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ABSTRACT 

In order to improve understanding of the structural behaviour and to verify the design 
of the New Svinesund Bridge, the Swedish and Norwegian road administrations 
(Vägverket and Statens Vegvesen) initiated an extensive monitoring project. 
Monitoring was used to understand the real behaviour of the bridge. The collected 
data were then used as a case study to improve assessment and maintenance of 
bridges by finite element analysis (FEA) and finite element (FE) model updating in a 
research project supported by Vägverket and Banverket. The monitoring project has 
extensively studied the New Svinesund Bridge from construction phase through the 
first years of the service life. The Royal Institute of Technology (KTH) is responsible 
for instrumentation, analysis and documentation of the monitoring project. Results 
obtained by KTH from the New Svinesund Bridge monitoring project were used by 
Chalmers University, division of Structural Engineering, Concrete Structures, as a 
case study for a research project to improve bridge assessment and maintenance of 
bridges through FEA.  

In order to obtain an FE model of the New Svinesund Bridge capable of accurate 
static and dynamic response prediction, and existing model of the bridge was 
modified using FE model updating. The updating was made through manual model 
refinement and non-linear optimization with statistical considerations. Uncertain 
structural parameters of interest included the stiffness of sections of the arch, stiffness 
and mass of the bridge deck, connection stiffness between the arch and the bridge 
deck, bearing restraint at the connection between the piers and the bridge deck and the 
degree of fixture of the arch foundation. A proof of concept test study was conducted 
using an FE model of a beam with spring supports. The physical meaning of 
numerical results were analysed in accordance with practical engineering judgement.  

The initial FE model was manually refined to more accurately represent the stiffness 
profile in the arch, to include the masses of non-structural elements including the 
asphalt layer and railings and to more realistically model the bearings. Measured 
strains, deflections and forces from a static load test and measured eigenfrequencies 
from ambient vibration testing were then used to update the FE model using least non-
linear optimization. The updated FE model was capable of more accurately 
reproducing the measured responses. Guidelines for FE model updating for structural 
design verification and assessment were developed based on the results obtained from 
the study. 
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SAMMANFATTNING 

 

I syfte att verifiera konstruktionen och öka förståelsen för verkningssättet hos den nya 
Svinesundsbron, initierade Vägverket tillsammans med Statens Vegvesen 
(motsvarigheten till Vägverket till i Norge) ett omfattande övervakningsprojekt. 
Kungliga Tekniska Högskolan (KTH) ansvarade för instrumentering, analys av 
mätdata och dokumentation av projektet. Övervakningsprojektet fortgår under brons 
första bruksår. De av KTH insamlade mätdata användes sedan till en fallstudie vid 
Chalmers Tekniska Högskola för att förbättra utvärdering och underhåll av broar med 
hjälp av uppdatering av strukturmodeller, modellerade med finit element metod 
(FEM), ett forskningsprojekt stöttat av Vägverket och Banverket. 

För att erhålla en FE-modell för den nya Svinesundbron som är kapabel att på ett 
noggrant sätt förutspå verkningssättet för bron, både dynamiskt och statiskt, 
modifierades en befintlig FE-modell genom modelluppdatering. Uppdateringen 
utfördes genom manuell FE-modell förbättring och minimering med hjälp av icke 
linjär optimering. Tekniken med uppdatering av FE-modeller är att använda olika 
optimeringsmetoder för att kalibrera osäkra strukturparametrar i modellen för att 
kunna reproducera experimentella mätdata. De osäkra strukturparametrarna som 
studerats är, styvhet i bågen, styvheten för kopplingen mellan bågen och farbanorna, 
massan för farbanorna, tvångskrafter i farbanornas upplag och bågens 
inspänningsstyvhet. 

Konceptet provades genom att genomföra FE-modelluppdatering på en fritt upplagd 
balk med fjädrar som upplag i båda ändarna. Detta utfördes med olika typer av 
optimeringsmetoder, däribland minsta kvadratmetoden och en icke-gradientbaserad 
metod, Nelder-Mead simplex metod. För förhindra att resultaten av uppdateringen 
skulle sakna fysisk relevans utfördes validering och utvärdering av dem med hjälp av 
ingenjörsmässiga bedömningar och överslagberäkningar. 

Ursprungsmodellen förfinades först manuellt, för att mer noggrant representera 
styvhetens variation i bågen, för att ta hänsyn till massan av vägbeläggningen och 
räcken genom masselement och för att mer realistiskt modellera farbanornas rörelser 
vid upplagen. Vid modelluppdatering användes icke-linjär- och minstakvadrat-
optimering. Den uppmätta strukturrespons som användes vid modelluppdateringen 
var, töjningar, förskjutningar, kraft i hängstag och egenfrekvenser. Den uppdaterade 



 

 
V

FE-modellen reproducerade den uppmätta responsen bättre än den ursprungliga FE-
modellen. 
 

Nyckelord:  
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1 Introduction 
The New Svinesund Bridge is a connection between Sweden and Norway with huge 
symbolic value as a “borderless partnership” between the two countries. The design of 
the single arch with a suspended deck was the victor of an international design 
competition, chosen because the design harmonized aesthetic and environmental 
demands with technological capability and economics.  

Due to the uniqueness and intrinsic value of the bridge, it has been carefully studied 
through an extensive long-term monitoring program. The monitoring program has 
been developed in collaboration with the Swedish National Road Administration 
(Vägverket), the Royal Institute of Technology (KTH), the Norwegian Geotechnical 
Institute (NGI), and the Norwegian Public Roads Administration (Statens vegvesen). 
KTH gathered static and dynamic data for the New Svinesund Bridge during the 
construction and operation phases, additional information regarding the monitoring 
project may be found in James and Karoumi (2003) and Ülker-Kaustell, Karoumi 
(2006) and Karoumi and Andersson (2007). 

Chalmers University of Technology initiated a research project concerning bridge 
assessment and maintenance based on finite element (FE) analysis and field 
measurements, for which the New Svinesund Bridge is used as a case study. Results 
from the monitoring project are used in this thesis to update the FE model. The 
updated FE model developed in this project is intended to be used by Chalmers, KTH 
and Vägverket for further analysis and assessment during the service state of the 
bridge.  

 

1.1 Description of the New Svinesund Bridge 

The New Svinesund Bridge was constructed between 2002 and 2005 as an essential 
link in the Scandinavian transportation infrastructure and is now in operational phase 
with an expected service life of at least 120 years according to Vägverket (2004). The 
bridge consists of 8 spans for a total of 704 m with a main span of 247 m and was the 
world’s largest single-arch bridge at the time of completion, see Figure 1.1. The large, 
slender arch of the main span crosses the Ide fjord at Svinesund, providing a crucial 
link for the European route E6 between Sweden and Norway. The arch consists of a 
hollow rectangular box section of reinforced concrete that tapers in both directions 
from the abutment to the arch crown, thereby reducing the cross-section. The bridge 
superstructure is composed of two steel box girders, one for each direction of traffic. 
The steel bridge deck is monolithically attached to the arch at approximately half its 
height with transversally oriented prestressing tendons, thus assuring full interaction 
between the arch and bridge superstructure and providing lateral stability to the 
slender arch. In order to prevent uplifting of the bridge superstructure from the piers, 
prestressing tendons secure the cross-members of the bridge superstructure to the pier, 
see Figure 1.2. At the top of each pier is a spherical bearing, designed to allow 
translation and/or rotation according to the design. Construction was completed in 
Febuary 2004 and the bridge was opened in June 2005. Detailed information 
regarding the bridge geometry, structural system and construction may be found in 
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James and Karoumi (2003), or in the web sites www.vv.se/svinesund or 
www.byv.kth.se/svinesund. 

 

Figure 1.1 Layout sketch of the New Svinesund Bridge showing numbered supports 
and span lengths (From www.vv.se/svinesund ) 

 

Figure 1.2 Section of bridge deck superstructure (From www.vv.se/svinesund) 
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1.2 Instrumentation of the bridge 

Structural monitoring of the New Svinesund Bridge is accomplished using sensors 
installed during construction. Data acquisition systems at the base of the arch on each 
side of the bridge record data. The permanent bridge instrumentation system is 
capable of measuring strain, acceleration, temperature, and wind speed and direction. 
The measured data from the sensors is remotely accessible from KTH via an 
asymmetric digital subscriber line (ADSL).  

Static and dynamic load tests were conducted 18-19 May 2005, before the bridge 
opening in June 2005, to verify the predicted structural behaviour of the bridge. In 
addition to the permanently installed instrumentation, displacement measurements of 
the arch and carriageway were conducted by FB Engineering during the static load 
testing. Hanger load forces due to dead weight were also measured. 

 

1.3 Finite element modelling of the bridge 

The FE model presented in this report is based on the original FE model produced by 
the bridge contractor, Bilfinger Berger (2004), which was used for global structural 
analysis of the bridge. The original FE model created for bridge design was converted 
to the FE program ABAQUS by Plos and Movaffaghi (2004) for further analysis as 
part of the operational monitoring project. Continued development of the FE model of 
the New Svinesund Bridge by FE model updating allows for accurate structural static 
and dynamic analysis and assessment during the service life of the bridge.  

 

1.4 Aim and objectives 

The aim of this study was to use the FE updating procedure for calibration of the FE 
model that is to be used for analysis of static and dynamic response. The FE model 
and ABAQUS input files were obtained for the model created by Plos and Movaffaghi 
(2004) to ensure consistency of work. Both static and dynamic target responses were 
used for FE model updating and to provide verification of the updated model. The 
updated FE model may be used for assessment of the global structural behaviour of 
the bridge during its service life and as a starting point for non-linear analysis 
including ultimate limit state capacity. 

 

1.5 Scope of study 

The FE model ABAQUS input files created by Plos and Movaffaghi (2004) were 
utilized and a structured FE model updating procedure was developed. Refinement of 
the original model was first implemented manually and changes were made according 
to a parametric study of the uncertain structural parameters of the bridge. The FE 
updating procedure of the refined FE model was accomplished using MATLAB while 
ABAQUS performed FE calculations. The FE model updating procedure was tested 
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with a simple model of a beam with translational and rotational spring supports. This 
simple model verified the updating procedures before the FE model updating 
methodology was applied to the New Svinesund Bridge FE model. Results from FE 
model updating were verified by engineering judgement and comparison with results 
from previous analyses. 

In order to verify the FE model used during design to predict ultimate load carrying 
capacity, load tests for the New Svinesund Bridge were conducted in the service state. 
FE model updating is useful when the uncertainty of the FE model used in design is 
unacceptable due to deviation between the FE results and measurements. If the FE 
model cannot accurately predict the response in the service state, it should not be 
trusted for ultimate limit state capacity calculations and thus the ultimate load 
carrying capacity of the bridge is uncertain. In such a case, FE model updating is 
useful for model calibration. If the updated FE model is capable of accurately 
reproducing the experimental measurements, it may be used to verify the ultimate 
limit state capacity of the bridge and thus to verify the ultimate load-bearing capacity. 

 

1.6 Limitations 

Intrinsic limitations exist in numerical modelling of existing structures. Material 
properties, structural behaviour and model geometry are idealized and discretized 
using finite elements whose behaviour are governed by known analytical differential 
equations. At each step in modelling, approximations are therefore introduced. For FE 
model updating, the chosen FE model must be able to accurately model the bridge 
while minimizing model complexity and thus reducing computational time. Although 
highly detailed FE models with non-linear material constitutive relationships and 
higher-order elements are capable of modelling in great detail, the high degree of 
complexity of the model and the non-linear behaviour requires robust iterative 
solution methods which drastically increase computational time, making such models 
impractical for FE model updating. 

Furthermore, uncertainties exist in the physical structural parameters (e.g. concrete 
stiffness, boundary conditions, etc.) of the bridge. Quality control during construction 
can minimize uncertainty, but deviations from the design model are expected and 
accounted for during the design process. Experimental measurements of the bridge 
response should account for uncertainty of the structural parameters as well as the 
uncertainty of the sensors and the measurement system. Environmental parameters 
including wind and temperature variations produce measurement noise and bias which 
contribute to experimental uncertainty. 

Engineering judgement and statistical methods should be used when evaluating the 
results of an FE model. An engineer must consider the ability of the numerical model 
to represent the actual physical behaviour of the bridge with regard to previously 
discussed limitations. Due to the use of linear material constitutive relations, the 
developed FE model should only be used directly for serviceability limit state (SLS) 
analysis. The updated FE model of the New Svinesund Bridge obtained by this 
analysis is a sort of “footprint” that can be utilized for further research. If the 
developed FE model is modified to include the non-linear behaviour of reinforced 
concrete and steel, the modified model can be used to verify structural integrity for 
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ultimate limit state (ULS) load combinations and even to predict a failure mechanism 
in failure modelling. One should exercise caution when modelling different loading 
cases or using non-linear constitutive models (e.g. failure modelling) and scrutinize 
results carefully. Boundary conditions should be carefully studied and all results 
should be evaluated with regard to engineering judgement.  
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2 Theory 

2.1 Finite element method 

2.1.1 FE overview 

The finite element method, FEM, is an extremely useful engineering tool for 
numerically approximating physical systems that are too complex for an analytical 
solution or are governed by behaviour that is too complicated for classical analytical 
solution methods. Specifically, FEM is used in engineering to find an approximate 
solution to partial differential equations and integral equations. Finite element analysis 
(FEA) refers to numerical analysis of physical phenomena by dividing the region of 
interest into smaller pieces, finite elements. Over the finite elements, physical 
parameters are considered to be constant, vary linearly or vary according to a 
polynomial depending on the analysis method. Linear approximation is a common 
approximation and generates useful results for most applications. Complex physical 
problems governed by differential equations may be simplified using finite elements 
with linear elastic behaviour modelled with gradients calculated by the finite 
difference method for the non-linear problem near the values of interest. Matrix 
algebra is then used to solve the linear approximation systematically. 

Global equilibrium of the system with compatibility and constitutive relations for each 
element must be maintained in order to solve a given system. The value of each 
parameter of interest for a specific element is approximated and depends on the 
element size and approximation technique. Simple models with large elements are 
quickly computed, but overly approximated systems intrinsically contain numerical 
errors that render the FE model useless for physical interpretation of results. Complex 
models with fine resolution (small elements, fine mesh) can yield more realistic 
results at the cost of increased computational time. An optimal model yields accurate, 
physically realistic results with minimal computational time.  

Each degree of freedom (such as x, y, or z translation or rotation of a node) added to 
the model increases the number of necessary computations, so models should be 
simplified whenever possible. Large, slender objects such as plates or beams may be 
approximated according to plane stress, plane strain or beam theory, thus reducing the 
total degrees of freedom in the model and thus the required computations. 
Convergence analysis can be implemented by evaluating a target response with an 
increasingly fine finite element mesh (decreasing element size) or by refining some 
other model parameter. If the results deviate instead of converge, an intrinsic problem 
with the finite element model likely exists and the results of the numerical analysis 
should not be trusted. 

 

2.1.2 FEM applications 

FEM has been extensively utilized in structural and mechanical engineering and many 
FEA programs exist for the civil, aeronautical and automotive industries. Applications 
include structural, fluid flow, dynamic mechanical and electrostatic analysis. In 
structural analysis, the applications of FEM and FEA are virtually limitless and many 
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analysis types and element types exist for solving special problems while new 
methodologies, programs and element types are constantly being developed.  

Generally, FEA requires three steps: pre-processing, FE calculations and post-
processing. Many commercial FE software packages include graphical user interfaces 
for each of these steps and many are compatible at each step.  

Pre-processing is the step where the FE model is built and the material properties, 
loads and boundary conditions are defined. This crucial step realizes the FE model 
and modelling parameters as to best represent the behaviour of the object of interest. 
Many commercial FE programs utilize an inbuilt CAD-type (Computer Aided 
Drafting) interface to build the model geometry in 1, 2 or 3 dimensions. Sometimes 
the model is imported from CAD files, IGES (Initial Graphics Exchange 
Specification) files, blueprints or text input files. Material properties for individual 
elements, as well as global environment parameters (e.g. gravity) are assigned to best 
represent reality. After the geometry is defined, element types are chosen and the 
model is transformed into a system of discrete elements by meshing. Commercial FE 
programs offer a choice between automatic meshing and user-defined meshing. The 
resulting discrete system is composed of finite elements. Boundary conditions must be 
carefully chosen as to provide constraints. Typical boundary conditions for structural 
analysis include constrained translation and rotation at foundations while typical 
internal constraints resist translation and rotation in connections between structural 
members. These constraints either allow no translation or rotation (fully-fixed DOF) 
or apply a load proportional to the node translation or rotation (linear-elastic spring at 
DOF). Finally, load cases are defined for the analysis; options include static, dynamic 
and frequency analysis. 

The analysis step, which performs FE calculations, solves the equation system defined 
in the pre-processor. Model geometry, element types, material models, internal 
constraints and boundary conditions are all taken into consideration by the FE solver. 

FE post-processing utilizes the results of the FE calculations for output, visualization 
and further analysis. At this point, FE results may be compared to measured values, 
hand calculations or other analyses for FE model verification. The verified model may 
then be used to predict behaviour resulting from various loads and conditions. The FE 
model updating procedure compares the structural response and eigenvalues predicted 
by the FE model with field or laboratory measurements, and then updates uncertain 
FE modelling parameters to obtain a better correlation and to minimize modelling 
error. 

 

2.1.2.1 Modeling 

In the FE pre-processing stage, the model is defined. Most structural FE models are 
use Cartesian coordinates (rectangular x,y,z coordinate system) in 2D or 3D modeling 
space. For a general node in 3D, there are six degrees of freedom (DOF): x,y,z 
translation (DOF: 1-3 in ABAQUS) and x,y,z rotation (DOF: 4-6 in ABAQUS). 
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Figure 2.1 ABAQUS degrees of freedom (DOF) in Cartesian coordinates. 

Each part of the model may be created separate from the assembled structure and 
added in the assembly phase. Each part is added to the assembled structure by 
defining boundary conditions and internal constraints on certain DOF of the part and 
on the global assembly. Two beams may be connected using the “TIE” command in 
ABAQUS, which constrains all DOF of the constrained nodes so that if the 
constrained node from one beam is translated or rotated, the constrained node from 
the other beam must translate or rotate in an identical fashion. Global constraints 
(boundary conditions) typically constrain DOF of nodes of the entire assembled 
model. Boundary conditions are created by setting DOF of a particular node equal to 
zero or by making a resultant force linearly proportional to the displacement or 
rotation of the node. 

 

2.1.2.2 Structural analysis 

Many FEA software programs exist to perform many types of analysis. Structural 
FEA, though only a subset of the available FEA, is a powerful tool for structural 
analysis. Typically, structural members are greatly simplified to evaluate the global 
response of the structure, but detailed analysis can be extremely useful when 
evaluating connections or specific structural details. 

In most situations, static linear-elastic analysis is sufficient to determine structural 
behaviour. Many options exist for such analysis and static analysis is frequently used 
in structural FEA. In the event that a system susceptible to second order effects is 
exposed to large magnitude time variant forces, dynamic analysis or equivalent static 
is necessary. Structural dynamic analysis evaluates the time variant behaviour of a 
structure. Different time stepping routines may be used depending on required 
accuracy and available computational power. Dynamic analysis is quite common in 
the automotive and aerospace industries, but not as widely used in structural FEA 
since most structures are designed to resist time variant forces without experiencing 
significant motion or deformation. One exception is the dynamic response of slender 
bridges to wind and traffic. The structural integrity of all bridges must be verified 
when the structure is exposed to worst-case-scenario dynamic loading (though 
equivalent static loading may also be used). The characteristic natural frequencies 
(eigenfrequencies) are of interest because the eigenfrequencies and eigenmodes of a 
structure define the vibration behaviour of the structure. Thus, frequency analysis is 
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quite common, especially for large bridges. Frequency analysis should be carried out 
early in the design phase of second order structures. Large amplitude vibrations can 
be avoided by changing the vibration characteristics of the structure by adding 
damping, increasing stiffness and decreasing mass.  

 

2.1.2.3 Elements 

In order to model different physical phenomena, different FEM elements are used. In 
the simplest case, 1D linear elasticity, a 1 node spring and mass element with 1 DOF 
can be used. More complicated element types have more nodes with more DOF for 
each node and can represent increasingly complicated physical behaviour. Elements 
with polynomial shape functions, known as higher order elements, can model bending 
more accurately than linear elements. Structural FEA typically utilizes small, simple 
elements for global analysis, larger elements with more DOF for complicated local 
structural behaviour or a combination of simple and complicated elements to model 
both global and local structural behaviour. 

Efficient modelling of global structural behaviour requires model simplification in 
order to reduce computational time and to permit calculation of eigenfrequencies and 
eigenmodes. The most common element types for modelling global behaviour are 
truss, beam, membrane and shell elements. Truss elements have 2 nodes with 1 DOF 
for each node and can only model axial force and axial deformation. Cables and truss 
structures may be modelled using truss elements if one is certain that no moment is 
transferred from the cable or truss and that the structural member is sufficiently 
slender that the stress distribution is sufficiently uniform. Beam elements can transfer 
axial force, shear and bending. The cross-sectional properties of the beam may be 
defined using standard types (such as I-profiles and box beams) in commercial FE 
software, or generalized sections can be defined with user input data for area moment 
of inertia about the primary and secondary axis. Integration points span the cross-
section and are used to discretize the inertial properties of the cross-section for 
numerical integration. Euler-Bernoulli beam theory assumes that plane sections 
remain plane, neglecting rotatory inertia, principal shear deformation and combined 
rotatory inertia and shear deformation. Euler-Bernoulli beam elements are valid for 
slender beams (aspect ratio, length divided by height, greater than 10) loaded 
primarily in bending such that bending deformation is much greater than shear 
deformation. Timoshenko beam theory includes rotatory inertia, principal shear 
deformation and combined rotatory inertia and shear deformation. Timoshenko beam 
elements can more accurately model deep beams (aspect ratio greater than 2), where 
shear deformation and rotatory inertia should not be neglected. Derivations of Euler-
Bernoulli and Timoshenko beam theory from governing partial differential equations 
of motion are available in Craig et al. (2006). The Galerkin method can be used to 
derive the finite element matrix equation for Euler-Bernoulli beam elements while the 
energy method can be used to derive the FE matrix equations for Timoshenko beam 
elements according to Kwon and Bang (2000). 
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Timoshenko beam theory, 
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Surfaces may be modelled in FEM with membrane and shell elements. A quadrilateral 
membrane element has 4 nodes with 2 in-plane DOF for each node. Membrane 
elements are capable of modelling in-plane forces and bending. If out of plane 
bending for thin plates should be modelled, plate elements that utilize classical 
Kirchoff plate theory are often used. Classical plate theory assumes plane stress or 
plane strain and an undeformed neutral plane of the plate. Plate elements can be used 
to evaluate buckling risk for slender plate structures and to find deformation of plates 
loaded transversely to the plate plane. A derivation of the FE formulation for plate 
elements with classical Kirchoff plate theory is available in Ottosen and Petersson 
(1992). The Galerkin method is used to derive the FE matrix equation for a classical 
Kirchoff plate element in Kwon and Bang (2000). Shell elements have curvature 
along the surface and have 5 DOF for each node, three translational DOF and two 
rotational DOF. The curved surface of shell elements enables the modelling of curved 
structural members without requiring as fine of a mesh as is needed when discretizing 
using plate elements. Furthermore, solid continuum elements may be degenerated into 
shell elements, thus reducing total model DOF while retaining model accuracy. The 
effect of transverse shear deformation may be included using Mindlin/Reissner plate 
theory; a derivation of the FE matrix equation using internal energy is available in 
Kwon and Bang (2000). 

Classical Kirchoff plate theory, 
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Once global behaviour is obtained by simplified global analysis, local analysis can be 
used to assess structural details. Local analysis of structural details can be used to find 
the stresses in regions with non-uniform stress distribution, such as structural 
connections. Solid (continuum) elements are useful for such general modelling. Brick 
and tetrahedral elements with linear-elastic material properties are commonly used, 
especially for 3D SLS analysis, but higher order continuum elements with specialized 
constitutive material relations can be used for specialized purposes. A typical example 
of a specialized structural analysis is FEA of a continuous reinforced concrete beam 
loaded until failure. The stresses are redistributed across the beam cross-section after 
concrete cracking initiates and the concrete-reinforcement bond properties determine 
the cracking pattern. For accurate analysis, the constitutive equations must include 
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non-linear crushing of the concrete, tensile softening of concrete, concrete-
reinforcement bond slip and elastic-perfectly-plastic reinforcement steel stress vs. 
strain.  

Special structural elements include springs, dashpots, point masses, point rotary 
inertias and rigid connections. These are especially useful for simplified global 
analysis, where a simplified model with beam elements does not adequately describe 
the dynamic behaviour of the structure. Springs and rigid connections can provide 
internal constraints and boundary conditions to more realistically model structural 
geometry (e.g. rigid elements of the width of a beam with full interaction with the 
beam element can provide internal connections). Point mass, point rotary inertia and 
dashpots change the dynamic properties of the structure and can be used to tune the 
modal mass and modal damping matrices to better correspond to measurements. 

SLS behaviour is of primary interest and accurate FE modelling was accomplished by 
simplified global analysis with beam elements and linear-elastic constitutive relations. 

 

2.1.2.4 Material properties 

The stress-strain relationship is defined in the structural FEA according to the 
applicable material model. Isotropic material properties are used in this study and are 
the most common for FEA. Isotropic material properties are homogeneous and 
identical in all directions. Anisotropic materials are the most general and have 
material properties that depend on direction. Crystalline materials are anisotropic and 
material properties depend on crystalline plane and grain boundary orientation. 
Orthotropy is a special case of isotropy and orthotropic materials have different 
material properties in orthogonal directions. These include glass and carbon fiber 
composites, wood and rolled steel. Hooke’s Law of linear elasticity describes the 
relationship between stress and strain, 

=σ Eε  (2.4) 

Anisotropic stress vs. strain relation, 
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Isotropic stress vs. strain relation, 
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Structures analysed in the serviceability limit state (SLS) utilize a linear-elastic stress-
strain relationship. This assumption allows for the calculation of deformations, natural 
frequencies, reaction forces, stresses and strains during the life of a structure. Linear-
elastic modelling is useful for determining the onset of yielding, but it cannot always 
predict the failure mechanism of a structure.  

Structures are normally designed in the ultimate limit state (ULS) to resist the rare 
load combination as designated in the structural design code. Perfect plasticity is a 
useful simplification assuming that the materials have sufficient ductility for ULS 
load-bearing capacity.  

Modelling of reinforced concrete is especially difficult because the model must 
account for the softening plasticity of concrete while accounting for the plastic 
behaviour of the reinforcing steel and the concrete-steel bond. Such complicated 
behaviour requires a very specialized material model with a non-linear constitutive 
relation, thus simplifications are used whenever possible. 

Various non-linear analysis techniques exist for other cases, though linear-elastic 
analysis remains the most popular and most useful analysis type. 

 

Figure 2.2 Stress vs. strain relationship for: linear elasticity, perfect plasticity, 
elastic-perfectly plastic, hardening plasticity and concrete softening. 

 

2.1.2.5 Meshing 

In order to discretize a model for numerical analysis, the continuous body must first 
be meshed into discrete finite elements. During the meshing process, simplifications 
are made for the geometry of the continuous body. At curves along the surface of the 
body, the discretized model will have discontinuities in curvature if flat elements are 
used. An increased mesh density reduces the modelling error due to curvature 
discontinuities but a fine mesh has more elements and more DOF, thus requires more 
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computational time. If the mesh density was infinite, the FE model geometry would 
be identical to the geometry of the continuous body, but such a system is not possible 
to model numerically. In reality, a balance exists between mesh density, desired 
model accuracy and computational time. As the element size is decreased, the FE 
response of a convergent FE model becomes increasingly accurate. During mesh 
refinement, an optimal mesh density is obtained when convergence is evident and the 
FE model is capable of modelling response to the desired accuracy. 

 

2.1.3 FE general concepts 

2.1.3.1 Equilibrium 

Force and moment equilibrium must be satisfied for each element. The static bending 
moment of a symmetric beam section normal to the x-axis and loaded about the xz-
plane may be expressed as in terms of the stress components, 

xx
A

M z dAσ= ∫  (2.7) 

Vertical shear force in a beam may be expressed as, 

xz
A

V dAσ= ∫  (2.8) 

 

Figure 2.3 Infinitesimal beam segment. 

Vertical force equilibrium of an infinitesimal beam segment, 

dV q
dx

= −  (2.9) 

Moment equilibrium of the infinitesimal beam segment, 

dM V
dx

=  (2.10) 

V 

V+dV 

M M+dM 
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q dx 
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Thus the differential equation for moment as a function of applied load is obtained, 

2

2 0d M q
dx

+ =  (2.11) 

Typical structural analysis employs matrix notation for the equation. For linear-elastic 
static analysis, the global force vector is the product of the global stiffness matrix and 
the nodal displacement. 

=Ku F  (2.12) 

In dynamic analysis, equilibrium equations account for body inertia, dissipative 
forces, internal loads carried by the structure and external loads (including reaction 
forces). 

( )t+ + =Mu Cu Ku F&& &  (2.13) 

The characteristic bending frequencies of a structure occur at equilibrium of inertial 
forces and internal forces caused by the structural deformation. Ignoring dissipative 
forces (e.g. damping) and assuming harmonic free-vibration, the eigenfrequencies 
(natural frequencies) and corresponding eigenmodes of the structure are obtained as 
follows, 

− =Mu Ku 0&&  (2.14) 

Assuming harmonic free vibration, 

( )cos tϖ α= +u U  (2.15) 

Taking the derivative with respect to time and substituting equation 2.9 into 2.8, the 
algebraic eigenvalue problem is obtained, 

2ϖ⎡ ⎤− =⎣ ⎦K M U 0  (2.16) 

The nontrivial solution to equation 2.10 is obtained from the characteristic equation, 

( )2det ϖ− =K M 0  (2.17) 

For the eigenvalues, 2ϖ , obtained from equation 2.11, the modal matrix contains the 
corresponding mode shapes, Φ , 

[ ]1 2  ... nφ φ φ≡Φ  (2.18) 

The algebraic eigenvalue problem, equation 2.10, may be re-written for all n modes, 

=KΦ MΦΛ  (2.19) 

With the corresponding eigenvalue matrix defined as, Λ , 
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( )2 2 2
1 2diag , ,..., nϖ ϖ ϖ≡Λ  (2.20) 

 

2.1.3.2 Kinematics 

The kinematic relationship is assumed using theory. In the case of Euler-Bernoulli 
beam bending, the neutral axis is assumed to remain normal to beam cross sections 
during bending (thus neglecting shear deformation). Thus the longitudinal 
displacement, xu , is related to deflection due to bending, zu , for an infinitesimal beam 
segment as, 

 0 z
x x

duu u z
dx

= −  2.21 

Considering the differential relationship between longitudinal displacement and 
longitudinal strain, 

x
xx

u
x

ε ∂
=

∂
 2.22 

With beam curvature defined as, 

2

2
xd u

dx
κ =  2.23 

Longitudinal strain (the only non-zero strain component) for an infinitesimal Euler-
Bernoulli beam segment is related to deflection as, 

0 2

2
x z

xx
du d uz
dx dx

ε = −  2.24 

0yy zz xy yz xzε ε ε ε ε= = = = =  2.25 

 

2.1.3.3 Constitutive relation 

The relationship between stress and strain is defined by the constitutive relation (refer 
to Section 2.1.2.4). For Euler-Bernoulli beams, the linear elastic stress-strain 
relationship for isotropic materials described by Hooke’s law is simplified due to 
kinematic assumptions, 
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Often the uniaxial stress state is the only stress state of interest and is simplified as, 

xx xxEσ ε=  2.27 

The preceding derivations as well as kinematic and constitutive derivations for plates 
are available in Ottosen and Petersson (1992). 

 

2.1.3.4 Discretization 

The finite element chosen to discretize a structural member must satisfy the 
completeness and compatibility requirements. A shape function is assigned to a finite 
element and is chosen to represent the behaviour of interest. For beam bending, 
completeness and compatibility are defined in Ottosen and Petersson (1992) as 
follows, 

Completeness: 

• The approximation for the deflection zu  must be able to represent an arbitrary 
rigid-body motion. 

• The approximation for the deflection zu  must be able to represent an arbitrary 
curvature. 

Compatibility: 

• The approximation for the deflection zu  must vary continuously with 
continuous slopes over the element boundaries. 

Shape functions describe the deflection of the beam element as a function of the 
longitudinal displacement. The “simplest possible beam element” capable of 
satisfying completeness and compatibility for Euler-Bernoulli beam theory is the 
cubic polynomial. Higher order polynomial terms are used for higher order elements. 

 

2.1.3.5 Boundary Conditions 

Global force equilibrium requires equilibrium of all forces and moments. The global 
force vector of equation 2.6 is the sum of the boundary force vector, bF , and the load 
vector, lF , 
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b l= = +Ku F F F  2.28 

Static boundary conditions and kinematic boundary conditions constitute the global 
boundary conditions. For beam loading, the static boundary conditions are given by 
shear force,V , and moment, M , at the ends of the beam while the kinematic boundary 

conditions are described by the deflection, zu , and slope, zdu
dx

, at the ends of the 

beam. 

 

2.2 Optimization 

2.2.1 Optimization overview 

In mathematics, optimization is the process of minimizing or maximizing a real 
function with respect to real or integer variables in a subspace. Many solution 
methods exist depending on the function of interest and subspace. The minimization 
of an objective function in a given subspace is especially useful when applied to the 
field of FEA. If the target responses of a FE model are compared with experimentally 
measured values, the residual is thus established and is a non-linear function of the 
input parameters. By minimizing the objective function that accounts for the residual 
of the response, with an optional regularization term, an FE model may be optimized.  

 

2.2.2 Optimization general mathematical formulation 

The general goal of optimization is to minimize or maximize an objective function. In 
this case, the residual is the difference between the calculated response of the system 
and the observed response of the system. The objective function is a function of the 
residual and the input parameters and can be nonlinear. The objective function is 
thereby minimized within an input parameter domain.  

( )min
∈

Π
Φ D

Φ  (2.29) 

2.2.2.1 Global minimum vs. local minima 

In the case of most deterministic optimization algorithms, local hill-climbing is used 
to find the location of a local minimum. Different algorithms utilize different 
strategies to maximize efficiency while traversing the objective space in search of the 
local minimum. One of the challenges of discrete optimization methods is to 
efficiently search for a local minimum in a region where the gradient of the objective 
function is near zero. Gradient based methods face ill-conditioning for the Jacobian 
and Hessian matrices and may encounter numerical difficulties at iteration steps. For 
such cases, conditioning should be monitored to ensure algorithm stability. 
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Figure 2.4 Surface plot of objective function (Rosenbrock banana function) used 
for testing local optimization algorithms (location of optimal solution 
shown with black dot). 

Non-linear functions of many variables can contain many local minima in addition to 
the global minimum. Most deterministic algorithms will converge to the local 
minimum in the region of local convexity by local hill-climbing, but will fail to 
converge to the global minimum. When using a discrete function for which the 
analytical formulation is unknown, the shape of the objective function cannot be 
predicted and many local minima may exist. If the parameter space of the function is 
very large, finding a solution for global optimality is troublesome and can be 
computationally expensive. For such a problem, stochastic optimization methods are 
useful for determining the vicinity of a global optimum. The Nelder-Mead Simplex 
algorithm is capable of escaping local minima in some cases and can even handle 
discontinuities according to Coleman and Zhan (2007). Hybrid algorithms that utilize 
a rough stochastic global optimality search in combination with local hill-climbing for 
refinement of the final optimal solution are ideal for practical problems. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 19

 

Figure 2.5 Surface plot of objective function with local minima and a unique 
global minimum. 

For this project, a parameter response study was performed to explore the possibility 
of global minima, refer to Chapter 6.3. The existence of many local minima and flat 
objective space is very troublesome and is beyond the scope of this project. 

 

2.2.3 Optimization – classical least squares estimate 

In general, the responses of a system are some function of the input parameters. The 
simplest case is when the system is composed of a series of linear equations. The 
linear system may be expressed in matrix notation as, 

=Sθ z  (2.30) 

Where, 

θ Vector of n input parameters, [ ]1n×  

z Vector of m responses (for measurement/observation), [ ]1m×  

S Sensitivity matrix relating the responses to the input parameters. This matrix is 
equivalent to the Jacobian matrix, 

1 1
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1
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 (2.31) 
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In reality, measurement noise, disturbances in the environment of the experimental 
setup and modelling uncertainties exist for all systems. In order to account for errors, 
an error vector is introduced to the responses, 

= −Sθ z e  (2.32) 

The objective function represents the magnitude of the error of the response vector, 
defined as the difference between the observed responses compared with the expected 
value of the response, 

( ) { }( ) { }( ){ }T
EΠ = − −z z E z z E z  (2.33) 

Expressed in terms of the measurement error, 

( ) { } { }TE EΠ = =z e e e  (2.34) 

The solution for equation (2.34) that minimizes the variance of the response vector is 
expressed using the Moore-Penrose pseudoinverse,  

+ˆ =θ S z  (2.35) 

If the system of interest is overdetermined, meaning that the system has more 
observable responses than input parameters, then an exact solution is unlikely. This 
case requires more sensors than input parameter and produces a sensitivity matrix, S, 
with linearly independent columns. 

( ) 1T T−+ =S S S S  (2.36) 

In the event of an underdetermined system, an infinite number of input parameter 
combinations may be able to produce the observed response. For this case, equation 
(2.37) determines the solution that produces the smallest parameter change when 
compared with the initial input parameter vector. As such, the initial parameter vector 
estimate must be realistic. If the initial parameter vector estimate is close to the actual 
value, the calculated solution will be near the actual solution.  

( ) 1T T −+ =S S SS  (2.37) 

If the number of input parameters is identical to the number of output responses, the 
sensitivity matrix is square. If the rows and columns of the sensitivity matrix are 
linearly independent and it is positive definite, it may be inverted directly.  

1+ −=S S  (2.38) 

The MATLAB function ‘pinv’ computes the Moore-Penrose pseudoinverse described 
above using singular value decomposition. More information and a proof of the 
solution of the least squares estimate may be found in Söderström and Stoica (1989). 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 21

2.2.4 Optimization – Nelder-Mead simplex method  

In the Nelder-Mead simplex method, the worst point of an n-dimensional simplex (n + 
1 vertices) is reflected about the centroid of the remaining n points. For the simplified 
2D (n = 2) simplex optimization, three points near a starting guess are evaluated 
(forming a triangle, a 2D simplex in the objective space). The three points are ordered 
according to the value of the objective function and the point with the maximum value 
for the objective function is reflected about the centroid of the remaining points (in 
this case, the axis connecting the remaining two points). This procedure is repeated 
until the optimization routine converges to the desired tolerance according to the 
prescribed optimality conditions. The Nelder-Mead simplex method for n-dimensional 
problems begins with a starting guess and pertubations near the starting guess that 
form the initial n-dimensional simplex to be evaluated. The value of the objective 
function at each vertex is evaluated and the vertices are organized in ascending order. 
The vertex with the highest value for the objective function is reflected about the 
centroid of the remaining vertices. If the reflected vertex has the minimum value of 
the objective function of all vertices, a minimum is expected to exist in the direction 
of the reflected vertex and the simplex is expanded in the direction of the reflected 
vertex. Simplex expansion increases the convergence rate of the algorithm by 
increasing step size along the search direction where a minimum is expected. 
Conversely, if the value for the objective function of the reflected vertex remains the 
maximum of all vertices, a minimum is assumed to exist within the simplex and the 
simplex is contracted. The iteration is thus completed and the search algorithm 
continues until the specified optimality conditions are satisfied. 

Although the Nelder-Mead simplex algorithm is a sort of hill-climbing optimization 
routine, it is not gradient based and is thus less prone to numerical difficulties 
encountered with discretized gradient methods. For example, the simplex algorithm is 
more stable than gradient methods when searching for minima near discontinuities 
and asymptotes, where gradients calculated with the finite difference method are 
erroneous. When searching for a global minimum in a search space containing local 
minima, care must be taken when choosing the initial starting value and perturbation 
size. A small simplex will converge to a local minimum if all vertices are located 
within the convex subspace of the local minimum. If local minima are suspected to 
exist in the search space, many starting guesses across the search space should be 
evaluated to test for convergence. For information regarding Nelder-Mead simplex 
implementation in the MATLAB optimization toolbox, please refer to Coleman and 
Zhan (2007). 

 

2.3 Statistics 

For the scope of this project, a normal, or Gaussian, distribution is assumed for all 
measurements. This assumption is common in scientific and engineering practice and 
is assumed a priori. All statistical references and calculations in the report therefore 
correspond to the normal distribution. For more thorough statistical treatment of the 
measurements, small sample statistics with the Student’s t-distribution could be 
considered for measurements with a low sampling rate and therefore a low sample 
population. The chi-square distribution is useful when evaluating the goodness of fit 
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of statistical data to a theoretical model. Further statistical analysis is recommended 
for future studies, but is beyond the scope of this project. 

The standard deviation used when evaluating measurement statistics is the sample 
deviation of a non-infinite sample population and is defined as, 

( )2

1

1
1

N

i
i

x x
N

σ
=

= −
− ∑  (2.39) 

The mean value of the sample population of the measurement X is, 

1

1 N

i
i

x x
N =

= ∑  (2.40) 

The variance of the measurement X is therefore defined as, 

( ){ }22 E Xσ μ= −  (2.41) 

With, 

{ }E Xμ =  (2.42) 

The probability distribution function (pdf) for the normal distribution (also referred to 
as the bell curve) is, 

( )2

2

1pdf exp
22

x μ
σσ π

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (2.43) 
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Figure 2.6 Plot of probability distribution function for normal distribution (bell 
curve). 
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Figure 2.7 Plot of PDF exemplifying statistical properties for two statistical cases. 

The cumulative distribution function (cdf) is the integral of the probability distribution 
function, 

1cdf pdf 1+erf
2 2

x xdx μ
σ−∞

⎡ ⎤⎛ ⎞−
= = ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫  (2.44) 

The error function, or Gauss error function, has the general form, 

( ) 2

0

2erf
x

tx e dt
π

−= ∫  (2.45) 
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Figure 2.8 Clockwise from top left, plots of : PDF, CDF, ERF and uncertainty. 

For this project, the uncertainty was defined as, 

( ) ( )uncertainty erfx x=  (2.46) 

Similarly, the certainty was defined as, 

( ) ( )certainty 1 erfx x= −  (2.47) 
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Figure 2.9 Plots of uncertainty and certainty. 

The uncertainty and certainty functions will be used later for FE model evaluation and 
provide verification of FE model improvement. These functions also facilitated 
statistical analysis when comparing statistical data to the FE model and were used to 
identify load cases and measurements with poor statistical correlation. 

 

2.4 Finite element model updating 

2.4.1 FE model updating overview 

Historically, FE model updating emerged in the 1990s as a tool for correcting invalid 
assumptions about a model using primarily vibration test data. FE model updating 
evaluates a FE model and compares the output target responses to experimental data. 
Uncertain input parameters are then iterated until more accurate target responses are 
obtained. Many iterations may be required for convergence, thus models should be 
simplified as much as possible in order to reduce the computational time at each of the 
iterations. The improved FE model can then be used for assessment of the structure. 
Improved modelling is of great importance to the design, construction and 
maintenance of civil engineering structures.  

Both direct and sensitivity based FE model updating techniques exist and have been 
used in the fields of civil engineering, mechanical engineering and aeronautics. Direct 
FE model updating techniques can directly update the global mass and stiffness 
matrices in one step so that the FE model will be capable of reproducing the measured 
eigenfrequencies and mode shapes, though the resulting FE model may not maintain 
structural connectivity according to Jaishi and Ren (2005). Due to lack of mode shape 
data and the requirement of a meaningful result, direct FE model updating techniques 
are beyond the scope of this study. The sensitivity-based parameter updating approach 
is useful for identifying structural parameters that can directly affect the response 
characteristics of the structure. Traditionally, only dynamic responses are used for FE 
model updating, two examples include Zhang et al. (2001) and Zivanovic et al. 
(2007). FE model updating has been expanded to include static load tests for the 
present study. Thus, both the dynamic response and the results of static load tests 
were used for FE model updating.  
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Many modern major bridges are constructed with consideration of the entire service 
life and thus include sensors for monitoring strain, acceleration, temperature and wind 
data. The New Svinesund Bridge includes many sensors capable of remote monitoring 
that provide measurements that can be used for FE model updating. Such monitoring 
can be used for routine structural assessment with an updated FE model.  

Detailed information regarding FE model updating is available in Friswell and 
Mottershead (1995). 

 

2.4.2 FE model updating conceptual framework 

The following flow chart demonstrates the concept of FE model updating. The FE 
model was first defined by the pre-processor (possibly in conjunction with FEM 
updating software) as described in Chapter 2.1.2. FE calculations were then executed 
by the FEA program in order to obtain output responses. Convergence was assessed 
by comparing output responses with measured values. The parameters were then 
updated and iterations were performed until the desired convergence was achieved. 

 

Figure 2.10 FE model updating conceptual flow chart. 

For this particular study, the commercial program ABAQUS was used for FE 
calculations and MATLAB was used in conjunction with ABAQUS for pre-
processing and post-processing. ABAQUS is a general FEM program which is able to 
do many types of analysis. An ABAQUS input file template (text format) that defined 
FE model geometry, material parameters, element types, meshing parameters, internal 
connections, boundary conditions, load cases and analysis types for pre-processing 
was supplemented with a custom MATLAB subroutine for writing updating 
parameter values to the ABAQUS parameter files. The basic data structure in 
MATLAB is the array, thus the program is highly optimized in order to handle arrays. 
MATLAB also utilizes many inbuilt toolboxes, such as the optimization toolbox 
which is suitable for this project. FE model updating iterations were performed by 
MATLAB using a script file and various MATLAB subroutines. MATLAB executed 
ABAQUS to perform FE calculations and used ABAQUS in conjunction with a 
custom FORTRAN subroutine to convert binary output to ASCII format compatible 
with MATLAB. By default, ABAQUS stores all data in binary format, since binary 
format requires less space for storage. The post processing program was written in 
FORTRAN code and was compiled and linked with ABAQUS library routines. The 
desired outputs were then compared with measured values to assess convergence. The 
Euclidean norm of a weighted error vector (formed as the difference between 
measured values and FE outputs) was compared to a tolerance for most subroutines. If 
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the response had not yet converged to the desired tolerance, selected parameters were 
updated using various FE model updating subroutines in MATLAB. The updated 
parameters were then included in the text input file using the ABAQUS input file 
template and the MATLAB subroutine for updating parameters. FE calculations were 
executed once again, thus iterating the FE model. 

 

Figure 2.11 FE model updating flowchart showing MATLAB, ABAQUS and 
FORTRAN functions. 

In this particular project, a FORTRAN post processing program obtained the 
requested output data from the results record, translated the binary format and wrote 
the data to a number of files in ASCII format. The output data from the post 
processing program was used in MATLAB in the optimization procedure. To be able 
to execute ABAQUS from MATLAB, a function was written in MATLAB code. The 
outline of the code is shown in Figure 2.12. 

 

Figure 2.12  Flowchart showing how MATLAB and ABAQUS were linked for FE 
model updating. 

 

2.4.3 Least squares FE model updating techniques 

In order to define the FE updating procedure for the classical FE updating techniques 
introduced in this chapter, the notation for the updating parameters and response is 
defined below. The general goal of the updating procedures is to minimize the 
residual between the measured response and the FEM response. Chapter 2.4.3.1 –  
2.4.3.8 discuss some least squares techniques for FE updating given different 
conditions. Each of the methods was verified using the simple beam model in 
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ABAQUS with FE updating equations implemented in MATLAB. Derivations of the 
classical FE updating equations and further information about FE model updating are 
available in Friswell and Mottershead (1995). 

Measured response [m x 1], Mz , 

T
1 2    [    ...   ]M M M mMz z z=z    (2.48) 

FE response at iteration j, 

T
1, 2,    ,[    ...   ]j j j m jz z z=z   (2.49) 

Initial value for updating parameter vector [n x 1], 

T
0 1,0 2,0 ,0    ...   nθ θ θ⎡ ⎤= ⎣ ⎦θ   (2.50) 

Updating parameter vector,θ , 

T

1, 2, ,    ...   j j j n jθ θ θ⎡ ⎤= ⎣ ⎦θ   (2.51) 

Often the updating parameter vector is normalized,Φ , 

T
1, 2, ,

1,0 2,0 ,0
     ...   j j n j

j
n

θ θ θ
θ θ θ

⎡ ⎤= ⎢ ⎥⎣ ⎦
Φ   (2.52) 

The updating parameters are normalized in order to overcome the problem with ill-
conditioning which can occur when forming the sensitivity matrix. The normalized 
sensitivity matrix contains the first order derivatives of the responses and has to be 
calculated for each iteration step. The sensitivity matrix is also normalized to facilitate 
good conditioning and thus avoid numerical problems during calculation. A common 
way to calculate the derivatives numerically for the normalized sensitivity matrix is to 
use forward finite difference scheme presented below. 

