel angle.

Figure 5 indicates that the samples are somewhat gathered around a straight
line. Assuming a linear relationship, the following expression applies:

ω̂ − ω ≈ HΘ̇ (4)

where H is a proportinality constant that can easily be estimated via a least square
approximation.

With µ = HΘ̇ we now have a second order approximation of yaw rate accord-
ing to

ω̂ = GvΘ−HΘ̇, (5)

For evaluation v−1ω̂(v, Θ) is plotted against Θ in Figure 6.
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Figure 6: Yaw rate divided by speed calculated according to equation 5 against steering
wheel angle together with measurements from a simulator drive.

As can be seen in the figure the measurements are closely gathered around the
line obtained with our model.

5.2.2 Calculating lane position

We now have a model that describes what happens when we turn the steering wheel
of the car. We now have to relate this to the coordinate system of the road. More
specifically we want to be able to calculate the lane position L as a function of ω
and thereby as a function of Θ. The origin of L is at the center of the lane that the
vehicle is driving in. In this model we will assume that the road is straight. This
means that a steering angle of 0 yields a constant value of the angle δ between the
vehicle and the road. The road is not straight in the simulator world, but as will be
explained later on in section 7, it is indeed sufficient to assume a straight road.

In order to calculate the lateral position L from steering wheel angle, we first
need to calculate the heading angle δ. Assuming that the road is straight ω is the
time derivative of δ. Thus, delta can be computed as

δ = δ(0) +
∫ t

0
ω(t) dt (6)

or in the discrete case

δk = δ0 +
k∑

t=0

ω̃t ∆t (7)
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Suppose now that we are travelling at angle δ compared to the road. Then the
change in lane position during one timestep is

∆L = v∆tsinδ (8)

Lane position at time t = tk follows as the sum of the initial lane position and the
contributions at each time step up to time tk.

Lk = L0 +
k∑

n=0

∆Ltn (9)

We have now derived an expression relating lane position to yaw rate. This
expression together with Equation 5 constitutes a transfer function from steering
wheel angle to lane position, thus providing the representation of the vehicle G in
Figure 2.

5.2.3 Evaluation of steering dynamics

The figure below shows a comparison of measured lane position and lane position
computed by the model G with measured steering wheel angle and speed as input.

Figure 7: Comparison between model and the measurement. The model seem to be correct
apart from a drifting error that grows along with time. The drift is probably due
to road curvature not taken into account in the model.
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The model follows the measurements reasonably well in the beginning. Later it
drifts away due to an increasing error in the estimation of δ. This is due to the
fact that there is some curvature on the road that we have disregarded from at the
moment. However, the model will only be used to estimate the lane position small
∆T ahead, so the system will not be sensitive to such drift. In addition, as will be
explained in the next chapter, the vehicle model will take the steering wheel of the
driver simulation as input, not that of the real driver as in the comparison above.
The simulated driver will be modelled as driving on a road with no curvature. Thus,
road curvature can be disregarded from in this model.

At the right part of the figure there is a discontinuity in the measurements. This
kind of discontinuity is a result of a lane change, since the origin of lane position
L jumps from the previous lane into the new lane.

6 Driver dynamic model (F)

In this section, a model F of the driver is introduced. The model will be used to
produce a steering wheel angle as input to the vehicle model given input variables
such as lane position and vehicle speed. The goal with the driver modelling is to
be able to resemble driver behaviour well enough to be able to identify different
behaviour.

6.1 Driver modelling

The issue of modelling human vehicle lateral control has been widely studied be-
fore [12], [5], [7], [6], [11], [10]. There are several challenges with modelling a
persons actions as a control system. A traditional control system is deterministic
given the input signal and has certain behaviours that can be mathematically de-
scribed. A person’s actions, on the other hand, are subject to complex judgement
based on many inputs. In addition, there is a great deal of individuality in a control
task such as driving. Given exactly the same task to several drivers, they will solve
the task in different ways.

One problem for example discussed in [12] is that a classic controller is an
optimiser whereas a real driver rather acts like a satisficer e.g. a control system
wants to stay exactly at a reference value given by some external unit. A real driver
on the other hand tries to stay within a satisfying region of road. The region of
satisfaction varies depending on surrounding traffic, environment etc. A human
driver typically chooses a trajectory based on risk assessment, while taking also
comfort and efficiency into account. As an example of risk consideration, if there
is a large field of grass to the right of the road and there is busy traffic in the lane to
the left the reference will be biased towards the field of grass. The reference value
of a drivers lateral control can be seen as a corridor with time dependent width and
center point (see [4]).

Human drivers tend to steer with soft movements in order to drive comfortably.
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Typically, hard braking, hasty steering wheel movements or high values of yaw rate
are avoided. Since yaw rate is proportional to the steering wheel angle multiplied
with vehicle velocity, one could expect that the amplitude of steering is strongly
related to speed.

May authors e.g. [16] have suggested predictive models for lateral control i.e.
assuming that the driver is able to predict the vehicle state an amount of time ahead
and base corrective actions on the predicted state of the vehicle rather than the
current state.

Moreover, as part of the satisficer behaviour, a driver does not continuously
evaluate the need for a corrective action. As seen in Figure 8 the steering wheel
angle is typically piecewise constant with steering wheel reversals in between.
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Figure 8: The image shows a part of the steering wheel angle log from one of the test
subjects in the study.

In this study we need an as simple as possible dynamic model for lateral control
which captures as much as possible of the human behaviour. The model described
in the following section has proven to be a good candidate for such a model.

6.1.1 Operational driver model (FO)

This section describes the driver model used at the operational level, i.e. the multi-
ple control behaviours FOi introduced in chapter 4.1. When trying to find a suitable
dynamic model for steering behaviour we are looking for a function relating the
steering wheel angle to the vehicle state. Assuming again that the road is straight
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the most important inputs can be assumed to be the lane position, the angle to the
road tangent and the vehicle velocity.

Θ = fsteer(L, δ, v) (10)

Assuming that, according to the predictive behaviour discussed above, the driver
uses only a predicted state Lpred of the vehicle lane position rather than the current
state, the following applies:

Θ = fsteer(Lpred) (11)

where Lpred is the predicted lane position at time t+∆Tpred based on the assump-
tion that the angle δ remains constant. As illustrated in Figure 9, this is the lateral
component of the motion vector yielding Equation 12, where the expression

Figure 9: The driver model uses a prediction of lane position at ∆T ahead.

Lpred(t) = L(t) + vsinδ∆Tpred (12)

gives the predicted lane position ∆Tpred seconds ahead. The simplest possible con-
troller would be one that steers to minimize the gap between the reference value
Lref and the predicted lane position.

Θ(t) = −Gsteer(Lpred(t)− Lref ) (13)

Gsteer in the equation is the controller gain.
Referring to the discussion in chapter 6.1, it is desirable that the model act

as a satisficer. However, the model described by Equation 13 is, strictly speaking,
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an optimiser. Instead of letting the model control the steering wheel angle on the
error (Lpred(t)−Lref ) directly, a deadband or another kind of cost function could
be used in order to give the model a weaker response to small lateral deviations.
However, the model of Eqution 13 seemed to perform well for the present scope.
In fact, the model still captures the satisficer behaviour to some extent as a result
of its predictive behaviour. It may be satisfied with a small lateral offset as long as
it is heading towards the road center.
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Figure 10: The figure shows the result of a step response applied to the suggested lateral
control model. The step response can be seen as a simulation of a lane change
i.e. the reference value suddenly changes from the source lane to the target lane.
The result of the simulation is compared to a lane change from log data from
the study.

Figure 10 illustrates a simulation where the above model is subject to a step in
reference value, corresponding to a lange change manoeuvre. The steering wheel
angle is then fed into the vehicle model described in section 5.2. The resulting pro-
file of Lane position seem to behave rather similar to real lane change manoeuvres
recorded at the the experiment in terms of rise time and lateral velocity during the
lane change movement.

The results presented later on in this report shows that the model is able to
describe lane change behaviour accurately enough for the present purposes.

The lane change from log data in Figure 10 shows an overshoot when centering
in the new line. Such an overshoot is present in some, but not all lane changes
logged in the experiment. The overshoot may suggest that the driver’s ability to

18



correctly predict lane position is a bit degraded during the lane change, maybe due
to a rather high lateral velocity or because the driver is paying more attention to
surrounding traffic and mirrors and less on the vehicle handling.

6.2 Tactical driver model (FT )

On the tactical level, the driver makes decisions such as which lane to use, whether
to exit or remain on the same road, whether to pass the vehicle in front or not etc.
Such decisions are based on factors such as road geometry, other vehicles or ob-
stacles in the path, destination and so on. In this experiment such factors are not
observable, so the only model we can make on the tactical behaviour is a prob-
abilistic one, considering the overall probability of lateral manoeuvres. We will
assume that the intention of the driver at all times is one of a set of manoeuvres
M = {m1, m2, . . . , mn}. The transition probabilities between these manoeuvres
are defined by the matrix tpij where:

tpij = Prob(FT (t) = mj |FT (t− 1) = mi) (14)

In other words the tp11 is the probability that the driver will remain execut-
ing manoeuvre 1 whereas tp12 is the probability that the driver will switch from
manoeuvre 1 to manoeuvre 2. In case infrastructural information is available tpij

could be made dynamically adaptive to constraints in the surroundings. E.g. if there
is only one lane in each direction, the probability of switching into a lane change
would be zero. In that case any indication of movement outside the lane would
rather indicate a takeover, a curve-cutting or an unintentional lane departure.

7 Classification of driving manoeuvres

The manoeuvre classification task is to estimate FT (t) i.e. the driving manoeu-
vre that the driver is performing at time t. In this section, a method for estimating
FT (t) is described. The input to the method is the sequence of control behaviours
that best explains the measurement data. The task of the classification is then to find
the sequence of manoeuvres that best explains the sequence of control behaviours.
It could be the case that a certain control behaviour corresponds directly to a ma-
noeuvre, but it could also be the case that a manoeuvre is built up of several control
behaviours applied in a certain order.

7.1 Estimating the operational behaviour

The observable data is the vehicle state vector x(t) = {L(t), δ(t), v(t), Θ(t)}.
Given the state vector we will let our model FO simulate the driver control be-
haviour one timestep ahead, computing the estimations x̂i(t + ∆t), i = 1 . . . n
using each of the control behaviours in the set B = {b1, b2, . . . , bn}. When the
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measurement of x(t+∆t) is available the estimations x̂i are compared to the mea-
surement and the control behaviour providing the best prediction is chosen as an
estimation of FO(t).

F̂O(t) = bi, (15)

where
i = argminj(|x̂j(t + ∆Tpred)− x(t + ∆t)|) (16)

Since only the lateral behaviour is studied no prediction of v(t) is made by the
model. The vehicle angle δ(t) relative to the road is computed from the L(t) and
v(t), so comparing the model prediction of δ(t) with the measurement would be
equivalent to comparing the lane position estimate with the measurement.

The steering angle Θ(t) is predicted by the driver model, but the estimate is
not used to evaluate the performance of the model. The reason is that the model
is not accurate enough in predicting the steering wheel angle which, as discussed
previously, is very individual and depends on many inputs and considerations made
by the driver. In addition the human steering wheel angle depends on the road
curvature whereas the model’s steering wheel angle don’t consider road curvature.
The result of the steering wheel angle in terms of lane position, on the other hand,
turns out to contain accurate clues about the driver intention. Pentland & Liu [11]
made similar observations and concluded that the steering wheel angle chosen by
the driver is subject to microevents not easily captured by a model. Also they chose
to evaluate only the ability of the models to predict lane position.

In other words we only compare the estimation of L(t) with measurements in
order to evalautet the different control behaviours. Equation 16 is thus reduced as
shown in Equation 17

i = argminj(|L̂j(t + ∆Tpred)− L(t + ∆t)|) (17)

To summarize, the control behaviour b that provides the most accurate predic-
tion of the future vehicle lane position is assumed to be the one best describing the
current control behaviour of the driver.