( ) ( ) 1( , )
( )

i j j i

j j j iM

z z j
i j

z
φ φ
φ φ φ

+ Δ − ⎛ ⎞
= ⎜ ⎟+ Δ − ⎝ ⎠

S  (2.53) 

And in full matrix format 

1 1

1 1 1

1

1 1

1 1

n

m m

m n m

z z
z z

z z
z z

φ φ

φ φ

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

S

K

M O M

L

 (2.54) 
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In this case when the number of updating parameters (n) is less then the target 
responses (m), the sensitivity matrix becomes a non-square matrix with dimensions 
[ ]m n× .  

The updating equation is obtained by minimizing an objective function of the error, 
which is a penalty function, 

( ) Tobj δ =Φ e e  (2.55) 

The error between the measured response and the FE response is given by, 

( )-M j δ= + Φe z z S  (2.56) 

A non square matrix S  does not have an inverse in the conventional sense, but it is 
possible to define pseudo inverse, denoted by +S , the pseudo inverse can be 
calculated according to equation (2.36) or equation (2.36). After having made an 
educated guess of the initial vector of the updating parameters, 0θ , the normalized 
updated parameters are updated according to the FE updating equation, 

1
M j

j j
M

+
+

−⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

z z
Φ Φ S

z
 (2.57) 

The general formulation of the pseudo-inverse algorithm, equation (2.57) is 
equivalent to Gauss-Newton method in optimization, which uses a linear truncation of 
the Taylor Series expansion to solve for the next iteration. Only a very simple 
formulation was considered for this study, more robust Gauss-Newton formulations 
often utilize the line search method for step size control. For more information, refer 
to the Coleman and Zhan (2007). 

 

2.4.3.1 Unweighted pseudo-inverse algorithm: more target responses than 
updating parameter 

For the case of FE updating with more target responses than updating parameter, 
m n> , the equation set is over-determined and the solution is a least-squares 
minimization of the residual, which is solved in Chapter 2.2.3. Thus the pseudo-
inverse is calculated according to equation (2.36) and the FE updating equation is, 

( ) 1T T
1

M j
j j

M

−

+

−⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

z z
Φ Φ S S S

z
 (2.58) 

 

2.4.3.2 Unweighted pseudo-inverse algorithm: more updating parameter than 
target responses 

If more input parameters are used for updating than available output responses, 
ˆn m> , the model can often reproduce the measured responses exactly. The pseudo-
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inverse is rank deficient and the equations for updating are under-determined, thus the 
unweighted pseudo-inverse method with more updating parameter than target 
responses is not capable of producing a unique solution. There can be an infinite 
number of input parameter combinations available that satisfy the convergence 
criteria and it is impossible to know which ones are correct without additional 
measurements to compare with the model response.  

The updating parameter remain unchanged from the previous case, but now the 
measured response is reduced, 

T
ˆ1 2    [    ...   ]M M M mMz z z=z    (2.59) 

FE response, 

T
ˆ1, 2,    ,[    ...   ]j j j m jz z z=z   (2.60) 

For the case of the unweighted pseudo-inverse method with more updating parameter 
than target responses, the pseudo-inverse is defined according to equation (2.37)  and 
iterations are made using equation (2.57), 

( ) 1T T
1

M j
j j

M

−

+

−⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

z z
Φ Φ S SS

z
 (2.61) 

 

2.4.3.3 Unweighted pseudo-inverse algorithm: equal amount of target responses 
and updating parameters 

For the case of the unweighted pseudo-inverse method with an equal amount of target 
responses and updating parameters, m̂ n= , the pseudo-inverse has full rank and the 
rows are linearly independent. A unique solution can be obtained for FE model 
updating. The pseudo-inverse is defined according to equation (2.38) and iterations 
are made using equation (2.57), 

1
1

M j
j j

M

−
+

−⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

z z
Φ Φ S

z
 (2.62) 

 

2.4.3.4 Weighted response pseudo-inverse algorithm: more target responses 
than updating parameter 

In reality, some target responses are measured more accurately than others, therefore 
weighting should be used to reflect the higher degree of confidence. The updating 
equations are obtained by minimizing an objective function of the weighted error, 
which is a penalty function, 

( ) TδΠ = zzΦ e W e  (2.63) 
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The weighting matrix for response residual is often composed of the inverse of the 
response variance matrix. For the simple case of non-correlation of response 
variations, the variance matrix is diagonal and the weighting matrix is defined as, 

1 2

T

2 2 2

1 1 1      ...   
mz z z

diag
σ σ σ

⎛ ⎞⎡ ⎤
⎜ ⎟= ⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

zzW  (2.64) 

The resulting FE updating equation for the normalized updating parameter is, 

T T
1

M j
j j j j j

M
+

−⎛ ⎞
⎡ ⎤= + ⎜ ⎟⎣ ⎦

⎝ ⎠
zz zz

z z
Φ Φ S W S S W

z
 (2.65) 

 

2.4.3.5 Weighted updating parameter change pseudo-inverse algorithm: more 
updating parameter than target responses 

For an under-determined system of equations, the pseudo-inverse is rank deficient and 
an infinite number of combinations of input parameters will satisfy the convergence 
criteria and minimize the error as specified in equation (2.34). In such a case, a 
penalty term may be used for regularization. The penalty term is used to express the 
degree of confidence in the input parameters. For the case at hand, the weighting 
matrix for the updating parameters is chosen within a reasonable range.  

It is reasonable to use a weighting matrix that is the inverse of the variance matrix. 
For non-correlated updating parameters, 

1 2

T

2 2 2

1 1 1      ...   
n

diag
φ φ φσ σ σ

⎛ ⎞⎡ ⎤
⎜ ⎟= ⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

ΦΦW  (2.66) 

The updating equations are obtained by solving the following constrained 
optimization problem, 

Minimize ( ) Tδ δ δΠ = ΦΦΦ Φ W Φ  subject to δ δ=z S Φ  (2.67) 

Solving the minimization equation above, the FE updating equation for the 
normalized updating parameter is obtained as, 

11 T 1 T
1

M j
j j j j j

M

−− −
+

−⎛ ⎞
⎡ ⎤= + ⎜ ⎟⎣ ⎦

⎝ ⎠
ΦΦ ΦΦ

z z
Φ Φ W S S W S

z
 (2.68) 
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2.4.3.6 Weighted updating parameter change and weighted response pseudo-
inverse algorithm  

In some cases, even though more responses than updating parameters are available for 
updating, the pseudo-inverse still may be rank-deficient. If an FE model is used to 
reproduce the measured results of a structure, modelling limitations can prohibit exact 
reproduction of the measured responses. This presents a serious problem for FE 
updating because the updating algorithm will become unstable. It is therefore helpful 
to include the regularization term, Tδ δΦΦΦ W Φ . This term controls the step size at 
each iteration by applying the weight to the updating parameter step, thus ensuring 
that the algorithm does choose unrealistic step sizes. 

The objective function to be minimized, 

( ) T Tδ δ δΠ = +zz ΦΦΦ e W e Φ W Φ  (2.69) 

Solving the minimization of the equation above, the FE updating equation for the 
normalized updating parameter is, 

1T T
1

M j
j j j j j

−

+

−⎛ ⎞
⎡ ⎤= + + ⎜ ⎟⎣ ⎦

⎝ ⎠
zz ΦΦ zz

z

z z
Φ Φ S W S W S W

σ
 (2.70) 

 

2.4.3.7 Weighted updating parameter and weighted response pseudo-inverse 
algorithm  

The weighted updating parameter change given by the previous algorithm improves 
the stability of the FE updating algorithm, but may not prohibit an unstable model 
from converging to meaningless results. In order to ensure that the FE updating 
algorithm does not stray far from reasonable input parameter estimates, the 
regularization parameter contributes to the objective function weighted according to 
the difference in the updating parameter at the current iteration and the initial value of 
the updating parameter. This term also improves the convexity of the objective space 
in the case of non-convexity when only the weighted response is considered. 

The objective function to be minimized, 

( ) ( ) ( )TT
0 0j jδ δ δ⎡ ⎤ ⎡ ⎤Π = + + − + −⎣ ⎦ ⎣ ⎦zz ΦΦΦ e W e Φ Φ Φ W Φ Φ Φ  (2.71) 

Minimizing the equation above, the FE updating equation for the normalized updating 
parameter is, 

( )1T T
1 0

M j
j j j j j j

M

−

+

⎡ ⎤−⎛ ⎞
⎡ ⎤= + + − −⎢ ⎥⎜ ⎟⎣ ⎦

⎝ ⎠⎣ ⎦
zz ΦΦ zz ΦΦ

z z
Φ Φ S W S W S W W Φ Φ

z
 (2.72) 
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2.4.3.8 Minimum variance method 

In the minimum variance method, the response of the FE model is regarded to be in 
the sample of measured data, thus it may be treated statistically. The goal of the 
minimum variance method is to minimize the variance between the model response 
and the measured response. A detailed explanation of the method and a derivation of 
the formulation is provided in Friswell and Mottershead (1995). The FE updating 
equations are summarized below, 

( )T -1
1

M j
j j j j j zj

M
+

−⎛ ⎞
= + − ⎜ ⎟

⎝ ⎠

z z
Φ Φ V S D V

z
 (2.73) 

The variance of the response residual is quantified in the response variance matrix, 

T T T
zj j j j j j j j= − − + eV S V S S D D S V  (2.74) 

Which is obtained from, 

( )( ){ }T

zj m j m jE= − −V z z z z  (2.75) 

The variance matrix is defined in terms of the normalized measurement noise, e, 

{ }TE=eV ee  (2.76) 

The variance of the parameter estimate is updated at each iteration, 

TT -1 T
1j j j j j zj j j j+ ⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦V V V S D V V S D  (2.77) 

The correlation between the parameter estimate and the measurement noise is 
updated, 

TT -1
1j j j j j zj j j+ ⎡ ⎤ ⎡ ⎤= + − −⎣ ⎦⎣ ⎦ eD D V S D V S D V  (2.78) 

 

2.4.4 FE model with Nelder-Mead simplex method 

FE model updating of an FE model in ABAQUS coupled with MATLAB is facilitated 
using the MATLAB optimization toolbox. ABAQUS is a good choice for FEA due to 
the computational power, flexibility and efficiency of the program. Simple or complex 
FE models can be built and analyzed in ABAQUS with a wide selection of element 
types, material constitutive relations and analysis types. MATLAB is easy to work 
with for FE updating and optimization especially because of the inbuilt optimization 
toolbox which includes many robust, fully-tested optimization algorithms that are 
easy to use. The FE updating equations are generated automatically by the 
optimization algorithm as it iterates. 
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The objective of FE model updating is to update an FE model in order to reproduce 
the measured response of a structure. The objective function is used to quantify the 
performance of the model relative to the measured response and the input parameters. 
For least-squares optimization algorithms (Gauss-Newton and Levenberg-Marquardt), 
the objective function should be the weighted residual vector while a scalar objective 
function should be used for the Nelder-Mead Simplex algorithm and Quasi-Newton 
implementation in MATLAB. For this study, only the Nelder-Mead Simplex 
algorithm is presented. Optimization with the Quasi-Newton, Gauss-Newton and 
Levenberg-Marquardt methods is outside of the scope of the current study. 

The response residual vector may be weighted to reflect the confidence in different 
measurements, 

( ) ( )T

m j m j− −zzz z W z z  (2.79) 

 Regularization may be used to reflect the confidence in the updating parameters, 

( ) ( )T

0 0j j− −ΦΦΦ Φ W Φ Φ  (2.80) 

Thus the objective function may be formulated as (without regularization), 

( ) ( )( ) ( )( )T

j m j m jΠ = − −zzΦ z z Φ W z z Φ  (2.81) 

Thus the objective function may be formulated as (with regularization), 

( ) ( )( ) ( )( ) ( ) ( )T T

0 0j m j m j j jΠ = − − + − −zz ΦΦΦ z z Φ W z z Φ Φ Φ W Φ Φ  (2.82) 

In order to use the inbuilt optimizations methods in the MATLAB optimization 
toolbox for FE model updating, send the function handle of the objective function as 
well as the initial updating parameter vector to the optimization subroutine with the 
proper optimization settings. 

MATLAB syntax: 

% Nelder-Mead Simplex Optimization (scalar objective function): 
    [phi,objval,exitflat,output] = fminsearch(obj,phi0,options)  
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3 FE Model Updating of a Simple Beam 
In order to develop MATLAB subroutines for FE model updating, the simplified case 
of a simply supported beam was analyzed. The preliminary FE models were compared 
side-by-side and with analytical formulas in order to ensure accurate modelling. 
During the proof of concept stage, a very simple model is of great use because it may 
be used to identify errors early during the development of the subroutines that will be 
used for the bridge model later. Verification of convergence criteria for optimization 
routines and error checks for the MATLAB and FORTRAN subroutines are easier 
with a small, simple model as opposed to a large, computationally demanding 
numerical model. 

 

3.1 Problem description 

A simply supported steel beam of standard profile, IPE 180, with a length of 8 m was 
chosen for the analysis; see Figure 3.1 and Figure 3.2. The beam is loaded with a 
point load in the negative y-direction applied at the midpoint, see Figure 3.3. All 
motion is constrained to the x-y plane. Each support includes a vertical spring that 
only permits translational motion in the y-direction and a rotational spring that 
permits rotation about the z-axis. Shear deformation is neglected in analytical 
calculations due to the slenderness of the beam, as elastic bending deformation and 
elastic spring deformation are of much greater magnitude. 

 

Figure 3.1 CAD drawings of the IPE 180 beam: isometric, side, top and front 
views (counter-clockwise from top). 
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Figure 3.2 Section profile for IPE 180 beam. 

In order to verify the FE models, hand calculations for the first four eigenfrequencies, 
midspan displacement, support displacement (linear spring deformation) and 
maximum flange strain were performed for the above model. The analytical solution 
for the first four eigenfrequencies and the midspan displacement were obtained using 
Euler-Bernoulli beam theory.  

 

Figure 3.3  Sketch of IPE 180 beam with spring supports. 
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3.2 Numerical modelling 

FE modelling provides a means of utilizing the computational power of computers to 
evaluate the results of numerical models quickly. For the present case, analytical 
equations become rather complicated with the introduction of springs to the boundary 
conditions, thus a numerical model is very useful.  

 

3.2.1 Analytical formulas: MATLAB 

The analytical solution was solved by hand from Euler-Bernoulli beam bending for 
the general case then implemented as a MATLAB subroutine for FE model 
verification. The derivation of the analytical solution is presented in Appendix A with 
the numerical implementation of the beam response as a MATLAB subroutine 
presented in Appendix C. The MATLAB beam response in Appendix C minimizes 
the determinant of the coefficient matrix for the eigensolution, as presented in 
Appendix B. 

 

3.2.2 FE modelling: MATLAB 
A preliminary study was conducted by Schlune (2007) using the CALFEM toolbox in 
MATLAB developed by Lund University (2002). The beam was discretized using 8 
Euler-Bernoulli beam elements, each with length of 1 m. Linear elastic spring 
elements were used, one translational spring and one rotational spring, at each end of 
the beam. The boundary conditions were constrained according to Figure 3.3 and 
beam sectional constants were taken from wholesaler specifications, Bröderna 
Edstrand (2000) 

 

3.2.3 FE modelling: ABAQUS 

FE modelling in ABAQUS verified the calculation of eigenfrequencies, deflections 
and strains determined by the analytical equations and the CALFEM model in 
MATLAB. A total of 10 Timoshenko beam elements (element type B32), each with 
element length of 0.8 m were used to discretize the beam. 
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Figure 3.4 Simple beam element with point load and boundary conditions in 
ABAQUS. 

  

Figure 3.5 Bending of the beam due to point load from ABAQUS compared with 
undeformed beam (scale factor = 50, 1u = 18.77mm  and =max,fσ 8.823 
kPa). 

 

Figure 3.6 Natural modes 1 to 4 for simple beam in ABAQUS. 

 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 39

3.2.4 FE model verification 

The tables below (Table 3.1 and Table 3.2) summarize the input parameters and target 
responses for the simply supported beam modelled using analytical formulas and 
FEM in MATLAB and ABAQUS. The “measured” input parameters are defined 
arbitrarily and produce the “measured” target responses of a simulated experiment.  

Table 3.1 “Measured” input parameters for IPE 180 beam with spring supports. 

  
"Measured" 
Value Units 

Steel Elastic 
Modulus, E 210E9 N/m2 

Translational 
Spring Constant, kt 

1.00E+06 N/m 

Rotational Spring 
Constant, kr 

5.00E+06 Nm/rad

 

Table 3.2 “Measured” target responses for IPE 180 beam. 

Target 
Response 

Analytical 
Formulas 

MATLAB- 
CALFEM 

ABAQUS Units 

f1m 13.232 13.319 13.274 Hz 

f2m 26.353 26.491 26.496 Hz 

f3m 45.979 46.408 45.893 Hz 

f4m 83.723 84.882 82.298 Hz 

u1m 5.000 5.000 5.000 mm 

u2m  18.16 17.85 18.77 mm 

ε1m 0.0003649 0.0003549 0.0003486 mm/mm

The results obtained for the beam target response using FEA with CALFEM and 
ABAQUS were verified using analytical formulas. The input parameters in Table 3.1 
may be considered as the “measured” parameters of the simulated experiment. The 
target responses presented in Table 3.2 are the “measured” target responses of the 
simulated experiment, the results obtained for the simulated IPE 180 beam with the 
“measured” input parameters. 
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3.3 FE model updating procedure 

To simulate an experiment in FE model updating, the “measured” target responses 
were obtained using analytical formulas, CALFEM and ABAQUS with the 
“measured” input parameters described in section 3.2.4. The input parameters were 
then changed to simulate an educated guess based on the structural detail. By 
comparing the target responses from the model with guessed parameters with the 
“measured” target responses, the FE model updating procedure can then be used to 
iterate the input parameters. The subsequent output target responses are once again 
evaluated with the convergence criteria relative to the “experimental” target responses 
and iteration proceeds until convergence or until the maximum iteration count is 
reached. Such a procedure is conducted by Friswell and Mottershead (1995) with a 
cantilevered beam and is verified with a laboratory modal analysis test. 

 

3.3.1 Least squares FE model updating techniques 

3.3.2 Simple beam results: least squares FE model updating 
techniques 

The FE model of the simple beam as defined in Chapter 3.2 was updated using the 
least squares FE updating techniques described in Chapter 2.4.3. The tabulated results 
are available in Appendix D. These analyses provided verification of the FE model 
updating approach using ABAQUS for FE calculations and MATLAB for FE model 
updating algorithm implementation. 

The “measured values” were calculated by the FE model according to the input 
parameters given in Table 3.1. Since the FE model was used to produce the measured 
response vector, FE updating algorithms for full-rank systems were able to reproduce 
the measured response vector exactly and converge to the measured input updating 
parameters. 

T
1 2 3 4 1 2 1[                   ]m m m m m m m mf f f f u u ε=z    (3.1) 

FE response vector, 

T
1, 2, 3, 4, 1, 2, 1,[                   ]j j j j j j j jf f f f u u ε=z   (3.2) 

Updating parameter vector, 

T
, ,[       ]j j t j r jE k k=θ  (3.3) 

Normalized updating parameter vector, 

T
, ,

0
      j t j r j

j
t r

E k k
E k k

⎡ ⎤= ⎢ ⎥⎣ ⎦
Φ   (3.4) 
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3.3.2.1 Unweighted pseudo-inverse algorithm: more target responses than 
updating parameter 

The FE updating procedure for the unweighted pseudo-inverse algorithm with more 
target responses than updating parameter was implemented with the entire response 
vector. The equation set was over-determined and the algorithm reproduced the 
measured values of the updating parameter vector and the response vector after 4 
iterations. For the tabulated results of the analysis, refer to Table D.1 in Appendix 
D.1. 

 

3.3.2.2 Unweighted pseudo-inverse algorithm: more updating parameter than 
target responses 

In the case of the unweighted pseudo-inverse method with more updating parameter 
than target responses algorithm, the first two eigenfrequencies were used for FE 
updating. The updating parameter remained unchanged from the previous case, but 
now the response vector was reduced to, 

T
1 2[    ]M M Mf f=z  (3.5) 

With the corresponding target responses, 

T
1, 2,[    ]j j jf f=z  (3.6) 

The measured values of the first two eigenfrequencies were reproduced exactly after 4 
iterations, but the model did not converge as a whole. The final updating parameter 
values obtained by the model were not correct. This example was rank deficient and 
the equations for updating are under-determined, thus the unweighted pseudo-inverse 
method with more updating parameter than target responses did not converge to the 
full measured response. For the tabulated results of the analysis, refer to Table D.2 in 
Appendix D.1. 

 

3.3.2.3 Unweighted pseudo-inverse algorithm: equal amount of target responses 
and updating parameters 

For the unweighted pseudo-inverse algorithm with equal amount of target responses 
and updating parameters algorithm, the first three eigenfrequencies were used for FE 
updating. The updating parameter remained unchanged from the previous case, but 
now the response vector was reduced to, 

T
1 2 3[       ]M M M Mf f f=z  (3.7) 

T
1, 2, 3,[       ]j j j jf f f=z  (3.8) 

The FE model was used to produce the measured values of the response. The unique 
solution was obtained and the exact solution for the measured values of the updating 
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parameter vector and the response vector was obtained after 4 iterations. Without the 
presence of noise in the measured response, the complete response was produced. For 
the tabulated results of the analysis, refer to Table D.3 in Appendix D.1 

 

3.3.2.4 Weighted response pseudo-inverse algorithm: more target responses 
than updating parameter 

In order to test the weighted response pseudo-inverse algorithm with more updating 
parameter than target responses, realistic assumptions were made for the statistical 
variance of the response. The weighting matrix for the response residual was defined 
using the statistical variance. 

Weighting matrix for response residual, 

1 2 3 4 1 2 1

T

2 2 2 2 2 2 2

1 1 1 1 1 1 1                  
f f f f u u

diag
εσ σ σ σ σ σ σ

⎛ ⎞⎡ ⎤
⎜ ⎟= ⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

zzW  (3.9) 

The assumed coefficients of variation for frequencies are quite low, 

31 2 4

1 4
1 2 3 4

0.01 1%ff f f
f fCOV

f f f f
σσ σ σ

− = = = = = =  (3.10) 

The assumed coefficients of variation for displacement are higher than for 
frequencies, 

1 2

1 2
1 2

0.05 5%u u
u uCOV

u u
σ σ

− = = = =  (3.11) 

The assumed coefficient of variation for strain is higher than for displacements, 

1

1
1

0.10 10%COV ε
ε

σ
ε

= = =  (3.12) 

Convergence of the algorithm occurred after 4 iterations and the exact solution for the 
measured values of the updating parameter vector and the response vector was 
obtained. Without the presence of noise in the measured response vector, this 
algorithm produced the exact solution. For the tabulated results of the analysis, refer 
to Table D.4 in Appendix D.1. 

 

3.3.2.5 Weighted updating parameter change pseudo-inverse algorithm: more 
updating parameter than target responses 

The weighted updating parameter change pseudo-inverse algorithm with more 
updating parameter than target responses, realistic assumptions were made for the 
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statistical variance of the updating parameter. The weighting matrix for the updating 
parameters was defined as the inverse of the variance matrix.  

1 2 3

T

2 2 2

1 1 1      diag
φ φ φσ σ σ

⎛ ⎞⎡ ⎤
⎜ ⎟= ⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

ΦΦW  (3.13) 

The modulus of elasticity of the steel has a very low variation due to high quality 
control standards. The standard deviation of the normalized steel elastic modulus is 
thus assumed to be, 

1
0.03 3%φσ = =  (3.14) 

The variation of the spring stiffness was assumed to be significantly higher than that 
of the elastic modulus of steel. In an actual experiment this could be caused by 
uncertain spring stiffness or uncertain degree of fixture to the beam. Standard 
deviations of the normalized spring stiffness, 

2
1 100%φσ = =  (3.15) 

3
1 100%φσ = =  (3.16) 

This algorithm did not converge and the exact solution for the measured values of the 
updating parameter vector and the response vector was not obtained. The algorithm 
does not appear to be nearing convergence, this is due to the regularization. For the 
results of the analysis, refer to Table D.5 in Appendix D.1. 

 

3.3.2.6 Weighted updating parameter change and weighted response pseudo-
inverse algorithm  

The weighting matrix for the response as defined in Chapter 3.3.2.4 and the weighting 
matrix for the updating parameter used in Chapter 3.3.2.5 were used with FE 
updating. As in Chapter 3.3.2.5, the regularization term prevented convergence to the 
exact solution, but the higher relative weight (lower relative variance) of the response 
caused the algorithm to more accurately reproduce the measured response. This is 
evident by comparing the Euclidean norm of the normalized response vector at the 
final iteration in Table D.5 to Table D.6. The value of the weighted response residual 
at the final iteration is, 
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( ) ( )

T

T

5 5

13.267 13.274 7.534
26.496 26.496 3.774
45.916 45.893 2.179
82.359 82.298 1.
0.01877 0.01877
0.00501 0.00500

0.000348 0.000349

m j m j diag= =

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥− − = −⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

zzz z W z z

13.267 13.274
26.496 26.496
45.916 45.893

215 82.359 82.298
1066 0.01877 0.01877
4000 0.00501 0.00500
28690 0.000348 0.000349

⎛ ⎞⎛⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝

( ) ( )T

5 5 0.006043m j m j= =

⎞
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

− − =zzz z W z z

 (3.17) 

For the tabulated results of the analysis, refer to Table D.6 in Appendix D.1. 

 

3.3.2.7 Weighted updating parameter and weighted response pseudo-inverse 
algorithm  

In order to test the affect of weighting the deviation of the updating parameter vector 
from the initial value, FE updating was implemented with the weighting matrix for the 
response as defined in Chapter 3.3.2.4 and the weighting matrix for the updating 
parameter used in Chapter 3.3.2.5. As in Chapter 3.3.2.5 and Chapter 3.3.2.6, the 
regularization term prevented convergence to the exact solution. When compared with 
the results, but the higher relative weight (lower relative variance) of the response 
caused the algorithm to more accurately reproduce the measured response. This is 
evident by comparing the Euclidean norm of the normalized response vector at the 
final iteration in Table D.6 to Table D.7. The value of the weighted response residual 
at the final iteration is, 

( ) ( )

T

T

5 5

13.275 13.274 7.534
26.513 26.496 3.774
45.821 45.893 2.179
82.002 82.298 1.
0.01884 0.01877
0.00497 0.00500
0.000352 0.000349

m j m j diag= =

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥− − = −⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

zzz z W z z

13.275 13.274
26.513 26.496
45.821 45.893

215 82.002 82.298
1066 0.01884 0.01877
4000 0.00497 0.00500
28690 0.000352 0.000349

⎛ ⎞⎛⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝

( ) ( )T

5 5 0.1189m j m j= =

⎞
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

− − =zzz z W z z

 (3.18) 

Comparing the weighted response residual to that from the previous section, it is clear 
that the regularization term that weights the change of the updating parameter vector 
from the initial value reduces the ability of the FE model to reproduce the measured 
response. For the tabulated results of the analysis, refer to Table D.7 in Appendix D.1. 

 

3.3.3 FE model updating with Nelder-Mead simplex method 

In order to simply verify the effectiveness of the MATLAB optimization toolbox for 
FE updating, the Euclidean norm of the normalized response residual was chosen for 
a simple objective function for the response of the simple beam. As stated earlier, the 
FE model was used to generate the measured response, so the optimization algorithms 
should converge to the exact solution. The analyses in this chapter provide proof of 
concept for FE updating using ABAQUS for FEA and MATLAB for optimization. 
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( ) ( ) ( )2
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m jmi i

j
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z z
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−−
Π = =∑

z z Φ
Φ

z
 (3.19) 

MATLAB syntax: 

% Response function: 'zIPE180(phi)' calls ABAQUS to execute FEA 
z=@(phi)zIPE180(phi); 
  
% Objective function: Euclidean norm of normalized response residual 
obj=@(phi)norm((zm-z(phi))./zm); 
  
% "Measured" response: 
phim=[1.02888 2 2]'; 
zm=z(phim); 
  
% Initial guess for updating parameter vector: 
phi0=[1 1 1]'; 
  
% FE updating using Nelder-Mead Simplex optimization method 
options=optimset('MaxFunEvals',100); 
[phi,objval,exitflag,output]=fminsearch(obj,phi0,options); 
 
The results for the MATLAB optimization using the Nelder-Mead simplex algorithm 
for FE updating are in Table D.9 to Appendix D.1. 

 

3.4 Simple beam FE model updating results 

Without noise, nearly all FE updating methods converged to the measured values, 
thus verifying the FE model updating procedure. When less response parameters than 
updating parameters were used for FE updating, the FE updating procedure converged 
quickly to a non-unique solution. The responses used for updating were reproduced 
exactly, but the entire updated response was not equal to the measured response. 
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Figure 3.7 Convergence of normalized residual of response vector for least 
squares FE updating techniques (more response parameters than 
updating parameters). 
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Figure 3.8 Convergence of normalized difference between updating parameter 
vector and measured parameter vector for least squares FE updating 
techniques (more response parameters than updating parameters). 
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Least Squares FE Updating Techniques
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Figure 3.9 Normalized residual of response vector for least squares FE updating 
techniques (more updating parameters than response parameters). 
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Figure 3.10 Normalized difference between updating parameter vector and 
measured parameter vector for least squares FE updating techniques 
(more updating parameters than response parameters). 
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Figure 3.11 Convergence of normalized difference between updating parameter 
vector and measured parameter vector for MATLAB optimization FE 
updating using the Nelder-Mead Simplex method. 
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Figure 3.12 Convergence of normalized difference between updating parameter 
vector and measured parameter vector for MATLAB optimization FE 
updating using the Nelder-Mead Simplex method. 
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3.5 Noisy measurements 

For the previous FE model updating studies, the FE model was used to produce the 
measured response, thus all of the FE updating techniques that did not include a 
regularization term converged to the analytical solution and reproduced the measured 
response exactly. In reality, experimental noise and modelling limitations will reduce 
the ability of the FE model to reproduce the experimental measurements. When 
experimental noise exists and more measurements that updating parameters are used, 
the FE model will not be able to reproduce the response exactly. In such a case, the 
FE model updating algorithms search for a solution to satisfy the optimality criteria. 

For the investigation at hand, experimental noise was randomly added to the 
analytical FE response using a Gaussian normalized random distribution that was 
proportional to the assumed standard deviation of the measured response. Only the 
rotational and translational spring updating parameters were used for updating so that 
the results could be visualized. 

Table 3.3 “Measured” input parameters for IPE 180 beam with spring supports 
for FE model updating with simulated experimental measurement noise. 

  "Measured" Value Initial Value 

Translational 
Spring Constant, kt φ1m = 2 θ1m = 1.0x106 N/m φ1 = 1 θ1 = 5.0x105 N/m 

Rotational Spring 
Constant, kr φ2m = 2 θ2m = 5.0x106 Nm/rad φ2 = 1 θ2 = 2.5x106 Nm/rad 

1
1 100%φσ = =  (3.20) 

2
1 100%φσ = =  (3.21) 

13.27    Hz
26.50    Hz
45.92    Hz
82.36    Hz
0.0188    
0.0050    

0.00035    

m

m
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ε
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⎢ ⎥
⎢ ⎥
⎢ ⎥
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( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )( )

,

13.27 1 0.01 -1.336     Hz

26.50 1 0.01 0.714     Hz

45.92 1 0.01 1.624     Hz

randn(7,1). 82.36 1 0.01 -0.692     Hz

0.0188 1 0.05 0.858      

0.0050 1 0.05 1.254      

0.00035 1 0.10 -1.594     m

m noise m z

ε

ε

⎡ +
⎢

+⎢
⎢ +⎢
⎢= + × = +⎢
⎢ +
⎢

+⎢
⎢

+⎢⎣

z z σ

13.10    Hz
26.69    Hz
46.64    Hz
81.73    Hz
0.0196    
0.0053    

0.00029    m

ε
ε

⎤
⎡ ⎤⎥
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥ = ⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥ ⎣ ⎦⎥⎦

 (3.24) 

Three different least squares FE model updating techniques were implemented to 
study the affect of experimental noise. The unweighted pseudo-inverse algorithm with 
more responses than updating parameters (PI 1 in Table 3.4), the weighted updating 
parameter and weighted response pseudo-inverse technique (PI 2 in Table 3.4) and the 
minimum variance method were used with varying degrees of noise, starting with zero 
noise.  

The Nelder-Mead simplex method was used to minimize the standard deviation 
objective function for the simple beam. The formulation of the objective function is 
very important as the set of updating parameters that minimize the objective function 
are considered the optimal updating parameters. For this case, the standard deviation 
objective function is used to express the average normalized deviation of the FEM 
response from the measured response. 

Standard deviation objective function for response, 

( )2

2
1

z

i

N
mi i

i z

z

z z

Nσ

σ=

−

Π =
∑

z  (3.25) 

In the objective function above, zN  is the length of the response vector, which is 
equal to the number of responses. If the standard deviation objective function for the 
response is minimized, the updated FE model is considered to be optimized with 
respect to the response with statistical consideration of the measured response. 
Experimental noise in the measured response will cause the FE updating algorithms to 
search for a set of parameter that best reproduce erroneous response. The solution 
may not be reasonable and if the experimental noise level is very high, the FE 
updating algorithms may become unstable. For such a case, regularization ensures that 
the final updating parameters do not significantly deviate from the best guess 
according to preliminary calculations. 

In practice, the updating parameters represent uncertain structural parameters. 
Generally, there is a certain confidence associated with the uncertain structural 
parameters. The European structural code requires that the structural members are 
capable of satisfying the design requirements according to probabilistic criteria 
associated with the probabilistic distribution of the material parameter (such as 
strength) and the probabilistic criteria associated with the load combination. Building 
materials with very consistent material properties (i.e., steel) have a lower coefficient 
of variation and thus a lower partial safety coefficient than building materials that are 
known to vary, such as concrete according to EN 1992-1-1. In order to obtain an FE 
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model that minimizes the response residual without becoming unrealistic, a 
regularization term as a function of the updating parameters should be used.  

The standard deviation regularization term for updating parameters, 

( )22
0

2
1

2
i

i i

i φ
σ

φ φ
σ=

−

Π =
∑

Φ  (3.26) 

In this case, the optimal FE model (for the case of simulated experimental noise) was 
defined as that which minimized the deviation of the response and the deviation of the 
updating parameters with regard to statistical consideration of the response and 
statistical consideration of the updating parameters. 

2
σ σ

σ
Π + Π

Π =
z Φ

 (3.27) 

The updating parameter vector for the optimal FE model with a noisy measured 
response is obtained by solving, 

min σ Π
Φ

 (3.28) 

In order to visualize the optimization procedure, the iteration steps are presented in 
Figure 3.13 in the normalized updating parameter space. The contours represent the 
magnitude of the standard deviation objective function of the response, σ Πz . At the 

“measured” normalized updating parameter vector ( [ ]T2 2m =Φ ), the objective 
function is minimized and the response is reproduced exactly. For the case without 
noise, σ Πz  was minimized to obtain the exact solution. 
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Figure 3.13 Plot of FE model updating iterations in updating parameter space 
without noise. 

Table 3.4 Tabulated results of FE model updating for simple beam without noise. 

  PI 2 PI 2 
Minimum 
Variance

Nelder-Mead 
Simplex mz  

φ1 2.000 2.003 2.000 2.000 2.000 

φ2 2.000 1.954 2.000 2.000 2.000 

      

f1 13.27 13.25 13.27 13.27 13.27 

f2 26.50 26.51 26.50 26.50 26.50 

f3 45.89 45.89 45.89 45.89 45.89 

f4 82.30 82.22 82.30 82.30 82.30 

u1 0.0188 0.0188 0.0188 0.0188 0.0188 

u2 0.0050 0.0050 0.0050 0.0050 0.0050 

ε1 0.00030 0.00030 0.00030 0.00030 0.00035 
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The results presented in Figure 3.13 and Table 3.4 were expected and are very similar 
to the convergence study previously presented. When experimental noise was added 
to the results in the manner described above, the solution to the minimization of the 
objective function of the response with regularization of the updating parameter 
produced the best results for the techniques used. In this case, the Nelder-Mead 
simplex method was used to minimize the standard deviation objective function for 
the response with regularization of the input parameters, σ Π . 
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Figure 3.14 Plot of FE model updating iterations in updating parameter space with 
simulated experimental noise (noise level ~1 zσ ). 
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Table 3.5 Tabulated results of FE model updating for simple beam with simulated 
experimental noise (noise level ~1 zσ ). 

  PI 1 PI 2 
Minimum 
Variance

Nelder-Mead 
Simplex mz  ,m noisez  

φ1 2.118 2.037 2.049 2.009 2.000   

φ2 1.554 1.673 1.319 1.834 2.000   

              

f1 13.15 13.13 12.84 13.19 13.27 13.10 

f2 27.00 26.64 26.66 26.53 26.50 26.69 

f3 46.35 45.96 45.85 45.88 45.89 46.64 

f4 81.75 81.75 80.84 82.00 82.30 81.73 

u1 0.0194 0.0193 0.0202 0.0190 0.0188 0.0196 

u2 0.0047 0.0049 0.0049 0.0050 0.0050 0.0053 

ε1 0.00040 0.00040 0.00040 0.00040 0.00035 0.00029 

When an extreme amount of noise ( ( )5randn 7,1 . z×σ ) was added to the response, the 
least squares FE updating methods did not converge as well as the Nelder-Mead 
simplex algorithm ( min σ Π

Φ
).  

, 5randn(7,1).m noise m z= + ×z z σ  (3.29) 

The unweighted pseudo-inverse algorithm (PI 1) became unstable after two iterations. 
This was probably due to the linear approximation (truncation of the Taylor series 
after the first-order terms) used to solve for the next iteration. The weighted updating 
parameter and weighted response pseudo-inverse algorithm converged after nine 
iterations. The minimum variance algorithm became immediately unstable, iterating 
to an impossible value. Once again, the linear truncation of the Taylor series assumed 
by the minimum variance method is devastating when optimizing an objective 
function with considerable non-linear behaviour. The Nelder-Mead simplex was 
stable, converging after 24 iterations. The results of the analysis are presented in the 
table below. 
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Table 3.6 Tabulated results of FE model updating for simple beam with simulated 
noise (noise level ~5 zσ ). 

  PI 1 PI 2 
Minimum 
Variance

Nelder-Mead 
Simplex mz  ,  !m very noisyz

φ1 2.603 2.229 1.799 1.984 2.000   

φ2 0.426 0.922 -0.225 1.340 2.000   

              

f1 11.56 12.54 --- 12.73 13.27 12.39 

f2 28.50 27.37 --- 26.23 26.50 27.44 

f3 48.25 46.59 --- 45.56 45.89 49.62 

f4 78.93 80.09 --- 81.95 82.30 79.45 

u1 0.0256 0.0215 --- 0.0196 0.0188 0.0228 

u2 0.0038 0.0045 --- 0.0050 0.0050 0.0066 

ε1 0.00040 0.00040 --- 0.00038 0.00035 0.00007 

 

3.6 Conclusions 

The study of the simple beam provided proof of concept for FE model updating using 
ABAQUS coupled with MATLAB. Least squares FE updating techniques were 
implemented and verified. The Nelder-Mead Simplex algorithm in the MATLAB 
optimization toolbox was successfully implemented for FE updating. The importance 
of regularization was explored in Chapter 3.5 with the introduction of noise to the 
measured response. Many of the least squares algorithms were determined to be 
unstable when a significant level of noise was introduced to the measured response. 
This was believed to be caused by the linear truncation of the Taylor series for least 
squares solutions. Without considering higher order terms that are important for 
functions with considerable non-linear behaviour, the direct pseudo-inverse 
algorithms derived from least squares minimization were erratic when experimental 
noise was introduced to the system. No step-size controls were used for the least 
squares FE updating algorithms, such controls are in-built in the Gauss-Newton line-
search non-linear least-squares minimization algorithm in the MATLAB optimization 
toolbox. Instability in the least squares FE updating routines that only considered the 
response emphasized the importance of using regularization and even establishing 
feasible limitations on the updating parameters for iterations. The Nelder-Mead 
simplex method available in the MATLAB optimization toolbox is robust and well-



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 56 

developed when compared with the pseudo-inverse algorithms derived from least 
squares minimization. 

Although all FE updating algorithms converged to reasonable results for the case of 
the simple beam without noise, the introduction of noise caused the unweighted 
pseudo-inverse algorithm and the minimum variance algorithm to become unstable. 
Experimental noise is known to exist for the case of the Svinesund bridge, so the 
unweighted pseudo-inverse algorithm was concluded to not be ideal for such a case. 
Furthermore, the response of the Svinesund bridge is suspected to be considerably 
non-linear and possibly non-convex and therefore optimization routines that utilize 
linear truncation of the Taylor series (such as direct least squares FE model updating 
techniques) are prone to instability. The Nelder-Mead simplex method was chosen for 
updating due to stability, convergence and ease of use for the case of the simple beam 
model. Although the simplex method requires more iterations for convergence than 
the least squares FE updating techniques, it does not require the calculation of the 
sensitivity matrix, which is computationally expensive due to the necessity of FE 
model response evaluation for each updating parameter for the finite difference 
method. Calculating FE model response in the FEA portion of FE updating using 
ABAQUS required much more time than the FE model updating procedures in 
MATLAB. This was because the system of equations solved during FEA was large 
and because ABAQUS must first be initialized by the operating system before FEA 
calculations can begin. As such, the number of objective function evaluations is 
decisive rather than the number of iterations when considering the time needed for FE 
updating. 

The stability and ease of use of the FE model updating method were the determining 
factors when selecting a method for FE model updating of the Svinesund bridge. In 
conclusion, due to numerical stability and ease of use, the Nelder-Mead simplex 
method was determined to best satisfy the demands for an FE updating algorithm. 
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4 FE Modelling and Experimental Testing of the 
New Svinesund Bridge 

4.1 FE modelling 

Originally, the FE model for the bridge was created by the bridge contractor Bilfinger 
Berger (2003) for design purposes. For analysis, a new FE model was created using 
ABAQUS by Plos and Movaffaghi (2004) using indata files supplied by Bilfinger 
Berger (2004). The ABAQUS FE bridge model was shared by KTH and Chalmers for 
analysis and research purposes.  

 

4.1.1 FE model description 

The FE model of the completed bridge from Plos and Movaffaghi (2004) is shown in 
Figure 4.1. The FE model is defined using the standard international (SI) units in a 
Cartesian coordinate system with the x, y and z axes corresponding to axes 1, 2 and 3 
in Figure 4.1. In total, the FE model of the permanent bridge structure contains 2393 
elements, 1690 nodes and 11 724 DOF (the equation set is determined by the DOF). 
The total set of equations must be solved for the eigenfrequency calculations and for 
each static load case each time the response function is evaluated. In order to increase 
efficiency during optimization, all unnecessary output data was suppressed, thus 
reducing computational time. The calculation time for the response function for the 
bridge (executed from MATLAB with FEA completed by ABAQUS) was thus 
reduced from 45 seconds to 24 seconds. 

To model the global behavior of the bridge while minimizing computational time, the 
FE model was simplified as much as possible. The utilization of beam elements 
instead of solid, continuum elements reduced the model complexity drastically. For 
the arch and bridge superstructure elements, first order (2 nodes) Timoshenko beam 
elements (ABAQUS element type: BEAM GENERAL SECTION) with linear 
material behavior and constant cross-section and material properties were placed 
along the neutral axes. These elements accurately model the global behavior of each 
section of the bridge with regards to normal force, bending moment, shear, stress, 
strain and shear deflection. The strains at various sensor locations were obtained from 
beam sectional points defined in the beam section of interest. 

The carriageways of the superstructure were modeled as beam grid structures with 
three longitudinal beams with interacting top and bottom flanges to model the 
longitudinal walls within the box girder. Transversal stiffening beams are placed 
every four meters to model the internal transversal stiffening walls within the box 
girder superstructure.  

Each supporting cable from the arch to the superstructure was modeled with a beam 
element of constant cross-section and constant material properties. Due to the low 
bending stiffness, a negligible moment is transferred from the cable to the arch or 
bridge superstructure. Each pair of cables attach to a transversal beam element at the 
carriageway. At the connection of the arch and cable, a very stiff element is used to 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 58 

support the cables at the correct position relative to the arch neutral axis. The same 
stiff beam elements are used to connect the supports for the carriageways to the pier 
top. 

Further information regarding the development of the FE model may be obtained 
from Plos and Movaffaghi (2004). 

 

4.1.2 Boundary conditions and internal constraints 

As is essential with all FE models, the boundary conditions and internal constraints 
were considered with utmost care as to ensure model accuracy. For foundations that 
are considered partially fixed, no translation or rotation was permitted for fixed DOF. 
Remaining DOF were constrained with linear elastic translational or rotational 
springs. For the model by Plos and Movaffaghi (2004), the abutments and the 
bearings at the tops of the piers for the support of the bridge superstructure were 
constrained such that translational and rotational DOF only permit motion allowed by 
the bearing design, see Figure 4.1 and Figure 5.10. An extensive description of the 
boundary conditions and internal connections for the initial ABAQUS model is 
described in Plos and Movaffaghi (2004). 

 

 

Figure 4.1 FE model of the New Svinesund Bridge: fixed DOF marked with red 
arrows (displacement) and blue arrows (rotation). Spring elements 
indicated by black boxes. Figure is used with permission from Plos and 
Movaffaghi (2004). 
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4.2 New Svinesund Bridge response 

4.2.1 Permanent sensors 

Structural monitoring of the New Svinesund Bridge is accomplished using sensors 
installed during construction. Data acquisition systems at the base of the arch on each 
side of the bridge record data. The bridge instrumentation system is capable of 
measuring strain, acceleration, temperature, wind speed and wind direction. The 
instrumentation of the arch includes 16 vibrating-wire strain gauges, 8 resistance 
strain gauges, 4 linear servo accelerometers installed in pairs to measure vertical and 
transversal acceleration, 28 temperature gauges in the same sections as the strain 
gauges and 1 outside temperature gauge with a 3-directional ultrasonic anemometer 
for measuring wind speed and direction. The suspended part of the bridge deck 
includes 2 sets of linear servo accelerometers: 2 accelerometers for measuring vertical 
acceleration of the deck and 1 accelerometer for measuring transversal acceleration of 
the deck. The forces of the first hangers are measured using 4 load cells. Linear 
variable differential transformer (LVDT) position sensors monitor the transversal 
movement of the bridge deck relative to the top of the piers. Further detail regarding 
instrumentation and measurements is detailed in Ülker-Kaustell and Karoumi (2006) 
and www.byv.kth.se/svinesund/instrumentation.htm. 

 

Figure 4.2 Figure showing the approximate locations for the different types of 
sensors. 
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4.2.2 Static load tests 

The static load testing program was developed by Dr. Raid Karoumi at KTH and is 
presented in detail in Karoumi (2006) and Karoumi (2007). The static load tests 
consisted of 25 ton trucks parked in different positions to produce several static load 
patterns, the loading configuration is shown in Figure 4.3 with a yellow rectangle and 
red arrow representing each truck and its orientation. Chalmers performed static FE-
analysis to provide the theoretical response prediction before actual load testing.  

 

Figure 4.3 Loading configurations for load cases A-E. 

 

4.2.3 Experimentally measured response 

The experimentally measured response is composed of eigenfrequencies and static 
load case measurements. The eigenfrequencies were calculated by Ülker-Kaustell and 
Karoumi (2006) from 66 raw data files of ambient vibration acceleration 
measurements conducted during the time periods of June to August 2005 and 
November 2005 to January 2006. Static measurements were recorded during the load 
tests conducted during 18-19 May 2005. The static measurements included strains, 
displacements and hanger loads. 

Temperature and wind speed were recorded during experimental measurements for 
eigenfrequency and static responses. For the static loads, the temperature effect was 
removed by linearly interpolation over the unloaded time intervals. Removal of the 
temperature effect from the acceleration data used to determine the eigenfrequencies 
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was not possible, thus experimental noise due to temperature variation is intrinsically 
evident in the eigenfrequency data. In order to minimize the experimental noise due to 
temperature variation, only the data from the 50 frequency measurements conducted 
during summer frequency measurement period were used for updating. 