7.2 Estimating the tactical bahviour

Hidden Markov Models (HMM) [15] provide means for modelling a system where
an unknown and unobservable underlying state gives rise to a series of observable
entities.

A first order HMM assumes that the hidden state X at time t only depends
on the previous state at time t − ∆t, whereas in an n’th order HMM the state X
depends on the state at times t−∆t, t− 2∆t, ... ,t− n∆t.

A first order HMM uses transition probabilities tpij for the event that the state
Xi is followed by the state Xj . The model also uses the observation probabil-
ities opkl expressing the probability of observing yk given that the hidden state
is Xl. Note that the observation probabilities are assumed time independent, i.e.

20



Prob(Y (t) = yi|Y (t−∆t) = yj) = Prob(Y (t) = yi) given that the hidden state
is the same at time t as at time t−∆t .

In the present experiment, the manoeuvre m being executed (the state of FT ) is
represented by the hidden state of the Markov model, whereas the observed control
behaviour b (the choice of Fo) is represented by the observation (see Figure 11).
In other words, a manouvre m may be executed by utilizing a series of control
behaviours b1,,bn. The manouvre is considered to be non-observable whereas the
control behaviour is considered as the observable entity of the HMM.

Figure 11: The figure illustrates the concept of hidden markov models applied to this
study. The hidden state, illustrated by a circle, represents the manoeuvre at
time mi at time ti. The squares illustrate the control behaviour bi, observed at
time ti. The observation probabilities opkl denotes the probability of observing
the control behaviour bl given that manoeuvre mk is ongoing. The transition
probabilities tpij denotes the probability that manoeuvre mi is followed by
manoeuvre mj .

Given a series of observations and the transition and observation probabili-
ties the Viterbi algorithm [18] solves the problem of finding the most probable
sequence of hidden states that could have produced the series of outputs. The
Viterbi algorithms only uses an approximation in that it only considers the most
probable path of hidden states unlike other related algorithms as for example the
forward-backward algorithm [18] that considers all possible paths. The approxi-
mation, which makes it computationally very efficient, is typically good enough
for deriving the state sequence. The Viterbi algorithm as used in this experiment is
provided as a Matlab script in Appendix A.
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In our experiment we will consider FT (t) as the hidden state and F̂O(t) as the
observation. The observation probabilities will be estimated using the experiment
data. The estimation F̂T (t) will be computed using the Viterbi algorithm, based on
the composition of the recently observed control behaviours.

Since a manouvre, according to our model, consists of the execution of differ-
ent control behaviours in a certain order, it could be argued that the HMM is insuf-
ficient in that it assumes a static distribution of observations within a state. Given
a certain manoeuvre, the observations have the same probability in the beginning
of the manouvre as at the end of the manoeuvre and independently of which ob-
servations (control behaviours) have occurred previously during the manoeuvre. A
possible extension of the HMM to take the intra-manouvre control sequence into
account would be to assign transition probabilities also to the observations as illus-
trated in Figure 12. This approach, however has not been tested in this study.

Figure 12: A possible extension of a hidden markov model considering observation tran-
sition probabilities.

8 The simulator experiment

This section describes the simulator experiment performed to develop and evaluate
the manouevre prediction algorithm. The simulator data collection is described
followed by the result section where the performance of the system is reported.
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8.1 Data collection

In order to collect data for this experiment a fixed base simulator was used. The
mockup is a Volvo S80 located in front of a 180◦screen presenting the visual sim-
ulation. The simulator did not have any graphical information in the rear view
mirrors, so the subjects were not able to check the mirrors when changing lanes.

Figure 13: The driving simulator used in the experiment.

Each subject drove a route including motorway, rural road and urban roads.
The test route was approximately 13km long and took about 10 minutes to drive.
The speed limit in the test drive was between 50-110km/h and the lane width was
either 3.1 or 3.6 meters depending on the road type. The vehicle width was 1.83m.

The test subjects were instructed to drive normally and adapt their speed in
the same way as they would in real life driving. At certain points along the road
the subjects were instructed by the test leader to perform certain manoeuvres such
as changing lanes or passing the vehicle in front. When possible, the instructions
were given well before the point were the manoeuvre was to take place, for example
”You will soon catch up with a slower vehicle, pass it when suitable” or ”Change
into the left lane when you find a good opportunity”. This way, the manoeuvres can
be expected to be more similar to those of real life driving, since the test subject
performs the usual judgements and preparing actions.

The test leader used a button to create annotation marks in the logfile to mark
the occurrance of manouevres. The annotations marked the onset of the manoeu-
vres as judged by the testleader. In other words, the annotations mark the moment
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when a human observer could identify the onset of the manoeuvre.
The drawback with such a subjective annotation is that the moment of annota-

tion may not be entirely consequent as it is up to the judgement of the test leader.
The alternative would have been to give instructions of the type ”Change to the
left lane now” and let the annotation mark the moment when the instruction were
given. This would, on the other hand, introduce a behaviour of following orders
rather than driving naturally. It was decided that the subjective annotation was the
better option.

8.1.1 Result of data collection

A total of 9 test subjects were used. The profile of the subjects is summarized in
Table 3 below. Most test subjects were below 30 with a driving experience of 5-10
years, driving typically a couple of times per week.

Table 3: Profile of test subjects.
Gender 3: female, 6: male

Age 7: below 30, 1: 30-40, 1: 50-60

Driving experience 1: less than 5 years, 6: 5-10 years, 1: 10-20 years, 1: 30-40 years

Driving frequency 4: once a week or less, 2: 2-3 times a week, 3: every day

Driving amount 5: less than 100km/week, 3: 101-200km/week, 1: 201-
300km/week

Professional driving There were no professional drivers.

Table 4 shows the number of occurrencies of each maneouvre in the log data.