 

4.2.3.1 Experimentally measured eigenfrequencies 

Acceleration measurements of ambient vibrations due to wind and traffic were 
obtained from the permanently installed accelerometers and were used to determine 
the measured eigenfrequencies. The permanently installed accelerometers provide 
reliable measurements for acceleration and are easily accessible for inspection, repair 
and replacement. Three different methods were utilized to obtain the eigenfrequencies 
from the acceleration data: maximum likelihood technique, random decrement 
technique and stochastic subspace identification technique. An example of a typical 
stabilization diagram from ARTeMIS for the stochastic subspace frequency 
identification method using acceleration measurements is presented in Figure 4.4. The 
peaks of the stabilization diagram correlate to the measureable eigenfrequencies of the 
bridge. The eigenfrequencies predicted by the methods were provided by KTH (2006) 
for statistical analysis. Of all of the frequency data available, the mean values of the 
frequency measurements conducted during the summer measurement period for all 
frequency identification methods were used in this report for FE model updating. As 
such, the mean measured frequencies presented in this report differ from the values 
presented in Ülker-Kaustell and Karoumi (2006). A temperature trend that cannot be 
easily removed is evident in the eigenfrequency data presented in Ülker-Kaustell and 
Karoumi (2006), thus the summer frequency measurements were chosen for FE model 
updating as to minimize temperature variation. This trend is believed to be caused by 
the temperature dependency of the asphalt elastic modulus, which is especially 
evident at temperatures below 10 ºC (hence the winter frequency measurements were 
not considered for FE model updating). Further information regarding the asphalt 
elastic modulus is presented in Chapter 5.1.3. 
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Figure 4.4 Typical stabilization diagram of accelerometer data as presented by 
ARTeMIS from Ülker-Kaustell and Karoumi (2006). 

 

Figure 4.5 Accelerometer mounted inside of arch. 

 

4.2.3.2 Experimentally measured strains 

Permanently installed strain gauges in five arch cross sections (refer to Figure 4.2) 
provided strain data during load testing. Vibrating wire and resistance strain gauges 
were used in the same sections for strain output verification. The strain gauges cannot 
be replaced because they are attached to steel reinforcement bars in the arch and cast 
into the arch section. A study conducted by the Norwegian Geotechnical Institute, 
DiBiagio (2003), found that vibrating wire type strain gauges were still properly 
functioning after 27 years of continuous service, thus the measurement system is 
expected to be able to provide valuable data well into the life of the bridge. 

Strain data was recorded at 1 Hz according to Karoumi (2007). The effect of 
temperature was removed using linear interpolation of the unloaded time intervals. 
The strain measurements for all measured arch sections are reported in Appendix F.2. 
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Figure 4.6 Approximate location of strain gauges in arch section S1 (near arch 
foundation, Swedish side). 

 

Figure 4.7 NGI/Geonor P-300 vibrating wire type strain gauge installed in arch 
sections, James and Karoumi (2003), GEONOR (2007). 
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Figure 4.8 Measured strains in arch section S1 before temperature correction. 
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Figure 4.9 Measured strains in arch section S1 after temperature correction. 

 

4.2.3.3 Experimentally measured displacements 

FB Engineering performed the measuring of the displacement by utilizing six total 
stations of the type Leica TCA2003, see Figure 4.11. Two total stations were placed 
in line with pier five (Swedish side) one on each side of the arch and analogy for the 
Norwegian side, but instead in line with pier eight. In order to measure the vertical 
displacements in the carriageways thirty for this particular occasion, special made 
signals were placed on the edges of the carriageways, see Figure 4.10 and Figure 4.12. 
Each of the signals was constructed with two prisms on each side of the signal, the 
prisms were pointing in opposite direction. The purpose for the signals was only to 
measure the vertical movement of carriageways. A third pair of total stations was 
placed on a top of hill on the Norwegian side, northwest of the bridge. That particular 
pair mainly measured the longitudinal, transversal and vertical displacements of the 
arch. The signals for arch measurement were placed at quarter points above hanger 1 
and hanger 6, a third signal was placed at the top of the arch. The measurement was 
taken within ten minutes for each loading case. All the equipment was calibrated 
before the measurements were taken. 
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Figure 4.10 Figure showing location of the points at the carriageway for 
displacement measurements (top view of main span). 

 

Figure 4.11 Figure showing total station placed on the hill northwest of the bridge, 
FB Engineering (2005). 

 

Figure 4.12 Figure showing special made signal, FB Engineering (2005). 

 

4.2.3.4 Experimentally measured hanger loads 

During the static load tests, the hanger loads at hanger 1E and hanger 1W were 
recorded at a rate of 1 Hz, Karoumi (2007). Temperature effects were removed using 
linear interpolation of the unloaded time intervals as for the strain measurements. The 
load cells used to measure the hanger loads were calibrated before the static load tests 
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were performed using vibration measurements of the hangers with forced excitation 
under gravitational loading conditions, Karoumi and Andersson (2006). 

 

Figure 4.13 Hanger 1E with load cells. 
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5 FE Model Manual Refinement of the New 
Svinesund Bridge through Structural 
Calculations 

Although FE model updating is a powerful tool, manual model refinement is of great 
importance. Before FE model updating algorithms may be implemented, the FE 
model must be created and calibrated manually according to engineering judgement. 
Uncertain structural parameters should be investigated and a ‘best guess’ FE model 
should be used for FE model updating. FE model updating algorithms are useless if an 
FE model is used that cannot model the desired structural response. Modelling 
limitations should be sufficiently minimized before the updating parameters are 
calibrated with the FE model updating algorithm. The adjustments to uncertain 
structural parameters investigated in the preceding sections were progressively 
included in the FE model; the results of the study are tabulated in Appendix F. 

 

5.1 Structural parameter investigation 

5.1.1 Increase of arch section stiffness 

The FE model implemented during the design phase of the New Svinesund Bridge 
was used to verify the structural capacity and performance as specified by the 
European and Swedish structural codes. The stiffness of the arch sections was 
calculated using the lower limit and thus did not consider the stiffness increase from 
concrete hydration and the stiffness contribution of the reinforcement. Such an 
assumption is common during design because it ensures that the actual structure will 
satisfy the design requirements. Thus the performance of the actual structure is often 
better than the model due to safe-side assumptions during modelling. Although 
conservative modelling techniques are common in design, the modelling parameters 
must be more realistic in order to accurately model the actual bridge response. Thus, 
the increased stiffness of the arch due to concrete hydration was calculated according 
to Eurocode 1992-1-1:2003, 

Concrete class K70: 

( ) ( )cm cc cmf t t fβ=  (5.1) 

( )
1

228exp 1cc t s
t

β
⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞⎢ ⎥= −⎨ ⎬⎜ ⎟

⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
 (5.2) 

( ) ( ) 0.3
cm

cm cm
cm

f t
E t E

f
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (5.3) 

Substituting equation (5.1) into equation (5.3), 
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( ) ( ) 0.3
cm cc cmE t t Eβ⎡ ⎤= ⎣ ⎦  (5.4) 

Where, 

49.5 ckf MPa=  characteristic compressive strength at 28 days (5.5) 

8 57.5 cm ckf f Mpa MPa= + =  mean compressive strength at 28 days (5.6) 

37.5 ckE GPa=  characteristic modulus of elasticity at 28 days (5.7) 

0.25s =  coefficient for strength Class CEM42,5 N (Class N) (5.8) 

456 t days=  age of concrete at measurement tests (5.9) 

( )cc tβ  coefficient for concrete age (5.10) 

In the serviceability limit state, 

37.5 cm ckE E GPa≈ =  mean modulus of elasticity at 28 days (5.11) 

Thus, at the time of testing, the stiffness of the concrete due to hydration was, 

( )456 39.7 cmE GPa=  (5.12) 

( )456
5.8%cm cm

cm

E E
E

−
=  (5.13) 

In addition to the increase in stiffness due to hydration, the stiffness of the arch 
section is increased due to reinforcement, 

cm c steel steel
eq

c steel

E A E AE
A A

+
=

+
 (5.14) 

Structural drawings were available for the 25 arch sections on the Swedish side. The 
area of reinforcement steel in each arch cross section was calculated using the number 
of reinforcement bars in each section and the dimensions of the section as specified by 
Billfinger Berger (2003b). The equivalent stiffness at each section was correlated to 
the corresponding beam element in the FE model using quadratic interpolation. 
Although the quadratic trend is not exact, it was the most reasonable approximation 
given the available information. Only a sample set of the structural drawings was 
available, thus the reinforcement layout was estimated using engineering judgement 
when only a partial set of structural drawings were available for a particular arch 
section. The scatter in the data in Figure 5.1 indicates that a better trend could be used 
if all of the structural drawings were available. 

The equivalent stiffness near the arch base was calculated as, 

278 20 58 32 0.0711 steelA mφ φ= + =  (5.15) 
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( ) ( ) 26230   4231 - 3230   2000 19.9 cA mm mm mm mm m= × × =  (5.16) 

40.43 eqE GPa=  (5.17) 

7.8%eq

cm

E
E

=  (5.18) 

The equivalent stiffness near the arch crown was calculated as, 

2204 25 0.100 steelA mφ= =  (5.19) 

( ) ( ) 24007   2714 - 2808   1804 5.8 cA mm mm mm mm m= × × =  (5.20) 

43.29 eqE GPa=  (5.21) 

15.44%eq

cm

E
E

=  (5.22) 
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Figure 5.1 Variation of normalized concrete Young’s modulus (elastic modulus), 
Ecφ , across arch. 
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5.1.2 Asphalt mass 

During FE modelling in the design phase, beam elements with equivalent sectional 
parameters were used to model the carriageway. The sectional area of the outer web 
was set to 0, , 0web oA = , while the sectional area of the inner web was the equivalent 
area of the entire section, ,web i carrA A= . No additional elements were used for 
modelling the self-weight of the asphalt layer, utilities (including internal walkways 
and drainage system) and railings, Billfinger Berger (2003a). Instead, a uniform load 
was applied to the longitudinal beam elements. These approximations are valid for 
verifying structural design codes, such as SLS deflection criteria, but, in reality, are 
simplified and do not represent the actual behaviour of the bridge. In order to 
calculate the eigenfrequencies of the bridge, the density of all carriageway elements 
was first set to zero and the equivalent mass was added to each element. The sum of 
the masses of the steel, asphalt layer, utilities and railing was distributed to each beam 
element. In such a way, the mass distribution was approximated. 

When transferring the model from the designers model to ABAQUS for research 
purposes, realistic sectional properties were used for each longitudinal beam element 
of the carriageway. As such, the mass distribution of the steel in the carriageway was 
realistically modelled, Plos and Movaffaghi (2004). In order to include the mass of the 
non-structural members (asphalt layer, utilities and railings), discrete point mass 
elements were added at the nodes of intersection of the transversal stiffeners and 
longitudinal beams. These elements only approximate the mass distribution of non-
load carrying members; they do not add stiffness to the carriageway. Load dividers 
were used to allocate the distributed mass of the non-load carrying members to the 
discrete point masses. Each element contributes an equivalent gravitational load to 
according to the load dividers presented in Figure 5.3. 

3 30
35

PGJA, Gravel max diameter 16 mm

PGJA, Gravel max diameter 11 mm

Epoxy

 

Figure 5.2  Drawing of asphalt layer. 
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Figure 5.3  Load dividers for mass elements used to model non-structural members 
of the carriageway. 

The discrete mass elements used to model the asphalt layer also included the masses 
of the utilities (internal walkways and drainage system) and the railings. Load dividers 
were set between beam elements in order to evenly distribute the mass of the non-
structural members. The longitudinal load divider was placed in the middle between 
the outer beam elements and the central beam element, thus the spacing between the 
longitudinal load dividers and the longitudinal beam elements was 2.5 m. Transversal 
load dividers were placed in the middle between consecutive transversal stiffeners. 
The spacing between the transversal load dividers and the transversal beam elements 
was 4.25 m.  

( ) 98.11.43 145.8
1railings

kg kgkN
m mkN

ρ ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (5.23) 

( ) 98.12 0.5 102
1walkways

kg kgkN
m mkN

ρ ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (5.24) 

( ) 98.10.5 56
1drainage

kg kgkN
m mkN

ρ ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (5.25) 

( )( )( )3
98.125 0.070 10 1717
1asphalt

kg kgkN m m mm kN
ρ ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 (5.26) 

( )( )tot railings walkways drainage asphalt beamsm sρ ρ ρ ρ= + + +  (5.27) 

8 261 totm kg=  (5.28) 

1 2 065 m kg=  (5.29) 

2 4 131 m kg=  (5.30) 

The addition of mass elements to the carriageway increased the hanger loads during 
gravitational loading. The resulting distribution of hanger loads is much more realistic 
and the FE hanger loads compare well with values reported in Karoumi and 
Andersson (2006). A discrepancy between the FE hanger loads and measured hanger 
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loads is evident at hanger 1 and hanger 6. This is probably due to the contribution of 
bending of the carriageway to the hangers nearest the carriageway-arch connection. 
Before the temporary hangers were removed during the final phase of the construction 
process, the axial force in each hanger was adjusted to the design value by adding 
steel plates at the support. Because the hangers are designed to uniformly carry the 
load from the carriageway when loaded, hanger 1 and hanger 6 are slightly 
prestressed and the increased hanger load is caused by negative bending of the 
carriageway. The difference between the measured value and the FE value for the 
average hanger load for hangers 2-5 is only 3.8% after adding mass elements to the 
FE model to account for the asphalt layer compared with a difference of 29.4% before 
the addition of the mass elements. 

( )2 2 5 5...

8
hang W hang E hang W hang E FEM

hangFEM

F F F F
F

+ + + +
=  (5.31) 

( )2 2 5 5
,

...

8
hang W hang E hang W hang E measured

hang measured

F F F F
F

+ + + +
=  (5.32) 

Before adding point mass elements to FE model to account for the asphalt layer, 

,

,

29.1%hang measured hangFEM

hang measured

F F
F

−
=  

After adding point mass elements to FE model to account for the asphalt layer, 

,

,

3.4%hang measured hangFEM

hang measured

F F
F

−
=   
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Figure 5.4  Experimentally measured hanger loads compared with calculated 
hanger loads using FEM with and without asphalt mass elements 
(initial FE model: 0Masphφ = , Model 3: 1Masphφ = ) for gravitational 
loading. 
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Table 5.1 Tabulated values for measured and calculated hanger loads for 
gravitational loading. 

  Hanger Loads 

  FEM 

Measured 0Masphφ =  1Masphφ =  

 

Fm FFEM 
m FEMF F

Fm

−  
FFEM 

m FEMF F
Fm

−  

W 2477 kN 1253 kN 49% 1621 kN 35% 
Hanger 1 

E 2339 kN 1309 kN 44% 1679 kN 28% 

W 1925 kN 1325 kN 31% 1806 kN 6% 
Hanger 2 

E 2015 kN 1385 kN 31% 1867 kN 7% 

W 1828 kN 1261 kN 31% 1740 kN 5% 
Hanger 3 

E 1966 kN 1322 kN 33% 1803 kN 8% 

W 2048 kN 1267 kN 38% 1748 kN 15% 
Hanger 4 

E 1778 kN 1328 kN 25% 1811 kN -2% 

W 1730 kN 1337 kN 23% 1822 kN -5% 
Hanger 5 

E 1760 kN 1398 kN 21% 1886 kN -7% 

W 2512 kN 1253 kN 50% 1645 kN 35% 
Hanger 6 

E 2504 kN 1312 kN 48% 1712 kN 32% 

 

5.1.3 Asphalt dynamic stiffness 

Asphalt is a material that exhibits highly nonlinear behaviour. The Young’s modulus 
is highly temperature dependent, but also depends on loading frequency and content 
parameters. In order to obtain an accurate initial estimate for the contribution of the 
asphalt stiffness to the bridge input parameters, a parametric study was conducted. 
The asphalt temperature data for the frequency measurements was not provided 
directly, thus it had to be estimated. The average temperature during the sampling 
period at each arch section was provided along with the frequency measurements 
obtained from the stabilization diagrams by KTH, Karoumi (2007). During the 
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summer frequency measurement period (June 14 to August 5, 2005), the asphalt 
temperature is assumed to vary throughout the day compared to the average arch 
temperature according to Figure 5.5. The relationship conservatively estimated based 
on engineering judgement and the temperature variation reported by KTH during load 
testing (May 2005). 
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Figure 5.5 Estimated average variation of asphalt temperature compared with 
average arch temperature for frequency measurement summer period. 
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Figure 5.6 Measured frequency data (provided by KTH, Karoumi (2007)) versus 
estimated asphalt temperature for frequency measurement summer 
period. 

In total, 50 frequency measurements for the summer frequency measurement period 
were recorded. The mean asphalt temperature was 22.72ºC and the standard deviation 
was 4.73 ºC during that period according to the relationship presented in Figure 5.5.  
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, 22.72º Casphalt meanT T= =   

, 4.73º CT T asphaltσ σ= =   

The Young’s modulus of asphalt is dependent on many parameters, including the 
temperature, loading frequency, pavement depth, aggregate size, bitumen content, 
percentage of air voids and bitumen viscosity. According to Cable et al. (2005), 

( )

( )( )10

200
10 0.17033

0.02774

1.3 0.49825 log 0.5
1.1

log 5.553833 0.028829 0.03476

1                      0.070377 0.931757

0.00189                      0.000005

Asph V

f
Asph Asph

P
E V

F

f

T P
f

η

+ ⋅

⎛ ⎞= + − ⋅⎜ ⎟
⎝ ⎠

⎛ ⎞
+ ⋅ + ⋅ ⎜ ⎟

⎝ ⎠
⎛ ⎞

+ − ⋅ ⋅⎜ ⎟
⎝ ⎠

 (5.33) 

where, 

AsphE = Young’s modulus of asphalt [psi] 

200P =  percent aggregate passing the #200 sieve [%] 

f =  loading frequency (~0.4 to 2.5 Hz for eigenfrequency analysis) [Hz] 

VV =  percent air voids [%] 

AsphP =  asphalt bitumen content, percent by weight of mix [%] 

AsphT =  mean asphalt mix temperature at 1/3 depth [ºF] 

η =  absolute viscosity at 70ºF (≈21ºC) [106 poise] 
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Figure 5.7 Variation of asphalt Young’s modulus with respect to temperature and 
loading frequency. 

Temperature and pressure units were changed to ºC and MPa respectively for Figure 
5.7 to avoid confusion. The frequency range of interest is within the first 20 
eigenfrequencies of the bridge. Frequency excitations below the first eigenfrequency 
do not significantly contribute to the stabilization diagram since they occur below 
resonance. At higher frequencies, the frequency separation between consecutive 
modes is very small. In order to correlate eigenfrequencies above 1 Hz, a modal 
assurance criterion (MAC) study must be performed to ensure that the FEM 
eigenfrequencies correspond with the measured eigenfrequencies. Without a MAC 
matrix to correlate mode shapes, eigenfrequencies above 1 Hz cannot be used for 
FEM updating. Furthermore, it may be concluded from Figure 5.7 that the Young’s 
Modulus of the asphalt does not vary significantly with frequency in the range of the 
first four eigenfrequencies for the temperature range for which the measurements 
were conducted. Since the first four eigenfrequencies are used for updating, the 
asphalt Young’s Modulus at 1 Hz was concluded to satisfactorily represent a proper 
upper-bound estimation within this range. From Figure 5.7 it is also evident that the 
asphalt temperature influences the Young’s modulus more drastically in the frequency 
range of interest far more than the excitation frequency. 
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Figure 5.8 Variation of Young’s modulus of asphalt to various parameters with 
loading frequency of 1 Hz. 

During construction, high quality control standards ensure low variability in the 
asphalt content; nonetheless Figure 5.8 is used to demonstrate the possible variability 
of the asphalt Young’s modulus with regards to asphalt content. The temperature of 
the asphalt greatly influences the dynamic stiffness, therefore the Young’s modulus at  

Tσ±  is shown in Figure 5.8 as well. 

During dynamic loading (eigenfrequency analysis in FEM), the dynamic stiffness of 
the asphalt contributes to the carriageway sectional parameters. At low temperatures, 
the dynamic stiffness of the asphalt is significantly greater than at higher 
temperatures, therefore it was necessary to study the contribution of the asphalt 
dynamic stiffness affects the carriageway sectional parameters. Sensitive parameters 
must be updated to account for the increase due to the contribution of the asphalt in 
dynamic loading, but insensitive carriageway sectional parameters are concluded to 
remain constant.  

The equivalent stiffness of the carriageway due to the contribution of the asphalt 
stiffness during dynamic loading was calculated as, 
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steel carr Asph Asph
eq

carr

E A E A
E

A
+

=  (5.34) 

Where AsphA  is the sectional area of the asphalt layer, 

( )( ) 265 10 0.65 AsphA mm m m= =  (5.35) 

The equivalent bending inertia of the carriageway about the transverse axis was 
calculated as, 

steel carr Asph Asph
eq

carr

E I11 E I11
I11

I11
+

=  (5.36) 

The parallel axis theorem was used to calculate the approximate inertia of the asphalt 
layer about the transverse axis, 

20.0721.5
2Asph Asph

mI11 A m⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (5.37) 

The equivalent bending inertia of the carriageway about the vertical axis was 
calculated as, 

steel carr Asph Asph
eq

carr

E I22 E I22
I22

I22
+

=  (5.38) 

The inertia of the asphalt layer about the vertical axis was calculated as, 

21 0.065 10
12 2 2Asph

m mI22 ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (5.39) 

The torsional inertia of the asphalt layer was calculated according to the perpendicular 
axis theorem, 

Asph Asph AsphJ I11 I22= +  (5.40) 

Thus the equivalent torsional inertia of the carriageway was calculated as, 

steel carr Asph Asph
eq

carr

E J E J
J

J
+

=  (5.41) 
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Figure 5.9 Variation of carriageway dynamic parameters with temperature. 

The asphalt dynamic elastic modulus for the average asphalt temperature during 
frequency measurements and the carriageway sectional parameters for the 
carriageway section at mid-span were used for the preceding study. It was concluded 
that the axial stiffness of the carriageway (equivalent stiffness, Eeq) and the bending 
inertia of the carriageway about the transversal axis (equivalent inertia, I11eq) were 
sensitive to the contribution of the asphalt layer in dynamic loading. These parameters 
were therefore considered for FEM updating. 
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5.1.4 Arch-carriageway connection stiffness 

Due to the high slenderness of the single arch, stability was crucial, so the 
carriageway was used to brace the arch. During the design phase, the arch to 
carriageway connection was considered to be fully constrained. This assumption was 
used during design to satisfy structural design criteria. During construction, the arch 
concrete was cast directly to the carriageway. At the concrete-steel interface, 
protrusions from the sheet steel of the carriageway wall ensured a strong bond 
between the concrete of the arch and the steel of the carriageway. Steel tendons were 
post-stressed to apply tensile force across the arch width from one carriageway to the 
other. The normal force due to the tendon force was assumed to ensure full restraint at 
the arch-carriageway interface. 

In order to verify the design assumptions, linear-elastic spring elements were added to 
the FE model to connect the arch to the carriageway. The initial rotational stiffness of 
the spring elements was calculated using a very conservative estimate. 

a carr c a carrK G J− −=  (5.42) 

The shear modulus of concrete, cG , for this case, 

( ) ( )
37.5 GPa 15.6 GPa

2 1 2 1 0.2
c

c
c

EG
υ

= = =
+ +

 (5.43) 

The torsional inertia of the connection was estimated very conservatively by assuming 
that only the equivalent of a ring of concrete approximately 10 cm wide with a radius 
of 1 m was resisting torsion, 

( ) ( )( )4 41.1 1.0
2a carrJ m mπ

− ≈ −  (5.44) 

So, the initial conservative estimate for the rotational spring element to connect the 
arch to the carriageway was, 

101.0 10a carr
NK rad− = ×  (5.45) 
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5.1.5 Static friction in bearings 

 

Figure 5.10 Permissible bearing translational movement according to Bilfinger 
Berger (2003b), bridge layout from www.vv.se/svinesund. 

A discrepancy between the measured eigenfrequency for mode 2 and the FEM 
eigenfrequency was first reported by Ülker-Kaustell and Karoumi (2006) and believed 
to be caused by static friction. The increased normal force in the bearings due to 
prestressing increases the resistance in the bearing due to static friction. If the loading 
on the bridge is not sufficient to overcome the static friction resistance threshold, the 
bearing will not permit movement intended by the bearing design. Although spherical 
bearings have very low friction, the additional normal force provided by prestressing 
drastically increases the static friction in the bearing. In order to test the static friction 
hypothesis, the restraint condition for the bearings at the abutments and the piers was 
changed in order to simulate static friction. The restraints applied by Plos and 
Movaffaghi (2004) in accordance with the bearing design (see Figure 5.10) allowed 
rotation (DOF 4-6) and permissible translation (DOF 1-2) without any friction. 
Vertical motion (DOF 3) was restrained in the FE model due to prestressing. This 
initial case is presented as ‘FREE’ in Appendix E and model 1a in Chapter 5.2.2.1.  

The spherical bearings used in the New Svinesund Bridge have a flat surface to allow 
for translational movement and a cupped surface for rotation, see Figure 5.11. The 
dimensions of the bearings are available in Figure 5.12 and Figure 5.13. A thorough 
study of the bearings was performed with the results presented in AppendixE.  
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Figure 5.11 Fixed, generally mobile and unilaterally mobile spherical bearings for 
connection between pier and bridge superstructure, Maurer Söhne 
(2007).  

 

Figure 5.12 Structural drawing front view of pier to carriageway connection at pier 
3 provided by Bilfinger Berger (2003a).  
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Figure 5.13 Structural drawing top view of pier to carriageway connection at pier 3 
provided by Bilfinger Berger (2003a). 

 

5.2 FE model evolution 

5.2.1 Model 0: initial model 

Fortunately, the initial FE model created by Bilfinger Berger (2004) for design and 
translated to ABAQUS by Plos and Movaffaghi (2004) for analysis was very detailed 
and capable of modelling the structural response for a vast range of load combinations 
and analysis types. Insufficient model accuracy of the second eigenfrequency and 
certain load combinations provided motivation for FE model updating. The first 20 
eigenmodes for model 0 are presented in Figure 5.14 and Figure 5.15. Considerable 
movement at the bearing at pier 5 for eigenmode 2 is evident in Figure 5.14. The 
correlation between the experimentally measured eigenfrequencies and the 
frequencies for model 0 is good for modes 1,3 and 4, but the correlation is uncertain 
for mode 2 and modes 5 and higher.  

 

Figure 5.14 Eigenmodes 1-10 for model 0. 
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Figure 5.15 Eigenmodes 10-20 for model 0. 

 

5.2.2 Model 1: boundary condition study 

The discrepancy between Model 0 and the measurements for eigenmode 2 suggested 
that the bearings did not behave as intended in design. In order to model static friction 
in all bearings during the frequency analysis, the nodes of the pier were tied to the 
nodes of the bridge superstructure at the bearing location, thus restraining all 
translation and rotation (DOF 1-6). Thus for Model 1: Model 1a, Model 1b, Model 1c 
and Model 1d, the bearing constraints were tied for the frequency analysis. The 
frequency results for Model 1a, Model 1b, Model 1c and Model 1d were identical but 
each model used different bearing restraint conditions for the static load cases. Four 
restraint conditions were modelled for the static load cases in order to test the affect of 
static friction. Tabulated data and plots of the bearing forces for the restraint 
conditions are presented in Appendix E.  
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Figure 5.16 Eigenmodes 1-10 for model 1. 

 

Figure 5.17 Eigenmodes 10-20 for model 1. 

The most considerable change in the eigenfrequencies due to the fully constrained 
bearings occurs at eigenmode 2. The restraint increases the eigenfrequency from 
0.460 Hz to 0.858 Hz. The change in bearing constraints therefore seems reasonable. 
The eigenfrequencies that correspond to measurable eigenmodes (modes with 
movement manifest in sensor locations) for model 0 and model 1 are presented in 
Table 5.2. During initial analysis, model 1 was very promising since the FE model 
predicted exactly 1 measurable eigenmode in the vicinity of each measured frequency. 
Although there were other eigenfrequencies between the measurable frequencies, the 
excitation location did not correspond with the sensor location, thus they would have 
not been measured. Examination of eigenmode 4 in Figure 5.16 with the location of 
accelerometers in Figure 4.2 demonstrates excitation of the transversally oriented 
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accelerometers in the arch crown and in the carriageway and thus a resonance peak is 
manifest in the stabilization diagram, Figure 4.4. Eigenmode 5 is the transverse 
oscillation of the carriageway over piers 3 and 4 and occurs at 1.194 Hz. No 
accelerometers were used in that section of the carriageway, therefore no resonant 
peak is manifest in the stabilization diagram. Eigenmode 6 is the torsional bending of 
the carriageways over the main span. This motion excited the vertically oriented 
accelerometers in the carriageways and thus was believed to correspond with the 
strong resonant peak at 1.335 Hz. 

Table 5.2 Eigenfrequencies 1-8 from experimental measurements with possible 
corresponding eigenfrequencies from FE model 0 (free bearing 
constraints) and FE model 1 (tied bearing constraints). 

Measured Model 0 Model 1 Units 

f1m 0.425 f1 0.408 f1 0.412 Hz 

f2m 0.846 f2 0.460 f2 0.858 Hz 

f3m 0.940 f3 0.956 f3 0.960 Hz 

f4m 0.999 f4 1.019 f4 1.031 Hz 

f5 1.107 
f5m 1.335 

f6 1.194 
f6 1.314 Hz 

f6m 1.455 f7 1.312 f7 1.482 Hz 

f7m 1.781 f8 1.442 f9 1.816 Hz 

f12 1.800 

f13 1.824 f8m 2.072 

f17 2.034 

f11 2.039 Hz 
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5.2.2.1 Model 1a: ‘FREE’ 

Model 1a was termed ‘FREE’ because the bearings were allowed to move according 
to the design specifications for the static load cases. The bearings permitted motion 
according to the bearing design without friction for the static loads, but were fixed 
during the frequency analysis. Significant motion was present at the abutment 
bearings, at pier 2 and at pier 5. The longitudinal load was distributed to pier 3 and 
pier 4 due to longitudinal restraint. No bearing motion is present at piers 3 and 4; 
rather, deformation of the piers is evident by comparing the deformed bridge during 
loading to the undeformed bridge in Figure 5.18. 

 

Figure 5.18 Deformation of bridge during load case E and for Model 1a: static 
bearing condition FREE (scale factor = 1500). 

 

5.2.2.2 Model 1b: ‘TIE’ 

Neglecting static friction during the static load cases was not reasonable, so the 
bearing forces were investigated by FEA. Although the sectional forces in the 
elements that connected the piers to the carriageway were lower than the calculated 
static friction, the sectional forces in the elements that connected the carriageway to 
the abutments were much greater than the calculated static friction in the abutment 
bearings. The normal force in the pier bearings was drastically increased due to 
prestressing, thus making the static friction threshold in the pier bearings significantly 
greater than in the abutment bearings. The high sectional forces in the abutment 
bearings and low sectional forces in the pier bearings are plotted relative to the static 
friction threshold in Figure 5.19. 
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Figure 5.19 Plot of bearing forces and moments and static friction threshold for 
load case E and bearing condition TIE (sectional forces plotted with 
lines, static friction threshold plotted with circles). 
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5.2.2.3 Model 1c: ‘PIER TIE’ 

Due to high sectional forces in the elements at the abutment bearings compared with 
the static friction threshold, Model 1b with bearing condition ‘TIE’ was not realistic. 
Upon overcoming the static friction in the abutment bearings, the bearings move 
freely until equilibrium is established. For all load cases, the sectional force in each 
abutment bearing element overcame the corresponding static friction threshold, thus 
the abutment bearings were allowed to function according to design for bearing 
condition ‘PIER TIE’. By releasing the abutment bearings to move freely, the force 
was redistributed to the remaining bearings, particularly to the bearings at pier 5 and 
pier 8. The effect of the load redistribution was particularly evident for load case E. 
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Figure 5.20 Plot of bearing forces and moments and static friction threshold for 
load case E and bearing condition PIER TIE (sectional forces plotted 
with lines, static friction threshold plotted with circles). 

 

5.2.2.4 Model 1d: ‘PIER TIE 58 FREE’ 

Although bearing condition ‘PIER TIE’ was assuredly more accurate than bearing 
conditions ‘FREE’ and ‘TIE’, the redistribution of bearing forces for load case E 
made the bearing condition at piers 5 and 8 uncertain. In order to further understand 
the structural behaviour of the bridge, the bearings at piers 5 and 8 were released and 
the load redistribution was studied in bearing condition ‘PIER TIE 58 FREE’. The 
loads were redistributed primarily to piers 2 and 3. This result was not surprising since 
pier 4 is relatively flexible due to the pile foundation and the relatively high 
slenderness when compared with the shorter piers 2 and 3 (which have rock 
foundations). 
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Figure 5.21 Plot of bearing forces and moments and static friction threshold for 
load case E and bearing condition PIER TIE 58 FREE (sectional forces 
plotted with lines, static friction threshold plotted with circles). 

 

5.2.3 Model 2 to Model 7 

Throughout Chapter 5, a detailed description has been made of each step of the model 
evolution. From the study of the boundary conditions it was concluded that Model 1c 
is the candidate which should be used for further development. In Model 2 the 
increased stiffness of the concrete in the arch is considered.  This measure caused a 
dramatic change of the eigenfrequencies. It turned out after scrutinized the designer’s 
documentation of bridge and the ABAQUS input files, that the mass of the asphalt 
layer not were taken in to account in the initial model which was done in Model 3. 
The first thought is that the asphalt layer does not contribute to any stiffness, but after 
careful investigation of the asphalts properties it was concluded that the stiffness 
certainly should be considered, which implies Model 4. In Model 5 a linear spring 
were implemented in the connections between the arch and the carriageways, the 
reason for implementing the springs was to investigate if the connections really was 
fixed or not. For same reason springs was implemented in the foundations of the arch 
in Model 6. The final step in the model evolution was to implement non-linear springs 
(Model 7). The non-linear springs is implemented to simulate the static friction in the 
bearings. The non-linear springs is implemented with high-stiffness until static 
friction threshold reached, then constant force (similar to elastic-perfectly plastic). 
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Figure 5.22  Plot of constitutive relationship for non-linear springs at bearings. 

In Figure 5.23 below, the bearing force for load case A was below the static friction 
threshold, thus only small movement was evident at the bearing. 

  

Figure 5.23  Figure showing displacement at the abutment on the Swedish side for 
load case A (scale 1500). 
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In Figure 5.24, the static friction threshold was overcome in the bearing for load case 
E, thus large displacement was evident. 

  

Figure 5.24  Figure showing displacement at the abutment on the Swedish side for 
load case E (scale 1500). 
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6 FE Model Manual Refinement of the New 
Svinesund Bridge through Parameter 
Sensitivity Analysis 

6.1 Statistics for measurements 

One of the significant challenges of this project was deciding how to apply weight to 
the response residual and the updating parameter change in a meaningful way. If only 
frequencies were used for FE model updating, the weighting of the response residual 
would be rather straightforward since the response residual could be normalized with 
the measured eigenfrequencies or using the standard deviations from the frequency 
measurements. In order to obtain an “optimal” model, the objective function had to 
compare the frequency, strain, displacement and hanger load measurements in a 
meaningful way while considering the values of the updating parameters. 
Furthermore, systematic error such as temperature effects and modelling limitations 
were known to limit the ability of the FE model to reproduce the measured response. 
Many objective functions were formulated in an attempt to understand the proper 
balance for the contribution of each type of response residual to the optimized FE 
model.  

Using the data from the measurement project provided by Karoumi (2007) the 
statistical considerations for each type of measurement were scrutinized. The 
statistical data reported by Ülker-Kaustell and Karoumi (2006) and Karoumi and 
Andersson (2006) only considered typical values of the experimentally measured 
static response when calculating the standard deviation, experimental noise was not 
included. Experimental noise during loaded and unloaded measurement periods of the 
static response was included in the calculation of the standard deviations of the 
measurements for this study. In order to minimize the temperature effect on the 
frequency measurements, the frequency measurements from the winter measurement 
period were excluded for the scope of this study. Thus, the statistical data presented in 
this study does not exactly match the statistics reported by Ülker-Kaustell and 
Karoumi (2006) and Karoumi and Andersson (2006). Mean values for the standard 
deviations of each type of measurement are summarized in the table below. 

Table 6.1 Average statistical data for experimentally measured responses (mean 
values of response or deviation vector x  denoted by x ). 

 mz  
stdσ  

Tσ  
no loadσ − sensorσ modelσ totσ  Units 

tot

mz
σ  

Frequency, f 0.8024 0.0036 0.0029    0.0048 Hz 0.6%

Strain, ε 7.543 0.633  0.740 6.000 0.846 6.250 μm/m 82.9%

Displacement, u 7.919 1.297   1.346 1.010 2.466 mm 31.1%

Hanger Loads, F 131.9 2.3  3.3 10.8 16.3 21.1 kN 16.0%
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The standard deviation of experimentally measured data, 
stdσ , was calculated from 

the spreadsheets provided by KTH (2007). Only the data from the summer the 
frequency measurements was used to calculate 

stdσ  for frequency. 

The frequency measurements were conducted at a different time than the static load 
tests, thus structural parameters for the frequency measurements and for the static load 
tests may not have been identical. Strains and hanger loads were measured 
continuously from permanently installed sensors at a rate of 1 Hz and the data was 
recorded by NGI using the permanent data acquisition system while FB Engineering 
was responsible for displacement measurements, Karoumi and Andersson (2006). 
Experimental noise was evident for all measurements and although efforts were put 
forth to remove systematic error, bias was still suspected in the measured static 
response. The sensor accuracy according to the manufacturer, sensorσ , and a model 
correlation factor, modelσ , were included in the calculation of the deviation of the static 
load measurements in an effort to account for systematic error. Since the strains and 
hanger loads were measured continuously, the noise level during unloaded time 
periods could be calculated and included in the calculation of the total deviation, totσ . 

As discussed in Chapter 5.1.3, the temperature of the arch was not consistent for each 
frequency measurement. The asphalt temperature was assumed to vary according to 
the arch temperature and the time of day, thus a range for the asphalt stiffness during 
ambient vibration measurements was determined. Since the eigenfrequencies depend 
on the asphalt stiffness, the deviation of the first four eigenfrequencies due to the 
expected deviation in the asphalt stiffness, 

Tσ , was calculated.  

By minimizing experimental bias due to temperature for the static loads and by 
including experimental measurement noise, frequency variation due to temperature, 
sensor accuracy and model correlation, the total deviation was formulated. 

Frequency deviation was calculated using the standard deviation of the measurements, 
stdσ , and the modelled deviation due to temperature variation, Tσ , 

2 2
, , ,tot f std f T fσ σ σ= +  (6.1) 

Using the permanently installed strain gauges, the strains were measured continuously 
during all load tests. Strain deviation was calculated using the standard deviation of 
the measurements during loading, 

stdσ , and between load tests, 
no loadσ −

, as well as the 
sensor deviation, sensorσ , and a model correlation factor, modelσ , 

2 2 2 2
, , , , ,tot std no load sensor modelε ε ε ε εσ σ σ σ σ−= + + +  (6.2) 

The displacements were obtained with discrete measurements rather than a continuous 
signal, thus no data was available to determine the no-load deviation, 

2 2 2
, , , ,tot u std u sensor u model uσ σ σ σ= + +  (6.3) 
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Hanger load deviation was calculated in the same way as the strain deviation, 

2 2 2 2
, , , , ,tot std no load sensor modelε ε ε ε εσ σ σ σ σ−= + + +  (6.4) 

 

6.2 Objective function formulation for the New Svinesund 
bridge 

According to Jaishi and Ren (2005), “the selection of the objective function to be 
minimized has a profound impact on the problem.” The purpose of the objective 
function is to provide a meaningful scalar or vector function for the optimization 
function to minimize. The updating parameter vector that minimizes the objective 
function is considered to be the optimal solution to the problem at hand. 

Many FE model updating algorithms only consider a select number of the 
eigenfrequencies of the bridge for the response. In such a case, the Euclidean norm of 
the normalized frequency residual is suitable for the objective function. The response 
of the New Svinesund Bridge was not so simple, thus more robust objective functions 
were needed. 

 

6.2.1 Standard deviation objective function 

Since the response included frequencies, strains, displacements and hanger loads, the 
objective function needed to balance the residuals in a statistically significant manner. 
If the residual was scaled simply by dividing by the measured response, strain and 
displacement measurements near zero would be a source of numerical error when 
compiling the objective function. Instead, the residual was evaluated using the 
statistical significance of each measurement for the standard deviation, variance and 
uncertainty objective functions. Furthermore, only four eigenfrequencies were used 
for updating due the lack of a MAC matrix for the evaluation of eigenmodes above 
mode four, but the confidence in the eigenfrequency measurements was very high 
compared with the confidence in the strain, displacement and hanger load 
measurements due to the presence of experimental noise. If each parameter in the 
response vector were weighted equally, the strain and displacement responses would 
dominate the objective function and thus skew the results. Thus, objective functions 
were formulated in a manner as to balance the contributions of the frequency, strain, 
displacement and hanger load responses in a statistically meaningful manner. 

The standard deviation objective function was used to express the objective function 
in terms of the response residual normalized by the standard deviation of the 
measured response. 

Standard deviation objective function for frequency, f  (size, 1fN⎡ ⎤×⎣ ⎦ ), 
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Standard deviation objective function for strain, ε , 
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−
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∑

ε  (6.6) 

Standard deviation objective function for displacement, u , 

( )2
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1
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N
mi i

i u

u

u u

Nσ

σ=

−

Π =
∑

u  (6.7) 

Standard deviation objective function for hanger load, F , 

( )2

2
1

F

i

N
mi i

i F

F

F F

Nσ

σ=

−

Π =
∑

F  (6.8) 

The standard deviation objective function for the response of the New Svinesund 
Bridge was defined as the mean deviation of each type of response, 

4
σ σ σ σ

σ
Π + Π + Π + Π

Π =
f ε u F

z  (6.9) 

The updating parameter vector, Φ , that will best reproduce the experimentally 
measured response (by minimizing the deviation of the response) is obtained by 
solving the standard deviation objective function for the response. 

min σ Πz

Φ
 (6.10) 

In the study of the simple beam, the importance of regularization was established by 
including a high level of noise. The least squares updating algorithm without 
regularization was not stable, but the use of a weighted penalty for deviation from the 
initial updating parameter allowed the pseudo-inverse algorithm with a weighted 
response and weighted updating parameter to converge. The use of regularization is 
common for optimization when the stability of the optimization algorithm is a 
concern. For the case of the Svinesund bridge, the regularization term for the standard 
deviation objective function expressed the deviation of the iterated updating 
parameter vector from the initial guess based on engineering calculations in terms of 
the standard deviation of the updating parameter. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 96 

( )2
0

2
1 i

N
i i

i

N

φ

φ
σ

φ

φ φ
σ=

−

Π =
∑

Φ  (6.11) 

Considering the standard deviation of the response ( j m−z z ) with regularization 
added according to the deviation from the “best guess” updating parameter vector 
from engineering calculations ( 0j −Φ Φ ), the objective function to be minimized 
represents the optimal model with regard to standard deviation. Generally, the 
regularization term is a penalty term that is multiplied by a scalar, α , that can be 
adjusted in order to ensure the stability of the objective function during optimization, 

αΠ = Π + Πz Φ  (6.12) 

For this study, the objective function of the response was weighted equally with the 
regularization function of the input parameters, 

2
σ σ

σ
Π + Π

Π =
z Φ

 (6.13) 

Thus the minimization equation for the optimal model with regard to the response and 
the input parameters in terms of standard deviation is, 

min σ Π
Φ

 (6.14) 

 

6.2.2 Variance objective function 

In order to minimize the variance of the response with regard to the measured 
response and measured variance, the variance objective function was defined as 
follows. 

Variance objective function for a type of measured response, 1 ẑ , (for response vector 

1 ẑ  of size 
1 ˆ 1zN⎡ ⎤×⎣ ⎦ ), 

( )ˆ1

11

1

2
1 1

2
1 ˆˆ

ˆ

ˆ ˆz

i

N
mi i

i z
v

z

z z

N
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−

Π =
∑

z  (6.15) 

Thus variance objective function for the response is the mean of the variance 
objective functions for n  types of measured responses. 

1 2 ˆˆ ˆ ... n
v v v

v n
Π + Π + + Π

Π =
zz z

z  (6.16) 
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For the case at hand, the types of measured responses include frequency (1 ˆ =z f ), 
strain ( 2 ˆ =z ε ), displacement ( 3 ˆ =z u ) and hanger loads ( 4 ˆ =z F ). 

The regularization term was used to minimize the variance of the updating parameter 
vector the best guess from engineering calculations.  

( )2
0

2
1 i

N
i i

i
v N

φ

φ

φ

φ φ
σ=

−

Π =
∑

Φ  (6.17) 

Considering both response and the updating parameter, the variance objective 
function to be minimized in order to obtain the optimal FE model is, 

2
v v

v
Π + Π

Π =
z Φ

 (6.18) 

The minimization equation to be solved for the optimal updating parameter vector, 
Φ , is, 

min v Π
Φ

 (6.19) 

 

6.2.3 Error objective function 

While the standard deviation and variance objective functions account for the 
statistical significance of the response, z , and the updating parameter, Φ , the error 
objective function may be used to express the mean error of the response. 

Error objective function for a type of measured response, 1 ẑ ,  

ˆ1

1

ˆ1

1 1
ˆ 1

1
1

ˆ ˆ

ˆ

z

m z

N

mi i
i

z z N

mi
i

z z

z

=
Σ

=

−
Π =

∑

∑
z  (6.20) 

Thus error objective function for the response is, 
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The regularization term for the updating parameter, 
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For the regularization term above, the updating parameter vector should be 
normalized so that no single uncertain structural parameter will govern the behaviour 
of the objective function. Considering both the error of the response and the change in 
the updating parameter, 

2
m m

m

z z z z
z z

Σ Σ
Σ

Π + Π
Π =

z Φ

 (6.23) 

The minimization equation to be solved for the optimal updating parameter vector, 
Φ , 

min
mz zΣ Π

Φ
 (6.24) 

 

6.2.4 Uncertainty objective function 

During the experimental measurement phase, all precautions should be taken in order 
to eliminate measurement bias. Nonetheless, temperature, sensor bias, hysteresis and 
environmental factors can cause significant systematic error in the measurements. For 
such a case, the variance of the measurements may be low (high precision) while the 
actual error is high (low accuracy). For such measurements (often termed “outliers”) 
the standard deviation, variance and error objective functions apply significant weight 
and so will dominate the minimization function. Although the outlier cannot be 
modelled because it is an artefact of systematic error caused by experimental bias or 
numerical modelling limitations, it will contribute more to the objective function than 
the responses that can be accurately modelled. The outlier residual will be minimized 
at the cost of the more accurate measurements. 

The uncertainty objective function has the benefit that all responses that deviate more 
than twice the standard deviation will contribute about the same to the objective 
function. In such a manner, more “certain” measurements will dominate the behaviour 
of the objective function. 

Uncertainty objective function for a type of measured response, 1 ẑ ,  

ˆ1

1

1

ˆ 1
erf

ˆ

erf
zN

i

zN
=Π =
∑

z  (6.25) 

Thus uncertainty objective function for the response is, 

1 2 ˆˆ ˆ
erf erf erf

erf

... n

n

Π + Π + + Π
Π =

zz z
z  (6.26) 

Often the probability distribution for building materials is specified in structural codes 
or by the manufacturer in terms of the coefficient of variation (COV ). The 
regularization term for the updating parameter, 
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Considering both the uncertainty of the response and the uncertainty of the updating 
parameter, 

erf erf
erf 2

Π + Π
Π =

z Φ

 (6.28) 

The minimization equation to be solved for the most certain updating parameter 
vector, Φ , 

erfmin Π
Φ

 (6.29) 

Stochastic minimization algorithms are recommended to solve the minimization 
equation above. The uncertainty objective function accentuates the response where the 
agreement between the FE model response and the experimentally measured response 
is high, often with asymptotic behaviour. Gradient based algorithms that search for a 
flat (zero gradient) surface (such as the Quasi-Newton algorithm) should not be used 
to minimize the uncertainty objective function. Instead, the Nelder-Mead simplex 
method, global optimization routines (such as evolutionary, genetic or annealing 
algorithms) or hybrid algorithms are suggested in order to determine the global 
minimum in the feasible updating parameter space. The possibility of the presence of 
non-optimal local minima should be explored and a global optimality search should 
be performed if local minima are present during the parameter sensitivity study (refer 
to Figure 6.4). 

 

6.3 Parameter sensitivity study 

One of the primary challenges in FE model updating is determining which structural 
parameters should be updated. In order to determine which uncertain structural 
parameters should be updated, a parameter sensitivity study was performed. Uncertain 
structural parameters were iterated within a reasonable range and the response 
(dynamic and static) of the bridge was assessed at each iteration. The results of the 
structural parameter investigation, Chapter 5.1, were used to determine a starting 
guess for the uncertain structural parameters to be investigated. In order to quantify 
the residual the response at each iteration, objective functions defined in Chapter 6.1 
were utilized. In some cases, a change to the updating parameter would reduce the 
frequency residual but increase the residual from the hanger load measurements. At 
that point, the statistical significance of each type of measurement was used to 
evaluate the response. Thus, error in measurements with a very low variance was 
weighted higher than error in measurements with higher variance. For example, 
frequency measurements had very low variation because the accelerometers are very 
accurate while the strain displacement and hanger load measurements were not 
weighted as heavily after considering measurement noise and sensor accuracy. 
Standard deviation, variance, error and uncertainty objective functions were all used 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 100 

to evaluate the modelled response to changes in each updating parameter and the 
resulting plots were scrutinized to determine the optimal starting value of the 
normalized updating parameter vector for automated optimization (FE model 
updating). The modelled response with regard to each parameter and the significance 
of the normalized updating parameter value that minimizes each objective function is 
discussed in the proceeding sections. 