Table 4: Occurrence of manoeuvres in logged data.
Type of manouevre Number of occurrencies
Left lane change 39
Right lane change 40
Motorway exits 9
Takeovers 19
Braking/stopping 40
Normal driving 83min

Data about the vehicle state was collected according to Table 5. The frequency
of the data logging was not entirely consequent but varied between approximately
30-60Hz following the update rate of the simulator.
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Table 5: Data logged during the test drives.
Signal description unit Symbol in this report
Time s t
Road type enum -
Vehicel velocity km/h v
Acceleration m/s2 a
Yaw rate s−1 ω
Brake pedal position 0− 1 -
Accelerator pedal position 0− 1 -
Steering angle ◦ Θ
Lane position m L
Trip distance m -
Speed limit km/h -
Heading ◦ -
Position in world coordinates (X,Y,Z) m -
Road curve radius m R
Manoeuvre annotations 0/1 -

It was discovered that the lane position data suffered from a defect. As illus-
trated in Figure 14 a kind of waveform seem to be overloaded on top of the signal.
This defect is caused by the fact that curved road segments in the simulator are
in fact built up by peices of straight road segments. Using this knowledge, it was
possible to remove the waveform almost entirely from the data. The procedure of
doing so is explained in further detail in B.
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Figure 14: An example of lane position data where the overloaded waveform is visible.

In addition, there are certain parts of the test route at which the lane position
data is of generally lower quality both in terms of noise and of the presence of dis-
continuities. These road parts are complicated road structures such as roundabouts
and urban road segments with crossings. In such situations a real lane tracking
sensor would normally not track the lanes in its normal manner, and it would most
probably indicate that its data is of low confidence. A similar approach will be used
in the analysis of the collected data.

8.2 Analysis

In this chapter, the results of applying the beforementioned manoeuvre prediction
algorithm is reported. Results are listed for different versions of the algorithm and
the influence of different parameter settings on the performance is investigated.

8.2.1 Data preparation

This study focused solely on lateral manoeuvres. The only manoeuvres to identify
were left and right lane changes. The annotation data from the logging was mod-
ified in order to fit this purpose. Moreover, the areas mentioned in chapter 8.1.1
where the lane tracking signal is of low confidence was marked so that the algo-
rithm may disregard from such data.

The algorithm also disregarded from data where the vehicle velocity was below
a certain threshold. The reason is that the driver model seemed to perform badly at
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very low speeds. This may not be too surprising since the model was derived with
a lane keeping task in mind typical for motorway and rural road driving where
speeds are high. At very low speeds, other objectives may apply, and the predictive
behaviour may not be valid as it seem to be in higher speeds. Telling from inspec-
tion of the logged data, the model seemed to perform acceptably well at speeds
above 10m/s. Disregarding from lower speeds than that seems like an okay lim-
itation to introduce, since most of the test route was driven at higher speeds than
that.

To summarize, the following modifications were made to the annotation signal:

1. Overtaking manoeuvres were denoted as a lane change to the left. The lane
change were considered to take place from the start anntotation until the first
local maximum of lane position after entering the other lane (see Figure 15).

2. Motorway exits were denoted as right lane changes.

3. Any other manoeuvres apart from left and right lane changes were removed.

4. Manoeuvres overlapping with an area of data that was to be disregarded from
either because of poor data quality or low speed were removed completely.

In fact, no manoeuvres overlapped with the regions of low data quality, but
a few coincided with low speed. If the overlap of a manoeuvre with a low speed
section was only partial, that manoeuvre was removed even if correctly recognized
by the algorithm. This was done as a precaution not to pollute the results with
situations not representable for the algorithm.
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Figure 15: An example of how a takeover is changed into a left lane change with respect
to the analysis.

When these modifications had been done, the amount of manoeuvres presented
in Table 6 ware left to analyze.

Table 6: Occurrence of manoeuvres in logged data after modification.
Type of manouevre Number of occurrencies
Left lane change 49
Right lane change 47
Normal driving 83minutes

8.2.2 Computation of evaluation metrics

The analysis of different configurations of the system includes calculating a set of
parameters indicative to the performance of the system. The indicators used in the
evaluation should capture

• the ability of the system to correctly detect driving manoeuvres

• the ability to predict manoeuvres as early as possible

• the amount of false classification made by the system both in terms of num-
ber of occurrencies and length of each occurrence.
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Since the episodes of normal driving are considerably longer than those of ma-
noeuvres, a terminology that is somewhat adapted to the present study is needed.
Figure 16 illustrates possible conditions of true and false classification of the present
experiment. Theoretically, there is another possible false classification in the case
that a manoeuvre is classified by the system as another manoeuvre than the true
one. It turned out that this never happens on the data logged in this experiment, so
that failure mode can be disregarded from.

Figure 16: Possible true and false classification of the experiment.

The indicators listed in Table 7 were used for evaluating the performance of
the system.

Table 7: The table lists the parameters used to evaluate the system.
Evaluation metric Definition Unit
Positive Hit Rate (PHR) The proportion of manoeuvres

correctly classified
(

TP
TP+FP

) %

Mean Lane position at detection (LD) The mean lane offset (L) at the
moment when the manoeuvre is
correctly classified

m

Mean Time to line crossing at detection (TLCD) The mean amount of time from
correct classification until the
wheels cross the line

s

False Occurencies (FO) The number of occurrences of
false classification (FN + FP )

-

Time of False Classification (TFC) The percentage of time where a
false classification (FN or FP) is
made

(
tFP +tFN

ttotal

)
%
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The goal of the prediction algorithm was to detect driving manoeuvres cor-
rectly as early as possible with the lowest possible amount of false classification.
Early detection means low values of LD and high values of TLCD.

The median of lane position and TLC at detection was also computed but is
only reported when there is a significant difference between the mean and median
values, indicating that outliers have corrupted the mean value.

When calculating the results, the leaving-one-out method [19] was used, i.e.
any system parameters estimated based on the log data is estimated using data
from all the subjects except the one to be evaluated. The parameter estimation and
the evaluation is repeated until all the subjects have been used for evaluation. The
choice of using this method rather than using a part of the test route for training and
the rest for evaluation has three reasons. The test route was poorly designed for the
latter method since the road type changes several times. It would have been difficult
to find a training set representative for the entire drive. It is also of particular interest
to evaluate the ability of the system to function on unseen drivers, reason being
that it is desirable for an in-vehicle system, particularily a safety related system,
not to be dynamically adaptive. In addition, the leaving-one-out method gives the
opportunity to use all data for both training and evaluation, which is good when the
total amount of data is relatively small.