Direct FE updating techniques directly change the mass and stiffness matrices so that 
the FE model will reproduce the frequencies of interest, but the resulting mass and 
stiffness matrices bear no relevance to the actual structural parameters of the bridge. 
Furthermore, direct FE model updating techniques only use dynamic response 
parameters such as frequencies, mode shapes and damping, thus the static response is 
not considered.  

 

6.3.1 Concrete stiffness 

The coefficient of variation of the elastic modulus of concrete is 0.15 according to 
Thelandersson (2004), therefore possible variation of the arch stiffness was 
considered during design. Structural design criteria require that the bridge satisfy SLS 
deflection limitations with a conservative estimate of the concrete elastic modulus 
(concrete elastic modulus design value) to account for possible variation. In order to 
model the actual performance of the bridge, the mean value for the elastic modulus 
was used. Furthermore, the increased arch stiffness due to concrete hydration and 
reinforcement was modelled using the results from the structural parameter 
investigation, Chapter 5.1.1. The objective function of the response as a function of 
the normalized updating parameter for the elastic modulus of concrete is presented 
below in Figure 6.1 and Figure 6.2. 
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Figure 6.1  Standard deviation objective function plotted as a function of 
normalized stiffness of the concrete arch. 
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Figure 6.2  Variance objective function plotted as a function of normalized stiffness 
of the concrete arch. 
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From Figure 6.1 and Figure 6.2, it is clear that the initial guess for the equivalent 
elastic modulus of concrete as determined in the structural parameter investigation 
was quite accurate. The frequency portion of the response is especially sensitive to the 
arch stiffness, thus contributing dominating the behaviour of the variance and 
standard deviation objective functions. Bending of the arch is evident in all four 
bending modes that compose the frequency portion of the response, thus the dynamic 
response is highly sensitive to the arch stiffness. 

The initial estimations of an increase to the concrete stiffness at the arch base of 4.1% 
and to the arch crown of 16.7% were slightly conservative, according to all objective 
functions used to analyse the response residual. According to the analysis, in order to 
better reproduce the measured response, the arch stiffness should be increased by 
about 2% ( 1.02Ecφ = ) of the value predicted by the structural parameter investigation 
(that is, 0Ecbase Ec Ecbaseφ φ φ= ⋅  and 0Eccrown Ec Eccrownφ φ φ= ⋅ ). Thus the stiffness of the arch 
base should be increased by approximately 6.1% and the stiffness of the arch crown 
should be increased by approximately 19.0%. FE model updating procedures will use 
the values 1.061Ecbaseφ =  and 1.190Eccrownφ =  for the values of the normalized 
updating parameters for the stiffness of the arch base and crown respectively. 
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6.3.2 Carriageway steel elastic modulus 

Although the elastic modulus of steel has a considerably low coefficient of variation 
(0.03) compared with concrete (0.15), the objective functions of the response residual 
were evaluated for a feasible range of normalised steel stiffness. Of particular interest 
were the changes to the dynamic response and to the calculated hanger loads when the 
elastic modulus of steel was modified. The frequency, displacement and hanger loads 
are particularly sensitive to the elastic modulus of the steel and therefore govern the 
behaviour of the objective functions, as is evident in Figure 6.3 and Figure 6.4. 
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Figure 6.3  Standard deviation objective function plotted as a function of 
normalized elastic modulus of steel for the carriageway. 
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Figure 6.4  Uncertainty objective function plotted as a function of normalized 
elastic modulus of steel for the carriageway. 

According to Figure 6.3, the mean deviation of the residual with respect to the 
standard deviation of the measured response is minimized at approximately 

1.05Esteelφ = for the frequency contribution to the objective function and 
1.18Esteelφ = for the hanger loads. Furthermore, the slope of the frequency portion of 

the objective function changes at about 1.18Esteelφ = . The strain measurements are not 
sensitive to the elastic modulus of the steel in the carriageway.  

Two local minima are evident in the uncertainty plot, Figure 6.4, one at approximately 
1.05Esteelφ = and the other at approximately 1.16Esteelφ = . The uncertainty of the 

frequency measurements is minimized at 1.05Esteelφ =  while the uncertainty of the 
hanger loads is minimized at 1.16Esteelφ = , thus the optimal normalized updating 
parameter is unclear from the plot of the superposition of the mean uncertainty of 
each type of measurement.  

It is very important for an engineer to scrutinize the results of a parameter 
optimization study to ensure the feasibility of the outcome. In this case, the frequency 
measurements were statistically more reliable due to low measurement noise than the 
hanger loads. Also, the FE model was considered to be “very good” at modelling 
dynamic response and only “good” at modelling static response, such as hanger loads. 
The magnitude of the frequency contribution to the standard deviation objective 
function, Figure 6.3, suggests that the local minimum that optimizes the frequency 
response is more important than that for the hanger loads. Though the uncertainty 
objective function considers the standard deviation of each measured response 
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parameter, it is not useful when comparing response parameters with different units 
(such as frequency [Hz] and hanger loads [kN]). The uncertainty objective function is 
most useful when evaluating the validity of the FE model for each measured response 
parameter. The uncertainty of the response is a normalized value from 0 to 1 (0 to 
100%), thus it is intrinsically unweighted. If the uncertainty objective function is to be 
used for updating, the normalized value should be weighted in order to reflect the 
confidence in each measured parameter. 

The aberrations in the objective functions at approximately 1.16Esteelφ =  suggest 
interesting structural behaviour at an increase in carriageway stiffness. This is 
believed to be due to the stiffness contribution of the railings to the carriageway. 
Although the railings are securely fastened (using bolts) to the carriageway in order to 
prevent catastrophe in the case of vehicle accidents, they are not designed to carry 
structural load. Nonetheless, when assessing the actual behaviour of the bridge for FE 
model validation, the contribution of the railing certainly contributes to the response. 
The additional stiffness provided by the railing reduces the hanger loads in the actual 
bridge, thus the FE model overestimates the hanger loads. Though the mass of the 
railings is included in the mass elements that represent the asphalt layer, utilities and 
railings, the stiffness contribution to the carriageway is not. The railings increase the 
stiffness and bending inertia of the carriageway, which increases the eigenfrequency 
of the carriageway and decreases the hanger loads. Additional beam elements could 
be included in order to model the railings, but should not be considered when 
evaluating the bridge performance with regard to the SLS and ULS design criteria. 
Instead of adding beam elements to the model to represent the railing, the sectional 
properties of the longitudinal beam elements of the carriageway were modified. All 
factors that affect the actual bridge performance must be considered when evaluating 
the validity of an FE model, but the contribution of non-structural members to the 
structural response should not be included when verifying design criteria. 

 

Figure 6.5  Although the railing does not contribute to the structural integrity of the 
bridge, it contributes to the stiffness of the carriageway and therefore 
affects the measured response. 
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6.3.3 Asphalt mass 

In order to calibrate the masses of the discrete mass elements from Chapter 5.1.2, the 
value of a normalized updating parameter, Masphφ , was iterated within a reasonable 
range. The response residual was evaluated and the value that minimized the standard 
deviation objective function was chosen for FE model updating. Only the frequency 
response contributed to the objective function, the strain, displacement and hanger 
load responses were unchanged by the addition of mass elements to the FE model.  
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Figure 6.6  Standard deviation objective function plotted as a function of 
normalized mass of the non-structural members of the carriageway. 
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Figure 6.7  Uncertainty objective function plotted as a function of normalized mass 
of the non-structural members of the carriageway. 

According to Figure 6.6 and Figure 6.7, the residual of the response is minimized at 
approximately 0.95Masphφ = . Thus it is clear that the estimation of the mass of the 
non-structural members during the structural parameter study was quite accurate. 
During construction, quality control standards ensure that the thickness of the asphalt 
layer will not significantly vary from one section of the carriageway to another. For 
this study, the asphalt thickness was considered to be perfectly consistent and the 
mass of the asphalt layer, utilities and railings was equally distributed across the 
length of the carriageway. In reality, some variance is to be expected, but is not likely 
to significantly affect the structural response of the bridge. The normalized updating 
parameter for the non-structural member mass for the starting values used in 
automated FE model updating was therefore the value that best minimized the 
response objective functions, 0.95Masphφ = . 

 

6.3.4 Asphalt stiffness 

Due to visco-elastic rate-dependent material behaviour, the contribution of the asphalt 
layer to the bridge was difficult to model. In order to simplify analysis, the sectional 
properties of the carriageway were modified for frequency analysis. The stiffness of 
asphalt concrete is related to the forcing frequency, thus for very low frequency 
loading (as is the case for static load testing), the asphalt stiffness is essentially zero. 
So, the asphalt layer was considered to have no affect on the response due to static 
loading. Thus, only the frequency response was affected by the stiffness of the asphalt 
layer. 
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Figure 6.8  Standard deviation objective function plotted as a function of 
normalized elastic modulus of the asphalt layer of the carriageway 
deck. 

According to the results of the parameter sensitivity study for the elastic modulus of 
the asphalt layer of the carriageway deck, the frequency response residual was 
minimized at approximately 1.6Easphφ = . The asphalt stiffness did not contribute the 
static response due to the low loading frequency, thus the strains, displacements and 
hanger loads were not sensitive to the asphalt stiffness. A constitutive model for 
asphalt concrete was used to predict the stiffness of the asphalt layer at the mean 
estimated asphalt temperature during frequency measurements. The asphalt stiffness 
determined during the structural parameter study, 4.9 GPa, was conservative 
according to the parameter response study and an increase of about 60% to 7.8 GPa 
minimizes the objective function by optimizing the frequency response. The asphalt 
stiffness of 7.8 GPa was not measured directly and should not be used for other 
analyses. It is a sort of calculation artefact only used for modelling vibrations on the 
order of 1 Hz at a temperature of approximately 22.7 ºC. Other parameters which are 
not directly considered in the FE model affect the frequency response of the bridge, 
including the stiffness contribution of the railing to the carriageway during vibration 
measurements. If the non-structural members are modelled directly, the actual asphalt 
stiffness may be calculated more precisely using the frequency response but such 
analysis is beyond the scope of this study. 
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6.3.5 Arch-carriageway connection stiffness 

In order to determine whether the actual behaviour of the connection permits rotation 
during normal loading conditions (SLS), the rotational stiffness of the connection was 
simulated across a wide range of values. The initial estimate of the rotational stiffness 
(with a corresponding normalized updating parameter value, 1Ka carrφ − = ) was very 
conservative, as is described in Chapter 5.1.4. Very low rotational stiffness 
( 1010Ka carrφ −

− = ) was used to model a hinge while a very high rotational stiffness 
( 1010Ka carrφ +

− = ) was used to model full interaction between the arch and carriageway 
during frequency measurements and static load testing. 
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Figure 6.9  Standard deviation objective function plotted as a function of 
normalized rotational spring stiffness for the arch to carriageway 
connection (logarithmic scale for x-axis). 

According to the parameter response study for the arch to carriageway connection, the 
objective function of the response residual is minimized for very high rotational 
spring stiffness. It is clear from Figure 6.9 that the frequency, strains and 
displacements responses are not as sensitive to the rotational stiffness of the arch to 
carriageway connection as are the hanger loads. Thus the hanger loads are the most 
sensitive to the rotational stiffness of the connection. At a rotational stiffness on the 
order of 115 10  a carr

NK rad− = ×  ( 500Ka carrφ − = ), which is approximately the 

rotational stiffness of a connection with full-interaction, the objective function of the 
response residual is minimized. The normal force due to the tendons should further 
increase the rotational stiffness, thus the actual rotational stiffness is suspected to be 
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above 500Ka carrφ − = . There is no change in the response for rotational stiffness for 
115 10  a carr

NK rad− ≥ × , which is not surprising since the connection may be 

considered to be fully constrained at that point. Furthermore, the results of this study 
verify the design assumption that the connection was fully constrained. Further SLS 
analysis may be conducted using high-stiffness dummy elements to model the 
connection or using rotational springs with 115 10  a carr

NK rad− ≥ × , but ULS models 

should not rely on such elements to model the connection.  

Due to the updating parameter insensitivity for 500Ka carrφ − ≥ , the arch to carriageway 
connection was not used for automated FE model updating. Instead, the value was set 
to 500Ka carrφ − = . 

 

6.3.6 Arch foundation stiffness 

During design, the arch foundation was modelled as fixed for all DOF except for the 
rotation around the bridge transverse axis, where the rotational stiffness was modelled 
using a linear spring. The stiffness of the springs for the Swedish and Norwegian arch 
foundations were calculated by Bilfinger Berger (2002, 2003). Different stiffness 
values were used during arch launching and for the permanent arch structure. For this 
study, only the rotational stiffness for the permanent structure were considered.  

It was of research interest to see if more accurate values for the rotational stiffness of 
the arch foundations could be extrapolated by comparing the FE model response with 
a range of stiffness values to the measured response of the bridge for frequencies and 
during load testing. From the plot of the error objective function of the response 
residual, Figure 6.10, it is clear that that the response is not sensitive to the rotational 
stiffness of the arch foundation about the transverse axis. The error remains relatively 
constant when different values are used for the normalized rotational spring stiffness 
of the arch foundation updating parameter, Ka fφ − . Because the FE response was not 
sensitive to the arch foundation rotational stiffness, Ka fφ −  was not updated in this 
study. 
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Figure 6.10  Error objective function plotted as a function of normalized rotational 
spring stiffness for the arch foundation. 

 

6.3.7 Bearing static friction 

Accurate modelling of boundary conditions is among the most difficult and important 
tasks for FE modelling. In many cases, free, pinned or fully-fixed boundary conditions 
are used for the FE model to simulate the actual boundary conditions. Such 
assumptions always use simplified models of the real structural behaviour to facilitate 
calculations. In many cases, simplified boundary conditions are capable of accurate 
modelling the structural behaviour, but the simplifications should be properly 
motivated with engineering considerations. 

In the case at hand, the use of simplified boundary conditions was not possible. The 
results of the structural parameter study for the bearings in Chapter 5.2.2 and 
Appendix E demonstrated that the static friction of the bearings must be accounted for 
by the FE model in order to ensure accurate FE modelling. Non-linear joint elements 
were used to simulate static friction at the bearings. The constitutive models used for 
the non-linear spring elements are presented in Figure 5.22. The normalized updating 
parameter adjusted the magnitude of the static friction threshold (plateau in Figure 
5.22). Values from a very low static friction coefficient (thus simulating a frictionless 
bearing, 0.001Kbearφ = , 0sμ ≈ ) to a very high static friction coefficient ( 6Kbearφ = , 

0.20sμ ≈ ) were simulated and the residual of the response was evaluated using the 
error objective function. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 112 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

Non−linear springs at bearings, φ
Kbear

φ
Kbear

z/
Σ|

z|
   

  z
Π

 [%
]

0 1 2 3 4 5
0

10

20

30
Frequency

φ
Kbear

z/
Σ|

z|
   

  f
Π

 [%
]

0 1 2 3 4 5
0

10

20

30
Strain

φ
Kbear

z/
Σ|

z|
   

  ε
Π

 [%
]

0 1 2 3 4 5
0

10

20

30
Displacement

φ
Kbear

z/
Σ|

z|
   

  u
Π

 [%
]

0 1 2 3 4 5
0

10

20

30
Hanger Load

φ
Kbear

z/
Σ|

z|
   

  F
Π

 [%
]

 

Figure 6.11  Error objective function plotted as a function of normalized bearing 
static friction threshold. 

According to Figure 6.11, the initial estimation of the bearing static friction (estimated 
using the bearing kinetic friction provided by the bearing manufacturer) was too high. 
The displacement response residual was minimized at approximately 0.5Kbearφ = , but 
the hanger load and strain responses were minimized at 0Kbearφ ≈ . The results were 
contradictory, thus the statistical weight of each type of measurement was considered 
when choosing an initial value for the normalized bearing static friction threshold for 
automatic FE model updating. Thus, the value of 0.001Kbearφ =  was chosen as an 
initial estimation for the optimization procedure. Due to the bearing assumptions from 
Appendix E, the bearings were tied for the frequency analysis, thus the non-linear 
joint elements were not used when modelling the eigenfrequencies. It may be seen 
from Figure 6.11 that the frequency response is not sensitive the static friction 
threshold modelled using non-linear joint elements. 

 

6.3.8 Carriageway longitudinal stiffeners 

During the design of the bridge, quality control ensured accurate carriageway section 
dimensions. In order to extrapolate the dimensions of the carriageway longitudinal 
stiffeners that optimize the response, the carriageway sectional parameters (sectional 
area, longitudinal bending inertia, transversal bending inertia and torsional inertia) 
were changed to reflect changes in the dimensions of the stiffeners. This analysis also 
provided verification that the correct sectional parameters were used for the initial 
model of the bridge. 
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Figure 6.12  Standard deviation objective function plotted as a function of 
normalized increase of carriageway longitudinal stiffener sectional 
area. 

From Figure 6.12, it is clear that the total response is optimized at 0Astiffφ = , which 
represents no change to the carriageway sectional parameters. The frequency response 
governs the standard deviation objective function (which is a function of the response 
residual and the normalized increase to the stiffener area) and is optimized at 

0Astiffφ = . The strain response is not sensitive to the stiffener area. The displacement 
response is optimized at 0.5Astiffφ ≈  while the hanger load response is optimized at 

0.7Astiffφ ≈ .  

In order to understand the discrepancy between the optimal results for the frequency, 
displacement and hanger load responses, the stiffness contribution of the railing must 
be considered. As was discussed in Chapter 6.3.2, the contribution of the railing to the 
carriageway is difficult to model. The initial model did not consider the stiffness 
contribution to the carriageway provided by the railing, which is a usual assumption 
during design but does not necessarily reflect the actual structural behaviour of the 
bridge. Thus the improved response at 0.5 1Astiffφ ≈ −  for the frequency, displacement 
and hanger loads is likely due to the railing. Further manual model refinement by 
including beam elements for the railing is suggested, but is beyond the scope of this 
study. The railing beam elements should only be used in the FE model used during 
model calibration and should be removed for verification of SLS and ULS design 
criteria as the railing is not designed to provide structural load-carrying capacity. The 
normalized updating parameter for the increase of the carriageway longitudinal 
stiffener sectional area, Astiffφ , was included for automated FE model updating, but the 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 114 

results should be treated very carefully in future analysis. An initial value, 0Astiffφ = , 
was chosen based on the results of the parameter sensitivity study and engineering 
judgement. 

 

6.3.9 Parameter sensitivity study results 

The results of the parameter sensitivity study were analysed and a starting guess for 
the automated FE model updating parameter vector, manually tuned updating 
parameter vector, was chosen. The manually tuned updating parameter vector was the 
result of the manual model refinement and represents a best guess input vector before 
automated optimization. From this point, the utilization of automated non-linear 
optimization techniques is required to minimize the objective function and thus 
determine an optimal FE model.  

Table 6.2 Tabulated updating parameter results. 

  Updating 
parameter

Initial value 
(Model 0) 

Structural parameter 
study (Chapter 5.1) 

Parameter response 
study (Chapter 5.3) 

  Φ θ θ  0,initialΦ 0,initialθ  0Φ  0θ  

Arch base 37.5 GPa 1.041 39.0 GPa 1.062 39.8 GPa Concrete elastic 
modulus, Ec Arch crown 

1φ  1θ  
37.5 GPa 1.167 43.8 GPa 1.190 44.6 GPa 

Carriageway steel elastic 
modulus,  Esteel 2φ  2θ  210 GPa 1 220.5 Gpa 1 210 Gpa 

Central beam --- 4131 kg 3924 kg Asphalt mass, 
Masph Outer beam 

3φ  3θ  
--- 

1 
2065 kg 

0.95 
1962 kg 

Asphalt elastic modulus, Easph 4φ  4θ  --- 1 4.9 GPa 1.6 7.8 GPa 

Arch-carriageway rotational 
connection stiffness, Ka-carr 5φ  5θ  --- 1 1010 N/rad 500 5.0x1012 N/rad

Sweden 1.5x1011 
N/rad 1.5x1011 N/radArch foundation 

rotational 
connection 
stiffness, Ka-f Norway 

6φ  6θ  1 1 
1.5x1011 
N/rad 

1 

1.5x1011 N/rad

Piers --- 300 kN 60 kN Bearing static 
friction, Fs Abutments 

7φ  7θ  
--- 

1 
80 kN 

0.2 
16 kN 

Carriageway longitudinal 
stiffener area, Astiff 8φ  8θ  --- 0 0 m2 0 0 m2 
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6.4 Revised FE model 

6.4.1 Eigenfrequencies 

For ambient vibrations caused by low-amplitude loading, the static friction threshold 
in the bearings is greater than the reaction force at the bearing, thus the connection at 
the bearings may be considered as fully restrained. Large amplitude loading (from 
wind, heavy traffic or temperature change) is sufficient to overcome the static friction 
in some or all of the bearings, but the reaction forces at the bearings must be evaluated 
for all loading configurations. 

The time-variant magnitude of loading due to wind and normal traffic for ambient 
vibration acceleration measurements is unknown; thus there is insufficient data to 
determine whether the static friction threshold for translation and rotation in the 
bearings was overcome during measurements. Eigenmode 2 and higher-order 
eigenmodes were determined to depend on boundary conditions and connection 
restraints, thus the frequency associated with a particular eigenmode changes if the 
boundary conditions or connection restraints are changed. The frequency shift due to 
the change in boundary conditions is evident by comparing eigenmode 2 for Model 0 
and Model 1. Although the mode shape does not considerably change, a large 
frequency shift is present due to the restraint at the bearings.  

One must exercise care when comparing eigenmodes for systems with different 
boundary conditions and connection restraints because the imposition of such 
restraints changes the dynamic space spanned by the DOF in the eigenvalue equation, 
equation (2.19). By changing the boundary conditions and the restraints, the entire 
system changes and the shape of the eigenmodes may change as well. This effect is 
quite different than introducing a scalar multiplier to the stiffness or mass matrices of 
the system, which will change the eigenvalue without changing eigenmode shape. 
Nonetheless, the comparison of eigenmodes with nearly identical shapes for different 
boundary conditions and restraint cases is reasonable for the eigenmodes considered 
in this study since the analyzed shapes are quite similar and correspond well with 
accelerometer locations. 

Close examination of the stabilization diagrams presented in Ülker-Kaustell and 
Karoumi (2006) reveals higher relative uncertainty in the higher order experimentally 
measured eigenmodes, see Figure 4.4. With unknown loading configuration and 
magnitude for ambient vibration testing, the forces at the bearings likely exceeded the 
static friction in some bearings during some time intervals during testing. In such a 
case, the restraint condition at the bearings is a function of time variant load 
configuration and magnitude. Changing the restraint condition of the system as a 
function of time changes the dynamic properties of the system; thus changing the 
eigenfrequencies during testing. If such a speculation is correct, eigenmodes of 
different load-dependent systems were measured during ambient vibration testing and 
the unique set of eigenmodes for each system cannot be distinguished. Therefore it is 
possible that eigenfrequencies corresponding to those from measurable modes in 
Model 0 and Model 1 exist in the ambient vibration data. 

After thorough investigation of the effect of static friction in the bearings, the fully 
constrained bearing condition was chosen to model frequency response for FEM 
updating. This model had exactly one eigenfrequency in close proximity to each 
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eigenfrequency determined by experimental measurements for modes 1 to 4, thus 
assuring reasonable correlation between eigenfrequencies from experimental 
measurements and from FEA. Unfortunately no mode shape data was available. If 
mode shapes are considered, the MAC matrix may be constructed and 
eigenfrequencies from higher order eigenmodes may be included in future FE model 
updating. The eigenfrequency data for the FE model with revised bearing constraints 
is presented in Table 6.3 and Figure 6.14. 

Table 6.3 Eigenfrequencies 1-4 from experimental measurements vs. FE Model 0 
and FE Model 7. 

Eigenfrequency
Experimentally 

Measured 
FE Model 0 

(Initial) 
FE Model 7 

(revised) Units 

Mode 1:  f1 
0.4249 0.4083 0.4253 

Hz 

Mode 2:  f2 
0.8459 0.4598 0.8531 

Hz 

Mode 3:  f3 
0.9402 0.9559 0.9366 

Hz 

Mode 4:  f4 
0.9988 1.0192 0.9871 

Hz 
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Figure 6.13  Eigenfrequency comparison: modes 1-4 from experimental 
measurements vs. FE Model 0 and FE Model 7. 
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Figure 6.14  Eigenmode shapes 1-4 for FE model updating. 

Increased interaction between the bridge superstructure and the pier is caused by the 
static friction from the increased normal force in the bearing due to prestressing. Since 
eigenfrequency measurements were obtained from low amplitude ambient vibrations, 
static friction was probably not overcome by the small excitations of normal traffic 
and wind. Hence, the eigenfrequencies obtained from the stabilization diagrams 
corresponded with the FE model with tied bearings for frequency analysis. Though 
this result changes the FE modelled bridge behaviour in the service state, the 
structural integrity is believed to remain unchanged because the static friction in the 
bearing will certainly be overcome in the ultimate limit state (ULS), thus leaving the 
ULS design load-carrying mechanism valid.  

 

6.4.2 Strains 

The strains have been measured in five different sections; the one at the foundation on 
the Swedish side is referred to as S1, the one in the connection between the arch and 
the carriageway is refereed to as S6, at the midpoint of the arch is called S25, at the 
connection between the arch and the carriageway on the Norwegian side, N6, and at 
the arch foundation on the Norwegian side, N1. The strains on the Norwegian side 
follow same pattern as on the Swedish side, see Figure G.9 to Figure G.12. The 
agreement between the FEA strains and the experimentally measured strains 
improved when non-linear springs were introduced to the model. 

Systematic error is suspected in the strain gauge measurements near the arch to 
carriageway connections (at sections S6 and N6), near the arch foundations (S1 and 
N1) and in the top strain gauge at the midpoint of the arch (section S25). Although 
linear interpolation was used to remove temperature effects, a trend that may have 
been caused by temperature was still evident for some of the strain measurements. A 
correlation between the strain measurements during the unloaded time periods and the 
temperature measurements in each arch section could be used to obtain a more 
accurate strain profile due to temperature effects, but such analysis is beyond the 
scope of this project.  
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A discontinuous stress field is suspected near the arch to carriageway connections, at 
the arch foundations and at the access hatch at the top of the arch. According to 
Engström (2006), the stress field in concrete structures is discontinuous near boundary 
conditions and points of load application. According to elastic field theory, the stress 
field in an elastic body requires a distance that is determined by the structure 
geometry to become fully-developed. Because arch sections S1, S6, N6 and N25 are 
located near boundaries and points of load application, it is likely that the strain 
gauges are located in discontinuous stress fields. The FE model uses beam elements 
with a linear elastic material constitutive relation for the concrete arch, thus assuming 
idealized structural behaviour. Boundary conditions and applied loads act on 
individual nodes in the FE model, thus the stress field is idealized and is only suitable 
for modelling the arch strain in arch segments that are located at a sufficient distance 
from any point loads, connections or boundaries. Arch segment S25 is located 
midway between hangers 3 and 4, thus the strain measurements from the bottom, east 
and west strain gauges were less prone to systematic error due to a discontinuous 
stress field. An access hatch is located at the top of the arch, thus the stress field is 
discontinuous in the top section of arch segment S25 and the strain measurement was 
therefore prone to systematic error.  

With the measurement data from the static load cases and the FE model at hand, 
lingering systematic error caused by remaining temperature effects, possible sensor 
bias, other environmental factors and modelling limitations likely exists. All attempts 
were made within the scope of this project to remove systematic error, but the 
removal of all systematic error was not possible. Nonetheless, the agreement between 
the experimentally measured strains and the FEA strains improved through systematic 
manual model refinement. 

 

6.4.3 Displacements 

Displacement was measured at many points during the static load tests. The 
agreement between the FE modelled displacements and the measured displacements 
improved with manual FE model refinements. Primarily, the increased accuracy was 
due to the non-linear springs at the bearings. The mean deviation of the FEM 
displacements is tabulated in Table G.3 and the mean relative error of the FEM 
displacements is tabulated in Table G.4 . 

 

6.4.4 Hanger loads 

Hanger loads in Hangers 1E and 1W were measured continuously during the static 
load tests. The manual model refinements slightly decreased the accuracy of the FE 
model for hanger loads, which is evident in Table G.3 and Table G.4 in Appendix G. 
This may be due to the introduction of the spring at the arch to carriageway 
connection. From the parameter sensitivity analysis, the connection was determined to 
be rigid. Therefore the springs introduce modelling error, though the modelling error 
is minimized for sufficiently high rotational spring stiffness. In Appendix F.4, the 
discrepancy between the measured and FEM hanger loads increased due to the 
addition of springs in Model 6. 
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7 FE Model Updating of the New Svinesund Bridge 

7.1 Calculations 

All calculations involved for FE model updating of the New Svinesund Bridge were 
carried out on the computing cluster, "Ada", which consists of 252 nodes with 4 xeon 
5160 Woodcrest 3 GHz dual, dual core processors with 4 GB RAM each. 
Optimization subroutines for FE model updating were written and compiled in 
MATLAB version 7.4 using the MATLAB optimization toolbox. Input files were 
used for FE model definition and FEA calculations were completed by ABAQUS 
version 6.5-6. The FORTRAN subroutine for reading the binary output from 
ABAQUS was compiled on an INTEL compiler, version 9.1. For more information 
regarding the computing cluster, refer to http://www.unicc.chalmers.se. 

 

7.2 Results 

Many possible objective functions were proposed in Chapter 6.2 to weigh the 
frequency, strain, displacement and hanger load response. Each objective function has 
certain advantages and certain disadvantages for FE model updating, though the 
standard deviation and error objective functions are perhaps the easiest to understand. 
If only one type of response is considered for FE model updating, the updating 
parameters will be optimized with regard to that response. For each type of response, 
different objective functions were used for optimization in order to determine which 
analysis would produce the best model. The results are summarized in sections below. 

 

7.2.1 Frequency optimization 

Dynamic FE model updating with eigenfrequencies is the most common type of FE 
model updating in practice. For the New Svinesund bridge, the global stiffness and 
global mass matrices of the FE model were updated using the sensitivity approach in 
order to best reproduce the measured eigenfrequencies. The standard deviations of the 
measurements were considered using the standard deviation objective function. The 
standard deviation objective function of the frequency was formulated using the first 
four eigenfrequencies. 

( )24
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The FE model was optimized to reproduce the measured eigenfrequencies, 

min σ Πf

Φ
 (7.2) 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 120 

The eigenfrequencies were sensitive to some of the uncertain structural parameters, 
thus the updating parameters used included the arch base stiffness, arch crown 
stiffness, carriageway steel stiffness, non-structural member mass, asphalt stiffness 
and carriageway stiffener area. In case of unconstrained minimization presented 
above, the set of updating parameters, Φ , that best reproduced the experimentally 
measured response were the solution to equation (7.2). The statistical confidence in 
the updating parameters was accounted for using regularization. 
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Φ  (7.3) 

By introducing regularization to the standard deviation objective function, the 
statistical confidence in the calculations from Chapter 5 and the parameter sensitivity 
study from Chapter 6 were included.  

2
σ σ

σ
Π + Π

Π =
f Φ

 (7.4) 

The updated FE model was optimized to reproduce the response while minimizing the 
updating parameter change from the “best guess” determined by calculations and the 
parameter sensitivity study. 

min σ Π
Φ

 (7.5) 

In both cases, equation (7.2) and equation (7.5), the first four eigenfrequencies of the 
FE model were improved with respect to the measured frequencies. The FE model 
optimized for response reproduced the experimentally measured response slightly 
better than the optimized model that included regularization, though the updating 
parameters were less realistic. 
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Figure 7.1  Optimized eigenfrequencies with and without regularization. 

According to the FE model optimized for response, the stiffness of the arch base was 
increased from 106% to 121% while the stiffness of the arch crown was reduced from 
119% to 100%. The mass of the non-structural members changed from 95% 
(determined in the parameter sensitivity study) to 90%. The asphalt stiffness and 
carriageway stiffener area were virtually unchanged but the carriageway steel stiffness 
was reduced to 96%.  

For the FE model optimized for response with regularization of the updating 
parameters, the stiffness of the arch base remained virtually unchanged at 106% while 
the stiffness of the arch crown was reduced from 119% to 114% of the original value. 
The mass of the non-structural members, the asphalt stiffness, carriageway stiffener 
area and carriageway steel elastic modulus remained virtually unchanged from the 
values obtained using manual model refinement. 

In order to determine if the solution to equation (7.2) was unique, the starting guess 
for the updating parameter vector was changed and the model was optimized with 
respect to response. Two cases were used to test for the existence of local minima, 

0 0
ˆ 0.5=Φ Φ  and 0 0

ˆ 2=Φ Φ . In both cases, the optimization converged after about 150 
objective function evaluations using the Nelder-Mead Simplex non-linear 
optimization algorithm, which corresponded to about 40 iterations. 
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Figure 7.2  Convergence of frequency optimization to non-unique results for 
different updating parameter initial starting guesses. 

The converged results were non-unique for 0 0
ˆ 0.5=Φ Φ  and 0 0

ˆ 2=Φ Φ , 
demonstrating the existence of local minima for the standard deviation frequency 
objective function in the updating parameter space. From Figure 7.2, it may be seen 
that although the minimization converged for 0 0

ˆ 0.5=Φ Φ  and 0 0
ˆ 2=Φ Φ , the 

converged solutions were not even as good as the starting guess obtained from manual 
refinement.  

Due to the existence of local minima, a good starting value for the updating parameter 
vector, 0Φ , was essential for optimization. Manual refinement using engineering 
calculations and a parameter sensitivity study were used to obtain an initial updating 
parameter vector, 0Φ , for non-linear optimization. If only the response was 
considered, the optimized model was unrealistic, but the use of regularization of the 
updating parameters considering the “best guess” determined from manual model 
refinement produced an optimized FE model with more realistic updating parameters. 

 

7.2.2 Strain optimization 

By comparing the calculated strain simulated using the manually refined FE model 
with the measured strains from the load tests, the FE model was optimized to reduce 
the mean relative error expressed using the error objective function. 
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The FE modelled strain response was only sensitive to the arch base stiffness, arch 
crown stiffness, pier bearing static friction threshold and abutment bearing static 
friction threshold. The updating parameter vector which best reduced the mean 
relative error for strain objective function was obtained using the Nelder-Mead 
Simplex non-linear optimization algorithm. 

min
mz zΣ Πε

Φ
 (7.7) 
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Figure 7.3  Comparison of optimized FE model strain response and initial FE 
model strain response with measured strain response. 

Although the mean relative error for strain was reduced by approximately 5% for 
Model 7 using optimization, the agreement between the optimized model strains and 
the experimentally measured strains was not significantly better than for the initial FE 
model, Model 0. Additionally, the variation of the concrete stiffness along the arch 
profile optimized for strains was not realistic. For Model 7 optimized for strain, the 
stiffness of the arch base was reduced to 77% while the stiffness of the arch crown 
was increased to 123%. The static friction threshold of the abutment bearings was 
reduced to zero while the static friction threshold for the pier bearings was optimized 
at 56% of the calculated sliding friction (compared with 20% determined from the 
parameter sensitivity study).  

As discussed earlier, systematic error, experimental noise and modelling limitations 
reduce the accuracy of the FE modelled strains. The strain gauges in the arch are 
located in arch sections near the arch bases and near the arch to carriageway 
connections, thus the stress profile is affected by local disturbances and should not be 
considered to be fully developed. Points of load application, internal restraints and 
boundary conditions are known regions of discontinuous stress fields, Engström 
(2006) Beam elements, which assume a linear stress distribution, were used to model 
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the concrete arch. As such, the modelled strains were simplified and idealized near the 
arch bases and the arch to carriageway connections. Thus, considering experimental 
error and modelling limitations, the results for the optimized FE model were not 
surprising.  

To reduce the systematic error caused by the discontinuous stress field, the strains 
measured in arch section S25, located in the arch crown, were used for FE model 
updating. As was the case when all strains were used for FE model updating, no 
significant improvement was obtained from the optimization.  

 

7.2.3 Displacement optimization 

In much the same way as for strain, the FE modelled displacements at measured nodes 
were optimized with respect to the experimentally measured displacements. The mean 
relative error was calculated using the error objective function. 
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The FE modelled displacement response was only sensitive to the pier bearing static 
friction threshold, abutment bearing static friction threshold and the stiffness of the 
carriageway. The optimized updating parameters were obtained by minimizing the 
error objective function for displacement. 

min
mz zΣ Πu

Φ
 (7.9) 
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Figure 7.4  Comparison of optimized FE model normalized displacements and 
initial FE model normalized displacements with normalized measured 
displacements. 

The correlation between the calculated displacements for the static load tests using the 
initial FE model, Model 0, and the experimentally measured displacements was quite 
good. Optimization of Model 7 reduced the mean relative error of the displacements 
by approximately 7% and thus improved the correlation to the experimentally 
measured measurements.  

Scatter is still evident in Figure 7.4, which is most likely due to measurement noise. 
According to the FE model optimized for displacements, the static friction threshold 
at the abutment bearings was zero. The static friction threshold at the pier bearings 
was 78% of the approximated value calculated using from the kinetic friction. The 
normalized updating parameters for the bearings were realistic, especially when 
compared with the parameter sensitivity analysis and the results from the strain 
optimization. The elastic modulus of the steel for the carriageway was increased by 
18%, which was not considered realistic. Rather, it is likely that the increased stiffness 
of the carriageway required to optimize the displacement measurements was caused 
by the contribution of the railing to the response of the bridge during static load 
testing.  

As discussed in Chapter 6.3.2, the railing was suspected to contribute to both the 
dynamic and static structural behaviour of the bridge. In order to account for this 
contribution, the carriageway steel stiffness and the carriageway sectional parameters 
were permitted to change in a realistic way. The stiffness of the railing was not 
included in the FE model during the design of the bridge, though the railing certainly 
affected the measured response. Due to bolted connections, the railing elements are 
difficult to include in the FE model. For the case at hand, when the FE model was 
optimized for frequency, the stiffness of the carriageway was found to decrease by 
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4%. When the same FE model was optimized for displacement the carriageway 
stiffness increased by 18%. It is possible that during ambient vibration testing, the 
bolted connections for the railing were sufficiently loose as to not transmit any load 
while during static load testing, the applied loads were high enough to close the gaps 
in the bolted joints and thus transmit structural load through the railing. It is necessary 
to consider the contribution of non-structural members to the structural behaviour for 
FE model updating, but any beneficial structural contribution should be removed from 
the FE model for SLS structural assessment in order to ensure that design FE model 
remains conservative. 

 

7.2.4 Hanger load optimization 

The hanger loads in hangers 1E and 1W were measured with load cells during the 
static load tests. Temperature effects were removed from the data as for strain 
measurements and the manually refined FE model, Model 7, was optimized with 
regard to the standard deviations of the measurements for the 5 load cases. 
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The FE model was optimized to reproduce the measured hanger loads, 

min σ ΠF

Φ
 (7.11) 
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Figure 7.5  Comparison of FE model hanger loads before and after optimization 
and from the initial FE model with measured hanger loads. 

From Figure 7.5, it is apparent that the initial FE model was quite accurate. 
Nonetheless, the optimized FE model yielded a closer correlation to the measured 
hanger loads. The stiffness of the arch base, stiffness of the arch crown, carriageway 
steel stiffness, carriageway stiffener area, and the static friction thresholds at the 
abutment and pier bearings were updated during optimization. The carriageway 
stiffener area and static friction thresholds and the bearings remained virtually 
unchanged. The stiffness of the arch base decreased from 106% to 102%, while the 
stiffness of the arch crown decreased from 119% to 105%. The carriageway steel 
elastic modulus increased by 10%, which was more conservative than the result 
obtained for the displacement optimization. 

Once again, the stiffness contribution of the railing was believed to affect the 
measured response. As was discussed in the previous section, the contribution of non-
structural members to the structural behaviour of the bridge is very difficult to model, 
especially for simple models. Although the design model of the bridge should be 
conservative, the FE model used for updating should be as realistic as possible and 
thus include all elements that contributed to the response during experimental 
measurements. 

 

7.2.5 FE model optimization 

In Chapter 7.2.1 to Chapter 7.2.4, the FE model was optimized for each type of 
response, ẑ , individually. The significance of the resulting updating parameter vector 
was discussed for each case. When the FE model was optimized for displacements 
and hanger loads, the carriageway stiffness was increased, which contradicted the 
updating results for the FE model optimized for frequency. In order to obtain an 
optimized FE model for all measured responses with consideration of the deviation of 
the updating parameter vector from the “best guess” determined from manual model 
refinements, the FE model was optimized with statistical consideration of the 
response and the updating parameters. The standard deviation objective function with 
and without regularization was used. The total deviation for each of the response as 
specified in Table 6.2 was used for ẑσ  as to reduce the effect of systematic error in 
the strain and displacement measurements on the final result without neglecting the 
strain and displacement response altogether. Thus, for an arbitrary response, 1 ẑ , the 
contribution to the response objective function was formulated as, 
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The minimization equation was solved for the optimal updating parameter vector,  

min σ Πz

Φ
 (7.13) 
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Figure 7.6  Convergence of optimization of mean response with frequency, strain, 
displacement and hanger load contribution to objective function. 
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Figure 7.7  Convergence of optimization of mean response. 

From Figure 7.6, it is clear that the frequency and hanger load response dominate the 
objective function. The displacement objective function is also reduced during the 
minimization. The strain response was not improved when all responses were 
considered for minimization. From Figure 7.7, it is clear that without including 
regularization, the updating parameters deviate from the “best guess” obtained 
through manual model refinements including engineering calculations and the 
parameter sensitivity analysis. All of the normalized updating parameters of interest 
determined from the parameter sensitivity study were optimized to obtain the best 
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possible response. The stiffness of the arch base increased from 106.2% to 114.5% 
while the stiffness of the arch crown decreased from 119% to 103.2%. These results 
are similar to those presented in the non-regularized frequency optimization presented 
previously. The normalized updating parameter for the asphalt mass increased from 
0.95 to 1.02 while the normalized updating parameter for the asphalt stiffness 
decreased from 1.60 to 1.41. The normalized updating parameters for the static 
friction in the bearings and for the sectional area of carriageway stiffeners remained 
virtually unchanged. The elastic modulus of the steel of the carriageway increased by 
roughly 11% which was most likely due to the hanger load contribution to the 
objective function. From the parameter sensitivity study and the hanger load 
optimization analysis, the contribution of the railing to the structural behaviour of the 
bridge was evident, though difficult to quantify. A more realistic FE model should 
include railing elements for the static load simulations, though the beneficial 
contribution of the railings to the carriageway stiffness should be neglected in the 
design FE model so that the structural design criteria is verified conservatively. 

In order to regularize the objective function, the deviation from the “best guess” 
updating parameter vector obtained from manual model, Table 6.2, formed the 
regularization term. 
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The standard deviation objective function considered both the response residual and 
the updating parameter deviation, 

2
σ σ

σ
Π + Π

Π =
z Φ

 (7.15) 

The optimal FE model for the New Svinesund bridge minimized the standard 
deviation objective function, 

min σ Π
Φ

 (7.16) 
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Optimized Response with Regularization of Updating Parameters

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160 180 200
Objective Function Evaluation

St
an

da
rd

 D
ev

ia
tio

n 
O

bj
ec

tiv
e 

Fu
nc

tio
n 

V
al

ue

Response Objective:
Frequency Objective: Strain Objective:
Displacement Objective: Hanger Load Objective:  

Figure 7.8  Convergence of optimization of regularized mean response with 
frequency, strain, displacement and hanger load contribution to 
objective function. 
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Figure 7.9  Convergence of optimization of regularized mean response. 

When regularization was included in the objective function formulation, the response 
improved, though not as much as when regularization was neglected. While most of 
the normalized updating parameters did not significantly deviate from the initial 
values, the normalized stiffness of the arch crown decreased from 1.19 to 1.133. As 
discussed earlier, the stiffness of the arch crown was reduced for the frequency 
optimization without regularization. This may be due to the opening of micro-cracks 
during ambient vibration testing. Without further measurements and load tests, it is 
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difficult to substantiate a significant deviation from the calculated increase in the arch 
crown stiffness. The optimization results presented in this study should be considered 
when simulating the realistic performance of the bridge, but should not be used for 
structural assessment.  

7.3 Results summary 

The results from the FE model updating analyses are presented in the tables below. 
From the previous analyses, it was shown that although different results were obtained 
when the FE model was optimized for different types of response, the overall 
response could be improved when the residuals from all responses were accounted for 
in the objective function used for optimization. The statistical deviations of the 
measurements were used for weighting of the different responses in the objective 
function. Improvements to the FE model made using manual refinements were 
essential to obtain the “best guess” to be used for the initial updating parameter vector 
for optimization. Regularization ensured that the resulting updating parameter vector 
was reasonable. For more plots and tabulated results, please refer to Appendix K. 
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8 Conclusions 

8.1 Discussion of FE model updating of the New 
Svinesund Bridge 

The FE model of the New Svinesund bridge was updated through systematic manual 
model refinement and non-linear optimization. The resulting FE model included more 
realistic structural parameters and an improved response when compared with the 
original FE model of the bridge.  

Manual model refinement was essential for the case of the New Svinesund bridge 
because of modelling limitations present in the initial FE model. Structural 
calculations were used to obtain more realistic estimates of uncertain structural 
parameters, which were further calibrated by comparing the modelled response with 
the measured response in the parameter sensitivity study. Several objective functions 
were developed to evaluate the modelled response with regard to the measured 
response. The advantages and disadvantages of each type of objective function were 
considered with regard to statistical considerations of the measured response 
parameters. All objective functions were used to assess the bridge response sensitivity 
to the uncertain structural parameters, though only the most useful results were 
presented. Important findings regarding the bridge behaviour were obtained from the 
parameter sensitivity study and were considered for optimization.  

Using primarily the data obtained from the hanger loads during the static load tests, 
the rigidity of the arch to carriageway connection was verified. The sensitivity of the 
measured response to the arch foundation stiffness was found to be insufficient for FE 
model updating, thus the arch foundation stiffness calculated during design could not 
be verified. The contribution of non-structural members including the asphalt layer 
and the railings was investigated in the parameter response study and found to be 
important when assessing the actual response of the bridge. 

For each type of response, a set of normalized updating parameters was obtained 
through optimization. Finally, the FE model was optimized for the entire measured 
response, including strains, displacements and hanger loads from the static load tests 
and frequencies from ambient vibration testing. The resulting FE model included 
more realistic values for uncertain structural parameters and was capable of better 
modelling the measured response. 
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8.2 Recommendations for further FE model updating for 
the New Svinesund Bridge 

In order to further reduce the uncertainty of the FE model and to better understand the 
capability of FE model updating, further studies are recommended. The updated FE 
model obtained through this study is a sort of “footprint” model for further studies.  

Including eigenmodes above modes 1 to 4 would be useful for dynamic FE model 
updating and would increase the confidence in the FE model for dynamic analysis. 
Mode shapes are required for mode pairing above mode 4 and to formulate the MAC 
matrix. Thus, further research including dynamic testing is recommended in order to 
obtain mass-normalized mode shapes that may be used for FE model updating.  

Although the loading configuration and sensor system used for static load testing was 
useful for verifying the rigidity of the arch to carriageway connection, the transverse 
rotational stiffness of the arch foundation could not be verified. Uncertain structural 
parameters should be identified before static load testing and the static load 
configuration should first be simulated using the FE model to ensure that the uncertain 
structural parameters activate the measurable response. Temporary longitudinal 
displacement transducers at the bearings are recommended for future static load tests. 
Externally mounted strain gauges should be installed on the inside and outside 
surfaces of the concrete arch at some of the sections where the permanently installed 
strain gauges are located. The external strain gauges should be calibrated before and 
after load testing. The function of these strain gauges would primarily be calibration 
of the permanently installed resistance strain gauges in order to eliminate systematic 
error.  

Experimental noise should be considered when comparing measurements with 
different units and the response residual should be statistically weighted to reflect the 
confidence in each type of measurement. The standard deviation of the experimentally 
measured response, sensor accuracy, sensor calibration and the modelling limitations 
should all be considered when comparing measurements of different types. The 
variation of the uncertain structural parameters should be established according to the 
probabilistic distribution. When formulating the objective function, the response 
should be statistically weighted in a reasonable manner. A regularization term should 
consider the deviation of the updating parameters from the “best guess” according to 
engineering calculations and a sensitivity analysis. The final FE model should be 
optimized with respect to the measured response vector and the “best guess” updating 
parameter vector determined systematically by engineering calculations and a 
parameter sensitivity analysis. 
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8.3 FE model updating for improved structural 
assessment 

The use of FEM for structural assessment is valuable, especially for complex 
structures where strict design guidelines are not available. A holistic FE modelling 
perspective should be adopted from the early stages of design through the service life 
of a bridge. FE model updating using frequency and static response can be used to 
improve the agreement of the updated FE model with the experimentally measure 
response. The updated FE model then ensures the validity of the more conservative 
design FE model when verifying design criteria and the assessment FE model for 
structural assessment. In order to ensure the validity of the FE model updating 
procedure, certain guidelines should be followed. 

During the initial FE modelling phase, the structural designer should create an initial 
FE model that is sufficiently robust to be used to verify design criteria and for 
structural assessment during the service life of the bridge. The geometry, element 
types and mesh are defined for the initial model. Material properties and element 
sectional data should be tabulated to facilitate FE model updating. 

Initial FE Model:  

• Created in design phase, not changed during service life 
• Geometry 
• Element types 
• Mesh 

 

The design FE model is derived from the initial FE model. While the geometry, 
element types and mesh remain unchanged, the boundary conditions and material 
properties are assigned according to design criteria. 

Design FE Model (conservative): 

• Used to verify design criteria 
• Geometry, element types and mesh remain unchanged 
• Boundary conditions 

o According to design criteria, assumptions on the safe side 
• Material properties 

o According to design values  
 Material strength: 5% fractile 
 Material stiffness: mean values 

 

Due to conservative assumptions, often the design FE model and assessment FE 
model can not accurately model SLS loads. If the difference between the measured 
response and the FEA response is considerable, the validity of the design and 
assessment FE models is suspect. In order to verify the conservative FE models, an 
update FE model, which is derived from the same initial FE model as both the design 
and the assessment FE models, is used. The update FE model has realistic material 
properties and boundary conditions and is updated using manual model refinement 
and optimization to better reproduce the measured response. 
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Update FE Model (realistic):  

• Used to verify design FE model and to obtain an improved assessment FE 
model  

• Updated using results of dynamic and static load testing  
• Boundary conditions 

o Updated spring stiffness for abutments or foundations modelled with 
springs 

o Tied boundary conditions for prestressed bearings during ambient 
vibration frequency measurements 

o Static friction in bearings simulated using non-linear spring elements 
• Material properties 

o Engineering calculations 
• Increased concrete stiffness due to hydration 
• Increased concrete stiffness due to reinforcement 
• Asphalt stiffness for dynamic loading 

o Parameter sensitivity analysis 
• Non-structural elements 

o Asphalt layer 
o Railings 

 

For structural assessment, a conservative FE model is used which includes improved 
boundary conditions and material properties from the update FE model, but does not 
include non-structural elements. The assessment FE model provides the level of safety 
as specified in the structural assessment codes but includes increased knowledge 
gained from load tests and material tests. Reduced or increased material properties are 
included to model concrete cracking, increased concrete hydration, steel corrosion, 
etc. that have occurred with time.  

Assessment FE Model (conservative): 

• Check structural capacity in accordance with structural assessment 
• Geometry, element types and mesh remain unchanged 
• Boundary conditions 

o According to updated model, conservative with respect to response in 
ULS 

• Material properties 
o According to structural assessment codes with respect to material tests 

made 
o Reduced or increased material properties if necessary 

 Concrete cracking 
 Steel corrosion 
 Fatigue  

 

In order to measure the dynamic and static response so that the update FE model may 
be calibrated and the design and assessment FE models may be verified, a sensor 
system is required. The permanent sensor system is designed before bridge 
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construction and is simulated in the update FE model in order to ensure that the 
necessary response can be measured. 

Permanent sensor system: 

• Measure dynamic and static response 
• Calibrate sensors for static load tests using temporary sensor system 
• Continuously record data during static load tests  
• Accelerometers 

o Verify that the location of sensors corresponds with important 
eigenmodes 

o Full-scale dynamic test 
• Snap-back 
• Snap-through 
• Shaker 

o Ambient vibrations testing 
o Monitor temperature of structural members and asphalt layer 

• Strain gauges 
o Located in uniform stress field away from discontinuous stress field 

caused by point loads, internal restraints and boundary conditions 
o Temperature gauges to monitor temperature effects 
o External strain gauges for calibration 

• Load cells 
o Calibrated using temporary sensors (hanger frequency to determine 

load) 

 

In addition to the permanently installed sensor system, a temporary sensor system is 
used to gather additional information about the bridge response during load test. If a 
permanent sensor system for FE model updating was not installed during 
construction, the temporary sensor system can provide the measured response for FE 
model updating. 

Temporary sensor system: 

• Measure dynamic response 
o Additional accelerometers to measure mode shapes 

• Measure static response  
o Displacement measurements with total stations 
o Displacement gauges installed at bearings to determine realistic 

boundary conditions 
o External strain gauges for calibration of permanent reinforcement 

strain gauges 
o Additional temperature gauges to remove temperature trends 

 

The load tests should first be simulated using the FE model to ensure that the 
necessary response to be measured will be activated. By simulating the load tests and 
the response, a parameter sensitivity study should be conducted to determine if the 
response is sufficiently sensitive to the uncertain structural parameters. FE model 
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updating may then be evaluated by introducing noise to the simulated “measured” 
response to see if the “measured” parameters may be obtained. 

Load Tests: 

• Simulate load tests using FE model before full-scale load testing 
• Designed to activate response that is necessary to determine uncertain 

structural parameters 
• Loading configurations randomized to reduce systematic error 

 

8.3.1 Design 

During the design stage, the realistic behaviour of the bridge should be considered for 
FE modelling. The “design model” should be conservative, thus assuming worst-case 
material properties and boundary conditions for worst-case loading configurations in 
order to satisfy SLS and ULS design criteria. Simultaneously, a similar FE model 
should be created with identical geometry, element types and mesh for FE model 
updating. The “update model” should utilize realistic values for material properties 
and boundary conditions. 

The sensor system and load tests should be modelled so that the measured response 
may be simulated. If the uncertain structural parameters cannot be determined from 
the measurable response, the sensor system and load tests should be redesigned. 

Update FE Model

Permanent Sensor System

Determine uncertain
structural parameters?

Simulate Response, zFEM

No

Load Tests

Redesign

Redesign

 

Figure 8.1 Conceptual framework for design of sensor system and load tests. 
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8.3.2 Service life 

During the service life of the bridge, FE model updating can be used to calibrate the 
update FE model so that it accurately models the performance of the bridge. Dynamic 
and static load testing is used to activate the measurable response so that uncertain 
structural parameters may be determined using the response. 

The design FE model is validated after the uncertain structural parameters have been 
determined and the update FE model has been calibrated through FE model updating. 
The confidence in the design FE model for verifying structural design criteria is 
increased once it has been validated. 

Initial FE Model

Design FE Model Update FE Model
Verify

Design Criteria

zFEM

Measured
Response,

zm

FE Model Update

 

Figure 8.2 Conceptual framework for implementation of FE model updating using 
dynamic and static load tests to verify design FE model. 
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Routine structural assessment requires the validation of the residual structural 
capacity. The load carrying capacity in accordance with structural assessment criteria 
must be verified, often using a conservative FE model. The update FE model is 
required to verify the assessment FE model, which may not accurately model the real 
response of the bridge due to conservative assumptions. The update FE model can be 
updated through realistic manual model refinements and optimization with regard to 
the response measured at the time of structural assessment. 

Assessment FE Model Update FE Model
Improve

Structural Assessment

zFEM

Measured
Response,

zm

FE Model Update

Design FE Model

 

Figure 8.3 Conceptual framework for service life implementation of FE model 
updating using dynamic and static load tests for improved structural 
assessment. 
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Appendix A. Simple Beam FE Model Verification 
Relevant parameters for IPE 180 simply supported beam, 

E  = 210 GPa 

I = 13.17E6 mm4 

A = 2395 mm2 

tk = 1.0E6 N/m 

rk = 5.0E6 N*m/rad 

ρ = 7700 kg/m3 

L = 8 m 

P =10 kN 

Bernoulli-Euler beam theory, 
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An important result of the Euler-Bernoulli beam equation is, 

( )
∫=−
B

A
AB dx

EI
xMθθ   (A.2) 

In this case for static loading, 
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s
A k
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=θ     (A.5) 

 

 

Integrating equation (A.2) and substituting equation (A.3), equation (A.4) and 
equation (A.5), the field moment is obtained as, 
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( )
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The elastic stress and strain profile across the section at midspan, 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

2

max,

h
I

M

x

f
fσ  (A.7) 

E
f max,

1

σ
ε =  (A.8) 

Deflection of each of the vertical springs is simply calculated using symmetry, 

( )
t

s k

P
u 2=  (A.9) 

For deflection at the midspan, 

( )
∫

⋅
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A
Sf dx

EI
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In order to determine the first four eigenfrequencies, consider free vibration, 

( ) 0, =txp  (A.11) 
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Which may be written as, 

( ) 0=+″′′ uAUEI &&ρ  (A.13) 

Assume harmonic transient motion, 

( ) ( )αϖ −= txUu cos  (A.14) 

( ) ( )αϖϖ −−==
∂
∂ txUu

t
u cos2
2

2

&&  (A.15) 

 

 

Differentiate with respect to position, 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 144 

( ) ( )

M

αϖ −′=
∂
∂ txU

x
u cos  (A.16) 

Thus the eigenvalue equation is obtained by eliminating ( )αϖ −tcos from the 
expression, 

( ) 02 =+″′′ UAUEI ϖρ  (A.17) 

Free vibration of uniform beam with eigenvalue defined per unit length as, 

EI
Aρϖλ 24 =  (A.18) 

04
4

4

=−
∂
∂ U

x
U λ  (A.19) 

Assuming a general solution for ( )xU , 

( ) ( ) ( )xDxCBeAexU xx λλλλ cossin +++= −  (A.20) 

( ) ( ) ( )( )xDxCBeAexU xx λλλ λλ sincos −+−=′ −  (A.21) 

( ) ( ) ( )( )xDxCBeAexU xx λλλ λλ cossin2 −−+=′′ −  (A.22) 

( ) ( ) ( )( )xDxCBeAexU xx λλλ λλ sincos3 +−−=′′′ −  (A.23) 

For the beam with vertical and rotational springs at each end, 

Boundary conditions: 0=x  

( ) ( ) 000 =′′′+ UEIUkt  (A.24) 

( ) ( ) 000 =′′−′ UEIUkr  (A.25) 

Boundary conditions: Lx =  

( ) ( ) 0=′′′− LUEILUkt  (A.26) 

( ) ( ) 0=′′+′ LUEILUkr  (A.27) 

With, 

EI
kK t

T =  and 
EI
kK r

R =  (A.28) 

Evaluating the boundary conditions and forming a coefficient matrix, 
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The eigenvalues are obtained by finding λ  such that the determinant of the 
coefficient matrix is zero, 
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When evaluated numerically for the problem at hand, 
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With the first four eigenfrequencies, 
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Appendix B. MATLAB Subroutine: Eigenfrequency 
Verification of Simple Beam  
function R=IPE180EIGdet (f,E,kt,kr) 
% Pseudo Inverse Algorithm for Simply Supported Beam 
% 2007-08-21 
% Fredrik Jonsson and David Johnson 
% 
% Function to determine the absolute value of the determinant of the 
% coefficient matrix for the IPE180 beam with spring supports. Local 
% minima correspond to the eigenfrequencies of the beam. This function may 
% be minimized or iterated over a frequency domain that includes the 
% eigenfrequency of interest in order to determine the first four 
% eigenfrequencies. Otherwise it may be plotted over the frequency range of 
% interest in order to graphically determine local minimums. 
%  
% Example: 
% >> f_eig1 = fminsearch(@(f) IPE180EIGdet(f,E,kt,kr), 10) 
% f_eig1 = 
%    13.2314 
%  
% >> f_eig2 = fminsearch (@(f) IPE180EIGdet(f,E,kt,kr), 25) 
% f_eig2 = 
%    26.3528 
%  
% Graphically (use semilog-y): 
% figure(1) 
% >> fplot(@(f) IPE180EIGdet(f,E,kt,kr), [1 100]) 
%  
% INPUT: 
%   f       frequency (Hz) 
% OUTPUT: 
%   R       absolute value of determinant of coefficient matrix 
 
I = (13.17E6)*(0.001)^4;   % Area moment of inertia (from beam table) 
 
KT = kt/(E*I); 
KR = kr/(E*I); 
L = 8;     % Beam length  
rho = 7700;    % Steel density 
A = 2395*(0.001)^2;   % Cross-sectional area (from beam table) 
  
w = f*2*pi();    % Frequency: Hz to rac/sec 
x = ((w^2)*rho*A/(E*I))^(0.25);  % Eigenfrequency to eigenvalue 
 
R =  det([KT+x^3                         KT-x^3                     …          

  -x^3                           KT; 
             KR*x-x^2                       -KR*x-x^2                …           

  KR*x                           +x^2; 
             KT*exp(x*L)-x^3*exp(x*L)      KT*exp(-x*L)+x^3*exp(-x*L)        …  

  KT*sin(x*L)+x^3*cos(x*L)      KT*cos(x*L)-x^3*sin(x*L); 
             KR*x*exp(x*L)+x^2*exp(x*L)    -KR*x*exp(-x*L)+x^2*exp(-x*L)    …  

  KR*x*cos(x*L)-x^2*sin(x*L)    -KR*x*sin(x*L)-x^2*cos(x*L)]); 
  
R=abs(R); 
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Appendix C. MATLAB Subroutine: Beam Response 
function zbeam=beamresponse(phi) 
% Beam properties  (Initial guess: phi=[1 1 1]') 
%                   (‘Measured’:  phi=[1.0288 2 2]): 
E = (210E9/1.02888)*phi(1);      % Steel modulus of elasticity [N/m^2] 
kt = 5.0E5*phi(2);        % Translational spring stiffness [N/m] 
kr = 2.5E6*phi(3);        % Rotational spring stiffness [N*m/rad] 
P=10E3;                   % Applied point force, -y direction [N] 
L=8;                      % Beam length (must be same as in IPE180EIGdet!) 
I=13.17E6*0.001^4;        % Area moment of inertia for IPE 180 
zbeam=zeros(7,1); 
  
fguess=5;                % Start with a guess of first eigenfrequency 
fcount = 1; 
df = 2;                  % Assume that eigenfrequencies are separated by df 
  
% Eigenfrequency calculations 
while zbeam(1) < 1 
    % Find first eigenfrequency by finding f such that: det(coeff matrix)=0 
    f = fminsearch(@(f) IPE180EIGdet(f,E,kt,kr), fguess); 
    zbeam(fcount) = f; 
    fguess = fguess+df; 
end 
  
while fcount < 4 
    % Find eigenfrequencies 2-4 
    f = fminsearch(@(f) IPE180EIGdet(f,E,kt,kr), fguess); 
    if zbeam(fcount)+df < f 
        fcount = fcount+1; 
        zbeam(fcount) = f; 
    end 
    fguess=fguess+df; 
end 
  
  
u2=(P/2)/kt;                           % Deflection of translational springs 
Mf=(P*L)*(L*kr+4*E*I)/(8*L*kr+16*E*I);       % Maximum field moment 
Ms=Mf-P*L/4;                                  % Maximum support moment 
sig=Mf/(I/90E-3);                      % Maximum stress (bottom flange, midspan) 
eps=sig/E;                             % Maximum strain (bottom flange, midspan) 
u1=u2+L^2/(E*I)*(Mf/12+Ms/24);        % Midspan deflection 
  
zbeam(5:7)=[u1 u2 eps]'; 
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Appendix D. FE Model Updating of Simple Beam 

D.1 Simple beam results: classical FE updating techniques 

Table D.1 Results for the unweighted pseudo-inverse algorithm with more target 
responses than updating parameter. 

  
Initial 
Value 

Iteration Number Measured 
Values 

Input 
Parameter 

  1 2 3 4 5 
  

φ1 = Ej/E0 1.000 1.068 1.026 1.029 1.029 1.029 1.029 

φ2 = kt,j/kt,0 1.000 1.778 1.991 2.000 2.000 2.000 2.000 

φ3 = kr,j/kr,0 1.000 1.509 1.921 1.998 2.000 2.000 2.000 

||( Φref-Φj)/ 
Φref|| 

0.708 0.272 0.040 0.001 0.000 0.000   

Target 
Response 

            
  

z1 = f1 10.415 12.690 13.209 13.273 13.274 13.274 13.274 

z2 = f2 20.436 25.494 26.437 26.496 26.496 26.496 26.496 

z3 = f3 38.710 44.866 45.782 45.892 45.893 45.893 45.893 

z4 = f4 74.755 81.489 82.029 82.294 82.298 82.298 82.298 

z5 = u1 0.02688 0.01998 0.01895 0.01877 0.01877 0.01877 0.01877 

z6 = u2 0.01000 0.00563 0.00502 0.00500 0.00500 0.00500 0.00500 

z7 = ε1 0.000389 0.000348 0.000351 0.000349 0.000349 0.000349 0.000349

||(zm-zj)/zm|| 1.154 0.154 0.014 0.000 0.000 0.000 0.000 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 149

Table D.2 Results for the unweighted pseudo-inverse algorithm with more 
updating parameter than target responses. 

  
Initial 
Value 

Iteration Number Measured 
Values 

Input 
Parameter 

  1 2 3 4 5 
  

φ1 = Ej/E0 1.000 1.368 1.454 1.455 1.455 1.455 1.029 

φ2 = kt,j/kt,0 1.000 1.671 1.770 1.771 1.771 1.771 2.000 

φ3 = kr,j/kr,0 1.000 1.404 1.479 1.480 1.480 1.480 2.000 

||( Φref-Φj)/ 
Φref|| 

0.708 0.474 0.502 0.502 0.502 0.502   

                

Target 
Response 

            
  

z1 = f1 10.415 12.895 13.269 13.274 13.274 13.274 13.274 

z2 = f2 20.436 25.726 26.485 26.496 26.496 26.496 26.496 

z3 = f3 38.710 47.008 48.393 48.414 48.414 48.414 45.893 

z4 = f4 74.755 88.152 90.701 90.739 90.739 90.739 82.298 

z5 = u1 0.02688 0.01830 0.01728 0.01726 0.01726 0.01726 0.01877 

z6 = u2 0.01000 0.00599 0.00565 0.00565 0.00565 0.00565 0.00500 

z7 = ε1 0.000389 0.000284 0.000267 0.000267 0.000267 0.000267 0.000349

||(zm-zj)/zm|| 1.154 0.286 0.302 0.303 0.303 0.303 0.000 
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Table D.3 Results for the unweighted pseudo-inverse algorithm with equal amount 
of target responses and updating parameters. 

  
Initial 
Value 

Iteration Number Measured 
Values 

Input 
Parameter 

  1 2 3 4 5 
  

φ1 = Ej/E0 1.000 1.090 1.023 1.029 1.029 1.029 1.029 

φ2 = kt,j/kt,0 1.000 1.762 1.992 2.000 2.000 2.000 2.000 

φ3 = kr,j/kr,0 1.000 1.506 1.906 1.997 2.000 2.000 2.000 

||( Φref-Φj)/ 
Φref|| 

0.708 0.280 0.047 0.002 0.000 0.000   

                

Target 
Response 

            
  

z1 = f1 10.415 12.702 13.195 13.273 13.274 13.274 13.274 

z2 = f2 20.436 25.477 26.430 26.496 26.496 26.496 26.496 

z3 = f3 38.710 44.994 45.750 45.892 45.893 45.893 45.893 

z4 = f4 74.755 81.994 81.924 82.293 82.298 82.298 82.298 

z5 = u1 0.02688 0.01983 0.01900 0.01877 0.01877 0.01877 0.01877 

z6 = u2 0.01000 0.00568 0.00502 0.00500 0.00500 0.00500 0.00500 

z7 = ε1 0.000389 0.000342 0.000352 0.000349 0.000349 0.000349 0.000349

||(zm-zj)/zm|| 1.154 0.160 0.019 0.000 0.000 0.000 0.000 
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Table D.4 Results for the weighted response pseudo-inverse algorithm with more 
target responses than updating parameter. 

  
Initial 
Value 

Iteration Number Measured 
Values 

Input 
Parameter 

  1 2 3 4 5 
  

φ1 = Ej/E0 1.000 1.152 1.035 1.029 1.029 1.029 1.029 

φ2 = kt,j/kt,0 1.000 1.607 1.949 2.000 2.000 2.000 2.000 

φ3 = kr,j/kr,0 1.000 1.465 1.832 1.990 2.000 2.000 2.000 

||( Φref-Φj)/ 
Φref|| 

0.708 0.353 0.088 0.005 0.000 0.000   

                

Target 
Response 

            
  

z1 = f1 10.415 12.494 13.115 13.268 13.274 13.274 13.274 

z2 = f2 20.436 24.815 26.262 26.493 26.496 26.496 26.496 

z3 = f3 38.710 44.705 45.627 45.885 45.893 45.893 45.893 

z4 = f4 74.755 82.953 81.974 82.274 82.298 82.298 82.298 

z5 = u1 0.02688 0.01993 0.01912 0.01879 0.01877 0.01877 0.01877 

z6 = u2 0.01000 0.00622 0.00513 0.00500 0.00500 0.00500 0.00500 

z7 = ε1 0.000389 0.000327 0.000350 0.000349 0.000349 0.000349 0.000349

||(zm-zj)/zm|| 1.154 0.275 0.036 0.001 0.000 0.000 0.000 
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Table D.5 Results for the weighted updating parameter change pseudo-inverse 
algorithm with more updating parameter than target responses. 

  
Initial 
Value 

Iteration Number Measured 
Values 

Input 
Parameter 

  1 2 3 4 5 
  

φ1 = Ej/E0 1.000 1.000 1.000 1.000 1.000 1.000 1.029 

φ2 = kt,j/kt,0 1.000 1.791 2.012 2.020 2.020 2.020 2.000 

φ3 = kr,j/kr,0 1.000 1.539 1.983 2.074 2.077 2.077 2.000 

||( Φref-Φj)/ 
Φref|| 

0.708 0.255 0.030 0.047 0.049 0.049   

                

Target 
Response 

            
  

z1 = f1 10.415 12.591 13.214 13.273 13.274 13.274 13.274 

z2 = f2 20.436 25.342 26.453 26.496 26.496 26.496 26.496 

z3 = f3 38.710 44.234 45.629 45.699 45.700 45.700 45.893 

z4 = f4 74.755 79.739 81.474 81.658 81.663 81.663 82.298 

z5 = u1 0.02688 0.02056 0.01907 0.01891 0.01890 0.01890 0.01877 

z6 = u2 0.01000 0.00558 0.00497 0.00495 0.00495 0.00495 0.00500 

z7 = ε1 0.000389 0.000368 0.000358 0.000356 0.000356 0.000356 0.000349

||(zm-zj)/zm|| 1.154 0.181 0.034 0.027 0.027 0.027 0.000 
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Table D.6 Results for the weighted updating parameter change and weighted 
response pseudo-inverse algorithm. 

  
Initial 
Value 

Iteration Number Measured 
Values 

Input 
Parameter 

  1 2 3 4 5 
  

φ1 = Ej/E0 1.000 1.048 1.047 1.040 1.036 1.033 1.029 

φ2 = kt,j/kt,0 1.000 1.613 1.952 1.993 1.996 1.998 2.000 

φ3 = kr,j/kr,0 1.000 1.814 1.883 1.932 1.960 1.976 2.000 

||( Φref-Φj)/ 
Φref|| 

0.708 0.215 0.066 0.036 0.021 0.013   

                

Target 
Response 

            
  

z1 = f1 10.415 12.539 13.176 13.252 13.262 13.267 13.274 

z2 = f2 20.436 24.558 26.319 26.496 26.497 26.496 26.496 

z3 = f3 38.710 43.905 45.792 45.953 45.931 45.916 45.893 

z4 = f4 74.755 81.151 82.423 82.461 82.399 82.359 82.298 

z5 = u1 0.02688 0.02009 0.01890 0.01878 0.01878 0.01877 0.01877 

z6 = u2 0.01000 0.00620 0.00512 0.00502 0.00501 0.00501 0.00500 

z7 = ε1 0.000389 0.000346 0.000345 0.000346 0.000347 0.000348 0.000349

||(zm-zj)/zm|| 1.154 0.270 0.029 0.008 0.005 0.003 0.000 
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Table D.7 Results for the weighted updating parameter and weighted response 
pseudo-inverse algorithm. 

  
Initial 
Value 

Iteration Number Measured 
Values 

Input 
Parameter 

  1 2 3 4 5 
  

φ1 = Ej/E0 1.000 1.048 1.021 1.016 1.016 1.016 1.029 

φ2 = kt,j/kt,0 1.000 1.612 1.962 2.012 2.013 2.013 2.000 

φ3 = kr,j/kr,0 1.000 1.813 2.000 2.027 2.024 2.024 2.000 

||( Φref-Φj)/ 
Φref|| 

0.708 0.216 0.020 0.019 0.019 0.019   

                

Target 
Response 

            
  

z1 = f1 10.415 12.537 13.197 13.275 13.275 13.275 13.274 

z2 = f2 20.436 24.552 26.289 26.508 26.513 26.513 26.496 

z3 = f3 38.710 43.899 45.604 45.816 45.821 45.821 45.893 

z4 = f4 74.755 81.146 81.941 82.002 82.002 82.002 82.298 

z5 = u1 0.02688 0.02010 0.01895 0.01883 0.01884 0.01884 0.01877 

z6 = u2 0.01000 0.00620 0.00510 0.00497 0.00497 0.00497 0.00500 

z7 = ε1 0.000389 0.000346 0.000351 0.000352 0.000352 0.000352 0.000349

||(zm-zj)/zm|| 1.154 0.271 0.026 0.013 0.013 0.013 0.000 
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Table D.8 Results for the minimum variance algorithm. 

  
Initial 
Value 

Iteration Number Measured 
Values 

Input Parameter   1 2 3 4 5   

φ1 = Ej/E0 1.000 1.068 1.026 1.029 1.029 1.029 1.029 

φ2 = kt,j/kt,0 1.000 1.779 1.991 2.000 2.000 2.000 2.000 

φ3 = kr,j/kr,0 1.000 1.511 1.922 1.999 1.999 1.999 2.000 

||( Φref-Φj)/ Φref|| 1.028 0.393 0.046 0.000 0.000 0.000   

                

Target Response               

z1 = f1 10.415 12.692 13.211 13.274 13.274 13.274 13.274 

z2 = f2 20.436 25.499 26.439 26.497 26.496 26.496 26.496 

z3 = f3 38.710 44.872 45.784 45.894 45.893 45.893 45.893 

z4 = f4 74.755 81.494 82.031 82.298 82.298 82.298 82.298 

z5 = u1 0.02688 0.01997 0.01895 0.01877 0.01877 0.01877 0.01877 

z6 = u2 0.01000 0.00562 0.00502 0.00500 0.00500 0.00500 0.00500 

z7 = ε1 0.000389 0.000348 0.000351 0.000349 0.000349 0.000349 0.000349 

||(zm-zj)/zm|| 2.241 0.304 0.033 0.000 0.000 0.000 0.000 
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D.2 Simple beam results: FE updating with ABAQUS and 
MATLAB optimization toolbox 

Table D.9 Results for the Nelder-Mead simplex algorithm in MATLAB. 

  
Initial 
Value 

Iteration Number Measured 
Values 

Input Parameter   1 2 5 20 100   

φ1 = Ej/E0 1.000 1.000 1.000 1.017 1.311 1.029 1.029 

φ2 = kt,j/kt,0 1.000 1.050 1.050 1.167 2.089 2.000 2.000 

φ3 = kr,j/kr,0 1.000 1.000 1.000 0.967 0.693 2.000 2.000 

||( Φref-Φj)/ Φref|| 0.708 0.690 0.690 0.664 0.710 0.000   

                

Target Response               

z1 = f1 10.415 10.564 10.564 10.872 12.512 13.274 13.274 

z2 = f2 20.436 20.813 20.813 21.692 27.709 26.496 26.496 

z3 = f3 38.710 39.060 39.060 39.979 47.964 45.893 45.893 

z4 = f4 74.755 74.955 74.955 75.699 84.739 82.298 82.298 

z5 = u1 0.02688 0.02641 0.02641 0.02543 0.02063 0.01877 0.01877 

z6 = u2 0.01000 0.00952 0.00952 0.00857 0.00479 0.00500 0.00500 

z7 = ε1 0.000389 0.000389 0.000389 0.000386 0.000330 0.000349 0.000349

||(zm-zj)/zm|| 1.154 1.056 1.056 0.858 0.151 0.000 0.000 
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Appendix E. New Svinesund Bridge Bearing Friction 
Study 
In order to determine the proper boundary conditions and internal constraints, a 
parametric study of the bearings was performed. Karoumi and Andersson (2006) 
strongly recommend updating and enhancement of a developed FE model due to poor 
agreement between the measured response and the initial FE model for some load 
cases. Specifically, the simplified modelling of the boundary conditions in the initial 
FE model is suspect and further study was recommended.  

During preliminary analysis, the bridge designers verified the global system in the 
ULS and SLS with regard to the frictional forces in the bearings according to BRO 94 
21.24. The analysis performed was to verify the structural integrity for the worst case 
loading condition including bearing friction. Such analysis is required during design, 
but the assumptions made did not reflect the actual bearing conditions during 
experimental load testing.  

In order to investigate the actual behaviour of the bearings for each load case, the 
magnitude of the frictional force at each bearing was calculated and compared with 
the sectional force of the bearing element. The bearing friction coefficient (material: 
MSM) was calculated according to the bearing manufacturer. According the bearing 
manufacturer, MSM performs better for continuous loads at low temperatures, large 
bearing displacements and fast sliding velocities than conventional PTFE. The 
equations provided by the bearing manufacturer are for calculating the bearing friction 
coefficient at a sliding speed of 15 mm/s, no data was published for the static friction 
coefficient. The sliding friction coefficient was therefore used as an initial guess for 
calculating the static friction coefficient. 

During load testing, the air temperature ranged from about 10º C to 15º C while the 
road temperature ranged from about 5º C to 25º C, therefore the equation for the 
bearing friction coefficient for temperatures above -5º C was used. According to the 
bearing manufacturer, MAURER SÖHNE (2007), the maximum bearing frictional 
coefficient for temperatures above -5º C may be calculated as, 

max
1.20.015 0.06

15 [ ]MSM MPa
μ

σ
≤ = ≤

+
 9.1 
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Figure E.1 Variation of bearing frictional coefficient according to bearing 
manufacturer. 

The normal force in each pier bearing is equal to the normal force in each bearing 
element calculated during gravitational loading and half of the prestressing force for 
the pier. The normal force in the bearings at the abutment is equal to the normal force 
in the abutment bearing element calculated during gravitational loading. 

grav prestressN F F= +  9.2 

bearing
bearing

N
A

σ =  9.3 
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Table E.1 Normal force in bearings. 

  Gravity 
[kN] 

Prestress 
[kN] 

Normal 
Force [kN] 

Bearing 
Stress [MPa] μstatic 

Fstatic       
[kN] 

1155  1155 3.2 6.0% 69.3 

1440  1440 4.0 6.0% 86.4 

1256  1256 3.5 6.0% 75.4 
Abut 1: 

1497  1497 4.2 6.0% 89.8 

5739 4860 10599 29.4 2.7% 286.2 
Pier 2: 

5987 4860 10847 30.1 2.7% 288.4 

5908 7290 13198 36.7 2.3% 306.6 
Pier 3: 

6170 7290 13460 37.4 2.3% 308.3 

5880 7290 13170 36.6 2.3% 306.4 
Pier 4: 

6138 7290 13428 37.3 2.3% 308.1 

5665 10400 16065 44.6 2.0% 323.3 
Pier 5: 

5967 10400 16367 45.5 2.0% 324.8 

4846 7290 12136 33.7 2.5% 299.0 
Pier 8: 

5475 7290 12765 35.5 2.4% 303.6 

912  912 2.5 6.0% 54.7 

1149  1149 3.2 6.0% 68.9 

1205  1205 3.3 6.0% 72.3 
Abut 2: 

1513   1513 4.2 6.0% 90.8 

 

The maximum bearing friction coefficient as specified by the bearing manufacturer is 
used to calculate an initial guess for the bearing static friction force threshold, 

maxstaticF N μ= ⋅  9.4 

The bearing static moment threshold is calculated using the static friction force 
threshold and the radius of curvature of the bearing, 
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static staticM F r= ⋅  9.5 

The following plots and tables show the static friction force threshold and static 
friction moment threshold as well as the bearing resultant force and bearing resultant 
moment, 

, ,

2 2
bearing longitudinal bearing transversalbearingF F F= +  9.6 

, ,

2 2
bearing longitudinal bearing transversalbearingM M M= +  9.7 

For all loading cases where the bearing resultant force was on the same order of 
magnitude as the bearing static friction force threshold, the bearing resultant moment 
far exceeded the static friction moment threshold. This is evident in the plots below. 
Thus the bearing static friction force threshold was the governing factor for the 
structural behaviour of the bearings during the load tests. 
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Figure E.2 Plot of bearing forces and moments and static friction threshold for 
bearing condition TIE. 
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Table E.2 Bearing forces and bearing static friction force threshold for all load 
cases for bearing condition TIE. 

Static Friction, F < Fs      

Load Case: A B C D E 

  
Fstatic  
[kN] 

Fbearing  
[kN] 

Fbearing 
Fstatic 

Fbearing 
[kN] 

Fbearing 
Fstatic 

Fbearing 
[kN] 

Fbearing 
Fstatic 

Fbearing  
[kN] 

Fbearing 
Fstatic 

Fbearing 
[kN] 

Fbearing 
Fstatic 

69 275 398% 54 78% 50 72% 75 109% 84 121% 

86 261 302% 113 131% 104 121% 158 183% 176 203% 

75 237 314% 92 121% 89 119% 128 170% 142 188% 
Abut 1: 

90 216 241% 97 108% 94 104% 136 151% 151 168% 

286 160 56% 25 9% 14 5% 35 12% 39 14% 
Pier 2: 

288 22 8% 18 6% 11 4% 23 8% 29 10% 

307 16 5% 23 8% 9 3% 24 8% 37 12% 
Pier 3: 

308 29 9% 17 5% 14 5% 21 7% 27 9% 

306 47 15% 10 3% 33 11% 4 1% 17 5% 
Pier 4: 

308 54 17% 13 4% 37 12% 27 9% 20 6% 

323 171 53% 19 6% 130 40% 270 84% 48 15% 
Pier 5: 

325 75 23% 62 19% 100 31% 199 61% 107 33% 

299 172 58% 25 8% 116 39% 4 1% 32 11% 
Pier 8: 

304 56 19% 37 12% 81 27% 16 5% 59 20% 

55 536 979% 109 198% 60 109% 72 131% 203 370% 

69 567 823% 189 274% 142 206% 122 177% 345 501% 

72 453 627% 137 189% 159 221% 90 124% 251 348% 
Abut 2: 

91 447 492% 137 151% 183 202% 92 101% 255 280% 
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Figure E.3 Plot of bearing forces and moments and static friction threshold for 
bearing condition PIER TIE. 
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Table E.3 Bearing forces and bearing static friction force threshold for all load 
cases for bearing condition PIER TIE. 

Abutments, F > Fs = 0       Piers, F < Fs      

 Load Case: A B C D E 

  
Fstatic    
[kN] 

Fbearing    
[kN] 

Fbearing    
Fstatic 

Fbearing   
[kN] 

Fbearing   
Fstatic 

Fbearing   
[kN] 

Fbearing   
Fstatic 

Fbearing    
[kN] 

Fbearing    
Fstatic 

Fbearing   
[kN] 

Fbearing   
Fstatic 

69 0 0% 0 0% 0 0% 0 0% 0 0% 

86 14 16% 1 1% 0 0% 3 3% 4 5% 

75 4 5% 1 1% 1 1% 3 4% 4 6% 
Abut 1: 

90 0 0% 0 0% 0 0% 0 0% 0 0% 

286 123 43% 16 6% 3 1% 85 30% 128 45% 
Pier 2: 

288 265 92% 14 5% 26 9% 74 26% 106 37% 

307 54 17% 7 2% 19 6% 26 8% 56 18% 
Pier 3: 

308 41 13% 4 1% 29 9% 22 7% 29 9% 

306 37 12% 1 0% 25 8% 15 5% 12 4% 
Pier 4: 

308 32 10% 3 1% 28 9% 24 8% 24 8% 

323 160 49% 30 9% 135 42% 176 54% 191 59% 
Pier 5: 

325 118 36% 32 10% 106 33% 136 42% 228 70% 

299 152 51% 97 33% 138 46% 131 44% 298 100% 
Pier 8: 

304 238 79% 94 31% 79 26% 134 44% 296 98% 

55 0 0% 0 0% 0 0% 0 0% 0 0% 

69 11 16% 2 3% 11 16% 6 9% 13 18% 

72 1 1% 2 3% 14 19% 5 7% 10 14% 
Abut 2: 

91 0 0% 0 0% 0 0% 0 0% 0 0% 
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Figure E.4 Plot of bearing forces and moments and static friction threshold for 
bearing condition PIER TIE 58 FREE. 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 165

Table E.4 Bearing forces and bearing static friction force threshold for all load 
cases for bearing condition PIER TIE 58 FREE. 

Abutments and Piers 5 & 8, F > Fs = 0       Piers 2,3 & 4, F < Fs 

Load Case: A B C D E 

  
Fstatic     
[kN] 

Fbearing     
[kN] 

Fbearing     
Fstatic 

Fbearing     
[kN] 

Fbearing     
Fstatic 

Fbearing     
[kN] 

Fbearing     
Fstatic 

Fbearing     
[kN] 

Fbearing     
Fstatic 

Fbearing     
[kN] 

Fbearing    
Fstatic 

69 0 0% 0 0% 0 0% 0 0% 0 0% 

86 12 14% 0 0% 0 0% 3 4% 8 10% 

75 2 2% 0 0% 0 1% 3 4% 8 11% 
Abut 1: 

90 0 0% 0 0% 0 0% 0 0% 0 0% 

286 131 46% 2 1% 10 4% 92 32% 248 87% 
Pier 2: 

288 253 88% 2 1% 14 5% 81 28% 205 71% 

307 65 21% 1 0% 24 8% 22 7% 111 36% 
Pier 3: 

308 41 13% 1 0% 25 8% 25 8% 55 18% 

306 27 9% 1 0% 21 7% 19 6% 10 3% 
Pier 4: 

308 13 4% 1 0% 21 7% 34 11% 43 14% 

323 0 0% 0 0% 0 0% 0 0% 0 0% 
Pier 5: 

325 15 4% 2 0% 118 36% 38 12% 45 14% 

299 0 0% 0 0% 0 0% 0 0% 0 0% 
Pier 8: 

304 77 25% 1 0% 107 35% 0 0% 1 0% 

55 0 0% 0 0% 0 0% 0 0% 0 0% 

69 32 47% 1 2% 15 22% 1 1% 2 2% 

72 13 19% 1 1% 11 15% 1 1% 1 2% 
Abut 2: 

91 0 0% 0 0% 0 0% 0 0% 0 0% 
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Appendix F. Model Evolution  

F.1 Eigenfrequencies  

Table F.1 Eigenfrequencies 1-4 from experimental measurements and nine 
modified FE models. 

Eigenfrequency, Responce [Hz]         

zm z0 z1A z1B z1C z1D z2 z3 z4 z5 z6 z7 

0.4249 0.4085 0.4121 0.4121 0.4121 0.4121 0.4306 0.4250 0.4259 0.4068 0.4253 0.4253

0.8459 0.5205 0.8614 0.8614 0.8614 0.8614 0.8972 0.8518 0.8582 0.8135 0.8531 0.8531

0.9402 0.9571 0.9608 0.9608 0.9608 0.9608 0.9999 0.9354 0.9388 0.9083 0.9366 0.9366

0.9988 1.0221 1.0323 1.0323 1.0323 1.0323 1.0616 0.9851 0.9876 0.9489 0.9871 0.9871

 

Table F.2 Eigenfrequencies 1-4 from experimental measurements compared with 
the improved models absolute error  

Eigenfrequency, Absolute error [Hz]          

|zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

0.0164 0.0127 0.0127 0.0127 0.0127 0.0057 0.0002 0.0011 0.0181 0.0005 0.0005 

0.3254 0.0156 0.0156 0.0156 0.0156 0.0513 0.0060 0.0123 0.0323 0.0073 0.0073 

0.0169 0.0206 0.0206 0.0206 0.0206 0.0597 0.0047 0.0014 0.0318 0.0036 0.0036 

0.0233 0.0335 0.0335 0.0335 0.0335 0.0628 0.0137 0.0112 0.0499 0.0118 0.0118 

 

Table F.3 Eigenfrequencies 1-4 from experimental measurements compared with 
the improved models relative error  

Eigenfrequency, Relative Error               

|zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm)

1.6% 1.3% 1.3% 1.3% 1.3% 0.6% 0.0% 0.1% 1.8% 0.0% 0.0%

32.6% 1.6% 1.6% 1.6% 1.6% 5.1% 0.6% 1.2% 3.2% 0.7% 0.7%

1.7% 2.1% 2.1% 2.1% 2.1% 6.0% 0.5% 0.1% 3.2% 0.4% 0.4%

2.3% 3.4% 3.4% 3.4% 3.4% 6.3% 1.4% 1.1% 5.0% 1.2% 1.2%
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F.2 Strains  

Table F.4 Strain at the foundation measured and computed responses for load 
cases A, B, C, D , E in ascending order, section S1 

 Strain at foundation of the arch on the Swedish side [μm/m]     

  zm z0 z1A z1B z1C z1D z2 z3 z4 z5 z6 z7 

-0.96 -1.69 -1.69 -2.59 -3.29 -1.48 -2.58 -2.58 -2.58 -2.53 -1.90 -2.02

-2.63 -2.16 -2.16 -1.30 -0.63 -2.36 -1.08 -1.08 -1.08 -1.36 -1.73 -1.63

-2.13 -1.98 -1.98 -1.99 -2.00 -1.97 -1.88 -1.88 -1.88 -1.99 -1.86 -1.88
A 

-2.19 -1.88 -1.88 -1.90 -1.93 -1.87 -1.79 -1.79 -1.79 -1.90 -1.77 -1.77

-0.92 -2.48 -2.48 -3.22 -3.81 -2.33 -3.14 -3.14 -3.14 -2.67 -2.08 -2.20

-0.69 -1.56 -1.56 -0.85 -0.29 -1.70 -0.69 -0.69 -0.69 -1.37 -1.70 -1.60

7.82 6.12 6.12 5.98 5.88 6.12 5.86 5.86 5.86 6.05 6.02 6.11
B 

-10.08 -10.16 -10.16 -10.05 -9.98 -10.15 -9.69 -9.69 -9.69 -10.10 -9.81 -9.91

-2.54 -1.89 -1.89 -2.75 -3.42 -1.69 -2.73 -2.73 -2.73 -2.57 -1.95 -2.07

-0.41 -2.01 -2.01 -1.19 -0.54 -2.20 -0.98 -0.98 -0.98 -1.36 -1.72 -1.62

6.26 4.95 4.95 4.82 4.74 4.94 4.74 4.74 4.74 4.87 4.87 4.94
C 

-9.55 -8.85 -8.85 -8.76 -8.71 -8.83 -8.44 -8.44 -8.44 -8.80 -8.54 -8.63

13.17 11.12 11.12 10.05 6.29 8.93 9.66 9.66 9.66 2.55 6.02 3.79

-14.71 -14.31 -14.31 -13.06 -9.52 -12.25 -12.47 -12.47 -12.47 -5.98 -9.00 -7.18

-2.67 -1.26 -1.26 -1.23 -1.31 -1.31 -1.14 -1.14 -1.14 -1.36 -1.19 -1.34
D 

-2.16 -1.93 -1.93 -1.78 -1.92 -2.01 -1.67 -1.67 -1.67 -2.07 -1.79 -2.05

9.16 16.93 16.93 1.30 -6.20 10.01 1.77 1.77 1.77 -2.94 3.07 3.61

-14.11 -22.08 -22.08 -7.60 -0.53 -15.62 -7.65 -7.65 -7.65 -3.63 -8.87 -9.25

-4.49 -2.77 -2.77 -3.28 -3.43 -2.91 -3.06 -3.06 -3.06 -3.36 -3.02 -2.97
E 

-2.79 -2.39 -2.39 -3.03 -3.30 -2.70 -2.82 -2.82 -2.82 -3.21 -2.77 -2.67
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Table F.5 Absolute error, at the foundation of the arch on the Swedish side for 
load cases A, B, C, D, E in ascending order, section S1 

 Absolute Error [μm/m]                 

  |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

0.73 0.73 1.63 2.34 0.52 1.63 1.63 1.63 1.57 0.94 1.07

0.46 0.46 1.32 2.00 0.27 1.55 1.55 1.55 1.27 0.89 1.00

0.16 0.16 0.14 0.14 0.16 0.26 0.26 0.26 0.15 0.27 0.25
A 

0.31 0.31 0.29 0.26 0.32 0.40 0.40 0.40 0.29 0.42 0.42

1.56 1.56 2.30 2.88 1.40 2.22 2.22 2.22 1.75 1.16 1.27

0.88 0.88 0.16 0.39 1.02 0.01 0.01 0.01 0.69 1.01 0.92

1.70 1.70 1.84 1.94 1.70 1.96 1.96 1.96 1.77 1.80 1.71
B 

0.09 0.09 0.03 0.09 0.07 0.38 0.38 0.38 0.02 0.27 0.17

0.65 0.65 0.21 0.88 0.85 0.19 0.19 0.19 0.03 0.59 0.46

1.61 1.61 0.78 0.14 1.79 0.57 0.57 0.57 0.95 1.32 1.21

1.32 1.32 1.44 1.52 1.32 1.53 1.53 1.53 1.39 1.39 1.33
C 

0.70 0.70 0.79 0.84 0.72 1.11 1.11 1.11 0.75 1.01 0.92

2.05 2.05 3.12 6.88 4.24 3.52 3.52 3.52 10.62 7.15 9.38

0.40 0.40 1.65 5.19 2.46 2.24 2.24 2.24 8.73 5.71 7.53

1.41 1.41 1.44 1.36 1.36 1.53 1.53 1.53 1.31 1.48 1.34
D 

0.23 0.23 0.37 0.24 0.14 0.48 0.48 0.48 0.09 0.37 0.10

7.76 7.76 7.87 15.36 0.85 7.39 7.39 7.39 12.11 6.09 5.56

7.97 7.97 6.51 13.58 1.51 6.46 6.46 6.46 10.48 5.24 4.86

1.72 1.72 1.21 1.06 1.58 1.43 1.43 1.43 1.13 1.47 1.52
E 

0.41 0.41 0.23 0.50 0.10 0.03 0.03 0.03 0.42 0.02 0.12
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Table F.6 Relative error, at the foundation of the arch on the Swedish side, 
section S1 

 Relative Error                  

 |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

  max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm)

2.3% 2.3% 5.0% 7.2% 1.6% 5.0% 5.0% 5.0% 4.9% 2.9% 3.3%

1.4% 1.4% 4.1% 6.2% 0.8% 4.8% 4.8% 4.8% 3.9% 2.8% 3.1%

0.5% 0.5% 0.4% 0.4% 0.5% 0.8% 0.8% 0.8% 0.4% 0.8% 0.8%
A 

1.0% 1.0% 0.9% 0.8% 1.0% 1.2% 1.2% 1.2% 0.9% 1.3% 1.3%

4.8% 4.8% 7.1% 8.9% 4.3% 6.9% 6.9% 6.9% 5.4% 3.6% 3.9%

2.7% 2.7% 0.5% 1.2% 3.1% 0.0% 0.0% 0.0% 2.1% 3.1% 2.8%

5.3% 5.3% 5.7% 6.0% 5.3% 6.1% 6.1% 6.1% 5.5% 5.6% 5.3%
B 

0.3% 0.3% 0.1% 0.3% 0.2% 1.2% 1.2% 1.2% 0.1% 0.8% 0.5%

2.0% 2.0% 0.6% 2.7% 2.6% 0.6% 0.6% 0.6% 0.1% 1.8% 1.4%

5.0% 5.0% 2.4% 0.4% 5.5% 1.8% 1.8% 1.8% 3.0% 4.1% 3.7%

4.1% 4.1% 4.5% 4.7% 4.1% 4.7% 4.7% 4.7% 4.3% 4.3% 4.1%
C 

2.2% 2.2% 2.4% 2.6% 2.2% 3.4% 3.4% 3.4% 2.3% 3.1% 2.8%

6.3% 6.3% 9.6% 21.3% 13.1% 10.9% 10.9% 10.9% 32.8% 22.1% 29.0%

1.2% 1.2% 5.1% 16.0% 7.6% 6.9% 6.9% 6.9% 27.0% 17.7% 23.3%

4.4% 4.4% 4.5% 4.2% 4.2% 4.7% 4.7% 4.7% 4.1% 4.6% 4.1%
D 

0.7% 0.7% 1.1% 0.7% 0.4% 1.5% 1.5% 1.5% 0.3% 1.1% 0.3%

24.0% 24.0% 24.3% 47.5% 2.6% 22.8% 22.8% 22.8% 37.4% 18.8% 17.2%

24.6% 24.6% 20.1% 42.0% 4.7% 20.0% 20.0% 20.0% 32.4% 16.2% 15.0%

5.3% 5.3% 3.7% 3.3% 4.9% 4.4% 4.4% 4.4% 3.5% 4.5% 4.7%
E 

1.3% 1.3% 0.7% 1.6% 0.3% 0.1% 0.1% 0.1% 1.3% 0.1% 0.4%
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Table F.7 Strain at the connection Arch/Carriageway, measured and computed 
responses for load cases A, B, C, D, E in ascending order, section S6 