The process of computing the evaluation metrics goes as follows:

1. Apply the set of control behaviours on the log data for all subjects, store the
result in terms of the best performing predictor at each time step FO(t).

2. Estimate the HMM parameters aij and bkl based on data from all but one
subjects.

3. Estimate the manoeuvres in terms of the hidden state FT (t) using the Viterbi
algorithm for the test subject not included in the estimation of HMM param-
eters.

4. Calculate the evaluation parameters for this subject.

5. Repeat steps 2-4 for all subjects.

6. Calculate the overall results.

The estimation of aij is simply done by counting the occurrences of transtitions
from maneouvre i to manoeuvre j according to the annotation signal. Similarily,
bkl is estimated by counting the occurrences of the observable state FO(t) given
which maneouvre is going on according to the annotation signal. The matrices are
normalized so that so that

∑

j

tpij = 1 and
∑

k

opkl = 1 respectively.
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8.3 Analysing parameter settings

In this section the relation between parameter settings of the system and the per-
formance parameters are analysed. The system settings to be analysed are listed in
Table 8.

Table 8: The most important system parameters whos effect is analysed below in this sec-
tion.

System parameter Definition
∆Tpred The assumed driver prediction time used in Equa-

tion 12
∆t The timestep used when evaulating the different

control behaviours in Equation 17

Assuming that the system parameters are mutually independent, they will be
varied separately and their respective relation to performance and false classifica-
tion will be studied.

8.3.1 Varying driver prediction time ∆Tpred

In the first analysis the driver prediction time ∆Tpred is varied in a range from
0,5 − 3,0s in steps of 0,25s. The driver prediction time can be expected to vary
individually between drivers and maybe also within subjects depending on the sit-
uation. The purpose of this test, however, is first of all to find the relation between
algorithm performance and ∆Tpred. The aim is not to draw any conclusions about
what the prediction time of the drivers actually is.

The system configuration during this test apart from the driver prediction time
is summarized in Table 9. The control behaviours used are according to Equation
13 with one corresponding to following the current lane, one corresponding to a
left lane change and one to a right lane change i.e. with Lref set to 0, 3,5 and −3,5
respectively.

In this system configuration, there is obviously a direct mapping between con-
trol behaviour and manoeuvre, i.e. the control behaviours with Lref other than zero
corresponds directly to left and right lane changes. In this case, one may ask what
the Hidden Markov Model is good for. In fact, the HMM can be removed and the
observed control behaviours can be used as indicators of the manoeuvre directly.
However, if doing so, the amount of false classification increases. The HMM has
the effect of filtering the classification with lower false rate as a result.

The results are shown in Figures 17 to 20.
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Table 9: System configuration in test.
Parameter Value
b1 : Lref 0m
b2 : Lref 3,5m
b3 : Lref −3,5m
∆t 0,2s
Gsteer 0,1
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The hit rate during this experiment was 100% for all values of ∆Tpred larger
than 1s.
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Figure 18: Dependence on lane position and TLC at detection of ∆Tpred.

Obviously, high values of ∆Tpred yields earlier detection (lower values of mean
lane position and high values of mean TLC at detection). A high value of driver
prediction time yields smoother driving and slower corrections and thereby reduces
the difference between a staying in lane behaviour and a changing lane behaviour.
Thus the algorithm can be expected to react on smaller evidence of a lane change
than for lower values of driver prediction time. Reacting to small evidence, on the
other hand, ought to yield more false classification.
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As shown in Figures 19 and 20 the degree of false classification indeed in-
creases with higher values of ∆Tpred. The number of occurrences of false classi-
fication i.e. seem to increase more or less linearly with ∆Tpred whereas the false
amount seem to grow more exponentially, especially for values of ∆Tpred higher
than approximately 2s, indicating that not only the frequency but also the average
length of false classifications increases with higher values of ∆Tpred.

8.3.2 Varying the time step ∆t

In this next test, the timestep ∆t used in Equation 17 is varied in order to find its
relation to performance and false classificiation. A static value of ∆Tpred of 2s
is chosen for this test. The time step ∆t is varied from 0,05s to 0,3s in steps of
0,025s.

Table 10: System configuration used in the test.
Parameter Value
b1 : Lref 0m
b2 : Lref 3,5m
b3 : Lref −3,5m
∆Tpred 2s
Gsteer 0,1

The results of this test are shown in Figures 21 to 23.
The positive hit rate during this experiment was 100% for all values of ∆t.
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Figure 21: Performance dependance of ∆t.

As shown in Figure 21 the detection of the algorithm is later (higher values of
LD and lower values of TLCD) for higher values of ∆t and the relation seem to be
linear. This is according to expectation since a high value of the time step causes
a long idle time for the algorithm between calculating the predicted vehicle state
and waiting for the measurement it should be compared with. On the other hand, a
longer time step serves to filter the algorithm input signals yielding lower amounts
of erroneous classification.
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Figure 22: False occurrences dependance of ∆t.
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Figures 22 and 23 illustrate how the false rate and false amount decreases in a
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similar manner for higher values of ∆t. The degree of false classification seem to
drop rapidly with increasing time step until a value of about 0,2s after which the
slope is considerably smaller.

8.4 Analysing the set of control behaviours

From the results from varying ∆t and ∆Tpred, a set of values can be chosen for use
in the rest of the analysis. The choice has to be a tradeoff between early detection
and a low amount of faults. Given an application, parameters have to be chosen
depending on the requirements of that application.

For the remainder of this report ∆t = 0,2 and ∆Tpred = 2 will be used as
default values. Using these settings, the higher false rate is avoided without sacri-
ficing too much of performance.

Using the above settings with the set of control behaviours used in the previous
analysis yields the system configuration in Table 11 and the evaluation metrics
given in Table 12. This setup will be used as reference throughout this section.