 Strain at Connection of the arch and the Carrigeway, Swedish side [μm/m]    

  zm z0 z1A z1B z1C z1D z2 z3 z4 z5 z6 z7 

-7.52 -7.44 -7.44 -7.42 -7.63 -7.45 -6.82 -6.82 -6.82 -7.89 -7.09 -7.11

1.68 2.07 2.07 1.99 2.14 2.11 1.87 1.87 1.87 2.46 2.19 2.19

-3.07 -2.73 -2.73 -2.76 -2.79 -2.71 -2.52 -2.52 -2.52 -2.75 -2.48 -2.50
A 

-2.31 -2.64 -2.64 -2.67 -2.70 -2.63 -2.44 -2.44 -2.44 -2.67 -2.41 -2.43

-7.86 -4.71 -4.71 -4.70 -4.86 -4.72 -4.31 -4.31 -4.31 -5.19 -4.62 -4.63

-1.54 -0.96 -0.96 -1.03 -0.91 -0.94 -0.91 -0.91 -0.91 -0.49 -0.51 -0.52

16.27 14.21 14.21 14.10 14.04 14.22 12.92 12.92 12.92 14.33 13.19 13.24
B 

-21.43 -19.88 -19.88 -19.83 -19.82 -19.87 -18.14 -18.14 -18.14 -20.01 -18.32 -18.39

-8.22 -6.84 -6.84 -6.82 -7.02 -6.85 -6.26 -6.26 -6.26 -7.30 -6.55 -6.58

0.76 1.40 1.40 1.32 1.46 1.43 1.24 1.24 1.24 1.82 1.60 1.59

13.22 11.71 11.71 11.60 11.55 11.72 10.63 10.63 10.63 11.79 10.86 10.89
C 

-18.05 -17.15 -17.15 -17.11 -17.11 -17.14 -15.65 -15.65 -15.65 -17.28 -15.81 -15.88

-22.25 -19.42 -19.42 -17.98 -17.63 -19.19 -16.66 -16.66 -16.66 -12.17 -11.98 -12.53

18.14 15.33 15.33 14.11 13.39 14.88 13.17 13.17 13.17 7.53 8.15 8.12

-3.47 -1.99 -1.99 -1.88 -2.06 -2.10 -1.69 -1.69 -1.69 -2.27 -1.88 -2.18
D 

-0.76 -2.10 -2.10 -1.99 -2.18 -2.21 -1.80 -1.80 -1.80 -2.37 -1.95 -2.23

17.74 15.05 15.05 14.75 15.23 15.49 13.73 13.73 13.73 13.86 12.06 12.48

-26.86 -22.19 -22.19 -23.77 -24.98 -23.39 -21.86 -21.86 -21.86 -23.31 -20.03 -20.25

-2.92 -3.69 -3.69 -4.58 -4.94 -4.05 -4.13 -4.13 -4.13 -4.79 -4.06 -4.02
E 

-3.62 -3.45 -3.45 -4.43 -4.81 -3.85 -4.00 -4.00 -4.00 -4.66 -3.91 -3.75
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Table F.8 Absolute error, at the connection Arch/Carriageway, section S6 

 Absolute Error [μm/m]                 

  |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

0.08 0.08 0.10 0.11 0.07 0.70 0.70 0.70 0.37 0.43 0.41

0.39 0.39 0.31 0.46 0.43 0.19 0.19 0.19 0.79 0.51 0.51

0.34 0.34 0.31 0.28 0.35 0.55 0.55 0.55 0.31 0.58 0.57
A 

0.33 0.33 0.36 0.39 0.32 0.12 0.12 0.12 0.36 0.10 0.12

3.15 3.15 3.16 3.00 3.15 3.56 3.56 3.56 2.67 3.24 3.23

0.58 0.58 0.51 0.63 0.60 0.63 0.63 0.63 1.05 1.03 1.02

2.06 2.06 2.17 2.23 2.05 3.35 3.35 3.35 1.94 3.08 3.03
B 

1.55 1.55 1.61 1.61 1.56 3.29 3.29 3.29 1.42 3.11 3.04

1.38 1.38 1.39 1.20 1.37 1.95 1.95 1.95 0.91 1.66 1.64

0.64 0.64 0.56 0.70 0.67 0.49 0.49 0.49 1.06 0.84 0.84

1.51 1.51 1.61 1.66 1.50 2.58 2.58 2.58 1.43 2.36 2.32
C 

0.90 0.90 0.94 0.94 0.92 2.40 2.40 2.40 0.78 2.24 2.17

2.83 2.83 4.26 4.61 3.05 5.59 5.59 5.59 10.07 10.27 9.72

2.81 2.81 4.03 4.75 3.26 4.97 4.97 4.97 10.61 9.98 10.02

1.48 1.48 1.59 1.40 1.37 1.77 1.77 1.77 1.19 1.59 1.29
D 

1.34 1.34 1.23 1.42 1.45 1.04 1.04 1.04 1.61 1.19 1.48

2.69 2.69 2.99 2.51 2.25 4.01 4.01 4.01 3.89 5.69 5.26

4.67 4.67 3.09 1.88 3.47 5.00 5.00 5.00 3.56 6.83 6.62

0.77 0.77 1.66 2.02 1.13 1.21 1.21 1.21 1.87 1.14 1.10
E 

0.17 0.17 0.81 1.19 0.22 0.37 0.37 0.37 1.04 0.29 0.13
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Table F.9 Relative error, at the connection Arch/Carriageway, section S6 

 Relative Error                  

 |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

  max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm)

0.2% 0.2% 0.3% 0.3% 0.2% 2.2% 2.2% 2.2% 1.1% 1.3% 1.3%

1.2% 1.2% 1.0% 1.4% 1.3% 0.6% 0.6% 0.6% 2.4% 1.6% 1.6%

1.1% 1.1% 1.0% 0.9% 1.1% 1.7% 1.7% 1.7% 1.0% 1.8% 1.8%
A 

1.0% 1.0% 1.1% 1.2% 1.0% 0.4% 0.4% 0.4% 1.1% 0.3% 0.4%

9.8% 9.8% 9.8% 9.3% 9.7% 11.0% 11.0% 11.0% 8.3% 10.0% 10.0%

1.8% 1.8% 1.6% 1.9% 1.9% 1.9% 1.9% 1.9% 3.2% 3.2% 3.2%

6.4% 6.4% 6.7% 6.9% 6.3% 10.4% 10.4% 10.4% 6.0% 9.5% 9.4%
B 

4.8% 4.8% 5.0% 5.0% 4.8% 10.2% 10.2% 10.2% 4.4% 9.6% 9.4%

4.3% 4.3% 4.3% 3.7% 4.2% 6.0% 6.0% 6.0% 2.8% 5.1% 5.1%

2.0% 2.0% 1.7% 2.2% 2.1% 1.5% 1.5% 1.5% 3.3% 2.6% 2.6%

4.7% 4.7% 5.0% 5.1% 4.6% 8.0% 8.0% 8.0% 4.4% 7.3% 7.2%
C 

2.8% 2.8% 2.9% 2.9% 2.8% 7.4% 7.4% 7.4% 2.4% 6.9% 6.7%

8.7% 8.7% 13.2% 14.3% 9.4% 17.3% 17.3% 17.3% 31.1% 31.7% 30.0%

8.7% 8.7% 12.4% 14.7% 10.1% 15.4% 15.4% 15.4% 32.8% 30.9% 31.0%

4.6% 4.6% 4.9% 4.3% 4.2% 5.5% 5.5% 5.5% 3.7% 4.9% 4.0%
D 

4.1% 4.1% 3.8% 4.4% 4.5% 3.2% 3.2% 3.2% 5.0% 3.7% 4.6%

8.3% 8.3% 9.2% 7.8% 7.0% 12.4% 12.4% 12.4% 12.0% 17.6% 16.3%

14.5% 14.5% 9.6% 5.8% 10.7% 15.5% 15.5% 15.5% 11.0% 21.1% 20.5%

2.4% 2.4% 5.1% 6.2% 3.5% 3.8% 3.8% 3.8% 5.8% 3.5% 3.4%
E 

0.5% 0.5% 2.5% 3.7% 0.7% 1.2% 1.2% 1.2% 3.2% 0.9% 0.4%
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Table F.10 Strain at the Arch/Midpoint, measured and computed responses for 
load cases A, B, C, D, E in ascending order, section S25 

 Strain at Midpoint of the arch [μm/m]         

  zm z0 z1A z1B z1C z1D z2 z3 z4 z5 z6 z7 

-32.35 -38.00 -38.00 -37.81 -37.50 -38.01 -33.81 -33.81 -33.81 -37.49 -33.81 -33.82

13.25 16.54 16.54 16.25 15.79 16.54 15.49 15.49 15.49 15.76 15.46 15.48

-10.72 -11.39 -11.39 -11.43 -11.49 -11.39 -9.75 -9.75 -9.75 -11.50 -9.77 -9.76
A 

-9.53 -11.44 -11.44 -11.48 -11.55 -11.44 -9.80 -9.80 -9.80 -11.56 -9.82 -9.81

-21.44 -24.89 -24.89 -24.74 -24.49 -24.89 -22.04 -22.04 -22.04 -24.47 -22.03 -22.03

3.99 5.21 5.21 4.98 4.63 5.21 5.22 5.22 5.22 4.56 5.17 5.18

-10.30 -10.65 -10.65 -10.69 -10.71 -10.65 -9.13 -9.13 -9.13 -10.78 -9.20 -9.19
B 

-6.60 -9.79 -9.79 -9.82 -9.89 -9.79 -8.37 -8.37 -8.37 -9.86 -8.34 -8.34

-29.41 -34.61 -34.61 -34.43 -34.13 -34.61 -30.77 -30.77 -30.77 -34.12 -30.77 -30.77

10.58 13.50 13.50 13.22 12.79 13.50 12.75 12.75 12.75 12.76 12.71 12.73

-11.29 -11.59 -11.59 -11.63 -11.66 -11.59 -9.93 -9.93 -9.93 -11.72 -9.99 -9.98
C 

-7.96 -10.73 -10.73 -10.77 -10.85 -10.73 -9.18 -9.18 -9.18 -10.82 -9.15 -9.15

-1.02 -0.88 -0.88 -0.62 -0.47 -0.83 -0.59 -0.59 -0.59 -0.46 -0.62 -0.70

2.20 2.16 2.16 1.70 1.53 2.12 1.50 1.50 1.50 1.71 1.71 1.96

0.52 0.61 0.61 0.51 0.49 0.60 0.42 0.42 0.42 0.57 0.50 0.59
D 

0.34 0.61 0.61 0.52 0.52 0.61 0.43 0.43 0.43 0.62 0.52 0.60

-0.32 -0.58 -0.58 0.19 0.71 -0.44 0.28 0.28 0.28 0.72 0.27 0.23

-4.45 -5.65 -5.65 -6.56 -7.24 -5.77 -5.74 -5.74 -5.74 -7.35 -5.83 -5.78

-1.83 -3.04 -3.04 -3.12 -3.19 -3.05 -2.67 -2.67 -2.67 -3.24 -2.71 -2.70
E 

-2.33 -3.07 -3.07 -3.09 -3.14 -3.03 -2.65 -2.65 -2.65 -3.19 -2.69 -2.71
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Table F.11 Strain absolute error Arch/Midpoint, measured and computed 
responses for load cases A, B, C, D, E in ascending order, section S25 

 Absolute Error [μm/m]                 

  |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

5.66 5.66 5.46 5.15 5.66 1.47 1.47 1.47 5.15 1.46 1.47

3.29 3.29 3.00 2.55 3.30 2.25 2.25 2.25 2.52 2.21 2.24

0.67 0.67 0.71 0.77 0.67 0.97 0.97 0.97 0.78 0.95 0.96
A 

1.90 1.90 1.95 2.01 1.90 0.27 0.27 0.27 2.03 0.28 0.27

3.45 3.45 3.30 3.05 3.45 0.60 0.60 0.60 3.03 0.59 0.59

1.22 1.22 1.00 0.64 1.22 1.24 1.24 1.24 0.58 1.18 1.19

0.35 0.35 0.38 0.40 0.35 1.17 1.17 1.17 0.47 1.10 1.11
B 

3.19 3.19 3.22 3.29 3.19 1.77 1.77 1.77 3.26 1.74 1.74

5.20 5.20 5.01 4.72 5.20 1.36 1.36 1.36 4.71 1.36 1.36

2.92 2.92 2.64 2.21 2.92 2.17 2.17 2.17 2.18 2.13 2.16

0.29 0.29 0.34 0.37 0.29 1.36 1.36 1.36 0.42 1.30 1.31
C 

2.77 2.77 2.81 2.89 2.78 1.22 1.22 1.22 2.87 1.20 1.20

0.14 0.14 0.40 0.55 0.19 0.43 0.43 0.43 0.56 0.39 0.32

0.04 0.04 0.50 0.67 0.08 0.70 0.70 0.70 0.49 0.49 0.24

0.09 0.09 0.01 0.03 0.08 0.09 0.09 0.09 0.06 0.01 0.07
D 

0.27 0.27 0.18 0.18 0.28 0.09 0.09 0.09 0.28 0.18 0.26

0.26 0.26 0.51 1.03 0.12 0.60 0.60 0.60 1.04 0.60 0.55

1.20 1.20 2.11 2.79 1.32 1.29 1.29 1.29 2.90 1.38 1.33

1.21 1.21 1.28 1.36 1.22 0.83 0.83 0.83 1.41 0.88 0.86
E 

0.74 0.74 0.76 0.81 0.70 0.31 0.31 0.31 0.86 0.36 0.38
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Table F.12 Strain relative error Arch/Midpoint, measured and computed responses 
for, measured and computed responses for load cases A, B, C, D, E in 
ascending order, section S25 

 Relative Error                  

 |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

  max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm)

17.5% 17.5% 16.9% 15.9% 17.5% 4.5% 4.5% 4.5% 15.9% 4.5% 4.6%

10.2% 10.2% 9.3% 7.9% 10.2% 6.9% 6.9% 6.9% 7.8% 6.8% 6.9%

2.1% 2.1% 2.2% 2.4% 2.1% 3.0% 3.0% 3.0% 2.4% 2.9% 3.0%
A 

5.9% 5.9% 6.0% 6.2% 5.9% 0.8% 0.8% 0.8% 6.3% 0.9% 0.8%

10.7% 10.7% 10.2% 9.4% 10.7% 1.9% 1.9% 1.9% 9.4% 1.8% 1.8%

3.8% 3.8% 3.1% 2.0% 3.8% 3.8% 3.8% 3.8% 1.8% 3.7% 3.7%

1.1% 1.1% 1.2% 1.2% 1.1% 3.6% 3.6% 3.6% 1.5% 3.4% 3.4%
B 

9.9% 9.9% 9.9% 10.2% 9.9% 5.5% 5.5% 5.5% 10.1% 5.4% 5.4%

16.1% 16.1% 15.5% 14.6% 16.1% 4.2% 4.2% 4.2% 14.6% 4.2% 4.2%

9.0% 9.0% 8.2% 6.8% 9.0% 6.7% 6.7% 6.7% 6.7% 6.6% 6.7%

0.9% 0.9% 1.0% 1.1% 0.9% 4.2% 4.2% 4.2% 1.3% 4.0% 4.1%
C 

8.6% 8.6% 8.7% 8.9% 8.6% 3.8% 3.8% 3.8% 8.9% 3.7% 3.7%

0.4% 0.4% 1.2% 1.7% 0.6% 1.3% 1.3% 1.3% 1.7% 1.2% 1.0%

0.1% 0.1% 1.6% 2.1% 0.3% 2.2% 2.2% 2.2% 1.5% 1.5% 0.7%

0.3% 0.3% 0.0% 0.1% 0.3% 0.3% 0.3% 0.3% 0.2% 0.0% 0.2%
D 

0.8% 0.8% 0.5% 0.6% 0.9% 0.3% 0.3% 0.3% 0.9% 0.6% 0.8%

0.8% 0.8% 1.6% 3.2% 0.4% 1.9% 1.9% 1.9% 3.2% 1.8% 1.7%

3.7% 3.7% 6.5% 8.6% 4.1% 4.0% 4.0% 4.0% 9.0% 4.3% 4.1%

3.7% 3.7% 4.0% 4.2% 3.8% 2.6% 2.6% 2.6% 4.3% 2.7% 2.7%
E 

2.3% 2.3% 2.4% 2.5% 2.2% 1.0% 1.0% 1.0% 2.7% 1.1% 1.2%
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Table F.13 Strain at the connection Arch/Carriageway, measured and computed 
responses for load cases A, B, C, D, E in ascending order, section N6 

 Strain at Connection of the arch and the Carrigeway, Norweigan side [μm/m]    

  zm z0 z1A z1B z1C z1D z2 z3 z4 z5 z6 z7 

-10.74 -12.01 -12.01 -12.18 -13.35 -11.96 -11.13 -11.13 -11.13 -13.70 -11.51 -11.79

5.37 6.71 6.71 7.14 8.61 6.63 6.52 6.52 6.52 8.95 6.97 7.24

-4.60 -2.70 -2.70 -2.57 -2.42 -2.71 -2.35 -2.35 -2.35 -2.42 -2.32 -2.33
A 

-3.16 -2.60 -2.60 -2.46 -2.33 -2.61 -2.25 -2.25 -2.25 -2.33 -2.22 -2.22

-7.85 -8.11 -8.11 -8.26 -9.20 -8.07 -7.53 -7.53 -7.53 -9.70 -8.02 -8.25

1.21 2.51 2.51 2.87 4.04 2.45 2.61 2.61 2.61 4.59 3.20 3.42

14.94 14.84 14.84 14.87 14.93 14.83 13.56 13.56 13.56 15.21 13.84 13.88
B 

-21.16 -20.44 -20.44 -20.26 -20.10 -20.45 -18.48 -18.48 -18.48 -20.32 -18.66 -18.71

-10.61 -11.11 -11.11 -11.28 -12.40 -11.07 -10.30 -10.30 -10.30 -12.78 -10.70 -10.97

4.81 5.75 5.75 6.16 7.56 5.68 5.62 5.62 5.62 7.94 6.10 6.36

11.61 12.25 12.25 12.31 12.41 12.24 11.22 11.22 11.22 12.62 11.46 11.49
C 

-18.06 -17.62 -17.62 -17.42 -17.25 -17.63 -15.90 -15.90 -15.90 -17.45 -16.06 -16.10

3.93 3.88 3.88 3.52 2.07 3.37 3.21 3.21 3.21 2.31 4.00 3.20

-5.12 -4.78 -4.78 -4.16 -2.25 -4.01 -3.81 -3.81 -3.81 -2.44 -4.59 -3.58

0.23 -0.41 -0.41 -0.30 -0.06 -0.28 -0.28 -0.28 -0.28 -0.03 -0.26 -0.15
D 

-1.12 -0.48 -0.48 -0.35 -0.12 -0.35 -0.32 -0.32 -0.32 -0.11 -0.32 -0.23

-5.74 -3.00 -3.00 -6.49 -10.10 -4.59 -5.98 -5.98 -5.98 -10.12 -5.95 -6.46

3.00 -0.44 -0.44 5.39 10.09 1.97 4.92 4.92 4.92 10.10 5.09 5.41

-2.34 -1.62 -1.62 -0.45 0.11 -1.21 -0.44 -0.44 -0.44 0.09 -0.35 -0.46
E 

-1.26 -1.82 -1.82 -0.64 -0.12 -1.41 -0.62 -0.62 -0.62 -0.12 -0.51 -0.60
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Table F.14 Absolute error, at the connection Arch/Carriageway, section N6 

 Absolute Error [μm/m]                 

  |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

1.27 1.27 1.44 2.62 1.22 0.39 0.39 0.39 2.96 0.77 1.05

1.34 1.34 1.78 3.24 1.27 1.15 1.15 1.15 3.59 1.61 1.87

1.89 1.89 2.02 2.18 1.88 2.24 2.24 2.24 2.18 2.28 2.27
A 

0.56 0.56 0.70 0.84 0.55 0.91 0.91 0.91 0.83 0.95 0.94

0.26 0.26 0.41 1.35 0.23 0.31 0.31 0.31 1.86 0.17 0.40

1.29 1.29 1.65 2.82 1.24 1.40 1.40 1.40 3.38 1.98 2.20

0.10 0.10 0.08 0.01 0.11 1.38 1.38 1.38 0.27 1.10 1.06
B 

0.71 0.71 0.90 1.06 0.70 2.67 2.67 2.67 0.83 2.49 2.44

0.51 0.51 0.67 1.79 0.46 0.31 0.31 0.31 2.17 0.09 0.37

0.94 0.94 1.36 2.75 0.87 0.82 0.82 0.82 3.14 1.30 1.55

0.64 0.64 0.70 0.80 0.63 0.39 0.39 0.39 1.01 0.15 0.13
C 

0.44 0.44 0.63 0.81 0.43 2.16 2.16 2.16 0.60 2.00 1.95

0.05 0.05 0.41 1.86 0.56 0.72 0.72 0.72 1.63 0.07 0.73

0.34 0.34 0.96 2.87 1.11 1.31 1.31 1.31 2.68 0.53 1.54

0.65 0.65 0.53 0.29 0.51 0.51 0.51 0.51 0.26 0.49 0.39
D 

0.64 0.64 0.78 1.00 0.77 0.80 0.80 0.80 1.02 0.80 0.90

2.74 2.74 0.75 4.36 1.15 0.24 0.24 0.24 4.39 0.21 0.72

3.45 3.45 2.39 7.09 1.03 1.92 1.92 1.92 7.09 2.09 2.40

0.72 0.72 1.89 2.45 1.14 1.90 1.90 1.90 2.43 1.99 1.88
E 

0.56 0.56 0.62 1.14 0.15 0.65 0.65 0.65 1.14 0.76 0.66
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Table F.15 Relative error, at the connection Arch/Carriageway, section N6 

 Relative Error                  

 |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

  max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm)

3.9% 3.9% 4.5% 8.1% 3.8% 1.2% 1.2% 1.2% 9.2% 2.4% 3.3%

4.1% 4.1% 5.5% 10.0% 3.9% 3.6% 3.6% 3.6% 11.1% 5.0% 5.8%

5.9% 5.9% 6.3% 6.7% 5.8% 6.9% 6.9% 6.9% 6.7% 7.0% 7.0%
A 

1.7% 1.7% 2.2% 2.6% 1.7% 2.8% 2.8% 2.8% 2.6% 2.9% 2.9%

0.8% 0.8% 1.3% 4.2% 0.7% 1.0% 1.0% 1.0% 5.7% 0.5% 1.2%

4.0% 4.0% 5.1% 8.7% 3.8% 4.3% 4.3% 4.3% 10.4% 6.1% 6.8%

0.3% 0.3% 0.2% 0.0% 0.3% 4.3% 4.3% 4.3% 0.8% 3.4% 3.3%
B 

2.2% 2.2% 2.8% 3.3% 2.2% 8.3% 8.3% 8.3% 2.6% 7.7% 7.6%

1.6% 1.6% 2.1% 5.5% 1.4% 0.9% 0.9% 0.9% 6.7% 0.3% 1.1%

2.9% 2.9% 4.2% 8.5% 2.7% 2.5% 2.5% 2.5% 9.7% 4.0% 4.8%

2.0% 2.0% 2.2% 2.5% 1.9% 1.2% 1.2% 1.2% 3.1% 0.5% 0.4%
C 

1.4% 1.4% 2.0% 2.5% 1.3% 6.7% 6.7% 6.7% 1.9% 6.2% 6.0%

0.2% 0.2% 1.3% 5.8% 1.7% 2.2% 2.2% 2.2% 5.0% 0.2% 2.3%

1.1% 1.1% 3.0% 8.9% 3.4% 4.0% 4.0% 4.0% 8.3% 1.6% 4.8%

2.0% 2.0% 1.6% 0.9% 1.6% 1.6% 1.6% 1.6% 0.8% 1.5% 1.2%
D 

2.0% 2.0% 2.4% 3.1% 2.4% 2.5% 2.5% 2.5% 3.1% 2.5% 2.8%

8.5% 8.5% 2.3% 13.5% 3.6% 0.7% 0.7% 0.7% 13.6% 0.6% 2.2%

10.7% 10.7% 7.4% 21.9% 3.2% 5.9% 5.9% 5.9% 21.9% 6.4% 7.4%

2.2% 2.2% 5.8% 7.6% 3.5% 5.9% 5.9% 5.9% 7.5% 6.2% 5.8%
E 

1.7% 1.7% 1.9% 3.5% 0.5% 2.0% 2.0% 2.0% 3.5% 2.3% 2.1%
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Table F.16 Strain at the foundation measured and computed responses for load 
cases A, B, C, D , E in ascending order, section N1 

 Strain at foundation of the arch on the Norweigan side [μm/m]     

  zm z0 z1A z1B z1C z1D z2 z3 z4 z5 z6 z7 

-7.22 -5.41 -5.41 -3.94 -1.70 -5.61 -3.93 -3.93 -3.93 -1.80 -3.21 -3.04

-2.32 -1.93 -1.93 -1.85 -1.77 -1.94 -1.75 -1.75 -1.75 -1.78 -1.73 -1.75A 

-2.40 -1.87 -1.87 -1.78 -1.69 -1.87 -1.68 -1.68 -1.68 -1.68 -1.66 -1.65

-5.56 -5.18 -5.18 -3.99 -2.20 -5.32 -3.92 -3.92 -3.92 -1.81 -2.92 -2.77

7.64 7.61 7.61 7.57 7.43 7.60 7.28 7.28 7.28 7.57 7.45 7.49B 

-11.43 -11.59 -11.59 -11.43 -11.14 -11.59 -10.92 -10.92 -10.92 -11.26 -11.02 -11.08

-4.37 -5.35 -5.35 -3.94 -1.82 -5.53 -3.93 -3.93 -3.93 -1.80 -3.14 -2.97

6.39 6.22 6.22 6.21 6.11 6.21 5.98 5.98 5.98 6.22 6.11 6.14C 

-10.65 -10.06 -10.06 -9.89 -9.62 -10.06 -9.45 -9.45 -9.45 -9.73 -9.54 -9.59

-8.92 -6.55 -6.55 -5.18 -1.28 -4.55 -4.96 -4.96 -4.96 -0.82 -4.38 -2.41

-0.92 -0.22 -0.22 -0.13 0.03 -0.13 -0.13 -0.13 -0.13 0.07 -0.11 -0.06D 

-0.72 -0.31 -0.31 -0.23 -0.12 -0.24 -0.22 -0.22 -0.22 -0.13 -0.23 -0.16

-21.50 -26.81 -26.81 -10.28 -1.30 -20.45 -10.10 -10.10 -10.10 -1.43 -7.64 -8.13

-1.88 -1.09 -1.09 -0.30 0.06 -0.78 -0.30 -0.30 -0.30 0.06 -0.24 -0.39E 

0.25 -1.06 -1.06 -0.41 -0.14 -0.87 -0.41 -0.41 -0.41 -0.14 -0.34 -0.35
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Table F.17 Absolute error, at the foundation of the arch on the Norweigan side for 
load cases A, B, C, D, E in ascending order, section N1 

 Absolute Error [μm/m]                 

  
|zm-
z0| |zm-z1A| |zm-z1B| 

|zm-
z1C| 

|zm-
z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

1.81 1.81 3.28 5.52 1.61 3.29 3.29 3.29 5.42 4.01 4.18 

0.39 0.39 0.47 0.55 0.38 0.57 0.57 0.57 0.54 0.59 0.57 A 

0.54 0.54 0.62 0.72 0.53 0.72 0.72 0.72 0.72 0.74 0.75 

0.39 0.39 1.58 3.36 0.25 1.64 1.64 1.64 3.75 2.64 2.80 

0.03 0.03 0.07 0.21 0.04 0.35 0.35 0.35 0.07 0.19 0.14 B 

0.16 0.16 0.01 0.29 0.16 0.51 0.51 0.51 0.17 0.41 0.35 

0.98 0.98 0.42 2.55 1.17 0.44 0.44 0.44 2.56 1.22 1.40 

0.17 0.17 0.18 0.29 0.19 0.41 0.41 0.41 0.17 0.28 0.25 C 

0.59 0.59 0.76 1.03 0.59 1.20 1.20 1.20 0.92 1.11 1.06 

2.37 2.37 3.74 7.64 4.37 3.96 3.96 3.96 8.10 4.53 6.51 

0.70 0.70 0.79 0.95 0.79 0.79 0.79 0.79 0.99 0.81 0.86 D 

0.41 0.41 0.48 0.59 0.47 0.49 0.49 0.49 0.58 0.48 0.56 

5.31 5.31 11.22 20.21 1.06 11.40 11.40 11.40 20.07 13.86 13.38 

0.79 0.79 1.58 1.94 1.10 1.58 1.58 1.58 1.93 1.64 1.49 E 

1.32 1.32 0.66 0.39 1.12 0.66 0.66 0.66 0.39 0.60 0.60 
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Table F.18 Relative error, at the foundation of the arch on the Norweigan side, 
section N1 

 Relative Error                    

 |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

  max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm)

5.6% 5.6% 10.1% 17.1% 5.0% 10.2% 10.2% 10.2% 16.8% 12.4% 12.9%

1.2% 1.2% 1.5% 1.7% 1.2% 1.8% 1.8% 1.8% 1.7% 1.8% 1.8%A 

1.7% 1.7% 1.9% 2.2% 1.6% 2.2% 2.2% 2.2% 2.2% 2.3% 2.3%

1.2% 1.2% 4.9% 10.4% 0.8% 5.1% 5.1% 5.1% 11.6% 8.2% 8.7%

0.1% 0.1% 0.2% 0.7% 0.1% 1.1% 1.1% 1.1% 0.2% 0.6% 0.4%B 

0.5% 0.5% 0.0% 0.9% 0.5% 1.6% 1.6% 1.6% 0.5% 1.3% 1.1%

3.0% 3.0% 1.3% 7.9% 3.6% 1.4% 1.4% 1.4% 7.9% 3.8% 4.3%

0.5% 0.5% 0.6% 0.9% 0.6% 1.3% 1.3% 1.3% 0.5% 0.9% 0.8%C 

1.8% 1.8% 2.4% 3.2% 1.8% 3.7% 3.7% 3.7% 2.8% 3.4% 3.3%

7.3% 7.3% 11.6% 23.6% 13.5% 12.2% 12.2% 12.2% 25.0% 14.0% 20.1%

2.2% 2.2% 2.4% 2.9% 2.5% 2.4% 2.4% 2.4% 3.0% 2.5% 2.6%D 

1.3% 1.3% 1.5% 1.8% 1.5% 1.5% 1.5% 1.5% 1.8% 1.5% 1.7%

16.4% 16.4% 34.7% 62.5% 3.3% 35.2% 35.2% 35.2% 62.1% 42.9% 41.4%

2.4% 2.4% 4.9% 6.0% 3.4% 4.9% 4.9% 4.9% 6.0% 5.1% 4.6%E 

4.1% 4.1% 2.1% 1.2% 3.5% 2.0% 2.0% 2.0% 1.2% 1.8% 1.9%
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F.3 Displacements 

Table F.19 Displacement in the arch 

  Displacement in the arch [mm]       

    zm z0 z1A z1B z1C z1D z2 z3 z4 z5 z6 z7 

A -2.05 -1.94 -1.94 -2.32 -2.71 -1.86 -2.16 -2.16 -2.16 -2.73 -2.11 -2.18

B -1.53 -1.03 -1.03 -1.34 -1.66 -0.97 -1.25 -1.25 -1.25 -1.68 -1.21 -1.28

C -2.35 -1.73 -1.73 -2.09 -2.47 -1.66 -1.95 -1.95 -1.95 -2.49 -1.91 -1.99

D 0.56 0.72 0.72 0.54 -0.76 -0.02 0.61 0.61 0.61 -0.61 1.52 0.14

Δx of 
Arch at 
hanger 1 

E 11.03 15.50 15.50 9.67 6.95 13.10 9.16 9.16 9.16 6.94 9.67 10.08

A -0.77 -0.05 -0.05 -0.05 -0.05 -0.05 -0.04 -0.04 -0.04 -0.05 -0.04 -0.05

B 8.68 10.64 10.64 10.55 10.49 10.63 9.82 9.82 9.82 10.68 10.01 10.07

C 7.15 9.06 9.06 8.99 8.94 9.06 8.37 8.37 8.37 9.10 8.53 8.58

D -0.49 0.15 0.15 0.13 0.15 0.17 0.13 0.13 0.13 0.18 0.14 0.16

Δy of 
Arch at 
hanger 1 

E 0.57 -0.10 -0.10 -0.04 0.00 -0.04 -0.03 -0.03 -0.03 0.00 -0.04 -0.08

A -0.78 -2.17 -2.17 -2.64 -3.16 -2.08 -2.46 -2.46 -2.46 -3.15 -2.38 -2.47

B -0.83 -0.70 -0.70 -1.08 -1.51 -0.64 -1.03 -1.03 -1.03 -1.49 -0.95 -1.03

C -2.13 -1.83 -1.83 -2.28 -2.78 -1.75 -2.13 -2.13 -2.13 -2.77 -2.05 -2.14

D 0.33 -0.17 -0.17 -0.33 -1.84 -1.02 -0.19 -0.19 -0.19 -1.89 0.55 -1.06

Δz of 
Arch at 
hanger 1 

E 15.83 21.97 21.97 15.11 11.91 19.22 14.21 14.21 14.21 12.05 14.78 15.30

A 1.06 1.04 1.04 0.68 0.26 1.10 0.64 0.64 0.64 0.25 0.69 0.63

B 0.18 0.81 0.81 0.51 0.18 0.85 0.49 0.49 0.49 0.17 0.53 0.47

C 0.36 0.97 0.97 0.63 0.23 1.03 0.60 0.60 0.60 0.22 0.64 0.58

D 1.28 0.88 0.88 0.65 -0.43 0.28 0.68 0.68 0.68 -0.43 1.32 0.23

Δx of 
Arch at 
midpoint 

E 8.19 12.47 12.47 7.61 5.29 10.53 7.23 7.23 7.23 5.30 7.68 8.02

A 0.40 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.08 -0.07 -0.08

B 17.62 17.86 17.86 17.75 17.60 17.85 16.37 16.37 16.37 17.93 16.67 16.74

C 14.72 15.39 15.39 15.30 15.17 15.38 14.10 14.10 14.10 15.44 14.36 14.41

D 0.28 0.13 0.13 0.12 0.15 0.15 0.11 0.11 0.11 0.18 0.13 0.14

Δy of 
Arch at 
midpoint 

E 0.65 -0.03 -0.03 0.05 0.10 0.04 0.05 0.05 0.05 0.10 0.04 -0.03
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A 11.97 14.80 14.80 14.61 14.24 14.80 13.35 13.35 13.35 14.27 13.40 13.39

B 6.62 9.94 9.94 9.79 9.50 9.93 8.94 8.94 8.94 9.53 9.00 8.99

C 10.52 13.62 13.62 13.44 13.10 13.62 12.29 12.29 12.29 13.13 12.34 12.33

D 0.99 0.74 0.74 0.47 0.41 0.76 0.40 0.40 0.40 0.22 0.26 0.42

Δz of 
Arch at 
midpoint 

E -0.77 -1.23 -1.23 -1.59 -2.00 -1.16 -1.49 -1.49 -1.49 -1.94 -1.38 -1.39

A 3.50 4.49 4.49 3.98 3.35 4.56 3.74 3.74 3.74 3.35 3.81 3.73

B 1.90 3.05 3.05 2.64 2.14 3.10 2.49 2.49 2.49 2.13 2.55 2.48

C 3.16 4.15 4.15 3.66 3.07 4.21 3.44 3.44 3.44 3.06 3.51 3.43

D 1.33 1.53 1.53 1.14 -0.20 0.80 1.13 1.13 1.13 -0.20 1.92 0.68

Δx of 
Arch at 
hanger 6 

E 9.16 13.56 13.56 7.53 4.56 11.22 7.21 7.21 7.21 4.57 7.76 8.16

A 0.06 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.05 -0.04 -0.05

B 8.28 9.94 9.94 9.87 9.74 9.94 9.20 9.20 9.20 9.91 9.36 9.40

C 6.64 8.48 8.48 8.42 8.30 8.47 7.84 7.84 7.84 8.45 7.98 8.01

D -0.44 0.04 0.04 0.04 0.06 0.05 0.04 0.04 0.04 0.08 0.05 0.05

Δy of 
Arch at 
hanger 6 

E 0.70 0.01 0.01 0.05 0.08 0.04 0.04 0.04 0.04 0.07 0.04 -0.01

A -4.33 -5.50 -5.50 -4.94 -4.31 -5.58 -4.63 -4.63 -4.63 -4.31 -4.67 -4.61

B -3.01 -3.39 -3.39 -2.93 -2.42 -3.44 -2.77 -2.77 -2.77 -2.40 -2.79 -2.73

C -4.85 -4.99 -4.99 -4.46 -3.86 -5.07 -4.19 -4.19 -4.19 -3.85 -4.22 -4.16

D -2.38 -1.38 -1.38 -0.99 0.51 -0.54 -1.01 -1.01 -1.01 0.57 -1.72 -0.33

Δz of 
Arch at 
hanger 6 

E -12.14 -17.01 -17.01 -10.16 -6.89 -14.33 -9.69 -9.69 -9.69 -6.94 -10.16 -10.66
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Table F.20 Displacement, absolute error in the arch 

  Absolute Error [mm]                 

   |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

A 0.11 0.11 0.26 0.66 0.19 0.10 0.10 0.10 0.68 0.06 0.13

B 0.51 0.51 0.20 0.12 0.56 0.28 0.28 0.28 0.14 0.32 0.25

C 0.61 0.61 0.25 0.12 0.68 0.39 0.39 0.39 0.15 0.44 0.36

D 0.16 0.16 0.02 1.32 0.58 0.05 0.05 0.05 1.17 0.96 0.42

Δx of 
Arch at 
hanger 1 

E 4.48 4.48 1.36 4.08 2.08 1.86 1.86 1.86 4.09 1.36 0.95

A 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.72 0.73 0.73

B 1.96 1.96 1.87 1.80 1.95 1.14 1.14 1.14 2.00 1.33 1.39

C 1.92 1.92 1.85 1.79 1.91 1.22 1.22 1.22 1.95 1.38 1.43

D 0.65 0.65 0.63 0.65 0.66 0.62 0.62 0.62 0.67 0.63 0.66

Δy of 
Arch at 
hanger 1 

E 0.67 0.67 0.61 0.57 0.61 0.60 0.60 0.60 0.57 0.61 0.65

A 1.39 1.39 1.86 2.38 1.30 1.67 1.67 1.67 2.37 1.60 1.69

B 0.13 0.13 0.26 0.68 0.19 0.20 0.20 0.20 0.66 0.13 0.20

C 0.30 0.30 0.15 0.65 0.38 0.00 0.00 0.00 0.64 0.07 0.02

D 0.50 0.50 0.66 2.17 1.35 0.52 0.52 0.52 2.22 0.21 1.39

Δz of 
Arch at 
hanger 1 

E 6.14 6.14 0.72 3.92 3.39 1.62 1.62 1.62 3.78 1.06 0.54

A 0.02 0.02 0.38 0.79 0.04 0.41 0.41 0.41 0.80 0.37 0.43

B 0.63 0.63 0.33 0.00 0.67 0.31 0.31 0.31 0.01 0.35 0.29

C 0.61 0.61 0.27 0.13 0.67 0.24 0.24 0.24 0.14 0.28 0.22

D 0.39 0.39 0.62 1.70 1.00 0.59 0.59 0.59 1.71 0.04 1.04

Δx of 
Arch at 
midpoint 

E 4.29 4.29 0.57 2.90 2.34 0.95 0.95 0.95 2.88 0.50 0.16

A 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.48 0.47 0.48

B 0.24 0.24 0.13 0.02 0.23 1.25 1.25 1.25 0.31 0.94 0.88

C 0.67 0.67 0.58 0.45 0.66 0.63 0.63 0.63 0.72 0.37 0.31

D 0.15 0.15 0.16 0.13 0.13 0.17 0.17 0.17 0.10 0.15 0.14

Δy of 
Arch at 
midpoint 

E 0.68 0.68 0.60 0.55 0.61 0.61 0.61 0.61 0.56 0.62 0.68

A 2.83 2.83 2.64 2.27 2.83 1.38 1.38 1.38 2.30 1.43 1.43Δz of 
Arch at 
midpoint B 3.32 3.32 3.17 2.88 3.32 2.33 2.33 2.33 2.91 2.38 2.37
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C 3.11 3.11 2.92 2.58 3.10 1.77 1.77 1.77 2.61 1.82 1.81

D 0.26 0.26 0.53 0.59 0.24 0.59 0.59 0.59 0.78 0.73 0.58

E 0.46 0.46 0.82 1.23 0.39 0.72 0.72 0.72 1.17 0.61 0.62

A 0.99 0.99 0.48 0.14 1.06 0.24 0.24 0.24 0.15 0.31 0.24

B 1.15 1.15 0.74 0.24 1.20 0.59 0.59 0.59 0.23 0.66 0.58

C 0.98 0.98 0.50 0.10 1.05 0.28 0.28 0.28 0.10 0.35 0.27

D 0.20 0.20 0.19 1.53 0.53 0.20 0.20 0.20 1.53 0.59 0.65

Δx of 
Arch at 
hanger 6 

E 4.40 4.40 1.63 4.60 2.06 1.95 1.95 1.95 4.59 1.40 1.00

A 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.10 0.11

B 1.66 1.66 1.59 1.46 1.66 0.92 0.92 0.92 1.63 1.08 1.12

C 1.83 1.83 1.77 1.66 1.83 1.20 1.20 1.20 1.80 1.34 1.36

D 0.49 0.49 0.49 0.50 0.50 0.48 0.48 0.48 0.52 0.49 0.49

Δy of 
Arch at 
hanger 6 

E 0.69 0.69 0.65 0.62 0.66 0.66 0.66 0.66 0.62 0.66 0.70

A 1.17 1.17 0.61 0.03 1.25 0.30 0.30 0.30 0.03 0.34 0.28

B 0.38 0.38 0.07 0.58 0.44 0.23 0.23 0.23 0.61 0.21 0.28

C 0.14 0.14 0.39 0.99 0.22 0.66 0.66 0.66 1.00 0.63 0.70

D 1.00 1.00 1.39 2.89 1.84 1.37 1.37 1.37 2.95 0.66 2.05

Δz of 
Arch at 
hanger 6 

E 4.87 4.87 1.98 5.24 2.19 2.45 2.45 2.45 5.20 1.98 1.48
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Table F.21 Displacement, relative error in the arch 

  Relative Error                  

  |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

   max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) 

A 0.3% 0.3% 0.6% 1.6% 0.5% 0.3% 0.3% 0.3% 1.7% 0.1% 0.3%

B 1.3% 1.3% 0.5% 0.3% 1.4% 0.7% 0.7% 0.7% 0.4% 0.8% 0.6%

C 1.5% 1.5% 0.6% 0.3% 1.7% 1.0% 1.0% 1.0% 0.4% 1.1% 0.9%

D 0.4% 0.4% 0.0% 3.3% 1.4% 0.1% 0.1% 0.1% 2.9% 2.4% 1.0%

Δx of 
Arch at 
hanger 1 

E 11.0% 11.0% 3.3% 10.0% 5.1% 4.6% 4.6% 4.6% 10.1% 3.3% 2.3%

A 1.8% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8% 1.8%

B 4.8% 4.8% 4.6% 4.4% 4.8% 2.8% 2.8% 2.8% 4.9% 3.3% 3.4%

C 4.7% 4.7% 4.5% 4.4% 4.7% 3.0% 3.0% 3.0% 4.8% 3.4% 3.5%

D 1.6% 1.6% 1.5% 1.6% 1.6% 1.5% 1.5% 1.5% 1.7% 1.6% 1.6%

Δy of 
Arch at 
hanger 1 

E 1.6% 1.6% 1.5% 1.4% 1.5% 1.5% 1.5% 1.5% 1.4% 1.5% 1.6%

A 3.4% 3.4% 4.6% 5.9% 3.2% 4.1% 4.1% 4.1% 5.8% 3.9% 4.2%

B 0.3% 0.3% 0.6% 1.7% 0.5% 0.5% 0.5% 0.5% 1.6% 0.3% 0.5%

C 0.7% 0.7% 0.4% 1.6% 0.9% 0.0% 0.0% 0.0% 1.6% 0.2% 0.0%

D 1.2% 1.2% 1.6% 5.3% 3.3% 1.3% 1.3% 1.3% 5.5% 0.5% 3.4%

Δz of 
Arch at 
hanger 1 

E 15.1% 15.1% 1.8% 9.7% 8.3% 4.0% 4.0% 4.0% 9.3% 2.6% 1.3%

A 0.0% 0.0% 0.9% 2.0% 0.1% 1.0% 1.0% 1.0% 2.0% 0.9% 1.1%

B 1.5% 1.5% 0.8% 0.0% 1.6% 0.8% 0.8% 0.8% 0.0% 0.9% 0.7%

C 1.5% 1.5% 0.7% 0.3% 1.6% 0.6% 0.6% 0.6% 0.3% 0.7% 0.5%

D 1.0% 1.0% 1.5% 4.2% 2.5% 1.5% 1.5% 1.5% 4.2% 0.1% 2.6%

Δx of 
Arch at 
midpoint 

E 10.6% 10.6% 1.4% 7.1% 5.8% 2.3% 2.3% 2.3% 7.1% 1.2% 0.4%

A 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2%

B 0.6% 0.6% 0.3% 0.0% 0.6% 3.1% 3.1% 3.1% 0.8% 2.3% 2.2%

C 1.6% 1.6% 1.4% 1.1% 1.6% 1.5% 1.5% 1.5% 1.8% 0.9% 0.8%

D 0.4% 0.4% 0.4% 0.3% 0.3% 0.4% 0.4% 0.4% 0.2% 0.4% 0.3%

Δy of 
Arch at 
midpoint 

E 1.7% 1.7% 1.5% 1.3% 1.5% 1.5% 1.5% 1.5% 1.4% 1.5% 1.7%

Δz of A 7.0% 7.0% 6.5% 5.6% 7.0% 3.4% 3.4% 3.4% 5.7% 3.5% 3.5%
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B 8.2% 8.2% 7.8% 7.1% 8.2% 5.7% 5.7% 5.7% 7.2% 5.9% 5.8%

C 7.6% 7.6% 7.2% 6.3% 7.6% 4.4% 4.4% 4.4% 6.4% 4.5% 4.5%

D 0.6% 0.6% 1.3% 1.5% 0.6% 1.5% 1.5% 1.5% 1.9% 1.8% 1.4%

Arch at 
midpoint 

E 1.1% 1.1% 2.0% 3.0% 1.0% 1.8% 1.8% 1.8% 2.9% 1.5% 1.5%

A 2.4% 2.4% 1.2% 0.4% 2.6% 0.6% 0.6% 0.6% 0.4% 0.8% 0.6%

B 2.8% 2.8% 1.8% 0.6% 3.0% 1.5% 1.5% 1.5% 0.6% 1.6% 1.4%

C 2.4% 2.4% 1.2% 0.2% 2.6% 0.7% 0.7% 0.7% 0.2% 0.9% 0.7%

D 0.5% 0.5% 0.5% 3.8% 1.3% 0.5% 0.5% 0.5% 3.8% 1.5% 1.6%

Δx of 
Arch at 
hanger 6 

E 10.8% 10.8% 4.0% 11.3% 5.1% 4.8% 4.8% 4.8% 11.3% 3.4% 2.5%

A 0.2% 0.2% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.3% 0.2% 0.3%

B 4.1% 4.1% 3.9% 3.6% 4.1% 2.3% 2.3% 2.3% 4.0% 2.7% 2.7%

C 4.5% 4.5% 4.4% 4.1% 4.5% 2.9% 2.9% 2.9% 4.4% 3.3% 3.4%

D 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.3% 1.2% 1.2%

Δy of 
Arch at 
hanger 6 

E 1.7% 1.7% 1.6% 1.5% 1.6% 1.6% 1.6% 1.6% 1.5% 1.6% 1.7%

A 2.9% 2.9% 1.5% 0.1% 3.1% 0.7% 0.7% 0.7% 0.1% 0.8% 0.7%

B 0.9% 0.9% 0.2% 1.4% 1.1% 0.6% 0.6% 0.6% 1.5% 0.5% 0.7%

C 0.3% 0.3% 1.0% 2.4% 0.5% 1.6% 1.6% 1.6% 2.5% 1.5% 1.7%

D 2.5% 2.5% 3.4% 7.1% 4.5% 3.4% 3.4% 3.4% 7.3% 1.6% 5.1%

Δz of 
Arch at 
hanger 6 

E 12.0% 12.0% 4.9% 12.9% 5.4% 6.0% 6.0% 6.0% 12.8% 4.9% 3.7%
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Table F.22 Displacement in the carriageway 

  Displacement in the Carrigeway at points [mm]    

    zm z0 z1A z1B z1C z1D z2 z3 z4 z5 z6 z7 

A 0.31 0.53 0.53 0.28 0.20 0.54 0.24 0.24 0.24 0.03 0.13 0.26

B -0.84 -2.10 -2.10 -2.12 -2.18 -2.09 -1.99 -1.99 -1.99 -1.70 -1.46 -1.47

C -0.58 -1.51 -1.51 -1.61 -1.68 -1.49 -1.51 -1.51 -1.51 -1.28 -1.06 -1.01

D 19.28 25.81 25.81 22.99 22.47 25.52 22.86 22.86 22.86 24.80 25.71 28.43

Δz at 
point 
10 

E -1.12 -0.71 -0.71 -0.51 -1.54 -1.20 -0.42 -0.42 -0.42 -2.41 -0.80 -1.91

A 0.34 0.53 0.53 0.28 0.22 0.55 0.23 0.23 0.23 0.05 0.12 0.27

B -0.40 0.16 0.16 0.01 -0.04 0.17 0.02 0.02 0.02 0.50 0.61 0.71

C 0.54 0.41 0.41 0.20 0.14 0.42 0.19 0.19 0.19 0.60 0.69 0.85

D 19.82 23.74 23.74 21.02 20.46 23.43 20.88 20.88 20.88 22.88 23.86 26.47

Δz at 
point 
20 

E -1.14 -0.80 -0.80 -0.50 -1.58 -1.33 -0.40 -0.40 -0.40 -2.50 -0.82 -2.04

A 0.33 0.53 0.53 0.28 0.23 0.54 0.24 0.24 0.24 0.06 0.11 0.27

B -0.17 0.31 0.31 0.10 0.06 0.32 0.04 0.04 0.04 -0.85 -0.83 -0.77

C -0.03 0.54 0.54 0.29 0.24 0.56 0.21 0.21 0.21 -0.53 -0.50 -0.39

D 19.04 21.67 21.67 19.18 18.61 21.36 19.04 19.04 19.04 20.86 21.84 24.19

Δz at 
point 
30 

E -1.19 -0.70 -0.70 -0.50 -1.58 -1.26 -0.41 -0.41 -0.41 -2.32 -0.66 -1.90

A -0.66 -0.16 -0.16 -0.62 -1.15 -0.08 -0.60 -0.60 -0.60 -1.06 -0.45 -0.55

B -18.27 -20.81 -20.81 -21.15 -21.56 -20.75 -20.86 -20.86 -20.86 -22.19 -21.43 -21.55

C -16.97 -18.79 -18.79 -19.20 -19.68 -18.71 -18.90 -18.90 -18.90 -20.22 -19.38 -19.50

D -0.01 -0.75 -0.75 -0.85 -2.32 -1.57 -0.72 -0.72 -0.72 -3.61 -1.34 -3.06

Δz at 
point 
11 

E 22.89 30.06 30.06 23.31 20.18 27.37 22.55 22.55 22.55 20.78 23.48 24.05

A -0.12 -0.82 -0.82 -1.28 -1.80 -0.73 -1.22 -1.22 -1.22 -1.72 -1.08 -1.17

B -5.34 -3.92 -3.92 -4.29 -4.71 -3.86 -4.24 -4.24 -4.24 -4.80 -4.28 -4.37

C -5.12 -4.50 -4.50 -4.93 -5.42 -4.42 -4.83 -4.83 -4.83 -5.51 -4.86 -4.96

D 0.26 -0.51 -0.51 -0.64 -2.13 -1.35 -0.51 -0.51 -0.51 -3.19 -0.88 -2.57

Δz at 
point 
21 

E 19.12 26.08 26.08 19.29 16.13 23.36 18.50 18.50 18.50 16.61 19.33 19.89

A -0.66 -0.81 -0.81 -1.27 -1.78 -0.72 -1.21 -1.21 -1.21 -1.70 -1.07 -1.16Δz at 
point 
31 B 6.01 5.87 5.87 5.48 5.06 5.93 5.38 5.38 5.38 5.34 5.72 5.64
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C 3.30 3.65 3.65 3.20 2.71 3.73 3.18 3.18 3.18 2.94 3.47 3.38

D -0.40 -0.49 -0.49 -0.63 -2.11 -1.33 -0.50 -0.50 -0.50 -3.15 -0.83 -2.52

E 19.21 26.27 26.27 19.48 16.33 23.55 18.69 18.69 18.69 16.77 19.49 20.05

A 6.40 8.30 8.30 7.82 7.21 8.36 7.42 7.42 7.42 7.26 7.52 7.45

B -4.66 -0.10 -0.10 -0.47 -0.96 -0.05 -0.75 -0.75 -0.75 -1.03 -0.77 -0.84

C -0.98 0.94 0.94 0.50 -0.08 1.01 0.18 0.18 0.18 -0.14 0.17 0.09

D 2.21 -0.21 -0.21 -0.45 -1.63 -0.84 -0.36 -0.36 -0.36 -2.24 -0.38 -1.56

Δz at 
point 
22 

E 17.40 21.45 21.45 15.96 13.30 19.38 15.16 15.16 15.16 13.60 15.72 16.16

A 7.35 8.30 8.30 7.83 7.22 8.37 7.43 7.43 7.43 7.28 7.53 7.46

B 15.22 17.99 17.99 17.60 17.10 18.03 17.16 17.16 17.16 17.29 17.39 17.33

C 14.89 16.26 16.26 15.80 15.22 16.32 15.34 15.34 15.34 15.37 15.54 15.48

D 0.77 -0.19 -0.19 -0.44 -1.61 -0.82 -0.34 -0.34 -0.34 -2.21 -0.35 -1.52

Δz at 
point 
32 

E 20.09 21.84 21.84 16.35 13.69 19.78 15.55 15.55 15.55 13.98 16.10 16.54

A 23.15 26.11 26.11 25.95 25.62 26.10 24.94 24.94 24.94 25.65 24.99 24.98

B 4.02 4.65 4.65 4.53 4.28 4.64 3.89 3.89 3.89 4.19 3.83 3.81

C 8.94 10.66 10.66 10.51 10.21 10.65 9.64 9.64 9.64 10.13 9.59 9.58

D 2.01 0.57 0.57 0.33 0.33 0.62 0.27 0.27 0.27 0.17 0.14 0.34

Δz at 
point 
24 

E -1.17 -1.64 -1.64 -1.72 -1.99 -1.48 -1.65 -1.65 -1.65 -1.93 -1.56 -1.58

A 23.27 26.10 26.10 25.94 25.61 26.09 24.93 24.93 24.93 25.64 24.98 24.97

B 24.79 29.07 29.07 28.94 28.68 29.07 28.14 28.14 28.14 28.84 28.32 28.31

C 31.00 35.68 35.68 35.53 35.22 35.68 34.52 34.52 34.52 35.35 34.67 34.67

D 1.43 0.58 0.58 0.34 0.34 0.63 0.28 0.28 0.28 0.19 0.16 0.36

Δz at 
point 
34 

E -0.20 -1.41 -1.41 -1.49 -1.76 -1.24 -1.41 -1.41 -1.41 -1.71 -1.33 -1.36
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Table F.23 Displacement, absolute error in the carriageway 

  Absolute Error [mm]                 

   |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

A 0.22 0.22 0.03 0.11 0.23 0.08 0.08 0.08 0.28 0.18 0.05

B 1.27 1.27 1.29 1.35 1.26 1.15 1.15 1.15 0.87 0.62 0.63

C 0.92 0.92 1.02 1.10 0.91 0.93 0.93 0.93 0.70 0.47 0.42

D 6.53 6.53 3.71 3.19 6.24 3.58 3.58 3.58 5.52 6.43 9.15

Δz at 
point 
10 

E 0.41 0.41 0.61 0.42 0.08 0.70 0.70 0.70 1.29 0.32 0.79

A 0.19 0.19 0.06 0.12 0.21 0.11 0.11 0.11 0.29 0.22 0.07

B 0.55 0.55 0.41 0.36 0.56 0.42 0.42 0.42 0.90 1.00 1.11

C 0.13 0.13 0.34 0.40 0.12 0.36 0.36 0.36 0.05 0.15 0.30

D 3.91 3.91 1.20 0.63 3.60 1.06 1.06 1.06 3.06 4.03 6.65

Δz at 
point 
20 

E 0.34 0.34 0.64 0.44 0.19 0.74 0.74 0.74 1.36 0.32 0.90

A 0.19 0.19 0.05 0.10 0.21 0.10 0.10 0.10 0.27 0.22 0.07

B 0.48 0.48 0.28 0.23 0.49 0.22 0.22 0.22 0.68 0.65 0.59

C 0.57 0.57 0.32 0.27 0.59 0.24 0.24 0.24 0.50 0.47 0.36

D 2.63 2.63 0.14 0.43 2.32 0.00 0.00 0.00 1.82 2.80 5.15

Δz at 
point 
30 

E 0.48 0.48 0.69 0.39 0.07 0.78 0.78 0.78 1.14 0.53 0.71

A 0.50 0.50 0.04 0.49 0.58 0.06 0.06 0.06 0.40 0.21 0.11

B 2.54 2.54 2.88 3.28 2.48 2.59 2.59 2.59 3.92 3.16 3.27

C 1.82 1.82 2.23 2.71 1.74 1.93 1.93 1.93 3.25 2.41 2.53

D 0.73 0.73 0.84 2.31 1.56 0.71 0.71 0.71 3.60 1.33 3.05

Δz at 
point 
11 

E 7.17 7.17 0.42 2.71 4.47 0.34 0.34 0.34 2.11 0.59 1.16

A 0.70 0.70 1.16 1.68 0.61 1.10 1.10 1.10 1.60 0.96 1.06

B 1.43 1.43 1.05 0.64 1.49 1.11 1.11 1.11 0.54 1.06 0.98

C 0.62 0.62 0.19 0.30 0.70 0.29 0.29 0.29 0.39 0.27 0.16

D 0.77 0.77 0.90 2.38 1.61 0.77 0.77 0.77 3.45 1.14 2.82

Δz at 
point 
21 

E 6.96 6.96 0.17 2.98 4.25 0.62 0.62 0.62 2.50 0.22 0.77

A 0.15 0.15 0.61 1.12 0.06 0.55 0.55 0.55 1.04 0.41 0.50Δz at 
point 
31 B 0.15 0.15 0.54 0.96 0.09 0.63 0.63 0.63 0.67 0.30 0.37
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C 0.35 0.35 0.10 0.59 0.43 0.12 0.12 0.12 0.36 0.17 0.08

D 0.09 0.09 0.23 1.71 0.93 0.10 0.10 0.10 2.75 0.43 2.12

E 7.07 7.07 0.27 2.88 4.34 0.52 0.52 0.52 2.44 0.28 0.84

A 1.90 1.90 1.42 0.81 1.96 1.02 1.02 1.02 0.86 1.12 1.05

B 4.56 4.56 4.18 3.70 4.60 3.91 3.91 3.91 3.63 3.89 3.82

C 1.93 1.93 1.48 0.90 1.99 1.16 1.16 1.16 0.85 1.15 1.07

D 2.42 2.42 2.67 3.84 3.06 2.57 2.57 2.57 4.45 2.59 3.77

Δz at 
point 
22 

E 4.04 4.04 1.45 4.11 1.98 2.25 2.25 2.25 3.80 1.68 1.24

A 0.96 0.96 0.48 0.13 1.02 0.08 0.08 0.08 0.07 0.18 0.11

B 2.76 2.76 2.37 1.88 2.81 1.94 1.94 1.94 2.06 2.17 2.11

C 1.37 1.37 0.91 0.33 1.43 0.45 0.45 0.45 0.48 0.65 0.59

D 0.96 0.96 1.21 2.38 1.59 1.11 1.11 1.11 2.97 1.12 2.29

Δz at 
point 
32 

E 1.75 1.75 3.73 6.39 0.31 4.53 4.53 4.53 6.11 3.99 3.55

A 2.96 2.96 2.80 2.47 2.95 1.79 1.79 1.79 2.50 1.83 1.83

B 0.63 0.63 0.51 0.26 0.62 0.13 0.13 0.13 0.17 0.20 0.21

C 1.72 1.72 1.58 1.27 1.72 0.70 0.70 0.70 1.20 0.65 0.64

D 1.45 1.45 1.68 1.68 1.40 1.74 1.74 1.74 1.84 1.87 1.68

Δz at 
point 
24 

E 0.48 0.48 0.56 0.83 0.31 0.48 0.48 0.48 0.77 0.39 0.42

A 2.83 2.83 2.67 2.34 2.82 1.66 1.66 1.66 2.37 1.70 1.70

B 4.28 4.28 4.15 3.89 4.27 3.35 3.35 3.35 4.04 3.52 3.52

C 4.69 4.69 4.53 4.22 4.68 3.52 3.52 3.52 4.35 3.67 3.67

D 0.85 0.85 1.09 1.09 0.80 1.15 1.15 1.15 1.24 1.27 1.07

Δz at 
point 
34 

E 1.21 1.21 1.29 1.56 1.04 1.21 1.21 1.21 1.51 1.13 1.16
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Table F.24 Displacement, relative error in the carriageway 

 
 Relative Error                  

 

 |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

 

  max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) 

A 0.5% 0.5% 0.1% 0.3% 0.6% 0.2% 0.2% 0.2% 0.7% 0.5% 0.1%

B 3.1% 3.1% 3.2% 3.3% 3.1% 2.8% 2.8% 2.8% 2.1% 1.5% 1.6%

C 2.3% 2.3% 2.5% 2.7% 2.2% 2.3% 2.3% 2.3% 1.7% 1.2% 1.0%

D 16.1% 16.1% 9.1% 7.9% 15.4% 8.8% 8.8% 8.8% 13.6% 15.8% 22.5%

Δz at 
point 
10 

E 1.0% 1.0% 1.5% 1.0% 0.2% 1.7% 1.7% 1.7% 3.2% 0.8% 2.0%

A 0.5% 0.5% 0.1% 0.3% 0.5% 0.3% 0.3% 0.3% 0.7% 0.5% 0.2%

B 1.4% 1.4% 1.0% 0.9% 1.4% 1.0% 1.0% 1.0% 2.2% 2.5% 2.7%

C 0.3% 0.3% 0.8% 1.0% 0.3% 0.9% 0.9% 0.9% 0.1% 0.4% 0.7%

D 9.6% 9.6% 2.9% 1.6% 8.9% 2.6% 2.6% 2.6% 7.5% 9.9% 16.4%

Δz at 
point 
20 

E 0.8% 0.8% 1.6% 1.1% 0.5% 1.8% 1.8% 1.8% 3.3% 0.8% 2.2%

A 0.5% 0.5% 0.1% 0.2% 0.5% 0.2% 0.2% 0.2% 0.7% 0.5% 0.2%

B 1.2% 1.2% 0.7% 0.6% 1.2% 0.5% 0.5% 0.5% 1.7% 1.6% 1.5%

C 1.4% 1.4% 0.8% 0.7% 1.4% 0.6% 0.6% 0.6% 1.2% 1.2% 0.9%

D 6.5% 6.5% 0.3% 1.1% 5.7% 0.0% 0.0% 0.0% 4.5% 6.9% 12.7%

Δz at 
point 
30 

E 1.2% 1.2% 1.7% 1.0% 0.2% 1.9% 1.9% 1.9% 2.8% 1.3% 1.7%

A 1.2% 1.2% 0.1% 1.2% 1.4% 0.2% 0.2% 0.2% 1.0% 0.5% 0.3%

B 6.2% 6.2% 7.1% 8.1% 6.1% 6.4% 6.4% 6.4% 9.6% 7.8% 8.1%

C 4.5% 4.5% 5.5% 6.7% 4.3% 4.8% 4.8% 4.8% 8.0% 5.9% 6.2%

D 1.8% 1.8% 2.1% 5.7% 3.8% 1.7% 1.7% 1.7% 8.9% 3.3% 7.5%

Δz at 
point 
11 

E 17.6% 17.6% 1.0% 6.7% 11.0% 0.8% 0.8% 0.8% 5.2% 1.5% 2.9%

A 1.7% 1.7% 2.9% 4.1% 1.5% 2.7% 2.7% 2.7% 3.9% 2.4% 2.6%

B 3.5% 3.5% 2.6% 1.6% 3.7% 2.7% 2.7% 2.7% 1.3% 2.6% 2.4%

C 1.5% 1.5% 0.5% 0.7% 1.7% 0.7% 0.7% 0.7% 1.0% 0.7% 0.4%

D 1.9% 1.9% 2.2% 5.9% 4.0% 1.9% 1.9% 1.9% 8.5% 2.8% 7.0%

Δz at 
point 
21 

E 17.1% 17.1% 0.4% 7.3% 10.5% 1.5% 1.5% 1.5% 6.2% 0.5% 1.9%

Δz at A 0.4% 0.4% 1.5% 2.8% 0.2% 1.3% 1.3% 1.3% 2.6% 1.0% 1.2%
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B 0.4% 0.4% 1.3% 2.4% 0.2% 1.6% 1.6% 1.6% 1.7% 0.7% 0.9%

C 0.9% 0.9% 0.2% 1.5% 1.1% 0.3% 0.3% 0.3% 0.9% 0.4% 0.2%

D 0.2% 0.2% 0.6% 4.2% 2.3% 0.2% 0.2% 0.2% 6.8% 1.1% 5.2%

point 
31 

E 17.4% 17.4% 0.7% 7.1% 10.7% 1.3% 1.3% 1.3% 6.0% 0.7% 2.1%

A 4.7% 4.7% 3.5% 2.0% 4.8% 2.5% 2.5% 2.5% 2.1% 2.8% 2.6%

B 11.2% 11.2% 10.3% 9.1% 11.3% 9.6% 9.6% 9.6% 8.9% 9.6% 9.4%

C 4.7% 4.7% 3.6% 2.2% 4.9% 2.8% 2.8% 2.8% 2.1% 2.8% 2.6%

D 6.0% 6.0% 6.6% 9.5% 7.5% 6.3% 6.3% 6.3% 11.0% 6.4% 9.3%

Δz at 
point 
22 

E 9.9% 9.9% 3.6% 10.1% 4.9% 5.5% 5.5% 5.5% 9.4% 4.1% 3.1%

A 2.4% 2.4% 1.2% 0.3% 2.5% 0.2% 0.2% 0.2% 0.2% 0.4% 0.3%

B 6.8% 6.8% 5.8% 4.6% 6.9% 4.8% 4.8% 4.8% 5.1% 5.3% 5.2%

C 3.4% 3.4% 2.2% 0.8% 3.5% 1.1% 1.1% 1.1% 1.2% 1.6% 1.4%

D 2.4% 2.4% 3.0% 5.9% 3.9% 2.7% 2.7% 2.7% 7.3% 2.7% 5.6%

Δz at 
point 
32 

E 4.3% 4.3% 9.2% 15.7% 0.8% 11.2% 11.2% 11.2% 15.0% 9.8% 8.7%

A 7.3% 7.3% 6.9% 6.1% 7.3% 4.4% 4.4% 4.4% 6.1% 4.5% 4.5%

B 1.5% 1.5% 1.3% 0.6% 1.5% 0.3% 0.3% 0.3% 0.4% 0.5% 0.5%

C 4.2% 4.2% 3.9% 3.1% 4.2% 1.7% 1.7% 1.7% 2.9% 1.6% 1.6%

D 3.6% 3.6% 4.1% 4.1% 3.4% 4.3% 4.3% 4.3% 4.5% 4.6% 4.1%

Δz at 
point 
24 

E 1.2% 1.2% 1.4% 2.0% 0.8% 1.2% 1.2% 1.2% 1.9% 1.0% 1.0%

A 7.0% 7.0% 6.6% 5.8% 6.9% 4.1% 4.1% 4.1% 5.8% 4.2% 4.2%

B 10.5% 10.5% 10.2% 9.6% 10.5% 8.2% 8.2% 8.2% 10.0% 8.7% 8.7%

C 11.5% 11.5% 11.2% 10.4% 11.5% 8.7% 8.7% 8.7% 10.7% 9.0% 9.0%

D 2.1% 2.1% 2.7% 2.7% 2.0% 2.8% 2.8% 2.8% 3.1% 3.1% 2.6%

Δz at 
point 
34 

E 3.0% 3.0% 3.2% 3.8% 2.6% 3.0% 3.0% 3.0% 3.7% 2.8% 2.9%
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Table F.25 Displacement in the carriageway 

  Displacement in the Carrigeway at points [mm]    

    zm z0 z1A z1B z1C z1D z2 z3 z4 z5 z6 z7 

A 23.13 25.53 25.53 25.22 24.74 25.55 24.29 24.29 24.29 24.78 24.35 24.33

B -26.32 -32.03 -32.03 -32.23 -32.59 -32.01 -32.55 -32.55 -32.55 -33.12 -33.04 -33.10

C -20.98 -24.33 -24.33 -24.58 -25.02 -24.31 -25.15 -25.15 -25.15 -25.46 -25.55 -25.60

D 1.65 0.37 0.37 0.10 -0.35 0.17 0.09 0.09 0.09 -0.68 0.00 -0.29

Δz at 
point 
13 

E 4.39 6.22 6.22 4.10 2.89 5.58 3.84 3.84 3.84 3.06 4.12 4.27

A 20.13 23.24 23.24 22.94 22.46 23.26 21.97 21.97 21.97 22.49 22.03 22.01

B -0.31 4.74 4.74 4.51 4.13 4.75 3.89 3.89 3.89 4.05 3.84 3.80

C 10.13 10.37 10.37 10.09 9.64 10.39 9.26 9.26 9.26 9.57 9.22 9.19

D 2.44 0.44 0.44 0.16 -0.29 0.24 0.15 0.15 0.15 -0.59 0.09 -0.19

Δz at 
point 
23 

E 3.07 6.34 6.34 4.21 3.00 5.69 3.96 3.96 3.96 3.14 4.21 4.36

A 20.79 23.24 23.24 22.94 22.46 23.26 21.97 21.97 21.97 22.50 22.04 22.01

B 27.57 27.74 27.74 27.49 27.11 27.75 26.72 26.72 26.72 27.27 26.91 26.89

C 31.32 32.60 32.60 32.30 31.85 32.62 31.34 31.34 31.34 31.99 31.50 31.48

D 0.27 0.45 0.45 0.17 -0.27 0.25 0.16 0.16 0.16 -0.56 0.11 -0.17

Δz at 
point 
33 

E 4.65 6.61 6.61 4.48 3.28 5.96 4.23 4.23 4.23 3.40 4.47 4.62

A 21.12 22.75 22.75 22.76 22.62 22.72 21.91 21.91 21.91 22.64 21.94 21.96

B -27.33 -32.92 -32.92 -32.87 -32.96 -32.94 -33.14 -33.14 -33.14 -33.49 -33.65 -33.67

C -23.80 -25.62 -25.62 -25.58 -25.69 -25.65 -26.07 -26.07 -26.07 -26.14 -26.50 -26.51

D 2.46 0.43 0.43 0.29 0.73 0.72 0.21 0.21 0.21 0.67 -0.04 0.58

Δz at 
point 
15 

E -8.39 -8.76 -8.76 -6.79 -6.09 -7.80 -6.44 -6.44 -6.44 -6.08 -6.48 -6.67

A 18.56 20.55 20.55 20.56 20.43 20.52 19.69 19.69 19.69 20.44 19.72 19.74

B 0.88 3.51 3.51 3.53 3.43 3.49 2.97 2.97 2.97 3.34 2.90 2.90

C 5.93 8.47 8.47 8.49 8.36 8.44 7.74 7.74 7.74 8.29 7.67 7.68

D 0.88 0.49 0.49 0.35 0.79 0.79 0.26 0.26 0.26 0.74 0.03 0.66

Δz at 
point 
25 

E -5.07 -8.66 -8.66 -6.68 -5.98 -7.70 -6.32 -6.32 -6.32 -5.98 -6.38 -6.57

A 18.69 20.56 20.56 20.57 20.43 20.53 19.69 19.69 19.69 20.45 19.73 19.74Δz at 
point 
35 B 24.34 26.30 26.30 26.31 26.20 26.28 25.59 25.59 25.59 26.36 25.76 25.77
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C 26.92 30.19 30.19 30.19 30.06 30.16 29.31 29.31 29.31 30.19 29.45 29.47

D 0.09 0.50 0.50 0.35 0.80 0.80 0.27 0.27 0.27 0.77 0.05 0.68

E -8.43 -8.46 -8.46 -6.47 -5.77 -7.49 -6.12 -6.12 -6.12 -5.79 -6.18 -6.38

A 1.66 4.00 4.00 4.34 4.64 3.93 4.13 4.13 4.13 4.66 4.14 4.18

B -1.09 -2.95 -2.95 -2.66 -2.41 -3.00 -2.81 -2.81 -2.81 -2.49 -2.89 -2.86

C -1.04 -2.78 -2.78 -2.44 -2.15 -2.85 -2.60 -2.60 -2.60 -2.23 -2.68 -2.64

D -1.15 -0.29 -0.29 -0.16 1.01 0.39 -0.25 -0.25 -0.25 1.11 -0.70 0.53

Δz at 
point 
26 

E -12.87 -17.12 -17.12 -11.71 -9.31 -14.90 -11.09 -11.09 -11.09 -9.38 -11.38 -11.84

A 3.33 4.01 4.01 4.35 4.66 3.94 4.13 4.13 4.13 4.67 4.15 4.19

B 12.34 14.50 14.50 14.78 15.02 14.46 14.48 14.48 14.48 15.20 14.65 14.69

C 9.96 11.87 11.87 12.19 12.47 11.80 11.90 11.90 11.90 12.61 12.03 12.08

D -0.24 -0.29 -0.29 -0.16 1.02 0.40 -0.24 -0.24 -0.24 1.12 -0.68 0.54

Δz at 
point 
36 

E -13.01 -16.98 -16.98 -11.57 -9.16 -14.76 -10.96 -10.96 -10.96 -9.25 -11.25 -11.71

A 3.97 5.04 5.04 5.39 5.69 4.97 5.15 5.15 5.15 5.71 5.18 5.21

B 40.62 47.51 47.51 47.77 47.99 47.46 47.20 47.20 47.20 48.63 47.82 47.88

C 33.06 39.40 39.40 39.70 39.98 39.34 39.18 39.18 39.18 40.50 39.70 39.76

D -0.70 -0.29 -0.29 -0.16 1.01 0.39 -0.25 -0.25 -0.25 1.12 -0.68 0.54

Δz at 
point 
46 

E -12.21 -16.54 -16.54 -11.14 -8.74 -14.32 -10.54 -10.54 -10.54 -8.84 -10.83 -11.30

A -2.40 -3.55 -3.55 -3.00 -2.38 -3.63 -2.85 -2.85 -2.85 -2.34 -2.80 -2.77

B -19.50 -22.66 -22.66 -22.18 -21.67 -22.72 -21.82 -21.82 -21.82 -22.30 -22.46 -22.45

C -17.53 -21.20 -21.20 -20.64 -20.04 -21.27 -20.26 -20.26 -20.26 -20.59 -20.80 -20.79

D -2.37 -1.41 -1.41 -1.01 0.44 -0.59 -1.03 -1.03 -1.03 0.51 -1.65 -0.35

Δz at 
point 
17 

E -11.47 -16.59 -16.59 -9.86 -6.69 -13.97 -9.42 -9.42 -9.42 -6.76 -9.76 -10.31

A -3.46 -4.16 -4.16 -3.61 -2.98 -4.24 -3.42 -3.42 -3.42 -2.94 -3.39 -3.35

B -5.12 -6.46 -6.46 -6.00 -5.49 -6.52 -5.86 -5.86 -5.86 -5.60 -5.98 -5.94

C -6.79 -7.51 -7.51 -6.97 -6.38 -7.59 -6.76 -6.76 -6.76 -6.48 -6.87 -6.83

D -1.49 -1.40 -1.40 -1.01 0.46 -0.58 -1.03 -1.03 -1.03 0.54 -1.65 -0.33

Δz at 
point 
27 

E -12.29 -16.64 -16.64 -9.86 -6.64 -13.99 -9.41 -9.41 -9.41 -6.71 -9.77 -10.31

A -3.35 -4.15 -4.15 -3.60 -2.97 -4.23 -3.41 -3.41 -3.41 -2.93 -3.38 -3.34Δz at 
point 
37 B 3.44 2.87 2.87 3.31 3.81 2.81 3.32 3.32 3.32 4.09 3.58 3.63
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C 0.66 0.27 0.27 0.80 1.39 0.20 0.90 0.90 0.90 1.60 1.10 1.15

D -2.19 -1.40 -1.40 -1.00 0.47 -0.57 -1.02 -1.02 -1.02 0.55 -1.64 -0.32

E -12.11 -16.56 -16.56 -9.78 -6.56 -13.92 -9.33 -9.33 -9.33 -6.63 -9.69 -10.24

 

Table F.26 Displacement, absolute error in the carriageway 

  Absolute Error [mm]       

   |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

A 2.39 2.39 2.09 1.61 2.41 1.16 1.16 1.16 1.64 1.22 1.20

B 5.71 5.71 5.91 6.27 5.69 6.23 6.23 6.23 6.80 6.72 6.78

C 3.34 3.34 3.60 4.04 3.33 4.17 4.17 4.17 4.48 4.57 4.62

D 1.28 1.28 1.55 1.99 1.48 1.56 1.56 1.56 2.32 1.65 1.94

Δz at 
point 
13 

E 1.84 1.84 0.29 1.50 1.19 0.55 0.55 0.55 1.33 0.26 0.12

A 3.11 3.11 2.80 2.32 3.13 1.84 1.84 1.84 2.36 1.90 1.88

B 5.04 5.04 4.81 4.44 5.06 4.20 4.20 4.20 4.35 4.14 4.11

C 0.24 0.24 0.04 0.49 0.26 0.87 0.87 0.87 0.56 0.91 0.94

D 2.00 2.00 2.29 2.73 2.21 2.30 2.30 2.30 3.03 2.36 2.64

Δz at 
point 
23 

E 3.27 3.27 1.14 0.06 2.63 0.89 0.89 0.89 0.08 1.14 1.29

A 2.45 2.45 2.15 1.67 2.47 1.18 1.18 1.18 1.71 1.25 1.22

B 0.17 0.17 0.08 0.46 0.18 0.85 0.85 0.85 0.30 0.67 0.69

C 1.28 1.28 0.99 0.53 1.30 0.02 0.02 0.02 0.67 0.19 0.16

D 0.18 0.18 0.10 0.55 0.02 0.12 0.12 0.12 0.84 0.16 0.44

Δz at 
point 
33 

E 1.97 1.97 0.16 1.37 1.32 0.41 0.41 0.41 1.24 0.18 0.03

A 1.63 1.63 1.63 1.50 1.60 0.79 0.79 0.79 1.51 0.82 0.83

B 5.59 5.59 5.54 5.63 5.61 5.81 5.81 5.81 6.16 6.32 6.34

C 1.82 1.82 1.79 1.90 1.85 2.28 2.28 2.28 2.35 2.71 2.72

D 2.03 2.03 2.16 1.73 1.73 2.25 2.25 2.25 1.79 2.50 1.88

Δz at 
point 
15 

E 0.36 0.36 1.61 2.30 0.59 1.95 1.95 1.95 2.32 1.91 1.72

A 2.00 2.00 2.00 1.87 1.97 1.13 1.13 1.13 1.89 1.16 1.18Δz at 
point 
25 B 2.63 2.63 2.65 2.55 2.61 2.10 2.10 2.10 2.47 2.02 2.02
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C 2.54 2.54 2.55 2.43 2.51 1.80 1.80 1.80 2.35 1.74 1.75

D 0.39 0.39 0.54 0.10 0.09 0.62 0.62 0.62 0.14 0.85 0.22

E 3.59 3.59 1.61 0.91 2.62 1.25 1.25 1.25 0.91 1.31 1.50

A 1.86 1.86 1.87 1.74 1.83 1.00 1.00 1.00 1.76 1.03 1.05

B 1.96 1.96 1.96 1.86 1.94 1.25 1.25 1.25 2.01 1.42 1.43

C 3.28 3.28 3.28 3.15 3.25 2.39 2.39 2.39 3.28 2.53 2.55

D 0.41 0.41 0.27 0.71 0.71 0.18 0.18 0.18 0.68 0.04 0.59

Δz at 
point 
35 

E 0.03 0.03 1.95 2.66 0.93 2.31 2.31 2.31 2.64 2.24 2.04

A 2.34 2.34 2.68 2.99 2.27 2.47 2.47 2.47 3.00 2.48 2.52

B 1.86 1.86 1.57 1.32 1.91 1.72 1.72 1.72 1.39 1.80 1.77

C 1.74 1.74 1.40 1.11 1.80 1.56 1.56 1.56 1.19 1.64 1.60

D 0.86 0.86 0.99 2.16 1.55 0.91 0.91 0.91 2.26 0.45 1.68

Δz at 
point 
26 

E 4.25 4.25 1.17 3.57 2.02 1.78 1.78 1.78 3.49 1.49 1.03

A 0.68 0.68 1.03 1.33 0.61 0.81 0.81 0.81 1.35 0.83 0.87

B 2.17 2.17 2.45 2.69 2.12 2.15 2.15 2.15 2.86 2.31 2.35

C 1.91 1.91 2.23 2.52 1.84 1.94 1.94 1.94 2.65 2.08 2.12

D 0.04 0.04 0.09 1.26 0.64 0.00 0.00 0.00 1.36 0.44 0.78

Δz at 
point 
36 

E 3.97 3.97 1.44 3.85 1.75 2.06 2.06 2.06 3.76 1.77 1.30

A 1.07 1.07 1.42 1.72 1.01 1.19 1.19 1.19 1.74 1.21 1.25

B 6.89 6.89 7.15 7.37 6.84 6.58 6.58 6.58 8.01 7.20 7.26

C 6.34 6.34 6.64 6.91 6.27 6.12 6.12 6.12 7.44 6.63 6.69

D 0.40 0.40 0.53 1.70 1.09 0.45 0.45 0.45 1.82 0.02 1.24

Δz at 
point 
46 

E 4.33 4.33 1.07 3.47 2.11 1.67 1.67 1.67 3.38 1.38 0.91

A 1.15 1.15 0.60 0.02 1.23 0.45 0.45 0.45 0.06 0.41 0.37

B 3.17 3.17 2.68 2.17 3.22 2.33 2.33 2.33 2.81 2.96 2.95

C 3.67 3.67 3.11 2.51 3.74 2.72 2.72 2.72 3.06 3.27 3.26

D 0.96 0.96 1.35 2.81 1.78 1.34 1.34 1.34 2.87 0.72 2.02

Δz at 
point 
17 

E 5.12 5.12 1.60 4.78 2.50 2.05 2.05 2.05 4.71 1.71 1.16

A 0.70 0.70 0.15 0.48 0.78 0.04 0.04 0.04 0.52 0.07 0.11Δz at 
point 
27 B 1.34 1.34 0.88 0.38 1.40 0.74 0.74 0.74 0.48 0.86 0.82
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C 0.72 0.72 0.19 0.41 0.80 0.03 0.03 0.03 0.31 0.08 0.04

D 0.09 0.09 0.48 1.96 0.92 0.47 0.47 0.47 2.03 0.16 1.16

E 4.34 4.34 2.43 5.65 1.70 2.89 2.89 2.89 5.58 2.52 1.98

A 0.80 0.80 0.24 0.38 0.88 0.06 0.06 0.06 0.42 0.02 0.02

B 0.57 0.57 0.13 0.37 0.63 0.12 0.12 0.12 0.64 0.13 0.19

C 0.39 0.39 0.13 0.73 0.47 0.24 0.24 0.24 0.94 0.44 0.49

D 0.80 0.80 1.19 2.66 1.62 1.17 1.17 1.17 2.74 0.55 1.87

Δz at 
point 
37 

E 4.46 4.46 2.33 5.54 1.81 2.78 2.78 2.78 5.48 2.42 1.87
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Table F.27 Displacement, relative error in the carriageway 

 

 Relative Error                    

 

 |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

 

  max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) 

A 5.9% 5.9% 5.1% 4.0% 5.9% 2.9% 2.9% 2.9% 4.0% 3.0% 2.9%

B 14.1% 14.1% 14.6% 15.4% 14.0% 15.3% 15.3% 15.3% 16.7% 16.5% 16.7%

C 8.2% 8.2% 8.9% 9.9% 8.2% 10.3% 10.3% 10.3% 11.0% 11.2% 11.4%

D 3.2% 3.2% 3.8% 4.9% 3.7% 3.8% 3.8% 3.8% 5.7% 4.1% 4.8%

Δz at 
point 
13 

E 4.5% 4.5% 0.7% 3.7% 2.9% 1.3% 1.3% 1.3% 3.3% 0.7% 0.3%

A 7.6% 7.6% 6.9% 5.7% 7.7% 4.5% 4.5% 4.5% 5.8% 4.7% 4.6%

B 12.4% 12.4% 11.8% 10.9% 12.5% 10.3% 10.3% 10.3% 10.7% 10.2% 10.1%

C 0.6% 0.6% 0.1% 1.2% 0.6% 2.1% 2.1% 2.1% 1.4% 2.2% 2.3%

D 4.9% 4.9% 5.6% 6.7% 5.4% 5.7% 5.7% 5.7% 7.5% 5.8% 6.5%

Δz at 
point 
23 

E 8.1% 8.1% 2.8% 0.2% 6.5% 2.2% 2.2% 2.2% 0.2% 2.8% 3.2%

A 6.0% 6.0% 5.3% 4.1% 6.1% 2.9% 2.9% 2.9% 4.2% 3.1% 3.0%

B 0.4% 0.4% 0.2% 1.1% 0.5% 2.1% 2.1% 2.1% 0.7% 1.6% 1.7%

C 3.2% 3.2% 2.4% 1.3% 3.2% 0.1% 0.1% 0.1% 1.7% 0.5% 0.4%

D 0.4% 0.4% 0.3% 1.3% 0.1% 0.3% 0.3% 0.3% 2.1% 0.4% 1.1%

Δz at 
point 
33 

E 4.8% 4.8% 0.4% 3.4% 3.2% 1.0% 1.0% 1.0% 3.1% 0.4% 0.1%

A 4.0% 4.0% 4.0% 3.7% 3.9% 1.9% 1.9% 1.9% 3.7% 2.0% 2.1%

B 13.8% 13.8% 13.6% 13.9% 13.8% 14.3% 14.3% 14.3% 15.2% 15.6% 15.6%

C 4.5% 4.5% 4.4% 4.7% 4.6% 5.6% 5.6% 5.6% 5.8% 6.7% 6.7%

D 5.0% 5.0% 5.3% 4.3% 4.3% 5.5% 5.5% 5.5% 4.4% 6.2% 4.6%

Δz at 
point 
15 

E 0.9% 0.9% 4.0% 5.7% 1.5% 4.8% 4.8% 4.8% 5.7% 4.7% 4.2%

A 4.9% 4.9% 4.9% 4.6% 4.8% 2.8% 2.8% 2.8% 4.7% 2.9% 2.9%

B 6.5% 6.5% 6.5% 6.3% 6.4% 5.2% 5.2% 5.2% 6.1% 5.0% 5.0%

C 6.2% 6.2% 6.3% 6.0% 6.2% 4.4% 4.4% 4.4% 5.8% 4.3% 4.3%

Δz at 
point 
25 

D 1.0% 1.0% 1.3% 0.2% 0.2% 1.5% 1.5% 1.5% 0.3% 2.1% 0.5%



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:130 200 

E 8.8% 8.8% 4.0% 2.2% 6.5% 3.1% 3.1% 3.1% 2.2% 3.2% 3.7%

A 4.6% 4.6% 4.6% 4.3% 4.5% 2.5% 2.5% 2.5% 4.3% 2.5% 2.6%

B 4.8% 4.8% 4.8% 4.6% 4.8% 3.1% 3.1% 3.1% 5.0% 3.5% 3.5%

C 8.1% 8.1% 8.1% 7.7% 8.0% 5.9% 5.9% 5.9% 8.1% 6.2% 6.3%

D 1.0% 1.0% 0.7% 1.7% 1.7% 0.4% 0.4% 0.4% 1.7% 0.1% 1.5%

Δz at 
point 
35 

E 0.1% 0.1% 4.8% 6.5% 2.3% 5.7% 5.7% 5.7% 6.5% 5.5% 5.0%

A 5.8% 5.8% 6.6% 7.3% 5.6% 6.1% 6.1% 6.1% 7.4% 6.1% 6.2%

B 4.6% 4.6% 3.9% 3.2% 4.7% 4.2% 4.2% 4.2% 3.4% 4.4% 4.4%

C 4.3% 4.3% 3.5% 2.7% 4.4% 3.8% 3.8% 3.8% 2.9% 4.0% 3.9%

D 2.1% 2.1% 2.4% 5.3% 3.8% 2.2% 2.2% 2.2% 5.6% 1.1% 4.1%

Δz at 
point 
26 

E 10.5% 10.5% 2.9% 8.8% 5.0% 4.4% 4.4% 4.4% 8.6% 3.7% 2.5%

A 1.7% 1.7% 2.5% 3.3% 1.5% 2.0% 2.0% 2.0% 3.3% 2.0% 2.1%

B 5.3% 5.3% 6.0% 6.6% 5.2% 5.3% 5.3% 5.3% 7.0% 5.7% 5.8%

C 4.7% 4.7% 5.5% 6.2% 4.5% 4.8% 4.8% 4.8% 6.5% 5.1% 5.2%

D 0.1% 0.1% 0.2% 3.1% 1.6% 0.0% 0.0% 0.0% 3.4% 1.1% 1.9%

Δz at 
point 
36 

E 9.8% 9.8% 3.6% 9.5% 4.3% 5.1% 5.1% 5.1% 9.3% 4.3% 3.2%

A 2.6% 2.6% 3.5% 4.2% 2.5% 2.9% 2.9% 2.9% 4.3% 3.0% 3.1%

B 17.0% 17.0% 17.6% 18.1% 16.8% 16.2% 16.2% 16.2% 19.7% 17.7% 17.9%

C 15.6% 15.6% 16.4% 17.0% 15.4% 15.1% 15.1% 15.1% 18.3% 16.3% 16.5%

D 1.0% 1.0% 1.3% 4.2% 2.7% 1.1% 1.1% 1.1% 4.5% 0.0% 3.0%

Δz at 
point 
46 

E 10.7% 10.7% 2.6% 8.5% 5.2% 4.1% 4.1% 4.1% 8.3% 3.4% 2.2%

A 2.8% 2.8% 1.5% 0.0% 3.0% 1.1% 1.1% 1.1% 0.2% 1.0% 0.9%

B 7.8% 7.8% 6.6% 5.4% 7.9% 5.7% 5.7% 5.7% 6.9% 7.3% 7.3%

C 9.0% 9.0% 7.7% 6.2% 9.2% 6.7% 6.7% 6.7% 7.5% 8.1% 8.0%

D 2.4% 2.4% 3.3% 6.9% 4.4% 3.3% 3.3% 3.3% 7.1% 1.8% 5.0%

Δz at 
point 
17 

E 12.6% 12.6% 3.9% 11.8% 6.2% 5.0% 5.0% 5.0% 11.6% 4.2% 2.9%

A 1.7% 1.7% 0.4% 1.2% 1.9% 0.1% 0.1% 0.1% 1.3% 0.2% 0.3%

B 3.3% 3.3% 2.2% 0.9% 3.4% 1.8% 1.8% 1.8% 1.2% 2.1% 2.0%

C 1.8% 1.8% 0.5% 1.0% 2.0% 0.1% 0.1% 0.1% 0.8% 0.2% 0.1%

Δz at 
point 
27 

D 0.2% 0.2% 1.2% 4.8% 2.3% 1.1% 1.1% 1.1% 5.0% 0.4% 2.9%
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E 10.7% 10.7% 6.0% 13.9% 4.2% 7.1% 7.1% 7.1% 13.7% 6.2% 4.9%

A 2.0% 2.0% 0.6% 0.9% 2.2% 0.1% 0.1% 0.1% 1.0% 0.1% 0.0%

B 1.4% 1.4% 0.3% 0.9% 1.6% 0.3% 0.3% 0.3% 1.6% 0.3% 0.5%

C 1.0% 1.0% 0.3% 1.8% 1.1% 0.6% 0.6% 0.6% 2.3% 1.1% 1.2%

D 2.0% 2.0% 2.9% 6.6% 4.0% 2.9% 2.9% 2.9% 6.7% 1.3% 4.6%

Δz at 
point 
37 

E 11.0% 11.0% 5.7% 13.6% 4.5% 6.8% 6.8% 6.8% 13.5% 5.9% 4.6%

 

F.4 Hanger loads  

Table F.28 Hanger loads  

  
Hanger load 
[kN]                     

    zm z0 z1A z1B z1C z1D z2 z3 z4 z5 z6 z7 

A 95.9 95.6 95.6 96.2 96.6 95.5 87.5 87.5 87.5 101.5 91.9 91.5

B 259.5 267.5 267.5 268.0 268.4 267.5 263.8 263.8 263.8 281.3 276.3 276.2

C 216.5 222.8 222.8 223.4 223.8 222.7 216.6 216.6 216.6 234.7 227.1 226.8

D -21.5 -23.7 -23.7 -21.5 -20.1 -22.9 -22.4 -22.4 -22.4 -90.4 -99.3 -105.0

Hanger 
1E 

E 288.8 297.8 297.8 302.8 305.8 300.2 310.8 310.8 310.8 328.2 327.5 330.6

A 96.7 95.2 95.2 95.7 96.2 95.1 87.1 87.1 87.1 100.9 91.4 91.0

B -21.7 -34.6 -34.6 -34.2 -33.8 -34.7 -41.2 -41.2 -41.2 -35.9 -43.7 -43.9

C -14.2 -25.9 -25.9 -25.4 -24.9 -26.0 -34.5 -34.5 -34.5 -26.6 -36.7 -37.1

D -22.4 -23.5 -23.5 -21.3 -19.9 -22.6 -22.1 -22.1 -22.1 -91.5 -100.3 -106.1

Hanger 
1W 

E 281.8 289.4 289.4 294.3 297.3 291.8 302.3 302.3 302.3 321.2 320.5 323.4

 

Table F.29 Hanger loads, absolute error 

  Absolute Error [kN]                 

    |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

A 0.3 0.3 0.3 0.7 0.4 8.4 8.4 8.4 5.6 4.0 4.4

B 8.0 8.0 8.5 8.8 7.9 4.3 4.3 4.3 21.7 16.8 16.6

Hanger 
1E 

C 6.3 6.3 6.9 7.3 6.3 0.2 0.2 0.2 18.3 10.7 10.3
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D 2.3 2.3 0.1 1.4 1.4 0.9 0.9 0.9 69.0 77.8 83.6

E 9.1 9.1 14.0 17.1 11.5 22.0 22.0 22.0 39.4 38.7 41.8

A 1.5 1.5 0.9 0.5 1.6 9.6 9.6 9.6 4.2 5.3 5.7

B 12.9 12.9 12.5 12.1 13.0 19.5 19.5 19.5 14.2 22.0 22.2

C 11.7 11.7 11.1 10.7 11.8 20.3 20.3 20.3 12.4 22.5 22.9

D 1.1 1.1 1.1 2.5 0.3 0.2 0.2 0.2 69.2 77.9 83.8

Hanger 
1W 

E 7.7 7.7 12.6 15.6 10.0 20.5 20.5 20.5 39.5 38.7 41.7

Table F.30 Hanger loads, relative error 

  Relative Error                    

  |zm-z0| |zm-z1A| |zm-z1B| |zm-z1C| |zm-z1D| |zm-z2| |zm-z3| |zm-z4| |zm-z5| |zm-z6| |zm-z7| 

    max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) max(zm) 

A 0.1% 0.1% 0.1% 0.3% 0.1% 2.9% 2.9% 2.9% 1.9% 1.4% 1.5%

B 2.8% 2.8% 2.9% 3.1% 2.7% 1.5% 1.5% 1.5% 7.5% 5.8% 5.8%

C 2.2% 2.2% 2.4% 2.5% 2.2% 0.1% 0.1% 0.1% 6.3% 3.7% 3.6%

D 0.8% 0.8% 0.0% 0.5% 0.5% 0.3% 0.3% 0.3% 23.9% 27.0% 28.9%

Hanger 
1E 

E 3.1% 3.1% 4.9% 5.9% 4.0% 7.6% 7.6% 7.6% 13.6% 13.4% 14.5%

A 0.5% 0.5% 0.3% 0.2% 0.6% 3.3% 3.3% 3.3% 1.5% 1.8% 2.0%

B 4.5% 4.5% 4.3% 4.2% 4.5% 6.7% 6.7% 6.7% 4.9% 7.6% 7.7%

C 4.0% 4.0% 3.9% 3.7% 4.1% 7.0% 7.0% 7.0% 4.3% 7.8% 7.9%

D 0.4% 0.4% 0.4% 0.9% 0.1% 0.1% 0.1% 0.1% 23.9% 27.0% 29.0%

Hanger 
1W 

E 2.7% 2.7% 4.4% 5.4% 3.5% 7.1% 7.1% 7.1% 13.7% 13.4% 14.4%
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Appendix G.  FE Updating Results for the New 
Svinesund Bridge 

G.1 Model 7 optimized for frequencies 
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Figure G.1  Convergence of frequency optimization, also showing behaviour of the 
objective function for the entire response. 
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Figure G.2 Convergence of frequency optimization with regularization, also 
showing behaviour of the regularized objective function for the entire 
response. 
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Model 0:
y = 0.9125x
R2 = 0.6983

Model 7: Initial
y = 1.008x
R2 = 0.9982
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Figure G.3 Eigenfrequencies from Model 0 and Model 7 before optimization 
compared with measured frequencies. 