Table 11: System configuration in test.
Parameter Value
b1 : Lref 0m
b2 : Lref 3,5m
b3 : Lref −3,5m
∆Tpred 2s
Gsteer 0,1

Table 12: Evaluation metrics of the system with default settings used as reference.
Parameter Value
Positive hit rate 100%
Mean lane position at detection 0,55m
Mean TLC at detection 0s (median value is 0,2s)
False occurrencies 60
Time of false classification 1,5%

8.4.1 Adding control behaviours with small lane offsets

The set of control behaviours used in the reference system is designed to identify
the drivers intention to move out of the lane or stay in the lane. Thus, it can not be
able to identify the lane change until the steering towards the neighbouring lane has
started. Maybe earlier signs of the preparation of a lane change can be identified.

One hypothesis about how such a preparation phase can be identified is the
assumption that the driver chooses a lane position with a bit of offset towards the
lane to which the driver is heading while checking the mirrors and taking the final
decision to execute the manouvre.
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By adding two more control behaviours with Lref slightly off the road cen-
ter, yet not crossing the line, we may be able to identify such behaviour. Using
controllers with Lref of 0,5 and −0,5 (The wheel crosses the line at L = 0,63m
and L = 0,89m for lane widths of 3,6m and 3,1m respectively) in addition to the
original ones the system setup of Table 13 and the results of Table 14 are achieved.

Table 13: First system configuration in test using models with small offsets.
Parameter Value
b1 : Lref 0m
b2 : Lref 3,5m
b3 : Lref −3,5m
b4 : Lref 0,5m
b5 : Lref −0,5m
∆Tpred 2s
∆t 0,2
Gsteer 0,1

Table 14: Evaluation metrics of the system with small offset controllers of ±0,5m in ad-
dition to those of the reference system.

Parameter Value
Positive hit rate 90%
Mean lane position at detection 0,53m
Mean TLC at detection 2,7 (median value is 0,2s)
False occurrencies 48
Time of false classification 19%

Increasing the small offset to ±0,8 the following system setup of Table 15 and
the results of Table 16 are achieved:

Table 15: Second system configuration in test using models with small offsets.
Parameter Value
b1 : Lref 0m
b2 : Lref 3,5m
b3 : Lref −3,5m
b4 : Lref 0,8m
b5 : Lref −0,8m
∆Tpred 2s
∆t 0,2
Gsteer 0,1

Obviously, this approach do not improve the system at all. The amount of time
of false classification becomes very large. The reason is probably that driving closer
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Table 16: Evaluation metrics of the system with small offset controllers of ±0,8m in ad-
dition to those of the reference system.
Parameter Value
Positive hit rate 94%
Mean lane position at detection 0,60m
Mean TLC at detection 0,63 (median value is 0,2s)
False occurrencies 80
Time of false classification 13%

to either line is approximately as common in lane change situations as in normal
driving and the additional control behaviour only serves to confuse the detection
system.

Since a major part of the test route is on rural roads with rather curvy profile,
it is not surprising that drivers do not stay in the middle of the road during normal
driving. The test results in Table 16 shows that the amount of false classification
is as much as 13% of the entire test route. Doing the same test only on the rela-
tively straight motorway section in the beginning of the route the corresponding
percentage is only 3% indicating that the curved roads are indeed a problem when
applying this approach.

The result of the configuration only on motorway follows in Table 17 below:

Table 17: Evaluation metrics of the system with small offset controllers of±0,8m applied
only to the motorway section.
Parameter Value
Positive hit rate 100%
Mean lane position at detection 0,50m
Mean TLC at detection −0,3s (median value is 0,4s)
False occurrencies 20
Time of false classification 3%

This should be compared to the reference system in only motorway conditions:

Table 18: Evaluation metrics of the reference system on only the motorway section.
Parameter Value
Positive hit rate 100%
Mean lane position at detection 0,63m
Mean TLC at detection −0,2s (median value is 0,3s)
False occurrencies 3
Time of false classification 1%

It seems that like the present configuration on average provides slightly earlier
detection on the motorway section than the reference system. The corresponding
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increase in false amount indicates that the reason is that the model learns that the
small offset control behaviour corresponds directly to a lane change. Since the
small offset behaviour is in between the driving straight and the respective chang-
ing lanes behaviour it is not surprising that it shows up slightly before the lane
change behaviour. Anyway, the small offset approach is not an improvement of the
system even on motorway. The reference system can be pushed to similar results in
mean lane position and TLC without exceeding the 3% time of false classification
achieved using the small offset approach.

There seem to be no evidence that lane changes in the general case are pre-
ceeded by any static behaviour of driving closer to either line.

8.4.2 Using driver behaviours with different values of driver predic-
tion time

So far we have been using the same driver prediction time for both the stay-in-lane
control bahaviour and the change-lane control behaviour. A reasonable assumption
may be that a longer prediction time can be applied to the lane change behaviour
since the distance to the neighbouring lane is larger than that of the source lane
at the initiation of the manoeuvre. For example the driver strives to steer towards
the lane center within 2 seconds when driving straight but may be satisfied with
ending up in the adjecent lane after, say, 3 seconds. Trying such a setup yields the
configuration of Table 19 and the results of Table 20

Table 19: System configuration testing other values on driver prediction time in the lane
change control behaviours than in the driving straight behaviours.

Parameter Value
b1 : Lref 0m
b2 : Lref 3,5m
b3 : Lref −3,5m
∆Tpred 2s
b2 : ∆Tpred 3s
b3 : ∆Tpred 3s
∆t 0,2
Gsteer 0,1

This approach causes the lane change identification to occur earlier but again
with larger amounts of time of false classification as a consequence although the
false amount is considerably lower than if applying a driver prediction time of
3s on the driving straight controller as well. Increasing the step size ∆t to 0,25
reduces the false amount to a similar level as that of the reference model, but then
the advantage of earlier detection has vanished and the performance is lower than
that of the reference model.
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Table 20: Evaluation metrics of a system using longer driving prediction time for the lane
change behaviour than for the driving straight behaviour.

Parameter Value
Positive hit rate 100%
Mean lane position at detection 0,49m
Mean TLC at detection −0,27s (median value is 0,4s)
False occurrencies 76
Time of false classification 1,9%

9 Results

In this section the results of the evaluation of the maneouvre detection system is
reported. Comparisons are made to the study perfomed by Pentland and Liu [11]
who used a similar modelling approach.