G.2 Model 7 optimized for strains 
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Figure G.4 Convergence of strain optimization, also showing behaviour of the 
objective function for the entire response. 
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Normalized Strains, at the Top of the Arch-sections
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Figure G.5 Normalized strain for strain gauges located in the top of the arch 
sections from Model 0 and Model 7 after strain optimization compared 
with measured strains. 

Normalized Strains, at the Bottom of the Arch-sections
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Figure G.6 Normalized strain for strain gauges located in the bottom of the arch 
sections from Model 0 and Model 7 after strain optimization compared 
with measured strains. 
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Normalized Strains, Eastern-side of the Arch-sections

Model 0:
y = 1.0333x
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Figure G.7 Normalized strain for strain gauges located in the Eastern side of the 
arch sections from Model 0 and Model 7 after strain optimization 
compared with measured strains. 
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Figure G.8 Normalized strain for strain gauges located in the Western side of the 
arch sections from Model 0 and Model 7 after strain optimization 
compared with measured strains. 
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Figure G.9 Measured strain compared with optimized strains from FE model 7 
optimized for strains in top sections of arch. 
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Measured strain
Model 7: Strain Optimized

 

Figure G.10 Measured strain compared with optimized strains from FE model 7 
optimized for strains in bottom sections of arch. 
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Measured strain
Model 7: Strain Optimized

 

Figure G.11 Measured strain compared with optimized strains from FE model 7 
optimized for strains in East sections of arch. 
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Figure G.12 Measured strain compared with optimized strains from FE model 7 
optimized for strains in West sections of arch. 
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G.3 Model 7 optimized for displacements 
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Figure G.13 Convergence of displacement optimization, also showing behaviour of 
the objective function for the entire response. 
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Figure G.14 Normalized longitudinal displacement from Model 0 and Model 7 after 
displacement optimization compared with measured displacement. 
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Model 0
y = 0.931x
R2 = 0.9825

Model 7: Optimized
y = 0.9215x
R2 = 0.9787

0.00

0.10

0.20

0.30

0.40

0.50

0.00 0.10 0.20 0.30 0.40 0.50
Normalized Measured Displacement 

N
or

m
al

iz
ed

 C
al

cu
la

te
d 

D
is

pl
ac

em
en

t, 
FE

M

Model 0 Model 7: Optimized
Linear (Model 0) Linear (Model 7: Optimized)  

Figure G.15 Normalized transversal displacement of arch from Model 0 and Model 
7 after displacement optimization compared with measured 
displacement. 
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Figure G.16 Normalized vertical displacement of arch from Model 0 and Model 7 
after displacement optimization compared with measured displacement. 
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G.4 Model 7 optimized for hanger loads 
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Figure G.17 Convergence of hanger load optimization, also showing reduced 
accuracy for the entire response. 

G.5 Model 7 optimized for entire response 
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Figure G.18 Normalized response from Model 0 and Model 7 after optimization 
compared with normalized measured response. 
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G.6 Model 7 optimized for entire response with 
regularization 

Optimized Response with Regularization
Normalized Frequencies, Strains, Displacements, Hanger Loads
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Figure G.19 Normalized response from Model 0 and Model 7 after optimization with 
regularization compared with normalized measured response. 
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G.7 FE model updating results summary 

Table G.1 Initial normalized updating parameters for manually refined FE model 
to be used for updating. 

   

 θ  Φ  

Model 7: Initial
(Refined Manually)

 

Arch Base Stiffness, Ec 39.8 GPa 1φ  1.062 

Arch Crown Stiffness, Ec 44.6 GPa 2φ  1.19 

3924 kg 
Asphalt mass, Masph 

1962 kg 
3φ  0.95 

Asphalt elastic modulus, Easph 210 GPa 4φ  1.6 

Abutment bearing static friction, Fs,abut 60 kN 5φ  0.2 

Pier bearing static friction, Fs,pier 16 kN 6φ  0.2 

Carriageway longitudinal stiffener area, Astiff 0 m2 7φ  0 

Carriageway steel elastic modulus, Esteel 210 GPa 8φ  1 

Table G.2 Normalized updating parameters from optimization analyses of FE 
model 7. 

Model 7: Optimized  

σ Πf  
mz zΣ Πε  

mz zΣ Πu  σ ΠF  
2

σ σΠ + Πz Φ

 σ Πz  Φσ  

1.208 0.769 --- 1.015 1.062 1.145 0.15 

1.010 1.231 --- 1.054 1.133 1.032 0.15 

0.896 --- --- --- 0.965 1.017 1.00 

1.596 --- --- --- 1.576 1.410 1000 

--- 0.001 0.001 0.216 0.207 0.204 1000 

--- 0.556 0.782 0.200 0.204 0.211 1000 

0.000 --- --- 0.000 0.000 0.000 0.50 

0.957 --- 1.175 1.105 1.015 1.108 0.10 
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Table G.3 Mean deviation of response from optimization analyses of FE model 7. 

   Model 7: Optimized 

 Model 0  Model 7:
Initial

 σ Πf  
mz zΣ Πε

mz zΣ Πu
σ ΠF  

2
σ σΠ + Πz Φ

 σ Πz  

2
σ σΠ + Πz Φ

 
1.84 0.43 0.57 1.40 0.96 0.75 0.37 0.44

σ Πz  3.69 0.86 0.71 2.24 1.34 1.13 0.67 0.54

σ Πf  13.39 1.81 0.98 7.40 4.54 3.76 1.25 1.38

σ Πε  0.20 0.23 0.27 0.18 0.23 0.22 0.23 0.25

σ Πu  0.70 0.59 0.72 0.64 0.35 0.50 0.59 0.48

σ ΠF  0.46 0.80 0.84 0.74 0.26 0.06 0.61 0.06

 

Table G.4 Mean error of response from optimization analyses of FE model 7. 

   Model 7: Optimized 

 Model 0 Model 7:
Initial

 σ Πf  
mz zΣ Πε

mz zΣ Πu
σ ΠF  

2
σ σΠ + Πz Φ

 σ Πz  

mz zΣ Πz  
14.5% 12.2% 13.9% 11.3% 9.2% 9.7% 11.7% 10.0%

mz zΣ Πf  
11.9% 1.1% 0.4% 2.9% 2.8% 1.8% 0.9% 1.0%

mz zΣ Πε  
18.4% 20.6% 23.7% 15.9% 20.7% 19.3% 20.5% 21.9%

mz zΣ Πu  
23.1% 19.0% 22.9% 18.8% 10.7% 17.3% 19.1% 16.4%

mz zΣ ΠF  
4.6% 8.2% 8.6% 7.6% 2.4% 0.5% 6.3% 0.6%
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Appendix H. Subroutines for FE Model Updating for 
the New Svinesund Bridge 

H.1 MATLAB CODE – zSB 
function z=zSB(phi) 
% z=SBresponce(phi) 
% 2007-09-17 
% David Johnson and Fredrik Jonsson 
% ------------------------------------------------------------------------ 
% Purpose: 
%                 -Delete files made in the previous iteration step 
%                 -Execute ABAQUS, calculate the new target responses 
%                 -Execute the post processing program (reads the requested 
%                    output data from ABAQUS results record) 
%                 -Read in post processed data in matrices 
% 
% Files: 
%                 file1 ---- SBfreq.dat (data file first ABAQUS run) 
%                 file2 ---- SBfreq.fre (eigen frequencies first ABAQUS 
%                                        run) 
%                 file3 ---- SBstatic.dat (data file second ABAQUS run) 
%                 file4 ---- SBstatic.str (strains second ABAQUS run) 
%                 file5 ---- SBstatic.dis (displacements second ABAQUS run) 
% 
% Input: 
%                 - The updated material parameters 
% Function calls: 
%                 rmOLDfile --- removes old files so that they don't 
%                               collaborate in the new iteration step 
%                 update    --- writes the updated parameters in to the 
%                               input file for ABAQUS 
% Output:         - The calculated responses 
%======================================================================= 
%--initialize theta0-- 
% load theta0 
%--initialize filename-- 
fn1='SBfreq'; 
fn2='SBstat'; 
disp('        << zSB >>') 
%--Delete old eigen value files-- 
rmOLDfile(fn1); 
 
%--update input file for ABAQUS-- 
SBphi(phi); 
 
%--execute ABAQUS for frequency responce-- 
unix(['abaqus input=',fn1,'.inp job=',fn1]); 
 
%--initialize files--- 
file1=[fn1,'.dat']; 
file2=[fn1,'.fre']; 
% --searh for ANALYSIS COMPLETE, to know when SBfreq.dat is written-- 
len=0; 
while len <= 0; 
    fp1 = fopen(file1,'r'); 
    if fp1>=0 
        [text,count]=fscanf(fp1,'%c',inf); 
        position=findstr(text,'ANALYSIS COMPLETE'); 
        len=length(position); 
    end 
end 
 
%--close file-- 
fclose(fp1); 
disp('                                ') 
disp('        << ABAQUS RUN COMPLETE >>') 
disp('                                ') 
% 
% %--execute post processing progam.exe-- 
 unix(['abaqus SBfreq']); 
% 
%--search for EOF (end of file), in order to know when result file is done-- 
len=0; 
while len <= 0; 
    fp2=fopen(file2,'r'); 
    if fp2 >= 0 
        [text,count] = fscanf(fp2,'%c',inf); 
        position = findstr(text,'EOF'); 
        len = length(position); 
    end 
end 
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% %--close the file-- 
fclose(fp2); 
 
% %--EIGEN VALUES-- 
fp3 = fopen(file2,'r');              % open Eigen value file 
[EIGFREQ,count]=... 
    fscanf(fp3,'%e',[1,inf]);        % read in Eigen values to MATLAB [Hz] 
EIGFREQ=EIGFREQ'; 
fclose(fp3);                         % closing the eigenfrequencie file 
FREQ=[EIGFREQ(1:4)]; 
%--Delete old static files-- 
rmOLDfile(fn2); 
 
%--update input file for ABAQUS-- 
% new function to be written 
 
%--execute ABAQUS for static responce-- 
unix(['abaqus input=',fn2,'.inp job=',fn2]); 
 
%--initialize files--- 
file3=[fn2,'.dat']; 
file4=[fn2,'.str']; 
file5=[fn2,'.dis']; 
file6=[fn2,'.sfo']; 
 
% --searh for ANALYSIS COMPLETE, to know when SBstatic.dat is written-- 
len=0; 
while len <= 0; 
    fp4 = fopen(file3,'r'); 
    if fp4>=0 
        [text,count]=fscanf(fp4,'%c',inf); 
        position=findstr(text,'ANALYSIS COMPLETE'); 
        len=length(position); 
    end 
end 
%--close file-- 
fclose(fp4); 
disp('                                ') 
disp('        << ABAQUS RUN COMPLETE >>') 
disp('                                ') 
 
% %--execute post processing progam.exe-- 
 unix(['abaqus SBstat']); 
 
%--search for EOF (end of file), in order to know when result file is done-- 
len=0; 
while len <= 0; 
    fp5=fopen(file6,'r'); 
    if fp5 >= 0 
        [text,count] = fscanf(fp5,'%c',inf); 
        position = findstr(text,'EOF'); 
        len = length(position); 
    end 
end 
%--close file-- 
fclose(fp5); 
 
%--STRAINS-- 
fp6 = fopen(file4,'r');       % open strain file 
[E11,count] =... 
    fscanf(fp6,'%e',[3,inf]); % read in strain to MATLAB 
fclose(fp6);                  % closing the displacement file 
E11=E11'; 
%--call strain sort-- 
STR=strainsort(E11); 
 
%--Displacements-- 
fp7 = fopen(file5,'r'); 
[U,count]= ... 
    fscanf(fp7,'%e',[4,inf]); 
fclose(fp7); 
U=U'; 
%--call displacementsort-- 
DSP=displacementsort(U); 
DSP=DSP(:,2); 
%--Hanger loads-- 
fp8 = fopen(file6,'r'); 
[HngF,count]=... 
    fscanf(fp8,'%e',[2,inf]); 
fclose(fp8); 
HngF=HngF'; 
 
%-- Call hangersort-- 
Hfor=hangersort(HngF); 
z=[FREQ;STR;DSP;Hfor]; 
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H.2 MATLAB CODE – SBphihat 
function phi=SBphihat(phihat) 
 
% SBphihat maps uncertain structural parameters of interest to the general 
% SBphi to facilitate FE updating of uncertain structural parameters. 
% 
% phihat 
%     Concrete stiffness updating parameters 
%     1   Ec          Global concrete stiffness 
%     2   Ecbase      Concrete stiffness increase at arch base 
%     3   Eccrown     Concrete stiffness increase at arch crown 
% 
%     Asphalt updating parameters 
%     4   Masph       Global asphalt mass 
%     5   Easph       Global asphalt stiffness 
% 
%     Arch to carriageway connection updating parameters 
%     6   Ka-carrS    Arch to carriageway rotational spring (Swedish side) 
%     7   Ka-carrN    Arch to carriageway rotational spring (Norwegian side) 
% 
%     Arch foundation updating parameters 
%     8   Ka-fS       Arch foundation rotational stiffness (Swedish side) 
%     9   Ka-fN       Arch foundation rotational stiffness (Norwegian side) 
% 
%     Bearing updating parameters 
%     10  KbearS      Non-linear springs at Swedish abutment bearings 
%     11  Kbear2      Non-linear springs at Pier 2 bearings 
%     12  Kbear3      Non-linear springs at Pier 3 bearings 
%     13  Kbear4      Non-linear springs at Pier 4 bearings 
%     14  Kbear5      Non-linear springs at Pier 5 bearings 
%     15  Kbear8      Non-linear springs at Pier 8 bearings 
%     16  KbearN      Non-linear springs at Norwegian abutment bearings 
% 
%     Carriageway stiffeners updating parameter 
%     17  Astiffbeam  Area of the carriageway stiffeners 
%     18  Esteel      Elastic modulus of steel 
 
%-------------------------------------------------------------------------% 
% 
% Initialize total vector of updating parameters 
% 
%-------------------------------------------------------------------------% 
% 
phi=ones(165,1); 
 
%-------------------------------------------------------------------------% 
% 
% Concrete stiffness updating parameters: 
% 
%-------------------------------------------------------------------------% 
% 
% Global concrete stiffness normalized updating parameter: 
phi(1)=phihat(1); 
 
% Initial stiffness of concrete arch sections 
%   Min increase (base):   4.11% 
%   Max increase (crown): 16.7% 
phiEcbase=phihat(2); 
phiEccrown=phihat(3); 
% Quadratic interpolation of arch profile 
t=[1 58.5 116]'; 
X = [ones(size(t))  t  t.^2]; 
% y=[1+0.0411*phiEcbase 1+0.167*phiEccrown 1+0.0411*phiEcbase]'; 
y=[phiEcbase phiEccrown phiEcbase]'; 
a = X\y; 
 
% Normalized updating parameters for arch profile 
phiEarch=a(1)+a(2)*[1:116]+a(3)*[1:116].^2; 
phi(49+[1:116])=phiEarch; 
 
%-------------------------------------------------------------------------% 
% 
% Asphalt updating parameters: 
% 
%-------------------------------------------------------------------------% 
% 
% Asphalt layer: 
% T=22.72;        % Mean temperature of asphalt during freq measurements 
% f = 1;          % Loading frequency [Hz] 
% P200 = 24.5;    % Percent Aggregate Passing #200 Seive 
% Pac = 7.8;      % Bitumen Content, Percent by Weight of Mix 
% Vv = 0.1;       % Percent Air Voids 
dmm=65;           % Depth of asphalt layer 
% eta = 0.75;     % Absolute Viscosity at 70deg F [10^6 poise] 
% Easph=EASPH(T,f,dmm, P200, Pac, Vv, eta)*1e9; 
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% Initial value for asphalt dynamic stiffness: 4899801884 Pa 
 
% Normalized updating parameter for asphalt mass 
phi(2)=phihat(4); 
 
% Normalized updating parameter for asphalt stiffness 
Easph=4899801884*phihat(5); 
 
% Asphalt layer dimensions: (dmm) x 10 m 
Aasph=(dmm/1000)*10; 
 
%-------------------------------------------------------------------------% 
% 
% Arch to carriageway connection updating parameters: 
% 
%-------------------------------------------------------------------------% 
% 
% Rotational spring at Swedish side updating parameter: 
phi(30)=phihat(6); 
phi(31)=phihat(6); 
 
% Rotational spring at Norwegian side updating parameter: 
phi(32)=phihat(7); 
phi(33)=phihat(7); 
 
%-------------------------------------------------------------------------% 
% 
% Arch foundation updating parameters: 
% 
%-------------------------------------------------------------------------% 
% 
% Swedish side: 
phi(15)=phihat(8);    % Rotational spring updating parameter 
 
% Norwegian side: 
phi(16)=phihat(9);   % Rotational spring updating parameter 
 
%-------------------------------------------------------------------------% 
% 
% Bearing updating parameters: 
% 
%-------------------------------------------------------------------------% 
% 
% Swedish abutment bearings updating parameter: 
phi(34)=phihat(10); 
phi(35)=phihat(10); 
phi(36)=phihat(10); 
phi(37)=phihat(10); 
 
% Pier 2 bearings updating parameter: 
phi(38)=phihat(11); 
phi(39)=phihat(11); 
 
% Pier 3 bearing updating parameter (1 bearing with motion): 
phi(40)=phihat(12); 
 
% Pier 4 bearings updating parameter (1 bearing with motion): 
phi(41)=phihat(13); 
 
% Pier 5 bearings updating parameter: 
phi(42)=phihat(14); 
phi(43)=phihat(14); 
 
% Pier 8 bearings updating parameter: 
phi(44)=phihat(15); 
phi(45)=phihat(15); 
 
% Norwegian abutment bearings updating parameter: 
phi(46)=phihat(16); 
phi(47)=phihat(16); 
phi(48)=phihat(16); 
phi(49)=phihat(16); 
 
%-------------------------------------------------------------------------% 
% 
% Carriageway stiffeners updating parameter 
% 
%-------------------------------------------------------------------------% 
% 
% Carriageway sectional parameters at midspan of main span: 
Esteel=210E9*phihat(18); 
phi(4)=phihat(18); 
% Sectional area of carriageway: 
A_A11=1.1e-1; 
A_A21=2.2e-1; 
A_A51=1.3e-1; 
Asteel=A_A11+A_A21+A_A51; 
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% Longitudinal bending inertia of carriageway: 
I11_A11=3.800E-02; 
I11_A21=3.170E-01; 
I11_A51=2.310E-01; 
I11steel=I11_A11+I11_A21+I11_A51; 
% Transversal bending inertia of carriageway: 
I22_A11=1.000E-04; 
I22_A21=5.500E+00; 
I22_A51=1.000E-04; 
rA11=5.5; 
rA51=5.5; 
I22steel=I22_A11+(A_A11*rA11^2)+I22_A21+I22_A51+(A_A51*rA51^2); 
% Torsional inertia of carriageway: 
J_A11=1.000E-04; 
J_A21=1.240E+00; 
J_A51=1.000E-04; 
Jsteel=J_A11+(A_A11*rA11^2)+J_A21+J_A51+(A_A51*rA51^2); 
 
% Carriageway stiffeners (estimated from structural drawings) 
tsteel=0.012;           % Steel plate thickness 
w=0.200;                % Width of stiffening beam 
h=0.200;                % Height of stiffening beam 
Astiffbeam0=(2*h+w)*tsteel; % Area of stiffening beam 
 
% Carriageway stiffening beam area update: 
Astiffbeam=Astiffbeam0*phihat(17); 
 
Astiff=28*Astiffbeam;   % Total area of stiffeners 
I11stifft=18*Astiffbeam*1.4^2;  % Inertia of top flange stiffeners 
I11stiffb=4*Astiffbeam*1.4^2;   % Inertia of bottom flange stiffeners 
I11stiffw=4*Astiffbeam*0.75^2;  % Inertia of web stiffeners 
I11stiffsw=4*Astiffbeam*0.5^2;  % Inertia of sloped web stiffeners 
I11stiff=I11stifft+I11stiffb+I11stiffw+I11stiffsw;  % Total I11 inertia 
I22stiff=1/12*(Astiff/10)*(10/2)^2;     % Approximated transversal inertia 
Jstiff=I11stiff+I22stiff;       % Torsional inertia 
 
% Longidutinal inertia of asphalt layer: 
I11asph=Aasph*(1.5+(dmm/2)*1e-3)^2; 
 
% Transversal inertial of asphalt layer: 
I22asph=1/12*(dmm/1000)*5^2; 
 
% Torsional inertia of asphalt layer: 
Jasph=I11asph+I22asph; 
 
% Updating parameters: 
% Equivalent steel area of carriageway updating parameter: 
phi(5)=(Asteel+Astiff)/(Asteel); 
Asteel=Asteel+Astiff; 
 
% Equivalent dynamic stiffness of carriageway updating parameter: 
Eeq=(Asteel*Esteel+Aasph*Easph)/(Asteel); 
phi(10)=Eeq/(210E9); 
 
% Equivalent static longitudinal inertia of carriageway updating parameter: 
I11eq=(I11steel*Esteel+I11stiff*Esteel)/(Esteel); 
phi(6)=I11eq/I11steel; 
 
% Equivalent dynamic longitudinal inertia of carriageway updating parameter: 
I11eq=(I11steel*Esteel+I11stiff*Esteel+I11asph*Easph)/(Esteel); 
phi(11)=I11eq/I11steel; 
 
% Equivalent static transversal inertia of carriageway updating parameter: 
I22eq=(I22steel*Esteel+I22stiff*Esteel)/(Esteel); 
phi(8)=I22eq/I22steel; 
 
% Equivalent dynamic transversal inertia of carriageway updating parameter: 
I22eq=(I22steel*Esteel+I22stiff*Esteel+I22asph*Easph)/(Esteel); 
phi(13)=I22eq/I22steel; 
 
% Equivalent static torsional inertia of carriageway updating parameter: 
Jeq=(Jsteel*Esteel+Jstiff*Esteel)/(Esteel); 
phi(9)=Jeq/Jsteel; 
 
% Equivalent dynamic torsional inertia of carriageway updating parameter: 
Jeq=(Jsteel*Esteel+Jstiff*Esteel+Jasph*Easph)/(Esteel); 
phi(14)=Jeq/Jsteel; 
 
%-------------------------------------------------------------------------% 
% 
% Return normalized updating parameter values mapped to total updating 
% parameter vector to be written to file using SBphi 
% 
%-------------------------------------------------------------------------% 
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H.3 MATLAB CODE – SBphi 
function SBphi(phi) 
 
% Open file for writing 
fid = fopen('SBphi.prn','w'); 
fprintf(fid,'** Normalized Updating parameters\n**\n*PARAMETER\n**\n'); 
 
% Global updating parameters are applied to multiple element sets 
fprintf(fid,'**\n** Global Updating Parameters:\n**\n'); 
fprintf(fid,'** Global Concrete Stiffness Update:\n'); 
fprintf(fid,['PHI_EC=',num2str(phi(1))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Carriageway Asphault Mass Update:\n'); 
fprintf(fid,['PHI_MASPH=',num2str(phi(2))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Steel Carriageway Density Update:\n'); 
fprintf(fid,['PHI_RHOS=',num2str(phi(3))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Steel Carriageway Static Stiffness Update:\n'); 
fprintf(fid,['PHI_ES=',num2str(phi(4))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Steel Carriageway Sectional Area Update:\n'); 
fprintf(fid,['PHI_AS=',num2str(phi(5))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Steel Carriageway Static Bending Inertia (I11) Update:\n'); 
fprintf(fid,['PHI_I11S=',num2str(phi(6))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Steel Carriageway Static Bending Inertia (I12) Update:\n'); 
fprintf(fid,['PHI_I12S=',num2str(phi(7))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Steel Carriageway Static Bending Inertia (I22) Update:\n'); 
fprintf(fid,['PHI_I22S=',num2str(phi(8))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Steel Carriageway Static Torsional Inertia (J) Update:\n'); 
fprintf(fid,['PHI_JS=',num2str(phi(9))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Steel Carriageway Dynamic Stiffness Update:\n'); 
fprintf(fid,['PHI_ESD=',num2str(phi(10))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Steel Carriageway Dynamic Bending Inertia (I11) Update:\n'); 
fprintf(fid,['PHI_I11SD=',num2str(phi(11))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Steel Carriageway Dynamic Bending Inertia (I12) Update:\n'); 
fprintf(fid,['PHI_I12SD=',num2str(phi(12))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Steel Carriageway Dynamic Bending Inertia (I22) Update:\n'); 
fprintf(fid,['PHI_I22SD=',num2str(phi(13))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Global Steel Carriageway Dynamic Torsional Inertia (J) Update:\n'); 
fprintf(fid,['PHI_JSD=',num2str(phi(14))]); 
fprintf(fid,'\n**\n'); 
fprintf(fid,'** Arch and Pier Foundation Stiffness Update:\n'); 
fprintf(fid,['PHI_kS3001_5=',num2str(phi(15)),'\n']); 
fprintf(fid,['PHI_kS3117_5=',num2str(phi(16)),'\n']); 
fprintf(fid,['PHI_kS4201_5=',num2str(phi(17)),'\n']); 
fprintf(fid,['PHI_kS4201_4=',num2str(phi(18)),'\n']); 
fprintf(fid,['PHI_kS4301_4=',num2str(phi(19)),'\n']); 
fprintf(fid,['PHI_kS4301_5=',num2str(phi(20)),'\n']); 
fprintf(fid,['PHI_kS4401_1=',num2str(phi(21)),'\n']); 
fprintf(fid,['PHI_kS4401_2=',num2str(phi(22)),'\n']); 
fprintf(fid,['PHI_kS4401_3=',num2str(phi(23)),'\n']); 
fprintf(fid,['PHI_kS4401_4=',num2str(phi(24)),'\n']); 
fprintf(fid,['PHI_kS4401_5=',num2str(phi(25)),'\n']); 
fprintf(fid,['PHI_kS4401_6=',num2str(phi(26)),'\n']); 
fprintf(fid,['PHI_kS4501_4=',num2str(phi(27)),'\n']); 
fprintf(fid,['PHI_kS4501_5=',num2str(phi(28)),'\n']); 
fprintf(fid,['PHI_kS4801_5=',num2str(phi(29)),'\n']); 
fprintf(fid,'**\n'); 
fprintf(fid,'** Arch to Carriageway Connection Stiffness Update:\n'); 
fprintf(fid,['PHI_kARCHCARRSW=',num2str(phi(30)),'\n']); 
fprintf(fid,['PHI_kARCHCARRSE=',num2str(phi(31)),'\n']); 
fprintf(fid,['PHI_kARCHCARRNW=',num2str(phi(32)),'\n']); 
fprintf(fid,['PHI_kARCHCARRNE=',num2str(phi(33)),'\n']); 
fprintf(fid,'**\n'); 
fprintf(fid,'** Non Linear Spring Stiffness Update (Abutment/Piers):\n**\n'); 
fprintf(fid,'**\n'); 
fprintf(fid,['PHI_ABUTCARRS1=',num2str(phi(34)),'\n']); 
fprintf(fid,['PHI_ABUTCARRS2=',num2str(phi(35)),'\n']); 
fprintf(fid,['PHI_ABUTCARRS3=',num2str(phi(36)),'\n']); 
fprintf(fid,['PHI_ABUTCARRS4=',num2str(phi(37)),'\n']); 
fprintf(fid,['PHI_PIERCARRW2=',num2str(phi(38)),'\n']); 
fprintf(fid,['PHI_PIERCARRE2=',num2str(phi(39)),'\n']); 
fprintf(fid,['PHI_PIERCARRW3=',num2str(phi(40)),'\n']); 
fprintf(fid,['PHI_PIERCARRW4=',num2str(phi(41)),'\n']); 
fprintf(fid,['PHI_PIERCARRW5=',num2str(phi(42)),'\n']); 
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fprintf(fid,['PHI_PIERCARRE5=',num2str(phi(43)),'\n']); 
fprintf(fid,['PHI_PIERCARRW8=',num2str(phi(44)),'\n']); 
fprintf(fid,['PHI_PIERCARRE8=',num2str(phi(45)),'\n']); 
fprintf(fid,['PHI_ABUTCARRN1=',num2str(phi(46)),'\n']); 
fprintf(fid,['PHI_ABUTCARRN2=',num2str(phi(47)),'\n']); 
fprintf(fid,['PHI_ABUTCARRN3=',num2str(phi(48)),'\n']); 
fprintf(fid,['PHI_ABUTCARRN4=',num2str(phi(49)),'\n**\n']); 
fprintf(fid,'**\n'); 
% Local updating parameters applied to individual arch sections 
fprintf(fid,'**\n** Local Concrete Arch Stiffness Update:\n**'); 
for i=1:116 
    fprintf(fid,'\n'); 
    fprintf(fid,['PHI_EC_A',int2str(i+300),'=',num2str(phi(i+49))]); 
end 
 
fclose(fid); 

H.4 MATLAB CODE – SBobj 
 

function OBJ=SBobj(p,choose,fid) 
 
% Objective function options: 
%     'VARIANCEZPHI'    (average variance of z) + (average variance of phi) 
%     'VARIANCEZ'       (average variance of z) 
%     'UNCERTZPHI'      (average uncertainty of z) + 
%                       (average uncertainty of phi) 
%     'UNCERTZ'         (average uncertainty of z) 
%     'ERRORZPHI'       (average error of z) + (average error of phi) 
%     'ERRORZ'          (average error of z) 
%     'STDEVZPHI'       (average standard deviation of z) + 
%                       (average standard deviation of phi) 
% 
%     default: 
%     'STDEVZ' 
 
% Load measured response and standard deviation 
load('zmsigmaz.mat'); 
 
% Initial values of normalized updating parameters: 
p0=[1.062; 
    1.190; 
    0.95; 
    1.6; 
    0.2; 
    0.2; 
    0; 
    1]; 
 
% Standard deviation of input parameters 
sigmap=[0.15; 
        0.15; 
        1.00; 
        1000; 
        1000; 
        1000; 
        0.50; 
        0.10]; 
 
% Control of input parameter range (to use unconstrained minimization) 
prange= [   0.8     2; 
            0.8     2; 
            0.5     2; 
            0       4; 
            0.001   4; 
            0.001   4; 
           -0.5     0.5; 
            0.8     1.2]; 
p_lb=prange(:,1); 
p_ub=prange(:,2); 
p=(p<p_lb).*p_lb+(p>p_ub).*p_ub + ((p>=p_lb)&(p<=p_ub)).*p; 
 
% Response of bridge for given input parameters: 
z=zSB(SBphihat([1 p(1) p(2) p(3) p(4) 500 500 1 1 p(5) p(6) p(6) p(6) p(6) p(6) ... 
  p(5) p(7) p(8)]')); 
 
% Indices for measurement types: 
ixfreq=[1:4]; 
ixstrain=[5:99]; 
ixdisp=[100:254]; 
ixhang=[255:264]; 
 
switch choose 
    case 'VARIANCEZPHI' 
        %---------------------------------------------------------------------% 
        % Variance: 
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        % Objective function calculations: 
        dZxWz=((zm-z).^2)./sigmaz.^2; 
        dpxWp=((p0-p).^2)./sigmap.^2; 
 
        % Contribution of frequency to objective function: 
        OBJfreq=mean(dZxWz(ixfreq)); 
 
        % Contribution of strain to objective function: 
        OBJstrain=mean(dZxWz(ixstrain)); 
 
        % Contribution of displacement to objective function: 
        OBJdisp=mean(dZxWz(ixdisp)); 
 
        % Contribution of hanger load to objective function: 
        OBJhang=mean(dZxWz(ixhang)); 
 
        % Contribution of bridge response to objective function: 
        OBJz=mean([OBJfreq OBJstrain OBJdisp OBJhang]); 
 
        % Contribution of input parameters to objective function: 
        OBJp=mean(dpxWp); 
 
        OBJ=mean([OBJz OBJp]); 
 
    case 'VARIANCEZ' 
        %---------------------------------------------------------------------% 
        % Variance: 
 
        % Objective function calculations: 
        dZxWz=((zm-z).^2)./sigmaz.^2; 
 
        % Contribution of frequency to objective function: 
        ixfreq=[1:4]; 
        OBJfreq=mean(dZxWz(ixfreq)); 
 
        % Contribution of strain to objective function: 
        ixstrain=[5:99]; 
        OBJstrain=mean(dZxWz(ixstrain)); 
 
        % Contribution of displacement to objective function: 
        ixdisp=[100:254]; 
        OBJdisp=mean(dZxWz(ixdisp)); 
 
        % Contribution of hanger load to objective function: 
        ixhang=[255:264]; 
        OBJhang=mean(dZxWz(ixhang)); 
 
        % Contribution of bridge response to objective function: 
        OBJz=mean([OBJfreq OBJstrain OBJdisp OBJhang]); 
 
        OBJ=mean(OBJz); 
 
    case 'UNCERTZPHI' 
        %---------------------------------------------------------------------% 
        % Uncertainty: 
 
        % FE Model uncertainty: 
        sigmazFEM=0.1*max([abs(zm)';abs(z)'])'; 
        sigmazuncert=sqrt(sigmaz.^2+sigmazFEM.^2); 
 
        % Define uncertainty function: 
        uncertfun=@(xm,x,sigma)(2*abs(normcdf(xm,x,sigma)-0.5))'; 
 
        % Uncertainty of response: 
        Zuncert=uncertfun(zm,z,sigmazuncert); 
 
        % Uncertainty of input parameters: 
        puncert=uncertfun(p0,p,sigmap); 
        UNCERTp=mean(puncert); 
 
        % Mean uncertainty of frequency: 
        UNCERTfreq=mean(Zuncert(ixfreq)); 
 
        % Mean uncertainty of frequency: 
        UNCERTstrain=mean(Zuncert(ixstrain)); 
 
        % Mean uncertainty of frequency: 
        UNCERTdisp=mean(Zuncert(ixdisp)); 
 
        % Mean uncertainty of frequency: 
        UNCERThang=mean(Zuncert(ixhang)); 
 
        % Mean uncertainty of response: 
        UNCERTz=mean([UNCERTfreq UNCERTstrain UNCERTdisp UNCERThang]); 
 
        OBJ=mean([UNCERTz UNCERTp]); 
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    case 'UNCERTZ' 
        %---------------------------------------------------------------------% 
        % Uncertainty: 
 
        % FE Model uncertainty: 
        sigmazFEM=0.1*max([abs(zm)';abs(z)'])'; 
        sigmazuncert=sqrt(sigmaz.^2+sigmazFEM.^2); 
 
        % Define uncertainty function: 
        uncertfun=@(xm,x,sigma)(2*abs(normcdf(xm,x,sigma)-0.5))'; 
 
        % Uncertainty of response: 
        Zuncert=uncertfun(zm,z,sigmazuncert); 
 
        % Mean uncertainty of frequency: 
        UNCERTfreq=mean(Zuncert(ixfreq)); 
 
        % Mean uncertainty of frequency: 
        UNCERTstrain=mean(Zuncert(ixstrain)); 
 
        % Mean uncertainty of frequency: 
        UNCERTdisp=mean(Zuncert(ixdisp)); 
 
        % Mean uncertainty of frequency: 
        UNCERThang=mean(Zuncert(ixhang)); 
 
        % Mean uncertainty of response: 
        OBJ=mean([UNCERTfreq UNCERTstrain UNCERTdisp UNCERThang]); 
 
    case 'ERRORZPHI' 
        %---------------------------------------------------------------------% 
        % Error: 
 
        % Contribution of frequency to error function: 
        ERRORfreq=sum(abs(zm(ixfreq)-z(ixfreq)))/sum(abs(zm(ixfreq))); 
 
        % Contribution of strain to error function: 
        ERRORstrain=sum(abs(zm(ixstrain)-z(ixstrain)))/sum(abs(zm(ixstrain))); 
 
        % Contribution of displacement to error function: 
        ERRORdisp=sum(abs(zm(ixdisp)-z(ixdisp)))/sum(abs(zm(ixdisp))); 
 
        % Contribution of hanger load to error function: 
        ERRORhang=sum(abs(zm(ixhang)-z(ixhang)))/sum(abs(zm(ixhang))); 
 
        % Contribution of bridge response to error function: 
        ERRORz=mean([ERRORfreq ERRORstrain ERRORdisp ERRORhang]); 
 
        % Contribution of input parameters to error function: 
        ERRORp=sum(abs(p0-p))/sum(p0); 
 
        OBJ=mean([ERRORz ERRORp]); 
 
    case 'ERRORZ' 
        %---------------------------------------------------------------------% 
        % Error: 
 
        % Contribution of frequency to error function: 
        ERRORfreq=sum(abs(zm(ixfreq)-z(ixfreq)))/sum(abs(zm(ixfreq))); 
 
        % Contribution of strain to error function: 
        ERRORstrain=sum(abs(zm(ixstrain)-z(ixstrain)))/sum(abs(zm(ixstrain))); 
 
        % Contribution of displacement to error function: 
        ERRORdisp=sum(abs(zm(ixdisp)-z(ixdisp)))/sum(abs(zm(ixdisp))); 
 
        % Contribution of hanger load to error function: 
        ERRORhang=sum(abs(zm(ixhang)-z(ixhang)))/sum(abs(zm(ixhang))); 
 
        % Contribution of bridge response to error function: 
        ERRORz=mean([ERRORfreq ERRORstrain ERRORdisp ERRORhang]); 
 
        OBJ=ERRORz; 
 
    case 'STDEVZPHI' 
        %---------------------------------------------------------------------% 
        % Standard Deviation: 
 
        % Objective function calculations: 
        dZxWz=abs((zm-z))./sigmaz; 
        dpxWp=abs((p0-p))./sigmap; 
 
        % Contribution of frequency to objective function: 
        OBJfreq=mean(dZxWz(ixfreq)); 
 
        % Contribution of strain to objective function: 
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        OBJstrain=mean(dZxWz(ixstrain)); 
 
        % Contribution of displacement to objective function: 
        OBJdisp=mean(dZxWz(ixdisp)); 
 
        % Contribution of hanger load to objective function: 
        OBJhang=mean(dZxWz(ixhang)); 
 
        % Contribution of bridge response to objective function: 
        OBJz=mean([OBJfreq OBJstrain OBJdisp OBJhang]); 
 
        % Contribution of input parameters to objective function: 
        OBJp=mean(dpxWp); 
 
        OBJ=mean([OBJz OBJp]); 
 
    otherwise 
        %---------------------------------------------------------------------% 
        % Standard Deviation: 'STDEVZ' 
 
        % Objective function calculations: 
        dZxWz=abs((zm-z))./sigmaz; 
 
        % Contribution of frequency to objective function: 
        OBJfreq=mean(dZxWz(ixfreq)); 
 
        % Contribution of strain to objective function: 
        OBJstrain=mean(dZxWz(ixstrain)); 
 
        % Contribution of displacement to objective function: 
        OBJdisp=mean(dZxWz(ixdisp)); 
 
        % Contribution of hanger load to objective function: 
        OBJhang=mean(dZxWz(ixhang)); 
 
        % Contribution of bridge response to objective function: 
        OBJz=mean([OBJfreq OBJstrain OBJdisp OBJhang]); 
 
        OBJ=OBJz; 
end 
 
% Load data from previous iteration: 
load(fid); 
[m,n]=size(phi_save); 
phi_save(:,n+1)=p; 
z_save(:,n+1)=z; 
OBJ_save(:,n+1)=OBJ; 
 
% Save iteration data: 
save(fid,'phi_save','z_save','OBJ_save'); 
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H.5 User subroutine – SBfreq 
      SUBROUTINE ABQMAIN 
C==================================================================== 
C This program must be compiled and linked with the command:              
C      abaqus make job=SBfreq                                             
C Run the program using the command:                                      
C      abaqus SBfreq                                                      
C==================================================================== 
C PURPOSE:                                                                
C                                                                         
C This program reads results record stored in an ABAQUS results file      
C (.fil), save the eigen values and calculates the eigenfrequencies       
C and creates an ASCII file for reading the eigenfreuquencis toMATLAB  
C Input file names <fname.fil>                                            
C                                                                         
C==================================================================== 
C                                                                         
C VARIABLES USED BY THIS PROGRAM                                          
C                                                                        
C  LOUTF  ----  FORMAT OF OUTPUT FILE:                                    
C               0 --> Standard ASCII format.                              
C               1 --> ABAQUS results file ASCII format.                   
C               2 --> ABAQUS results file binary format.                   
C  JUNIT  ----  Unit number of file to be opened (=8 for .fil).           
C  KEY    ----  Current element key identifier.                           
C  JRCD   ----  Error check return code                                   
C                    .EQ 0 --> No errors                                  
C                    .NE 0 --> Errors detected                            
C  FNAME ----   Name of the results file                                  
C  ARRAY ----   Real array containing individual components of            
C                 the output variable.                                    
C  EIGEN ----   Eigen values                                              
C  FREQ  ----   Eigen frequencis [Hz]                                     
C  DBFILE ---   Read from file (ABAQUS utility routine)                   
C  DBRNU ----   set unit number for a file (ABAQUS utility routine)       
C  INITPF ---   intialize a file (ABAQUS utility routine)                 
C==================================================================== 
C 
C  The use of ABA_PARAM.INC eliminates the need to have different 
C  versions of the code for single and double precision. 
C  ABA_PARAM.INC defines an appropriate IMPLICIT REAL statement 
C  and sets the value of NRCD to 1 or 2, depending on whether 
C  the machine uses single or double precision. 
C==================================================================== 
C 
C  The use of ABA_PARAM.INC eliminates the need to have different 
C  versions of the code for single and double precision. 
C  ABA_PARAM.INC defines an appropriate IMPLICIT REAL statement 
C  and sets the value of NRCD to 1 or 2, depending on whether 
C  the machine uses single or double precision. 
C==================================================================== 
       INCLUDE 'aba_param.inc' 
       CHARACTER*80 FNAME 
       DIMENSION ARRAY(513),JRRAY(2,513),LRUNIT(2,1) 
       EQUIVALENCE (ARRAY(1),JRRAY(1,1)) 
       REAL PI 
       PARAMETER (PI = 3.1415926535897932384626434) 
       OPEN(UNIT=105,FILE='SBfreq.fre',STATUS='UNKNOWN') 
C      --Define key number, modal file-- 
       MOD=1980 
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C      --Function name-- 
       FNAME='SBfreq' 
       NRU=1 
       LRUNIT(1,1) = 8 
       LRUNIT(2,1) = 2 
       LOUTF = 0 
       CALL INITPF(FNAME,NRU,LRUNIT,LOUTF) 
C      --Unit number for ABAQUS.fil (results file)-- 
       JUNIT = 8 
       CALL DBRNU(JUNIT) 
C     --Loop an all records in results file-- 
       DO 100 K1=1,999999 
       CALL DBFILE(0,ARRAY,JRCD) 
       IF(JRCD.NE.0) GO TO 110 
       KEY=JRRAY(1,2) 
C      --Find right key for eigen values-- 
       IF(KEY.EQ.MOD) THEN 
C      --save eigen values-- 
       EIGEN=ARRAY(4) 
C      --calculate eigen frequencies [Hz]-- 
       FREQ=SQRT(EIGEN)/(2*PI) 
C      --Write eigen frequencies to the file FNAME.fre-- 
       WRITE(105,*) FREQ 
       END IF 
 100   CONTINUE 
 110   CONTINUE 
C      --Write EOF (end of file)-- 
       WRITE(105,*) 'EOF' 
       CLOSE(UNIT=105) 
       STOP 
       END 
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H.6 User subroutine – SBstat 
SUBROUTINE ABQMAIN 
C==================================================================== 
C This program must be compiled and linked with the command:              
C      abaqus make job=SBstatic                                           
C Run the program using the command:                                      
C     abaqus SBstatic                                                     
C==================================================================== 
C PURPOSE:                                                                
C                                                                         
C This program reads results file stored in an ABAQUS results (.fil)      
C file and creates ASCII files for reading in to MATLAB                   
C                                                                         
C Input file names <fname.fil>                                            
C                                                                         
C==================================================================== 
C                                                                         
C VARIABLES USED BY THIS PROGRAM                                          
C                                                                         
C  LOUTF  ----  FORMAT OF OUTPUT FILE:                                    
C               0 --> Standard ASCII format.                              
C               1 --> ABAQUS results file ASCII format.                   
C               2 --> ABAQUS result file binary format.                   
C  JRRAY  ----  Integer array containing values read from results 
file.   
C               Equivivalenced to array.                                  
C  JUNIT  ----  Unit number of file to be opened.                         
C  KEY    ----  Current element key identifier.                           
C  NOEL   ----  Currrent element number                                   
C  NPT    ----  Integration point number                                  
C  JRCD   ----  Error check return code                                   
C                    .EQ 0 --> No errors                                  
C                    .NE 0 --> Errors detected                            
C  FNAME ----   Name of the results file                                  
C  ARRAY ----   Real array containing individual components of            
C                 the output variable.                                    
C  DBFILE ---   Read from file (ABAQUS utility routine)                   
C  DBRNU ----   set unit number for a file (ABAQUS utility routine)       
C  INITPF ---   intialize a file (ABAQUS utility routine)                 
C 
C==================================================================== 
C 
C  The use of ABA_PARAM.INC eliminates the need to have different 
C  versions of the code for single and double precision. 
C  ABA_PARAM.INC defines an appropriate IMPLICIT REAL statement 
C  and sets the value of NRCD to 1 or 2, depending on whether 
C  the machine uses single or double precision. 
C==================================================================== 
      INCLUDE 'aba_param.inc' 
C 
      CHARACTER*80 FNAME 
      DIMENSION ARRAY(513),JRRAY(2,513),LRUNIT(2,1) 
      EQUIVALENCE (ARRAY(1),JRRAY(1,1)) 
      OPEN(UNIT=120,FILE='SBstat.str',STATUS='UNKNOWN') 
      OPEN(UNIT=130,FILE='SBstat.dis',STATUS='UNKNOWN') 
      OPEN(UNIT=140,FILE='SBstat.sfo',STATUS='UNKNOWN') 
C     --Define key number, strain-- 
      STR=21 
C     --Define key number, displacement-- 
      DIS=101 
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C     --Define key number, section forces-- 
      SEFO=13 
C     --Function name-- 
      FNAME='SBstat' 
      NRU=1 
      LRUNIT(1,1) = 8 
      LRUNIT(2,1) = 2 
      LOUTF = 0 
      CALL INITPF(FNAME,NRU,LRUNIT,LOUTF) 
C     --Unit number for ABAQUS.fil (results file)-- 
      JUNIT = 8 
      CALL DBRNU(JUNIT) 
C     --Loop an all records in results file-- 
      STRESS=0. 
      DO 100 K1=1,999999 
      CALL DBFILE(0,ARRAY,JRCD) 
      IF(JRCD.NE.0)GO TO 110 
      KEY=JRRAY(1,2) 
      IF(KEY.EQ.1) THEN 
      NOEL=JRRAY(1,3) 
      JPNT=JRRAY(1,4) 
      SECPT=JRRAY(1,5) 
C     --Find the right key, strains-- 
      ELSE IF(KEY.EQ.STR) THEN 
      E1=ARRAY(3) 
C     --Write strains to the file FNAME.str-- 
       WRITE(120,*) NOEL,SECPT,E1 
C     --Find the right key, displacements-- 
      ELSE IF (KEY.EQ.DIS) THEN 
      NODNR=JRRAY(1,3) 
      U1=ARRAY(4) 
      U2=ARRAY(5) 
      U3=ARRAY(6) 
C     --Write displacements to the file FNAME.str-- 
      WRITE(130,*) NODNR,U1,U2,U3 
C     --Find the right key, section forces-- 
      ELSE IF(KEY.EQ.SEFO) THEN 
      SF1=ARRAY(3) 
      SF2=ARRAY(4) 
      SF3=ARRAY(5) 
      WRITE(140,*) NOEL,SF1 
      END IF 
 100  CONTINUE 
 110  CONTINUE 
C     --Write EOF (end of file)-- 
      WRITE(120,*) 'EOF' 
      WRITE(130,*) 'EOF' 
      WRITE(140,*) 'EOF' 
      CLOSE(UNIT=120) 
      CLOSE(UNIT=130) 
      CLOSE(UNIT=140) 
      STOP 
      END 

 