In the previous section, a reference system was defined and compared to a
couple of variants. As it turned out, the setup chosen as reference also seemed to
be the one providing the best performance. Since there is no optimal solution to the
choice of parameters, the reference system was chosen rather subjetively so as to
avoid the highest levels of false rate without compromising performance too much.
The scores of this model are listed in Table 21 below.

Table 21: Evaluation metrics of the best performing system configuration found in the
analysis.

Parameter Value
Positive hit rate 100%
Mean lane position at detection 0,55m
Mean TLC at detection 0s (median value is 0,2s)
False occurrencies 60
Time of false classification 1,5%

The hit rate was 100% almost independently of parameter settings. In that sence
the algorithm seems to be very reliable. However, if the information of the detection
system is to be of any value, the detection need to preceed the crossing of the lane
as much as possible. The system should detect the lane change as long before the
crossing of the lane marker as possible.

9.1 Joint results of left and right lane changes

The lane position at the detection of the lane change was on average 0.55m with
a standard deviation of 0.39m. At normal driving the mean and standard deviation
of lane position was−0,08m± 0,43m. The mean lane position at detection is thus
just outside the standard deviation of the distribution of normal driving. However,
a great deal of detections do fall within the distribution of normal driving.
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The lateral velocity i.e. the time derivative of lane position was on average
0,62 ± 0,26m/s at the detection of the lateral manoeuvres compared to normal
driving where it was 0 ± 0,7m/s. Thus, the values at detection are not statisti-
cally outside the distribution of normal driving indicating that the algorithm has
the ability to actually recognize lane change behaviour rather than just reacting to
abnormal values of lateral veloctiy.

Figure 24 shows boxplots of lane postition at detection and of lane position in
normal driving. Figure 25 also shows lane postition at detection but plotted on an
image of the road to illustrate the relation to the size of the road and the vehicle.
Figure 26 shows a boxplot of TLC at detection.

−1.5

−1

−0.5

0

0.5

1

1.5

La
ne

 p
os

iti
on

 a
t d

et
ec

tio
n 

(m
)

 

Boxplot of lane position at detection

−1.5

−1

−0.5

0

0.5

1

1.5

La
ne

 p
os

iti
on

 (
m

)

Boxplot of lane position in normal driving

Figure 24: The boxplot to the left illustrates lane position at detection of a lane change.
For comparison, the boxplot to the right shows the distribution of lane position
at normal driving. The boxes do not overlap, but the lane position at detection is
generally far from being an outlier according to the normal driving distribution.
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Figure 25: Boxplot of lane position at detection in relation to the size of the road and the
vehicle. The boxplot is the same as the left one in Figure 24 but drawn in an
image of the road and the vehicle. The lane position of the vehicle in the figure
represents that of the median lane position at detection. The figure provides
an indication of where in lane the vehicle generally is when lane changes are
predicted.
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Figure 26: Boxplot of time to line crossing at detection.

In the study of Pentland and Liu [11], the mean lane position at detection was
0,8±1,38m meters. Their lanes, on the other hand, were 4 meters wide (ours were
either 3.1 or 3.6m), so their results are not directly comparable to ours. However,
if nomalizing to a lane width of 2 (i.e. so that a lane offset of ±1 corresponds to
the centre of the vehicle being right above the line), Pentland and Liu’s results are
0,4± 0,69m compared to our results which are 0,34± 0,23m.

The amount of false classification in Pentland and Lius study is not mentioned
in their paper [11].

9.2 Separate results from left and right lane changes

If we analyse the results of left and right lane changes separately it turns out that
left lane changes are detected considerably earlier than right lane changes.

The mean lane position at detection for left lane changes is 0,38±0,38m while
that of right lane changes is 0,73±0,31m. One possible explanation for this is that
the test subjects were at several times instructed to change lanes to the left and then
to the right, causing them to perform the right lane change too early before having
centered in the left lane. This way, the right lane changes were initiated when the
lane offset were already quite biased towards the target lane yielding poor values
of our evaluation parameters. However it can not be totally excluded that left lane
changes are in fact different from right lane changes. Figure 27 shows boxplots of
lane position at detection for the two cases. It is obvious from the boxplots that
there is a considerable difference in how early the algorithm is able to detect lane
changes in the left and right cases.
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Figure 27: Boxplots of lane position at detection in the case of left and right lane changes
respectively.

9.3 False detections

Using the proposed algorithm, false classification occured approximately 1.5% of
the time of driving. By inspecting the occasions when the algorithm made false
classifications most of them appear to be one of three kinds:

1. False positives when the driver is cutting a curve on the rural road. As the
algorithm is disregarding from road curvature and no modelling of trajectory
planning is made, this kind of error is likely to occur.

2. False positives after a lane change. The reason behind these errors may be
that the driver is unused to the simulator vehicle and sways a bit in conjunc-
tion with the manoeuvre.

3. False negatives during manoeuvres where the manoeuvre is first correctly
classified than classified as normal driving for a short while, then classified
correctly again. The type 2 falses, however, were few and corresponded to
only 0.15% of the driving time.

Errors due to noisy or poor data were rare as can be expected in a simulator
study. In real conditions in a test vehicle however, the issue is expected to be much
more of a problem.
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Figure 28: Example of correct classification as a left lane change.
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Figure 29: Example of a false positive when the driver cuts a curve on a rural road.
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10 Discussion

The experiment showed that the algorithm was able to detect left and right lane
changes in an early enough state for lateral position and motion to be statistically
not very different from that of normal driving. The detection turned out to be con-
siderably earlier for left lane changes than for right lane changes. Whether this was
because of poor instructions to the test subjects or because there is an actual dif-
ference in left and right lane change behaivour is unknown. Since the visiblity to
the right is lower than it is to the left it may be the case that right lane changes are
carried out more carefully or different in some other way.

The algorithm had on average at least as good performance as that of Pentland
and Liu [11] which is the one in litterature most similar to the one reported here.

The algorithm turned out to be sensitive to cutting-curves behaviour on rural
roads which is not exactly a lane change situation. By use of more advanced algo-
rithms including curvature and taking into account the trajectory planning of the
driver, such situations may be better understood.

The algorithm was not applicable in speeds below 10m/s. The reason is that
the driver model was insufficient at low speeds. Keeping in mind that the driver
wants to keep yaw rate under a certain level in order to keep the ride comfortable
the steering wheel angle can be expected to be strongly related to velocity. This
applies especially at low speeds, a behaviour that was not captured by the steering
model used here.

The experiment showed that the model was most successful for driver predic-
tion times of 2s or more, which is consistent with for example [14] claiming that
the prediction time is usually between 2-4 seconds.

Altering the time step used in the evaluation of model predictions the algorithm
can be tuned to perform earlier detection at the cost of more false detections or the
other way around. There is no optimal choice. Instead the choice depends on which
application to use the algorithm for.

The algorithm is computationally very efficient in terms of both memory and
processing power. In terms of memory, the algorithm needs no historical memory
of any states more than one timestep behind so the total amount of memory needed
can be estimated to a few hundred bytes. In terms of processing power, the entire
analysis in non-optimized matlab/simulink environment on a PC takes less than
20s for 83 minutes of driving i.e. under those conditions the algorithm performs
250 times as fast as realtime. The algorithm needs no individual adaptation to the
driver. In this experiment the algorithm performed well on all subjects although no
form of algorithm training was made on the subject being evaluated. These factors
makes it suitable for integration into a vehicle product.

The usability of the algorithm in vehicle path prediction can be expected to be
high. For example, a path prediction system could hold several paths, correspond-
ing to different manoeuvres, as probable and thereby not be as sensitive to false
classification. Using the Viterbi algorithm, the probabilities of all the manoeuvres
can be computed, enabling more advanced methods for choosing which one to use.
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Whether the algorithm can be seen as expressing driver intent was not investi-
gated. The data collected contained no unintentional lane departures as would have
been necessary in order to see if the algorithm was able to separate intentional lane
changes from unintentional ones caused by e.g. the driver falling asleep or being
distracted by something.

For lane change support systems, the algorithm may very well be usable for
adapting interventions or warnings according to the predicted manoeuvre.
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11 Future work

The following work can be recommended as a continuation to this study:

• Apply the algorithm to real data from a test vehicle. This is interesting both in
order to see if the algorithm is good enough to handle data from real sensors
and to see whether the driver behaviour is different in real conditions.

• Apply more detailed driver models in order to cope with situations such as
cutting curves etc. Maybe more information about upcoming manoeuvres
can be extracted if better models are applied.

• Apply the same kind of modelling to longitudinal control, especially using
sensor data about the position and motion of surrounding vehicles. Analysing
the driver behaviour in relation to other vehicles may be helpful in under-
standing both lateral and longitudinal behaviour.

• Use e-horizon data in order to understand the current road configuration. The
transition probability matrix of the Hidden Markov Model could be dynam-
ically altered to reflect the availability of e.g. adjecent lanes.

• Use information about the visual behaviour of the driver in order to detect
e.g. mirror glanses etc. and connect this to the driving manoeuvre modelling.
The visual behaviour may be the most promising source of information to
detect early preparation of manoeuvres and to really predict manoeuvres in
a ”mind-reading” manner (see e.g. [10])
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A Viterbi algorithm script
v_prob = [];
v_path = [];

States = [0 1 2];

T(1,:)=[sp(1) 0 sp(1)];
T(2,:)=[sp(2) 1 sp(2)];
T(3,:)=[sp(3) 2 sp(3)];
%v_path = [;

for n=1:length(Classification)
U=zeros(3);
for i=States %loop next state

Total =0;
argmax =0;
valmax =0;
for j=States %Loop source state

prob=T(j+1,1);
v_prob=T(j+1,3);
p=tp(j+1,i+1)*op(Classification(n)+1,j+1);
prob=prob*p;
v_prob=v_prob*p;
Total=Total+prob;
if v_prob>valmax

argmax=i;
valmax=v_prob;

end
end
U(i+1,:)=[Total argmax valmax];

MaxPhi=0;
ArgPhi(i+1)=1;
for m=States %Loop over source states

Phi = T(m+1,1)*tp(m+1,i+1);
if Phi>MaxPhi

MaxPhi=Phi;
ArgPhi(i+1)=m;

end
end

end
[Value MostProbNextState]=max(U(:,end));
v_path=[v_path; ArgPhi(MostProbNextState)];
T=U;

end
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B Removal of defects in lane position data
In order to remove the defect in lane position data a corrective function need to be com-
puted that can be added to the original lane position signal. Following the assumption that
the defect is because of the approximation of a curve as a series of peicewise straight road-
sections the corrective function for each segment is given by Equations 18 and 19 below.
See Figure 30 for explanations of the variables.

Figure 30: In order to calculate the corrective function ε(d) for the distance d into the
segment the illustrated model is used.
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The corrective function ε(d) for the distance d into the segment represents the distance
between the centre of the road segment (which the lane positioning uses as reference)
and an imagined circular centreline which is the one that we want our lane positioning
measurement to refer to.

ε(d) = R(cosζ − cosφ(d)) (18)

or in terms of the distance d and the segment length S

ε(d) = R




√
1− (S

2 − d)2

R2
−

√
1− (S

2 )2

R2


 (19)

In order to compute the corrective function for the entire signal, we need to know
where the intersections between road segments are located. To do this we need to find the
pairs of data points that have such an intersection in between them. Two methods were
used to find these data points.

1. Finding the points in data where the road curvature R changes. Clerly there must be
a new segment if the radius changes.

2. Where the radius is constant the intersections can be found by looking for peaks in
the second derivative of the lane position signal.

Once the data point pairs are found, we know that the intersection is somewhere be-
tween these points. To establish the an estimate of the exact position the orignal lane posi-
tion signal is extrapolated using straight lines from the two data points before and after the
intersection respectively. The point where the two lines meet are used as estimation of the
segment intersection point.
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Figure 31: In the estimation of the segment intersection points the orignal lane position
signal is extrapolated towards the intersection point from both directions. The
intersection between the extrapolated lines is used as an estimate.
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After applying the corrective action to the signal it looks as illustrated in Figure 32
below.
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Figure 32: Comparison of original data with corrected data.
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